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Abstract
 This paper presents a first connectedness analysis usinginvolving the novel Cclimate Ppolicy Uuncertainty Iindex (CUI) proposed by Gavriilidis (2021), Green equity and bonds (GE and GB – - Green investments), and Dirty equity and bonds (DE and DB –- dirty investments). Using data covering the years from 2007 to -2021, we show here that the nature of the CUI role is far from being constant across through time and depends on the period under investigation. While the static analysis signals indicates that green investments are isolated from fluctuations in the CUI index, an inspection through the lenses of a from a dynamic approach perspective shows that CUI is mostly a transmitter of shocks. This role as a transmitter characteristic is evident primarily fromcoincides mainly with with two main crises that occurred since 2008at the beginning of the previous decade:, the subprime crisis and the European debt crisis. Interestingly, during recent years, the influence of climate change policy uncertainty as measure bytial power of the CUI weaknesshas weakened, and it has even becomes a net recipient of shocks.	Comment by Breaden Barnaby: Simply "using" may be a better term here.	Comment by Breaden Barnaby: Capitalized in the main body of the paper. If capitalization is unncessary, please also change the first mention in the main body and Conclusions.	Comment by Breaden Barnaby: Consider changing to the "effect of climate policy uncertainty as measured by the CUI"
	Comment by Breaden Barnaby: I don't think this phrase is necessary: isn't it this the same as saying that it's not constant through time?	Comment by Breaden Barnaby: This would imply that it's just a "coincidence." Please consider changing to "is evident"	Comment by Breaden Barnaby: The subprime crisis was actually before the beginning of the previous decade (2007-2008 or so).	Comment by Breaden Barnaby: I don't think you mean the CUI itself: consider changing to "the influence of climate change policy uncertainty as measured by the CUI"
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1. 
Introduction
Climate change has become a key issue in recent years, having become viewed as as it is considered as one of the leading human and environmental issues of the century (Atsu &and Adams, 2021). As a result, addressing and dealing with the climate change has becomeen a global concern and challenge (Qian et al. 2020). Thise increasing awareness has facilitated actions, rules, and reforms against to combat climate change on a national and global level., which can possiblyThese may in turn induce changes and adjustments in the practices and business strategies of firms, and consequently affect their performance. However, bBesides the potential effects of such steps, there is also a substantial significance for the accompanied uncertainty with associated with such these reforms and —and, more specifically, about with which the choice of policies will to be implemented and how they will influence the financial markets and the real economy—is also significant  (Fernando et al. 2021; Gavriilidis, 2021). For example, the United States.S. withdrew from the Paris Climate Agreement under the Trump administration and re-joined after President the election of Biden assumed power, even taking on with some new climate commitments. Two novel indices were recently created to track the dynamics of climate risk policies. Engle et al. (2021) who constructhave developed the WSJ Climate Change News Index, which tracks the climate news coverage in The Wall Street Journal (WSJ). Gavriilidis (2021) took a step forward and extends this idea by constructing the a novel Climate Policy Uncertainty (CPU) Index by using a greater broader scope of news coverage, along with a focus on news discussing uncertainty related to climate policy.	Comment by Breaden Barnaby: Please consider settling on either "and" or "&" to separate the names of authors in in-text references.	Comment by Breaden Barnaby: The paper listed in the References is from 2020: please check.	Comment by Breaden Barnaby: This is abbreviated to CUI elsewhere, and it would be confusing to have two abbreviations: consider changing to "Climate Policy Uncertainty Index (CUI)"
In this study, we examine the connectedness between this novel CUIlimate Policy Uncertainty Index by Gavriilidis (2021), green equity, and green bonds (GE and GB –- Green investments), and dirty equity and bonds (DE and DB –- dirty investments) for the period fromof 2007 to -2021. We use both static and dynamic approaches to identify the net transmitters as well as theand net receivers of risk spillovers. This will help us to understand the relationships between green and dirty investments and their possible mutual dependence, as well as their interaction with Gavriilidis (2021)’s new index. 	Comment by Breaden Barnaby: The full name and abbreviation have already been given in the previous paragraph, so just the abbreviation "the CUI" is better here.	Comment by Breaden Barnaby: Consider changing to "the CUI" for clarity, as above.
A careful mapping examination of the literature suggests a relatively new but fast-growing literature body of work on the static and dynamic interactions between the returns and volatilities of traditional financial assets and green investments (Ferrer et al. 2021; Pham and Nguyen, 2021a; Reboredo et al. 2020; Pham and Nguyen, 2021a; Ferrer et al. 2021; Shahbaz et al. 2021). Our paper joins this line of this studiesresearch, along and particularly in light of the growing interest in the literature towards the hedging role of green investments in the pandemic era (Arif et al. 2021; Dutta et al. 2021; Arif et al. 2021). More specifically, our paper contributes to a streamthe portion of this scholarshipresearch that considers examines the spillovers across different uncertainty measures, green investments, and traditional asset classes.
 Ferrer et al. (2018) examine the time and frequency dynamics of connectedness among stocks of U.S. clean energy companies, high technology stocks, oil prices, the default spread, treasury bond yields, and volatility indices (The Chicago Board Options Exchange Volatility Index – VIX and the U.S. Treasury Note Volatility Index – TYVIX). The sStock prices of high technology and renewable energy companies and the VIX emerge as net transmitters of return and volatility spillovers to other variables. 
Lundgren et al. (2018) study the connectedness across renewable energy stock returns, traditional asset classes, and several sources of uncertainty:  (VIX, the Equity Pickup (EPU), and financial stress (FS) (financial stress)). The uncertainty measures and renewable energy stocks are found to be the net transmitters of shocks to other variables. Broadstock and Cheng (2019) analyze the correlations between green and conventional bonds and their determinants, with the correlations shifting. The correlations shift from negative to positive in mid-2013. Correlations are sensitive to macro-level factors, including the VIX and EPU. 
Pham and Nguyen (2021b) analyze the connectedness between three uncertainty indices (namely the VIX, the Crude Oil Volatility Index – OVX, and  EPU) and green bond returns. It isThey shown that there is only a small level of connectedness between uncertainty and green bond returns during periods of especially when there is low uncertainty, while the spillovers from uncertainty measures to green bond returns are significantly higher during periods of high uncertainty periods (including such as the COVID-19 pandemic). 
Saeed et al. (2021) analyze return spillovers across the clean/green and dirty energy assets at different quantiles. Return connectedness is higher inat both left and right tails and variesy with time. VIX, OVX, TYVIX, and EPU have different effects on the connectedness inat different tails. For example, EPU positively affects the connectedness at the middle quantile, while VIX has a positive (negative) impact at upper (middle) quantiles. Finally, Liu et al. (2021) explore the spillover effects of economic uncertainty generated by the COVID-19 (measured by the newspaper-based Infectious Disease Equity Market Volatility Tracker) on the U.S., European, and global renewable energy stock indices. Economic uncertainty transmits spillovers to renewable energy stock volatilities and returns. The influence impact on volatilities isare higher compared to thethan on returns. The spillover from uncertainty to returns (volatilities) are is concentrated at high (low) frequencies. Our study contributes to this main strand in the literature by examining an uncertainty index that may be possibly more related uncertainty index to returnsin terms of climate risk and climate policy uncertainty, than traditional uncertainty indices such as the VIX or, the EPU, etc. in terms of climate risk and climate policy uncertainty.	Comment by Breaden Barnaby: I think that this is OK, but an expression like "low and high quantiles" or "extreme values, both low and high" might be clearer.	Comment by Breaden Barnaby: As above, consider changing to an expression like "for low and high extreme values"	Comment by Breaden Barnaby: Is a reference necessary for this?	Comment by Breaden Barnaby: Please clarify what exactly what is meant by 'frequency' here.
To our knowledge, we are the first to explore the connectedness between the climate policy uncertainty IndexCUI, green equity and bonds, and dirty equity and bonds by using the time-varying parameter vector autoregressive model (TVP-VAR) of Antonakakis, Chatziantoniou, & Gabauer (2020). The Climate Policy UncertaintyCUI has been used in only a limited number of studies. Gavriilidis (2021) explores the relationship between this index and CO2 emissions. Shocks to the Climate Policy Uncertainty indexCUI lead to lower emission levels at on anthe aggregate levelbasis. On a sectoral level analysis, the biggest impact is observed for within the residential and commercial sectors, and the duration of the impact varies across industries. Apergis et al. (2021) find that the Climate Policy Uncertainty indexCUI can predict the air-travel demand of U.S. citizens to eight regional overseas destinations. In this study, we find that while static analysis documents indicates that green investments are not influenced from by climate policy uncertainty, our dynamic analysis shows that the Climate Policy Uncertainty indexCUI performs representsas a net transmitter of both return and volatility spillovers. This phenomenon is evident during the 2007–-2008 subprime crisis and the European debt crisis. This transmission of risk spillovers by the Climate Policy Uncertainty indexCUI gets weaker over time, and it even turns to be afunctioned as a net receiver during the COVID-19 period. 	Comment by Breaden Barnaby: What exactly does "regional" mean here? "eight regional and overseas destinations" or "eight overseas distinations"?
The rest of the paper is organized as follows. In Section 2, we present and explains the data. In Ssection 3, we explain the methodology. In Section 4, we presents and discusses the findings. The lLast section concludes the paper. 

2. Data 
The data covers the period beginning In Januaryfrom January 2007 to April 2021. The choice of this period was mainly due to the availability of the common series. Our sample period is followed by key economic events and encompasses the 2007–-2008 subprime crisis, large fluctuations in oil prices, the European sovereign debt crisis, and more importantly, the COVID-19 pandemic. Therefore, our investigation offers an attempt to consider the interaction between green and dirty assets classes with and the fluctuations in the CUI proposed by  of the novel Climate Policy Uncertainty Index of Gavriilidis (2021). This indexThe CUI follows the construction by Baker et al. (2016) who constructof the Economic Policy Uncertainty Index, which is based on the frequency of newspaper coverage frequency ofof terms fromin three categories pertaining to uncertainty, the economy, and policy. The tTextual analysis has been recently used to form indices to quantify the uncertainty and risk on a macro level (Baker et al. 2016; Caldara and Iacoviello, 2018). Gavriilidis (2021) searches for the terms related to uncertainty, climate, energy, and policy in the articles fromof eight leading newspapers in the United States.S. The frequencynumber of articles per month containing these terms are is then scaled with by the total number of articles per monthwithin a month. After that, they areThis frequency measure is then standardized to have a unit standard deviation, and finally normalized and adjusted to have a mean value of 100 in for the entire time period. Figure 1 shows the evolution of the Climate Policy UncertaintyCUI over time.  As can be seen, tThe peaks are associated with several significant events, such as the global strikes in September 2019 during the Global strikes ahead of the UN Climate Action Summit. Twenty-four sStates sued the Trump administration on for revoking their right to set emission standards, as the Trump administration planneds to scrap Obama’s Clean Water Act reforms. In addition, the Climate Policy Uncertainty indexCUI is also higher during turbulent times such as the Dot- com bubble, the subprime crisis, and the COVID-19 pandemic.	Comment by Breaden Barnaby: Consider changing to "a consistent series of measurements" or "a consistent series of datapoints"	Comment by Breaden Barnaby: Do you mean "This period contains"?	Comment by Breaden Barnaby: Just to confirm: it is the frequency of the articles (not the frequency of the terms) that is being counted? (I haven't read the Gavriilidis paper, so I'm not sure.)	Comment by Breaden Barnaby: Is this really the correct order of standardization, normalization and mean adjustment? (Just checking.)	Comment by Breaden Barnaby: 24?
< Insert Figure 1 >
[bookmark: _Hlk90386335]As a surrogate for green and dirty assets classes, we collect the following data series: GB is the Bloomberg U.S. aggregate green bond index (GB) as the proxy for green bonds, GE is the Wilderhill clean energy index (GE) representing the green equity (stocks), DB stands for "dirty" bonds and is represented by the iBoxx USD Oil & Gas index bonds (DB) as a proxy for “dirty” bonds, DE is the iShares U.S. Oil & Gas Exploration & Production ETF [footnoteRef:1]a (DE) as a proxy for “"dirty"” equity. Finally, as mentioned above, CUI is the Climate Policy Uncertainty Index proposed byof Gavriilidis (2021).  [1:  Ferrer et al. (2018), Saeed et al. (2021) among others use one or more these series. ] 

Table 1 provides the descriptive statistics of for returns from the returns series of the main key variables indices under consideration through the entire period under investigation.[footnoteRef:2] For each series of returns, we compute the first difference of the log price, while for CUI we computed the first difference of theits closinge prices. In Figure 2, we present the index returns series of the variables.  [2:  For brevity, we have not reported the summary statistics of the volatility series. The findings are available upon request.] 

< Insert Table 1 >
< Insert Figure 2 >

[bookmark: _GoBack]As can seen from Table 1, tThe statistical properties in Table 1 imply that all series are leptokurtic, characterized by excess positive kurtosis which hints aton heavy tails and peakiness of the distribution. The findings also show negative skewness for all series excluding the CUI index, which hasis associated with positive skewness. In addition, variability in eEquity is higher compared withthan in bBonds, as implied by both the mMinimum-maximumMax range and the standard deviation. Surprisingly, the average return of gGreen equity is the lowest, while “dDirty” bonds haves the highest average return. Notably, Ggreen equity has the highest standard deviation, while “dDirty” bonds have the lowest standard deviation. Overall, our proxiesy for equity investment areis more volatile than theirits debt counterparts.	Comment by Breaden Barnaby: Isn't this what leptokurtic means? Consider placing a definition in footnotes if necessary. If a definition is considered necessary in the text, consider using only one (i.e. "excess positive kurtosis" or "heavier tails and peakier than a standard normal distribution")
Finally, the Jarque-Bera (JB) test rejects the assumption of normality in all series, while the Augmented Dickey-Fuller and Phillips-Perron unit root tests confirm a stationary process in both the returns and volatility series. For brevity, we have not included the unit test results, but these are available upon request.	Comment by Breaden Barnaby: "unit root test"?

3. Methodology
Diebold and Yılmaz (2009, 2012, 2014) (hereafter, DY) have been the pioneered researchers who proposed the use of the Forecast Error Variance Decomposition (FEVD) as an interpretation for the connectivity between the variables of a certain system. Using a rolling-window VAR-based approach, they construct the familiar connectedness measures from the FEVD. Due to its novelty, the VAR approach proposed by Diebold and Yılmaz’s (2009, 2012, 2014)— VAR approach the DY approach—has been the workhorse in connectedness studies. Antonakakis, Chatziantoniou, & Gabauer (2020) took a step forward to improve DY's the DY approach by proposing a dynamic connectedness procedure based on the TVP-VAR method. Antonakakis, Chatziantoniou, & Gabauer (2020) applied a time-varying parameter vector autoregressive model (TVP-VAR) based on a time-varying covariance structure as proposed by Primiceri (2005) and managed to overcome several flaws of the common DY approach. One of these weaknesses is the, requirement fors a a random selection of the length of the rolling time window. By contrast, the approach proposed by, while using  Antonakakis, Chatziantoniou, & Gabauer (2020) approach utilizes a time-varying parameter which that avoids the potential loss of observations, is more robust for in its treatment of outliers, and is critical in the case of small time-series data.[footnoteRef:3] Therefore, this approach is particularly suitable for our studying of the dynamic connectedness, and has been employed in several recent connectedness studies (e.g., Tiwari et al., 2022; Pham and Nguyen, 2021b; Guo and Zhou, 2021). [3:  For a more detailed discussion of the merits of the TVP-VAR approach, please refer to Antonakakis,  Chatziantoniou, & Gabauer (2020).] 

The TVP-VAR(p) model can be represented as: 
,  	                                                              (1)
                                                                      (2)
The model presented in Eq. (1) isare based on a Wold representation theorem, which can be transformed to its volume moving average (VMA) representation as follows in Eq. (3) below: 	Comment by Breaden Barnaby: "volume moving average"?
,                                                                      (3)
where  is an  dimensional matrix.
To achieve the dynamic connectedness measures, we use the time-varying parameters and variance-covariance matrices of the TVP-VAR model in the measure of connectedness proposed by Diebold and Yilmaz’s (2009, 2012, 2014) measure of connectedness. Accordingly, the elements of the dynamic H[footnoteRef:4]-step generalized variance decomposition matrix  =   can be defined as:  [4:  Following former studies (e.g., Aharon, Umar and Vo 2021, Diebold and Yilmaz (2009, 2012, 2014) and others, H=10. 
] 


where  is the jth diagonal element of  . The normalized terms    are used to determine the dynamic total directional connectedness, net total directional connectedness, and total connectedness. The total connectedness index (TCI) is: 
.                                                                       (4)
The directional spillover received by variable i from all other variables j, is measured as:
                                                                       (5)
Similarly, the spillovers received by variable j from all other variables i, is calculated as:
                                                                       (6)
To measure the net pairwise directional connectedness, we subtract the total directional connectedness TO FROM others from total directional connectedness FROM TO others. This can be considered as the role of variable i has in the framework of the analyzsed system. That is,  
                                                                       (7)
At last, the net pairwise directional connectedness is defined as: 
. If the value is greater than zero, this implies that variable i dominates variable j; otherwise, the latter dominates the former. 
In accordance withlight of recent studies (e.g., Aharon and Demir 2021, Akhtaruzzaman et al. 2021) raising the concern of non-synchronous bias, we followed their approach and employ the suggested procedure suggested fromby Forbes & Rigobon (2002). More specifically, we repeated the TVP-VAR estimations by using the rolling average overof two days. The results are qualitatively similar and are available upon request.

4. Empirical Findings
We begin our discussion of results with a static connectedness framework, and then turn to a dynamic analysis ofse the connectedness in a dynamic fashion across time. Table 2 presents the static analysis. We will discuss while the dynamic connectedness analysis will be discussed using Figures 4-6.
< Insert Table 2 >
4.1. Static spillover analysis
Our static analysis deals with the estimation of the interaction between five system variables. In Table 2, we present a The full period analysis, which is the static spillover analysis over the full periodappears in Table 2. The diagonal values refer to the “own” variation for each variable itself and is are a measure of self-dependence. The “TCI,” is the a measurement of the degree of total connectedness degree in the system. The row “TO” presents represents the total spread of shocks which that a certain variable delivers to each one of the other variables in the examined system, while the last column, “FROM,” is represents the representation of the total shocks to whichthat a certain variable receives from a its counterpart system variables. Subtracting the difference of between the contribution TO minus and the contribution FROM yields the “NET” row, which refers to the net-pairwise summation of the directional spillovers. A negative (positive) value indicates a net receiver (transmitter) of shocks. 	Comment by Breaden Barnaby: Aren't the diagonal elements simply variance (%)? If so, consider replacing with "are the variance of each individual variable." 
< Insert Table 2 >
To determine the degree of system connectivity, we look at the total spillover index. As can be seen fromIn Table 2, results the TCI (right bottom corner) is 40.56% for the yield curve components and 43.04% for the volatility series. According to these relatively high values, and as expected, the system of green and dirty investments (both bBonds and eEquity) and the climate policy uncertainty indexCUI are strongly connected. More specifically, around 40% of the variation in the returns of green and dirty investments and the climate policy uncertainty is explained by their co-movements. In terms of return spillovers TO the system, the dirty bonds (71.04%) have the strongest influence on other sectors and the yield curve components, but also when we look at the spillover that each variable receives FROM the system, dirty bonds (DB) bears have the highest risk absorption (58.1%). Similarly, when we look at the volatility spillovers presented in Panel B, dirty bonds remain the dominant variable which in terms of deliverings shocks TO (64.9%) the system as well as absorbing shocks from FROM (58.5%) the system. Lastly, looking at the last NET row, we observe that dirty bonds (DB) ias the most influential variable. For both the returns and volatility examinations, DB remains a significant transmitter. On the other hand, dirty eEquity (DE) function isas a net receiver of shocks in the returns series but shift to a transmitter of risk spillovers in the volatility series. Green eEquity (GE) and gGreen bBonds (GB) fulfills the role ofare net receivers in both the returns and volatility of returns analyses. Figure 3 offers a visual illustration for of these relationships. The LHS (RHS) figure illustrates the network connectedness in terms of returns (volatility of returns). The arrows signal the net directional connectedness between two variables in the system with a one-way direction arrow. The source of each arrow defines the transmitter, and the edge point of the arrow shows indicates the receiver of shocks. The more arrows, the more dominant is the variable in the system. Red arrows means indicate that a certain variable has is the largest dominant transmitter of pairwise spillover, while a bBlue arrow means indicated the largest dominant receiver of spillover. As can be seen from the figure, the conclusions are similar to the static connectedness analysis described shown inby Table 2. For In the case of returns, DB is the dominant net transmitter, while DE is the dominant net receiver. In terms of volatility, DB is the dominant net transmitter, while GE is the dominant net receiver.	Comment by Breaden Barnaby: Consider changing to "spillovers" for consistency.
< Insert Figure 3 >
Surprisingly, the climate policy uncertainty index (CUI) seems to have only a minor influence on the system variables. In fact, its total aggregate influence on aggregate is only 1.7%, and the its absorption of risk spillovers is only 1.5%. Consequently, the net spillover of CUI is only +0.2%. A sSimilar picture arises from the analysis of the volatility of returns shown in Panel B. Even though it seems that the impact in terms of volatility is more evident, the impact is still low when we observe the total impact in terms of TO and FROM the system., it seems that the impact is low. Further support for this independence of the CUI may be seen from its diagonal values (98.5% and 93% in the Ppanel A and Panel B, respectively). Over 90% of the fluctuations in the CUI index are explained by its own movements. 	Comment by Breaden Barnaby: Consider changing to "Over 90% of the fluctuations in the CUI are not connected to changes in other variables."
A major possible limitation of the static analysis is may be that the relationship is assumed to be constant across time. To delve deeper into the relationship between the system variables, we turn to a dynamic connectedness analysis.

4.2. Dynamic spillover analysis
Figures 4-6 present the evolution of the connectedness analysis across the sample period. More specifically, Figure 4 depicts shows the total connectedness index (in percentage terms) between the system variables, while Figure 5 and Figure 6 describe the NET spillover (TO minus FROM) of each variable versus the rest of the system variables, in terms of the returns and volatility series, respectively.	Comment by Breaden Barnaby: Consider changing to "a dynamic picture" ("the evolution of the ... analysis" could be interpreted to mean the evolution of the authors' own work)
< Insert Figures 4 - 6 >
Figure 4 describes the (average) proportion of the variation which that can be referred attributed to the mutual fluctuations in the system variables. Figure 4.1 refers showsto the return series connectedness, while Figure 4.2 depicts the volatility connectedness. As can be seen from the two figures, the behavior of the connectedness is far from being constant across time, reaching at its peaksand peaks during several market milestones. The first period, around the years 2007 to -2008, can be attributed to the outbreak of the subprime crisis and the subsequent global financial crisis. The second period is around the years 2009–-2011, at whichat the time of the European debt crisis occurred. Finally, the third period begins in early 2020, when at which the COVID-19 pandemic erupted. These results also conform to the results obtained by Pham (2021) showing that the connectedness between green bonds and green equity is stronger during extreme market conditions. Relatively low levels of connectedness are observed during the years preceding the COVID-19 crisis.	Comment by Breaden Barnaby: "periods of market turbulence"?
Next, we turn to the discussion of the return and volatility connectedness between a certain variable and the whole system over the full sample period. To achieve that, Figures 5 and 6 are depicted and display the NET spillover (TO minus FROM) of each variable versus the remaining other system variables. The nature of the relationship is determined by the value (positive/negative) of the connectedness.
In terms of returns, and according to Figure 5, it seems that dirty bonds (DB) and the Climate Uncertainty Policy Index (CUI) are mostly transmitters over the full sample period, whereas dirty equity (DE), gGreen bonds (GB) and  Ggreen equity (GE) are mostly net receivers. Two important points arise from the current analysis. First, as opposed to the static analysis implying that the examined the bonds and equity measures are immune to fluctuations in the CUI, the dynamic analysis emphasize provides evidence for that CUI being can be a transmitter of return shocks. Second, while this transmitter role as a transmitter is clear during the time ofaround several important episodes, especially around the subprime crisis and the European debt crisis. These results of theThis evidence for CUI as a net transmitter are is consistentin line with former studies, such as Lundgren et al. (2018), showing other uncertainties indices, such as the VIX and the Eeconomic Ppolicy Uuncertainty Index (EPU by Baker et al, 2016) wereare net transmitters of volatility connectedness for green investments during the subprime crisis and the European sovereign debt crisis. However, we reveal findhere that the CUI transmission of shocks by the CUI has weakeneds overin the last five recent years. Interestingly, during the COVID-19 crisis, its contribution is very small even during the COVID-19 crisis, and it even turns out to be a recipient of spillovers from the system. These findings may explain the allegedly apparently mild role impact of CUI found in the framework of the static analysis. This illustrates the way thatAs the static analysis may hide different episodes and patterns across time as shown here, andit underscores the necessity importance of performing a dynamic analysis. Figure 6 presents similar results in terms of the volatility of returns. According to the trends shown in this figure, DB, DE, and CUI are the main transmitters through most of the sample period, while GB is the dominant receivers of risk spillovers. Interestingly, GE seems to be a net receiver of volatility spillovers during two major turbulent periods, n. Namely, the subprime crisis and the COVID-19 pandemic. However, during the other remaining years, GE is a net transmitter of volatility shocks. In accordance withAs in the former results, the CUI performs as a net transmitter of volatility shocks around the subprime crisis and the European debt crisis, but this effect then weakens,  and it turns into be a net receiver during the five most recent years, including the COVID-19 period. 	Comment by Breaden Barnaby: I don't think "the former results" is an appropriate expression here: do you mean "the results for returns (Figure 5)"?	Comment by Breaden Barnaby: "recipient of spillovers"?

5. Conclusions
In this paper, we examine the connectedness between gGreen equity and bonds (GE and GB: - gGreen investments), dDirty equity and bonds (DE and DB: - dirty investments), and the novel Cclimate Ppolicy Uuncertainty Index (CUI) proposed by Gavriilidis, (2021). We use both static and dynamic approaches to identify the net transmitters andas well as the net receivers of risk spillovers. Given the increasing public interest of the public in the area of climate changes, economic sustainability and the corresponding investments flows that fuel green investments, we present here an important study as an attempt to characterize the relationships between green and dirty investments and their possible dependence with on the new climate policy uncertainty index (CUI) by Gavriilidis, (2021). While our static analysis shows that green investments (both bonds and equity) are immune to the fluctuations in the CUI, a deeper examination through the lenses of a dynamic analysisfashion, shows that CUI performs as a net transmitter of both return and volatility spillovers. This phenomenon is evident around the 2007–-2008 subprime crisis and the European debt crisis. However, during the  five most recent years the transmission of risk spillovers by the CUI has weakened,s and it has even turneds into be a net receiver during the COVID-19 period. 	Comment by Breaden Barnaby: Edited for consistency with the abstract and main body of the paper.
Our paper has several implications forto both policy decision- makers and market participants. For policy- makers, our results show that the connectedness betweenof both green and dirty investments is high, especially duringaround turbulent times. Therefore, the addition of any further uncertainty added from the in the form of climate policy uncertainty may even exacerbatestrength the risk spillovers between the two asset classes. Given the growing interest and awareness of the climate issues, policy- makers in the climate field should consider the timing of their proposed reforms, which, as might be impactful exogenous events, may significantly impact to green and dirty investments. Hence, policy-makersthey should endeavor tomake their best efforts in supplyingdisclose sufficient information about their future steps., which This maycan alleviate the detrimental effect of the unknown. For investors aiming to, aimed at exploiting the diversification benefits ofbetween green and dirty investments, our findings show that these benefits are dependent on the market conditions., Iand in some cases, such as the COVID-19 pandemic, as opposed for to the subprime crisis, as anfor example, the risk spillovers can be fueled byfrom the overall uncertainty in the market, rather than the climate policy uncertainty itself. However, it is evident that under in stressful times, the spillovers between green and dirty bonds and green and dirty equity are considerably higher.	Comment by Breaden Barnaby: "policy plans"?	Comment by Breaden Barnaby: Would "policy shocks" or "policy surprises" be a clearer expression? Or do you mean "policy uncertainty"?
Future studies may wish to extend our examinations with to consider the impact and connectedness of the CUI with alternative investments, such as the Bitcoin, Ethereum, and other top major cryptocurrencies, which are all known to be extremely polluting in their mining process. Our attempt toof quantifying the relationship between the CUI and green and dirty investments is restricted by the fact that monthly availability of the CUI index is available only monthly. Therefore, an examination of the relationship overin narrower time periods,availability, using such as daily or weekly observations, can would assist in a better understanding of the dynamics between the CUI and green and dirty investments.	Comment by Breaden Barnaby: This is certainly true of Bitcoin, but is it really true of ALL cryptocurrencies? (Are they all mined?) Ethereum for one is more of a programmable blockchain platform...
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Table 1: Descriptive Statistics 
Notes: The table reports shows the summary statistics for our key variables. GB is the Bloomberg U.S. aggregate green bond index as the proxy for green bonds, GE is the Wilderhill clean energy index representing the green equity (stocks), DB stands for “"dirty”" bonds and is represented by the iBoxx USD Oil & Gas index bondsiboxx usd oil & gas index bonds, DE is the iShares U.S. Oil & Gas Exploration & Production ETFishares us oil and gas production ETF as a proxy for “"dirty”" equity and finally CUI is the Climate Policy Uncertainty Index of Gavriilidis (2021). The descriptive statistics reported here are monthly calculated on a basised. Log differences for returns series are computed for the GB, GE, DB and DE, and first differences for the CUI. The reported descriptive statistics are: Mean, Median, Maximum, Minimum, Skewness, Kkurtosis (Kurt), the Jarque-Bera test statistic and its corresponding probability and finally, the total number of observations for the common sample is 170 (N).


	
	GB
	GE
	DB
	DE
	CUI

	 Mean
	0.00031
	-0.00008
	0.00563
	0.00059
	0.02541

	 Median
	0.00136
	0.00531
	0.00577
	0.00498
	-2.16500

	 Maximum
	0.08438
	0.38631
	0.06450
	0.36931
	488.05000

	 Minimum
	-0.18441
	-0.56685
	-0.07488
	-0.38657
	-464.26000

	 Std. Dev.
	0.02505
	0.10046
	0.01671
	0.09833
	80.84704

	 Skewness
	-3.00667
	-0.84294
	-1.10825
	-0.52555
	0.15198

	 Kurtosis
	24.23905
	9.44177
	9.23639
	5.45814
	16.06622

	 Jarque-Bera
	3451.408
	314.0647
	3.10E+02
	50.62637
	1209.964

	 Probability
	0.000
	0.000
	0.000
	0.000
	0.000

	 N
	170
	170
	170
	170
	170

	
	
	
	
	
	

	
	
	
	
	
	




Table 2: Static Connectedness Tables
	Panel A: Static Connectedness -– Returns

	
	GB
	GE
	DB
	DE
	CUI
	FROM

	GB
	48.7
	7.9
	35.9
	6.8
	0.6
	51.3

	GE
	8.3
	55
	16
	20.3
	0.4
	45

	DB
	30.8
	12
	41.9
	14.8
	0.5
	58.1

	DE
	7
	20.5
	19.2
	53.1
	0.2
	46.9

	CUI
	0.9
	0
	0.4
	0.1
	98.5
	1.5

	TO
	47.1
	40.4
	71.4
	42.1
	1.7
	202.8

	NET
	-4.2
	-4.6
	13.3
	-4.8
	0.2
	TCI=40.56

	Panel B: Static Connectedness – Volatility of Returns

	
	GB
	GE
	DB
	DE
	CUI
	FROM

	GB
	45.1
	11.9
	26.6
	15.9
	0.4
	54.9

	GE
	12.8
	57.3
	15.3
	14.5
	0
	42.7

	DB
	24.2
	11.6
	41.5
	22.1
	0.6
	58.5

	DE
	14.6
	13.5
	21.6
	47.8
	2.4
	52.2

	CUI
	0.6
	0.1
	1.3
	5
	93
	7

	TO
	52.2
	37
	64.9
	57.7
	3.5
	215.2

	NET
	-2.7
	-5.6
	6.4
	5.4
	-3.5
	TCI=43.04


Thise table reports shows the connectedness measures between the system variables under a TVP-VAR approach. VAR order is 1 as determined by the Schwarz information criterion. Panels A and B report the findings for the Returns, and the volatility of returns. The sample period is (January 2007– - March 2021). The table shows the estimated contribution to a 10-day-ahead forecast error variance decomposition. The bold diagonal elements are the own (individual) variance percentages for each variable. TCI is the total connectedness iIndex. The off-diagonal values illustrate the bi-directional interaction between the different system variables. The row “From” shows the total spillovers absorbed by a certain variable from all system variables, and “To” is the spillover of shocks by a certain variable to all other variables. 

 
 

Figure 1: Climate Policy Uncertainty index

Notes: The above Figure depicts the climate policy uncertainty Index by Gavriilidis (2021). For further information please refer to: https://www.policyuncertainty.com/climate_uncertainty.html
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Figure 2: Return series

Notes: Log differences for returns series are computed for the GB, GE, DB and DE, and first differences for the CUI. GB is the Bloomberg U.S. aggregate green bond index as the proxy for green bonds, GE is the Wilderhill clean energy index representing the green equity (stocks), DB stands for “"dirty”" bonds and is represented by the iBoxx USD Oil & Gas index bondsiboxx usd oil & gas index bonds, DE is the iShares U.S. Oil & Gas Exploration & Production ETF ishares us oil and gas production ETF as a proxy for “"dirty”" equity and finally CUI is the Climate Policy Uncertainty Index of Gavriilidis (2021). 
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Figure 3: Pairwise Static Net Connectedness
Notes: The above graphical descriptions illustrate the symbiosis network connectedness of the system variables. The system includes the following variables: GB (Green Bonds), GE (Green Equity), DB (“"Dirty”" Bonds), DE (“"Dirty Equity”") and CUI (the Climate Uncertainty Index). The left (right) figure illustrates the network connectedness in terms of returns (volatility of returns). Arrows signal the net directional connectedness between two variables in the system with a one-way direction arrow. The source of the arrow shows the transmitter, and the edge point of the arrow shows the receiver of spillover. More arrows mean a more influential variable in the connectedness. Red font arrows means that a certain variable ishas the largest transmitter of pairwise spillover, and while bBlue arrows meansindicate the largest receiver of spillover. 
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Figure 4.1: Returns
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Figure 4.2: Volatility of Returns
Figure 4: Total Connectedness Index

Notes: Total Connectedness Index. The figures above track the total connectedness index across time. Figure 3.1 refers to the return series connectedness and Figure 3.2 depicts the volatility connectedness. The values in the vertical axis are the total connectedness index (%):- oOn average, the proportion of the variation which that can be referred to the dynamics between the system variables. 
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Figure 5: Dynamic Net Connectedness Index –- Returns


Notes: The above graphs depict the dynamic NET spillover (TO minus FROM) of each variable versus the rest of the system variables in terms of returns. The symbioticsis nature of the relationship is determined by the value of the connectedness. Positive (nNegative) values imply transmission (absorption) mechanism of by a certain system variable.
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Figure 6: Dynamic Net Connectedness Index – Volatility of Returns


Notes: The above graphs depict the dynamic NET spillover (TO minus FROM) of each variable versus the rest of the system variables in terms of volatility of returns. The symbioticsis nature of the relationship is determined by the value of the connectedness. Positive (nNegative) values imply transmission (absorption) bymechanism of a certain system variable.
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