Asymmetric volatility in the cryptocurrency market: new evidence from models with structural breaks


Abstract

Previous literature shows that major cryptocurrencies exhibit inverse asymmetric volatility, i.e.,: positive shocks increase the price volatility more than negative ones. In this study, we revisit the asymmetric volatility dynamics of major cryptocurrencies using the asymmetric GARCH models that incorporate endogenously detected structural breaks. Our results show that, after incorporating structural breaks, volatility persistence decreases, and asymmetric volatility behavior increases for all cryptocurrencies in this study. Thus, prior research that inadvertently ignores structural breaks underestimates the impact of unexpected news on the price volatility inof cryptocurrency markets. We also provide thepresent an important economic implications of our results: that ignoring structural breaks adversely impacts the hedging strategies, derivatives valuations, and  risk exposure of investors in cryptocurrency markets. 
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1. Introduction
Understanding the volatility behavior of cryptocurrencies is important because it affects the risk exposure of investors and other financial market participants. Inherently, c Cryptocurrencies are inherently highly volatile assets, and recent evidence shows that volatility in cryptocurrency markets is transmitted to other financial markets and the overall economy (Uzonwanne, 2021). The valuation of many derivative securities also depends on underlying volatility behavior in cryptocurrency markets. Therefore, understanding the volatility dynamics of cryptocurrencies is important for investment, hedging strategies, derivative valuation, and public and private policy- making in financial markets. The recent increase rise in the popularity of cryptocurrencies has led to an increase of in the volume of literature concerned withinterested in analyzing the volatility properties of popular cryptocurrencies and the similarities between pricethe volatility in cryptocurrencies and other financial assets (Ardia et al., 2019; Abakah et al., 2020; Shen et al., 2020). 	Comment by Barnaby Breaden: This is a somewhat vague term. Do you mean (more specifically) "price volatility"?	Comment by Barnaby Breaden: Again, "price volatility"?	Comment by Barnaby Breaden: Policy-making doesn't actually occur "in" markets, so maybe "investment, hedging strategies, and derivative valuation in financial markets, and public and private policy-making." would be better.
[bookmark: _heading=h.tyjcwt]In this study, our goal is to examine the asymmetric volatility dynamics of major cryptocurrencies by using the asymmetric GARCH models that incorporate the endogenously- detected structural breaks. In the literature, we find strong evidence of asymmetric behavior:, for example,i.e., the way that negative news impacts the conditional volatility more than positive news in the equity market (see Black, 1976; Christie, 1982; Bekaert and Wu, 2000, for example) and energy sector (Ewing and Malik, 2017). The authors of Sseveral recent studies have attempted to understand the asymmetric volatility dynamics of major cryptocurrencies by using asymmetric GARCH models and reported an inverted asymmetric behavior., In other wordsi.e., positive news impacts the conditional volatility more than negative news (see Bouri, Azzi, and Dyhrberg, 2017; Baur and Dimpfl, 2018; Cheikh, Zaied, and Chevallier, 2020). However, none of these studies considered incorporating the endogenously- deducted structural breaks to examine the asymmetric behavior of popular cryptocurrencies. According to Ewing and Malik (2017), argue studies that unintentionally ignored structural breaks may have underestimated the impact of unanticipated news on the volatility-generating process of the underlying asset. In Tthis study, we fills the gap in the literature by estimating the asymmetric volatility behavior for popular cryptocurrencies by incorporating endogenously- detected structural breaks into asymmetric GARCH models. In doing so, we correctly estimate the impact of unexpected news on the cryptocurrency volatility-generating process.  	Comment by Barnaby Breaden: Again, "price volatility"?
(Same applies hereinafter)	Comment by Barnaby Breaden: This is not a very appropriate term to use about one's own work: do you mean "more accurately" or "are able to accurately"?
We examine the asymmetric volatility behavior of five popular cryptocurrencies: Bitcoin, Ethereum, Dogecoin, Ripple (XRP), and Monero. The modified iterative sums of squares (ICSS) algorithm of Inclan and Tiao (1994) is employed to endogenously deduct the structural breaks in the unconditional variance of cryptocurrencies. We incorporate the detected structural breaks into asymmetric GARCH models to more show the accurately model the impact of unexpected news on the volatility of cryptocurrencies. There are some interesting results. First, we find that volatility persistence in cryptocurrencies decreases after incorporating structural breaks into asymmetric GARCH models. More importantly, our results indicate that, after accounting for the structural breaks in asymmetric GARCH models, the asymmetric behavior of all the cryptocurrencies we consider increases, as indicated by an increase in the value of the asymmetric term. Our results indicate that to understand how new information affects pricethe volatility in the cryptocurrency markets, it is important to include both asymmetric effects and structural breaks in the GARCH models. 
The remainder of theing paperstudy is organized as follows. In sSection 2, we  provides a brief review of related literature review. In sSection 3, we describes the data. In sSection 4, we discusses the empirical models used. In sSection 5, we presents the empirical results. In sSection 6, we presentovides some economic implications of ourthe study, and section 7 concludes the studypaper. 



2. Literature Review
Volatility in cryptocurrency markets has important implications for the risk exposure of investors in the financial markets,.  and Therefore, examining the volatility dynamics of cryptocurrencies arehas  gaininged increasing attention from scholars recently. Uzonwanne (2021) studies the return and volatility spillover between Bitcoin and several major stock markets and finds a unidirectional and bidirectional return and volatility spillover between these pairs. In a similar study, Cao and Xie (2022) examinestudy the asymmetric volatility transmission between the Chinese financial and cryptocurrency markets. The authors find that the cryptocurrency market dominated by Bitcoin, Ethereum, and Ripple significantly impacts the Chinese financial market. Exploring the dynamic volatility connectedness between major cryptocurrencies and the market for thermal coal futures in China, Pham, Nguyen, and Do (2022) find that China'’s thermal coal futures significantly depend on volatility in cryptocurrency markets. Dyhrberg (2016) attempts to investigate the hedging capabilitieseffectiveness of Bitcoin as a hedge against movements in the FTSE index and the US dollar and finds that it is a good hedge for the FTSE index but only a good hedge for the US dollar only in the short -term. Conon and McGee (2020) examine the safe haven properties of Bitcoin during the COVID-19 pandemic and find that it is not a suitable safe haven for against movements in the S&P 500.[footnoteRef:1].	Comment by Barnaby Breaden: Consider adding "Chinese financial market as a whole." (The cryptocurrency market could be characterized as part of the financial market.)	Comment by Barnaby Breaden: This phrase should be more specific. What depends on cryptocurrency volatility?
"..the price of China's thermal coal futures is significantly affected by volatility in cryptocurrency markets"?
"..the price volatility of China's thermal coal futures is significantly linked to volatility in cryptocurrency markets"?	Comment by Barnaby Breaden: Do you mean "the US dollar index"? [1:  As per Bouri et al. (2016), an asset is considered a hedge if it is negatively correlated with another asset on average; a safe haven is an asset that is, during a time of crisis, negatively correlated with another asset.] 

To determine the time-varying volatility, tThe ARCH and GARCH models of Engle (1982) and Bollerslev (1986) are normally utilized in financial time series literature to determine time-varying volatility. A general assumption with GARCH models is that the unconditional variance of the underlying asset returns is constant, and volatility is generated by a stable GARCH process. However, due to political, economic, and social events, financial markets are prone to sudden changes in volatility (also known as structural breaks). These sudden changes in the unconditional variance of asset returns that create structural breaks in the GARCH process. Lamoureux and Lastrapes (1990) find overestimated that volatility persistence is overestimated when they apply a standard GARCH model to a series with where there are structural breaks in the variance of the return series. With the help of theoretical and empirical exercises, Mikosch and Starica (2004) report that not incorporating structural breaks within a GARCH model also overestimates the volatility persistence. Therefore, if the structural breaks are present in the unconditional variance of a given asset, these breakpoints should be properly incorporated within into the GARCH models to accurately examine the volatility dynamics of the underlying asset.	Comment by Barnaby Breaden: "analysis"?	Comment by Barnaby Breaden: "price variance"?
There are sSome studies that incorporate structural breaks into GARCH models to study the volatility in cryptocurrency markets. Bouri et al. (2019) uncovered evidence of mean reversion after incorporating structural breaks to study the volatility persistence of Bitcoin. The evidence of mean reversion was lacking when structural breaks were not incorporated into the underlying models. Abakah et al. (2020) also explore the volatility persistence of 12 major cryptocurrencies by considering the possibility of structural breaks and find that the degree of apparent volatility persistence in the cryptocurrency market decreases ifas the structural breaks are accounted for correctly. In a similar study, Mensi, Al-Yahyaee, and Kang (2019) examine the interplay of structural breaks and dual memory levels of Bitcoin and Ethereum by utilizing the GARCH family models. The authors find that apparent volatility persistence decreases after accounting for structural breaks, and the model that accurately incorporates the structural breaks provides superior forecasting performance. Shen, Urquhart, and Wang (2020) also find evidence that the heterogeneous autoregressive (HAR) models that incorporate structural breaks provide superior forecasting compared to other models without structural breaks. However, none of these studies have considered analyzing the asymmetric dynamics of the cryptocurrency market by considering the possibility of structural breaks.
Surprisingly, we find only a few studies examining the asymmetric volatility inof cryptocurrency markets. Bouri, Azzi, and Dyhrberg (2017) study the Bitcoin return-volatility relation around the 2013 crash using the GJR-GARCH and Exponential-GARCH models. For the entire period under study (pre- and post-crash) and during the post-crash period, the authors find no asymmetric behavior for Bitcoin. However, for the pre-crash period, the authors find significant inverse asymmetric volatility for Bitcoin and suggest that, before the 2013 pre-crash, Bitcoin exhibited safe haven properties similar to gold. Baur and Dimpfl (2018) also examine the asymmetric volatility dynamics for several cryptocurrencies using GJR-GARCH and quantile-based asymmetric models. In general, the authors find evidence of inverse asymmetric behavior for major cryptocurrencies. However, the authors note that Bitcoin and Ethereum exhibit positive asymmetric behavior similar to equities. The authors attribute the inverted asymmetric behavior of many cryptocurrencies (except for Bitcoin and Ethereum) to the herding behavior of uninformed investors. Cheikh, Zaied, and Chevallier (2020) further explore the asymmetric volatility dynamics of Bitcoin, Ethereum, Ripple (XRP), and Litecoin by utilizing a battery of symmetric and asymmetric GARCH models. The authors provide evidence of inverse asymmetric volatility behavior[footnoteRef:2] for all cryptocurrencies except Ethereum and highlight the safe haven properties of major cryptocurrencies.  [2:  Inverse or inverted asymmetric behavior means that positive news or shocks increase the volatility more than negative news or shocks. The opposite is true for equity investments in general.] 

Interestingly, we do not find any study in the literature that explores the asymmetric volatility dynamics for cryptocurrency markets by considering the GARCH models that account for structural breaks. This study fills the gap in the literature by studying the asymmetric volatility of major cryptocurrencies by accurately accounting for structural breaks within the framework of popular asymmetric GARCH models. First, we contribute to the existing literature on cryptocurrencies that explores the volatility dynamics, especially the asymmetric volatility of major cryptocurrencies. The results of this study enable us to estimate the real impact of the positive and negative news on the volatility dynamics of cryptocurrency markets. Second, in the current stressful environment for cryptocurrency markets, the implications of this study makes a timely contribution to the debate on whether major cryptocurrencies can be considered a hedge or safe haven for conventional asset classes.	Comment by Barnaby Breaden: "volatile"?
"uncertain"?

3. Empirical Methodology 
3.1 GARCH model
To study the volatility persistence of cryptocurrencies, we use the benchmark GARCH(1,1) model, estimated defined as 	Comment by Barnaby Breaden: The model can be used for estimation, but the equations shown here define the model.
		(1)
		(2)
where  represents the cryptocurrency return series at time t and  is normally distributed with a mean equal to zero. In equation 2, the conditional variance () depends on the average volatility level () and last period’s news () and variance (). For a given shock, the sum of and  measures the volatility persistence. 	Comment by Barnaby Breaden: It might be helpful to remind the reader what each term actually means in the context of this research: for example, what is the meaning of the error term ε? (Information? News? Exogenous events?)
3.2 GJR-GARCH model
To examine the asymmetric behavior, we utilize the GJR-GARCH model given by Glosten et al. (1993), which is estimated defined as 
		(3)
		(4)
where the () is the asymmetric component and the parameter  takes the value of 1 if  < 0 (bad news) and 0 otherwise. In this model,  represents the impact of good news (positive error) and  represents the impact of the bad news. More importantly, the impact of news on volatility is asymmetric if and only if  is statistically significant and different from zero. In the GJR-GARCH model, the volatility persistence is given by . 
3.3 EGARCH model
To further examine the asymmetric behavior of volatility, we also utilize the EGARCH model given by Nelson (1991), which is estimated defined as 
		(5)
		(6)
where the value of α represents the size impact of news. Aand a statistically significant value of α indicates that the magnitude of news or shocks hasve an impact on the volatility -generating process. The coefficient γ represents the sign effect and, in a similar way to the GJR-GARCH model, the impact of news on volatility is asymmetric if and only if  is statistically significant and different from zero. GHowever, good news has an impact of  and bad news has an impact of  Finally, the volatility persistence for a given shock for the EGARCH model is given by β. 
3.4 Detecting and incorporating structural breaks
[bookmark: _heading=h.3dy6vkm]In this study, we use the Inclan and Tiao (1994) modified iterative cumulative sums of squares (ICSS) algorithm for testing multiple breaks in the unconditional variance of the returns on major cryptocurrency returns at the 5% significance level.[footnoteRef:3]. By following Aggarwal et al. (1999) and Ewing and Malik (2010), we incorporate structural breaks in the GARCH model as 	Comment by Barnaby Breaden: "daily returns"?
It would be better to be specific. [3:  The modified ICSS algorithm is a popular methodology to detect the structural breaks in unconditional variance. It has been previously employed by Shen et al. (2020) for Bitcoin, Baig et al. (2022) for Islamic market indices, Anjum and Malik (2020) for the U.S. dollar exchange rate, Ewing et al. (2019) for oil prices, and Hood and Malik (2018) for stock market returns. 
] 

		(7)
		(8)
where  are the dummy variables that take the value of 1 when the break point in the variance is detected and zero elsewhere. We incorporate structural breaks intoThe asymmetric GARCH models in a similar way. are similarly incorporated with structural breaks.
4. Data
We obtained the daily data for the following cryptocurrencies from CoinMarketCap.com: Bitcoin, Ethereum, Dogecoin, Ripple (XPR), and Monero. The sample period selected for this study startsis from the introduction of from the date when these cryptocurrencies began to be displayed on CoinMarketCap.com until and ends on April 30, 2022. We selected these cryptocurrencies for the following reasons: 1) Many recent studies have used these cryptocurrencies for analysis (see Baur and Dimpfl, 2018; Abakah et al., 2020; Cao and Xie, 2022, for example); 2) All selected cryptocurrencies have a market capitalization that is more greater than the average market capitalization of the cryptocurrency market on April 30, 2022; 3) To ensure that the selected cryptocurrencies are well representative of the cryptocurrency market, the selected series were within the top 20 cryptocurrencies by market capitalization as of April 30, 2022. Consistent with earlier studies, we use the returns for the selected cryptocurrencies to make the data stationary. 	Comment by Barnaby Breaden: "price data"?
Was any other kind of data obtained from this site? (If so, it should be described explicitly.)	Comment by Barnaby Breaden: These two points seem to be saying a very similar thing: larger-than-average market cap and market cap in the top 20.
Please consider combining them into one point.	Comment by Barnaby Breaden: Do you mean "the average market capitalization across all cryptocurrencies"?	Comment by Barnaby Breaden: As above,
"daily returns"?
It would be better to be specific.
It would also be helpful to specify the alternative ("rather than prices"?)

Figure 1 shows the price evolution of all cryptocurrencies included in this study. Table 1 provides the descriptive statistics for the cryptocurrencies utilized in this study. All cryptocurrencies exhibit positive average returns and high standard deviations, which can be attributed to the highly- volatile nature of the crypto asset class. All series display high kurtosis except for Bitcoin, and all other cryptocurrencies are positively skewed. We use the Jarque-Bera test to determine whether the series are normally distributed, and we reject the normality assumption at a 1% significance level. Finally, the last row of Table 1 shows the number of observations available for all cryptocurrencies in this study. We find that Bitcoin has the highest number of daily observations and Ethereum has the lowest. 	Comment by Barnaby Breaden: "daily returns"?	Comment by Barnaby Breaden: "of daily returns"?
5. Empirical results 
In this section, we discuss the results of from a symmetric GARCH(1,1) model with and without structural breaks to examine the volatility persistence in cryptocurrencies, followed by the an analysis of the asymmetric volatility by using the asymmetric GARCH models. 
5.1. GARCH(1,1) and volatility persistence in cryptocurrencies
Although the objective of this study is to examine the asymmetric volatility behavior of cryptocurrencies under structural breaks, we begin our analysis with a symmetric GARCH(1,1) with and without incorporating structural breaks and reconcile the results of this exercise with existing literature on the prices of other asset classes and commodities such as stocks, crude oil prices, and currency exchange rates. We employed the modified iterative cumulative sums of squares (ICSS) algorithm to identify the structural breaks in returns of on cryptocurrencies. The detected breakpoints are presented in Table 2. The modified ICSS algorithm identified 7 or 8 breakpoints for the cryptocurrencies in our sample, which implies that these currencies are highly volatile. 	Comment by Barnaby Breaden: "daily returns"?
In Table 3, we provide the results of the GARCH(1,1) model for all cryptocurrencies in this study. To examine the effect of structural breaks on the volatility dynamics of cryptocurrencies, we incorporate the identified structural breaks into the unconditional variance of the model as described in equation 8. The overall results in Table 3 show that when we incorporate the structural breaks in the model, the volatility persistence and the half-life of the shocks decrease are lower thancompared to when structural breaks are ignored. For example, in panel 3.A. for Bitcoin, we find that when the structural breaks are ignored, the volatility persistence (α+β) is 0.969, and the half-life of the shock is 22.52 days. However, as if structural breaks are accounted for in the model, the volatility persistence and half-life of the shock substantially decline substantially, to 0.803 and 3.15 days, respectively. We also find that the log-likelihood statistic increases as if the structural breaks are incorporated, which shows that incorporating the breakpoints improves the better model is the one that incorporates the breakpoints. Moreover, the reduction in skewness, kurtosis, and Jarque-Bera statistics also indicate that the model that accounts for the breakpoints is a better fit. We find these similar results for almost all the cryptocurrencies in this study, as displayed in panels 3.B. to 3.F. of Table 3. The results of this analysis are consistent with the results of similar studies for cryptocurrencies (Abakah et al., 2020), stock market indices (Hood and Malik, 2018; Baig et al., 2022), oil prices (Ewing and Malik, 2017), and exchange rates (Anjum and Malik, 2020).
5.2. Asymmetric GARCH models and asymmetric volatility dynamics in cryptocurrencies 
[bookmark: _heading=h.30j0zll]After establishing that incorporating structural breaks in GARCH(1,1) model changes the volatility dynamics (i.e., decreases volatility persistence and the half-life of the shocks) for all cryptocurrencies in this study, we turn our attention to examining the asymmetric volatility dynamics for of cryptocurrencies with using asymmetric GARCH models and that incorporate structural breaks. To do so, we utilize GJR-GARCH and EGARCH models. As we stressed in section 3, the asymmetric term (γ) is our variable of interest, and a statistically significant value of γ means that a cryptocurrency exhibits asymmetric volatility behavior. We provide the results of this analysis in Tables 4 to 8. In general, we find that, for GJR-GARCH and EGARCH models, the coefficient of the asymmetric term is statistically significant for all cryptocurrencies in our sample except for Ethereum.[footnoteRef:4]. The result implies that these cryptocurrencies exhibit asymmetric volatility behavior, which indicates that the impact of good and the bad news on volatility is impact the volatility significantly differently. More importantly, when we incorporate the structural breaks into asymmetric GARCH models using the dummy variables discussed in subsection 3.5, we find that the asymmetric term (γ) increases significantly. For example, the results of the model for Bitcoin without (with) structural breaks are provided in Panel A (B) of Table 4. In the GJR-GARCH model, we see that the asymmetric term (γ) when the breakpoints are ignored is 0.0376 when the breakpoints are ignored, but increases to 0.1083 when the breakpoints are correctly accounted for:, the coefficient increases to 0.1083, a three-fold increase. Similarly, for the EGARCH model, the asymmetric term (γ) increases from 0.0310 to 0.0475 when structural breaks are incorporated, ignoring the negative sign that shows that the bad news impacts the volatility more than the good news.[footnoteRef:5]. Our results suggest that the asymmetric impact of news on the volatility-generating process is larger when structural breaks are correctly incorporated into asymmetric GARCH models.  	Comment by Barnaby Breaden: It would be better to be more speccific, since this is a key finding:
"the daily prices of these cryptocurrencies"?
"the daily returns of these cryptocurrencies"?	Comment by Barnaby Breaden: What does "correctly" mean here, exactly?	Comment by Barnaby Breaden: This claim seems to confuse the actual effect (in the real world) with the effect on the results obtained through modeling. It might be best to express what you are claiming more explicitly. [4:  Apart from Bitcoin, Ethereum, Dogecoin, Ripple (XRP), and Monero, we also conducted the same analysis for Binance, Dash, NEM, and Stellar and found a statistically significant asymmetric term (γ). Results are available upon request. ]  [5:  More discussion on signs of the asymmetric term (γ) is presented in section 6. ] 

The results of the asymmetric analysis for Ethereum are given in Table 5. As discussed earlier, the asymmetric term (γ) is insignificant for Ethereum when the structural breaks are not incorporated in the asymmetric GARCH models. Interestingly, tThese results are consistent with the results we find in previous studies (Baur and Dimpfl, 2018; Cheikh, Zaied, and Chevallier, 2020, for example). However, asAs we incorporate structural breaks in asymmetric GARCH models, we find that the asymmetric term (γ) increases but turns is significant only for the EGARCH model and remains insignificant for the GJR-GARCH model. Cheikh, Zaied, and Chevallier (2020) argue that Ethereum is a relatively newer cryptocurrency, and the short period since its introduction might not be sufficient to clearly exhibit asymmetric volatility behavior. However, the given results for Ethereum do indicate that asymmetric behavior increases after accounting for the breakpoints. Similar to Bitcoin, other cryptocurrencies in this study (i.e., Dogecoin, Ripple (XRP), and Monero) exhibit strong asymmetric volatility behaviors measured by the GJR-GARCH and EGARCH models (see Tables 6 – 8). For Dogecoin, in Table 6, we report that the coefficient γ for GJR-GARCH (EGARCH) is 0.0436 (0.0622), and the value of the coefficient increases to 0.1411 (0.1040) after incorporating breaks in asymmetric GARCH models. Likewise, in Table 7 for Ripple (XRP), we find that the asymmetric term (γ) not only increases after incorporating structural breaks but also becomes statistically more significant. Finally, in Table 8, Monero exhibits the same asymmetric behaviors as other cryptocurrencies, and the asymmetric term (γ) increases when structural breaks are accounted for. This evidence further suggests that previous studies, whichthat inadvertently ignored the breakpoints when estimating the asymmetric volatility dynamics for cryptocurrencies, may have underestimated the actual impact of the news on the volatility-generating process (Ewing and Malik, 2017). 	Comment by Barnaby Breaden: Again, you seem to be confusing the actual (real life) behavior with the results of applying the models.
Please consider replacing with "...indicate more evidence of asymmetric behevior when the breakpoints are accounted for."	Comment by Barnaby Breaden: I thought that this paragraph was about the asymmetric nature of the impact, not the absolute scale of the impact (which seems to be implied in this sentence).
The following observations further support the significance importance of taking into consideration structural breaks into consideration. Similarly to the GARCH(1,1) analysis, the volatility persistence for GJR-GARCH and EGARCH models decreases as we consider the structural breaks. The results for the half-life of the shocks suggest that their impact within the models dissipates more quickly when the structural breaks are properly accounted for for as compared to the modelsthan when we ignore the structural breaks. In Table 4, we find that the volatility persistence (half-life of shocks) for the GJR-GARCH model decreases from 0.968 (21.31) days to 0.848 (4.22) days. We find consistent results for all cryptocurrencies in this study. We also find the likelihood ratio (LR) statistic supports the importance of considering the structural breaks. The LR statistic is calculated as , where  and  are the maximum log-likelihood statistics obtained from the asymmetric GARCH model with and without incorporating structural breaks, respectively. For both asymmetric GARCH models and for all cryptocurrencies, we reject the null hypothesis (H0) of no change at a 1% significance level. Also, standardized residuals of both asymmetric GARCH models have skewness and kurtosis for all cryptocurrencies but the skewness and kurtosis decrease as we account for the structural breaks in these models. Finally, we employed the Jarque-Bera test to investigate whether the standardized residuals are normally distributed. The results generally show that for all cryptocurrencies the standardized residuals are not normally distributed, but they become relatively closer to normal distribution once the structural breaks are accounted for. 	Comment by Barnaby Breaden: Again, what do you mean by "properly" here? Do other models account for them improperly?	Comment by Barnaby Breaden: A more explicit expression may be better. Do you mean that they are significantly non-normal? Also, do you mean "excess kurtosis"?
6. Economic implications
The results of this study suggest that incorporating structural breaks significantly alters the underlying asymmetric volatility dynamics of cryptocurrencies, which has valuable economic implications. Anderson et al. (2006) provide evidence that the volatility forecast estimated by the asymmetric GARCH models depends considerably on the asymmetric term (γ), whichthat determines how the good and the bad news impacts the volatility. Our results indicate that the value of the asymmetric term changes significantly after incorporating the structural breaks. In other words, after announcements of major good or bad news, forecasted market volatility produced by the asymmetric GARCH models will differ dramatically depending on whether the structural breaks are accounted for. Furthermore, we find several studies that employ Value-at-Risk to estimate the downside risk in cryptocurrencies (see, Stavroyiannis, 2018; Ardia et al., 2019, among others). Value-at-Risk forecasts depend on the a volatility- generating process, which in turn depends on  that alters whether the structural breaks are incorporated into the model. Therefore, the Value-at-Risk forecast is indirectly impacted by the treatment of structural breaks: and ignoring structural breaks will produce erroneous forecasts.	Comment by Barnaby Breaden: Again, this statement seems to confuse the actual volatility with volatility estimated using the model:
please consider changing to "...the estimated asymmetric volatility dynamics of cryptocurrencies."
We find mixed evidence in the prior existing literature on whether cryptocurrencies exhibit hedging and safe haven abilities. For example, Dyhrberg (2016) and Cheikh et al. (2020) support this hypothesis, while Eisl et al. (2015), Bouri et al. (2017), Cai et al. (2022), and Iqbal et al. (2022) reveal Bitcoin as a weak hedge and safe haven against conventional commodities and suggest that it is a more suitable diversifier. By using various asymmetric GARCH models for major cryptocurrencies, Cheikh et al. (2020) reveal inverse asymmetric volatility behavior and support the safe haven and hedginge properties of digital currencies. They conclude the presence ofthat cryptocurrencies exhibit asymmetric volatility behavior in cryptocurrencies because they find the coefficient of the asymmetric term in asymmetric GJR-GARCH models to beis negative. Baur and Dimpfl (2018) attribute the inverse asymmetric behavior in cryptocurrencies to herding behavior of by uninformed noise traders. In this study, the coefficient of the asymmetric term (γ) for the two largest cryptocurrencies, Bitcoin and Ethereum, is positive (negative) for the GJR-GARCH (EGARCH) model, negating the evidence of inverse asymmetric volatility behavior. However, for Dogecoin, Ripple, and Monero, we also find inverse asymmetric behavior as the asymmetric term (γ) is negative (positive) for the GJR-GARCH (EGARCH) model. Our results are consistent with those of Baur and Dimpfl (2018), who also find that Bitcoin and Ethereum do not show the evidence of inverse asymmetric reaction volatility behavior, while the other cryptocurrencies do. Therefore, in line with Baur and Dimpfl (2018), we carefully conclude that, unlike other cryptocurrencies, Bitcoin and Ethereum do not exhibit inverse asymmetric volatility behavior; therefore, they cannot be used as a hedginge orand safe haven like goldassets. The contrarian behavior of Bitcoin and Ethereum can be attributed to the following reasonsfactors. Bitcoin and Ethereum are the largest cryptocurrencies, with almost 40% and 20% market cap, respectively. Bitcoin and Ethereum are the only cryptocurrencies with on which futures contracts are tradedavailable, which may increase their market efficiency (Blau and Whitby, 2019). Unlike other cryptocurrencies, Bitcoin and Ethereum are not subject to herding behavior and are not dominated by uninformed investors (Baur and Dimpfl, 2018). 	Comment by Barnaby Breaden: I don't think that this is the best term here.
Do you mean "qualities"?
"potential"?
"characteristics"?	Comment by Barnaby Breaden: Is this really a "hypothesis"?
Please consider changing to "find that they do,"	Comment by Barnaby Breaden: "provide evidence of" might be a more appropriate phrase.	Comment by Barnaby Breaden: More specifically,
"inverse asymmetric volatility behavior"?	Comment by Barnaby Breaden: I think that what you mean is:
"providing no evidence of inverse..."
("Negating evidence" is something quite different...)	Comment by Barnaby Breaden: Do you mean "tentatively"?	Comment by Barnaby Breaden: I think you need to be more specific here. ("Cannot" is a big claim.)
Do you mean "they are not effective as safe haven assets to hedge against exposure to stocks or commodities"?	Comment by Barnaby Breaden: I don't think "contrarian" is the correct term here.
Do you mean "exceptional" (i.e. unlike other cryptocurrencies)?	Comment by Barnaby Breaden: "commonly traded"?	Comment by Barnaby Breaden: Really? (This is a big claim.)
It might be safer to qualify this statement: something like "not usually subject to widespread herding behavior"
Stein (1987) provides a theoretical framework in which introducing derivative contracts such as options and futures destabilizes the prices of the underlying assets prices. Blau and Whitby (2019) provide empirical evidence that, after the introduction of Bitcoin futures in 2018, Bitcoin volatility increased significantly. The pricing of derivative contacts depends not only on the estimated volatility forecast but also on how persistent the volatility is over time (Duan, 1995). We use the GJR-GARCH specification for Bitcoin and construct a news impact curve in Figure 2. Figure 2 shows that after significant (good or bad) news in the market, a difference in the forecasted volatility produced by two models (with and without the breakpoints) will lead to a considerable difference in the option pricing. Our results provide important implications for derivative contract pricing for Bitcoin and other cryptocurrencies, especially during given the recent turbulencet in cryptocurrency markets.


7. Conclusion

In this study, we endogenously detect the structural breaks in the returns of major cryptocurrencies by using the modified ICSS algorithm and incorporate these breakpoints within into various symmetric and asymmetric GARCH models to examine the volatility persistence and asymmetric volatility dynamics of Bitcoin, Ethereum, Dogecoin, Ripple (XRP), and Monero. Interestingly, we find that volatility persistence decreases after when we incorporateing structural breaks into our models, the volatility persistence decreases, and the actual impact of unexpected news increases for all cryptocurrencies in our study. We argue that previous studies, that unintentionallywhich ignore the structural breaks to examine the asymmetric volatility behavior inof the cryptocurrency markets without taking structural breaks into account, have underestimated the actual impact of the unexpected news. Since the valuation of derivative securities and the hedging capabilities of the cryptocurrencies also depend on the underlying volatility dynamics, we argue that structural breaks should be considered to accurately evaluate the volatility dynamics of the cryptocurrencies. This study also makes a timely contribution for to the understanding of investors and market participants, as financial markets experienceare going through unprecedented volatility due to the increasing rising interest rate environment and adverse geopolitical events. Like those of conventional asset classes, cryptocurrency market returns have also plummeted, and investors are looking for hedging strategies to cover their tail risks. Our study highlights the methods that can accurately capture the volatility dynamics of cryptocurrency markets so that investors can navigate these stressful market conditions. 	Comment by Barnaby Breaden: This structure of this sentence is not logical. Do you mean:
"We argue that structural breaks should be incorporated in models to provide a more accurate evaluatation of the volatility dynamics of cryptocurrencies, which partly determine their hedging capabilities and the valuation of derivative securities"?
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Table 1
Descriptive Statistics

	
	Bitcoin
(btc)
	Ethereum 
(eth)
	Dogecoin
(doge)
	Ripple
(xrp)
	Monero
(xmr)

	Mean      
	0.001917
	0.003198
	0.001030
	0.001297
	0.001518

	Std. Dev.
	0.037546
	0.054181
	0.061472
	0.058676
	0.058082

	Maximum 
	0.115945
	0.173440
	0.241771
	0.240984
	0.177092

	Minimum 
	-0.121197
	-0.163096
	-0.189006
	-0.180906
	-0.162481

	Skewness  
	-0.145358
	0.152748
	0.768958
	0.736085
	0.126094

	Kurtosis  
	5.050624
	4.725627
	6.822885
	7.086718
	4.186702

	Jarque-Bera
	587.1358
(0.00)
	313.7659
(0.00)
	2150.754
(0.00)
	2500.082
(0.00)
	177.1752
(0.00)

	Observations
	3285
	2452
	3040
	3180
	2889


Notes: Descriptive statistics for all cryptocurrencies in our sample. Bitcoin has the highest number of daily observations while Ethereum has the lowest number of daily observations. The Jarque-Bera test rejects the normality assumption hypothesis for all cryptocurrencies in this study. 



Table 2
Structural breaks using ICSS algorithms
	Series 
	No. of breaks
	Break dates

	Bitcoin (btc)
	8
	11/4/2013; 12/19/2013; 4/17/2014; 5/7/2017; 2/6/2018; 6/17/2020; 12/15/2020; 6/27/2021.

	Ethereum (eth)
	8
	11/23/2016; 1/21/2017; 4/26/2017; 9/23/2017;
2/14/2018; 7/18/2019; 1/11/2021; 7/23/2021.

	Dogecoin (doge)
	7
	10/6/2014; 1/28/2015; 3/23/2017; 2/6/2018;
8/29/2018; 12/19/2020; 5/24/2021. 

	Ripple (xrp)
	8
	12/19/2013; 1/15/2015; 3/22/2017; 12/11/2017;
4/29/2018; 6/13/2020, 11/20/2020; 9/23/2021. 

	Monero (xmr)
	7
	12/22/2014; 8/5/2015; 8/21/2016; 3/14/2018;
6/25/2019; 1/2/2020; 3/24/2020.


Notes: We endogenously detect structural breaks by using a modified ICSS algorithm. The results show that all cryptocurrencies are very volatile. 	Comment by Barnaby Breaden: Is this really what it shows?
(I think it's more than just price volatility...) 






Table 3
Estimation results for symmetric GARCH(1,1) model

	3.A. Bitcoin (btc)

	Model
	ω
	α
	β
	α+β
	Half-life (days)
	Log likelihood
	Skewness
	Kurtosis
	Jarque-Bera

	Breaks Ignored
	7.05E-05
(0.00)
	0.1262
(0.00)
	0.8435
(0.00)
	0.969
	22.52
	6125.376
	-0.9218
	15.326
	21257.5
(0.00)

	Breaks accounted for
	0.0001
(0.00)
	0.1131
(0.00)
	0.6899
(0.00)
	0.803
	3.15
	6134.484
	-0.6984
	11.256
	9594.5
(0.00)

	3.B. Ethereum (eth)

	Model
	ω
	α
	β
	α+β
	Half-life (days)
	Log likelihood
	Skewness
	Kurtosis
	Jarque-Bera

	Breaks Ignored
	0.0002
(0.00)
	0.1561
(0.00)
	0.7793
(0.00)
	0.935
	10.38
	3697.089
	-0.3401
	8.613
	3265.646
(0.00)

	Breaks accounted for
	0.0002
(0.00)
	0.1601
(0.00)
	0.7499
(0.00)
	0.910
	7.35
	3717.264
	-0.3962
	8.738
	3427.254
(0.00)

	3.C. Dogecoin (doge)

	Model
	ω
	α
	β
	α+β
	Half-life (days)
	Log likelihood
	Skewness
	Kurtosis
	Jarque-Bera

	Breaks Ignored
	0.0001
(0.00)
	0.1764
(0.00)
	0.8093
(0.00)
	0.985
	48.12
	4729.147
	0.9554
	9.051
	5099.8
(0.00)

	Breaks accounted for
	0.0013
(0.00)
	0.2119
(0.00)
	0.6360
(0.00)
	0.847
	4.20
	4827.078
	0.7952
	8.374
	3977.7
(0.00)

	3.D. Ripple (xrp) 

	Model
	ω
	α
	β
	α+β
	Half-life (days)
	Log likelihood
	Skewness
	Kurtosis
	Jarque-Bera

	Breaks Ignored
	0.0003
(0.00)
	0.2915
(0.00)
	0.6442
(0.00)
	0.935
	10.42
	4872.360
	0.6643
	11.051
	8821.5
(0.00)

	Breaks accounted for
	0.0041
(0.00)
	0.2875
(0.00)
	0.3900
(0.00)
	0.677
	1.78
	4993.877
	0.7337
	10.671
	8080.9
(0.00)

	3.F. Monero (xmr)

	Model
	ω
	α
	β
	α+β
	Half-life (days)
	Log likelihood
	Skewness
	Kurtosis
	Jarque-Bera

	Breaks Ignored
	0.0001
(0.00)
	0.0977
(0.00)
	0.8521
(0.00)
	0.949
	13.45
	4690.968
	0.0503
	2.929
	1.8161
(0.40)

	Breaks accounted for
	0.0003
(0.00)
	0.0974
(0.00)
	0.8254
(0.00)
	0.922
	8.63
	4698.539
	0.0268
	2.916
	1.1881
(0.55)


Notes:  Volatility persistence is calculated as (α + β). We calculate the half-life of the shock by using the following expression: (α+β)j = ½. We find p-values given in the parenthesis by using the methodology from Bollerslev and Wooldridge (1992). We also use standard residuals from the estimated models (with and without structural breaks) to find the values of Skewness, Kurtosis, and Jarque-Bera statistics. By Based onusing the Jarque-Bera test, we reject the null hypothesis of normality at a 1% significance level for all cryptocurrencies except Monero. 

Table 4
Asymmetric volatility estimation results for Bitcoin (btc)
	Panel A: Estimation without structural breaks 
	Panel B: Estimation incorporating structural breaks

	
	GJR-GARCH
	EGARCH
	
	GJR-GARCH
	EGARCH

	ω
	7.25E-05
(0.00)
	-0.5616
(0.00)
	ω
	5.48E-05
(0.00)
	-0.9304
(0.00)

	α
	0.1094
(0.00)
	0.2510
(0.00)
	α
	0.0629
(0.00)
	0.2354
(0.00)

	γ
	0.0376
(0.00)
	-0.0310
(0.00)
	γ
	0.1083
(0.00)
	-0.0475
(0.00)

	β
	0.8403
(0.00)
	0.9399
(0.00)
	β
	0.7315
(0.00)
	0.8825
(0.00)

	Volatility persistence 
	0.968
	0.939
	Volatility persistence 
	0.848
	0.882

	Half-life (days)
	21.31
	9.55
	Half-life (days)
	4.22
	5.42

	Log-likelihood
	6128.323
	6139.458
	Log-likelihood
	6139.727
	6210.963

	Skewness
	-0.8135
	-0.7786
	Skewness
	-0.6455
	-0.7764

	Kurtosis
	14.237
	15.265
	Kurtosis
	11.415
	13.501

	Jarque-Bera test
	18261.14
(0.00)
	20918.30
(0.00)
	Jarque-Bera test
	9919.435
(0.00)
	15429.24
(0.00)


Notes: We find the p-values given in the parentheses by using the methodology from Bollerslev and Wooldridge (1992). We also use standard residuals from the estimated models (with and without structural breaks) to find the values of Skewness, Kurtosis, and Jarque-Bera statistics. By usingBased on the Jarque-Bera test, we reject the null hypothesis of normality at a 1% significance level. 



Table 5
Asymmetric volatility estimation results for Ethereum (eth)
	Panel A: Estimation without structural breaks
	Panel B: Estimation incorporating structural breaks

	
	GJR-GARCH
	EGARCH
	
	GJR-GARCH
	EGARCH

	ω
	0.0002
(0.00)
	-0.6630
(0.00)
	ω
	0.0002
(0.00)
	-0.8162
(0.00)

	α
	0.1540
(0.00)
	0.2792
(0.00)
	α
	0.1525
(0.00)
	0.2869
(0.00)

	γ
	0.0069
(0.56)
	-0.0009
(0.98)
	γ
	0.0228
(0.13)
	-0.0160
(0.09)

	β
	0.7776
(0.00)
	0.9203
(0.00)
	β
	0.7427
(0.00)
	0.8943
(0.00)

	Volatility persistence
	0.935
	0.920
	Volatility persistence
	0.906
	0.894

	Half-life (days)
	10.31
	8.31
	Half-life (days)
	7.06
	5.94

	Log-likelihood
	3697.135
	3694.179
	Log-likelihood
	3717.638
	3712.058

	Skewness
	-0.3291
	-0.3613
	Skewness
	-0.3691
	-0.3602

	Kurtosis
	8.558
	9.417
	Kurtosis
	8.536
	9.511

	Jarque-Bera test
	3200.06
(0.00)
	4259.16
(0.00)
	Jarque-Bera test
	3185.59
(0.00)
	4407.11
(0.00)


Notes: We find the p-values given in the parentheses by using the methodology from Bollerslev and Wooldridge (1992). We also use standard residuals from the estimated models (with and without structural breaks) to find the values of Skewness, Kurtosis, and Jarque-Bera statistics. By usingBased on the Jarque-Bera test, we reject the null hypothesis of normality at a 1% significance level. 



Table 6
Asymmetric volatility estimation results for Dogecoin (doge)
	Panel A: Estimation without structural breaks
	Panel B: Estimation incorporating structural breaks

	
	GJR-GARCH
	EGARCH
	
	GJR-GARCH
	EGARCH

	ω
	0.0001
(0.00)
	-0.5756
(0.00)
	ω
	0.0014
(0.00)
	-1.1630
(0.00)

	α
	0.1921
(0.00)
	0.3117
(0.00)
	α
	0.2650
(0.00)
	0.3442
(0.00)

	γ
	-0.0436
(0.00)
	0.0622
(0.00)
	γ
	-0.1411
(0.00)
	0.1040
(0.00)

	β
	0.8127
(0.00)
	0.9388
(0.00)
	β
	0.6401
(0.00)
	0.8112
(0.00)

	Volatility persistence
	0.983
	0.938
	Volatility persistence
	0.834
	0.811

	Half-life (days)
	40.42
	9.55
	Half-life (days)
	3.83
	3.28

	Log-likelihood
	4731.471
	4733.950
	Log-likelihood
	4837.530
	4836.513

	Skewness
	0.9167
	0.9743
	Skewness
	0.6998
	0.6955

	Kurtosis
	9.040
	9.462
	Kurtosis
	8.228
	8.230

	Jarque-Bera test
	5045.44
(0.00)
	5769.23
(0.00)
	Jarque-Bera test
	3709.73
(0.00)
	3709.27
(0.00)


Notes: We find the p-values given in the parentheses by using the methodology from Bollerslev and Wooldridge (1992). We also use standard residuals from the estimated models (with and without structural breaks) to find the values of Skewness, Kurtosis, and Jarque-Bera statistics. By usingBased on the Jarque-Bera test, we reject the null hypothesis of normality at a 1% significance level. 


Table 7
Asymmetric volatility estimation results for Ripple (XRP)
	Panel A: Estimation without structural breaks
	Panel B: Estimation incorporating structural breaks

	
	GJR-GARCH
	EGARCH
	
	GJR-GARCH
	EGARCH

	ω
	0.0004
(0.00)
	-1.4760
(0.00)
	ω
	0.0042
(0.00)
	-2.2936
(0.00)

	α
	0.3898
(0.00)
	0.4934
(0.00)
	α
	0.4071
(0.00)
	0.4902
(0.00)

	γ
	-0.1574
(0.09)
	0.0936
(0.06)
	γ
	-0.2160
(0.01)
	0.1116
(0.02)

	β
	0.6104
(0.00)
	0.8060
(0.00)
	β
	0.3619
(0.00)
	0.5697
(0.00)

	Volatility persistence
	0.921
	0.806
	Volatility persistence
	0.661
	0.569

	Half-life (days)
	8.47
	3.21
	Half-life (days)
	1.67
	1.23

	Log-likelihood
	4880.924
	4866.828
	Log-likelihood
	5003.780
	5003.380

	Skewness
	0.5282
	0.7065
	Skewness
	0.6438
	0.6575

	Kurtosis
	10.534
	11.831
	Kurtosis
	10.387
	10.607

	Jarque-Bera test
	7667.38
(0.00)
	10594.70
(0.00)
	Jarque-Bera test
	7448.74
(0.00)
	7895.26
(0.00)


Notes: We find the p-values given in the parentheses by using the methodology from in Bollerslev and Wooldridge (1992). We also use standard residuals from the estimated models (with and without structural breaks) to find the values of Skewness, Kurtosis, and Jarque-Bera statistics. By usingBased on the Jarque-Bera test, we reject the null hypothesis of normality at a 1% significance level. 


Table 8
Asymmetric volatility estimation results for Monero (xmr)
	Panel A: Estimation without structural breaks
	Panel B: Estimation incorporating structural breaks

	
	GJR-GARCH
	EGARCH
	
	GJR-GARCH
	EGARCH

	ω
	0.0001
(0.00)
	-0.4568
(0.00)
	ω
	0.0003
(0.00)
	-0.5671
(0.00)

	α
	0.1117
(0.00)
	0.1666
(0.00)
	α
	0.1146
(0.00)
	0.1643
(0.00)

	γ
	-0.0398
(0.04)
	0.0243
(0.04)
	γ
	-0.0440
(0.05)
	0.0277
(0.05)

	β
	0.8628
(0.00)
	0.9465
(0.00)
	β
	0.8377
(0.00)
	0.9211
(0.00)

	Volatility persistence
	0.954
	0.946
	Volatility persistence
	0.930
	0.921

	Half-life (days)
	14.92
	12.60
	Half-life (days)
	9.59
	8.44

	Log-likelihood
	4693.826
	4687.820
	Log-likelihood
	4701.186
	4698.338

	Skewness
	0.0352
	0.0367
	Skewness
	0.0172
	0.0133

	Kurtosis
	2.941
	2.965
	Kurtosis
	2.927
	2.937

	Jarque-Bera test
	1.009
(0.06)
	0.795
(0.05)
	Jarque-Bera test
	0.775
(0.05)
	0.553
(0.05)


Notes: We find the p-values given in the parentheses by using the methodology from Bollerslev and Wooldridge (1992). We also use standard residuals from the estimated models (with and without structural breaks) to find the values of Skewness, Kurtosis, and Jarque-Bera statistics. By usingBased on the Jarque-Bera test, we reject the null hypothesis of normality at a 1% significance level. 



Figure 1
Daily cryptocurrency prices
[image: Diagram, engineering drawing

Description automatically generated]
Notes: The maximum longest series of data is available for Bitcoin (May 1, 2013 – April 30, 2022) and the shortest series of minimum data was available for Ethereum (August 15, 2015 – April 30, 2022). Source: https://coinmarketcap.com/



 

Figure 2
News impact curve



Notes: The solid line represents the GJR-GARCH model for Bitcoin, while ignoring breakpoints. The dotted line corresponds to the GJR-GARCH model that accounts for the breakpoints. The x-axis represents shows whether the shock is positive or negative. The y-axis represents the impact of any given shock on the volatility of Bitcoin. More details about the construction of these curves is are discussed in Engle and Ng (1993). 
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