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Learning Objectives
The eEquilibrium of material bodies is a natural and l, but also necessary, status state at to which majority of aspects objects in the universe tend to converge. The motion of our planet itself is governed by the laws of equilibrium laws; the steady contact of people with the Earth represents alsoalso represents a type of equilibrium which that prevents them from flying off the surface of Earth. One may add many standard examples of objects used in daily life that are in equilibrium, such as cars, buildings, bridges, and machines.	Comment by Author: It's not the steady contact that prevents them from drifting off into space, it's gravity. You may want to clarify.	Comment by Author: "Machine" implies action, and thus nonequilibrium (e.g., a moving car involves nonequilibrium thermodynamics).
Statics, belongsing to the field of study called Solid Mechanics field of studyand, is the science that deals with the studies the equilibriumy of objects’ equilibrium. Equilibrium is the result of a group of efforts that balance each other to keepso that the an object either stays at rest or moves just at a constant speed in in a steady motiona straight line.	Comment by Author: You may want to define "effort" and how it relates to "force."
In the presentthis course, one you will first learn first the three basic laws axioms of Newton, the concept of force and moment, and the replacement of a system of forces by a single one force and vice versa. Then oneWe will then see discuss the different types of efforts which that might be applied on to a solid as well asand the different types of bearings and supports that can hold this a solid, the representation of thoese efforts, and the calculation of supports reactions in supporting structures through the mathematical conditions of equilibrium, known as static determinacy. SA special attention will be assignedbe given to to a particular type of structures: planar trusses.	Comment by Author: Please ensure that the intended meaning is maintained.
Also one will experienceWe will also discuss the difference between external and internal efforts and the importance of those the latter ones in the equilibrium process as well as how to prevent fracture or instability prevention. The location of the center of gravity of complex objects belongs is another also to one of the most key topics that areto be covered in this course.
Friction force takes occupies a considerable area part ofin this course since because it treats involves key aspects in practical life such as adherence between car tires and the road, contact between two articulations, and power transmission through systems of pulleys and flat belts.
It is obvious thatE equilibrium, which is the main topic of this e present course, is thus practically becomes in essence a starting point or an initial status state in the study ofto the future motion or dynamics studieskinematics of objects. 



Unit 1 – Basic Physical Quantities 

Study Goals

On completion of this unit, you will be able to …

… understand the concept of force;.
… apply the Newton’s three well-known theorems of Newtonaxioms;.
… distinguish between external and internal forces;.
… execute all mathematical operations about involving vectors.

1. Basic Physical Quantities, Vectors
Introduction 	Comment by Author: Consider avoiding the use of italics in these sections. While it can highlight new terms, and emphasize concepts, it is also perhaps distracting for the reader.
Mechanics is a branch of physics that studies the status state of objects either at rest or in motion. The reason behind thisA given latter statusstate resides is caused byin a system of actions, known as forces and/or moments, applied on to the an object in question. Both solids and fluids constitute materials of interest in mMechanics. Statics is a sub-branch of mMechanics that deals with the equilibrium of rigid bodies: this equilibrium could be exhibited by eithercan be manifested by an object at rest or moving with constant velocity motion.	Comment by Author: You may want to explain the difference between "action" and "effort."
The essential physical quantities that are behindthat create the status state of any object are forces and moments. Consequently, the study of the equilibrium of a rigid body requests requires theoretical and mathematical knowledge of aspects dealing with those latterthese quantities. One may cite alsoalso cite a couple of ‘’“indirect’’” physical quantities that would beare used in mMechanics, namelysuch as the length, the mass, the weight , and the time.
‘’“Mechanics is based on only a few laws of nature which have an axiomatic character. These are statements based on numerous observations and regarded as being known from experience. The conclusions drawn from these laws are also confirmed by experience.’’” (Gross et al., 2013, p.1). Therefore, the knowledge of the three laws of Newton’s three laws of in mMechanics is of high importancecrucial. In addition, the concepts of force, types of forces, resultant force, and the decomposition of forces will be discussed in detailed. This discussion necessitates a considerable knowledge about vectors and their vector operations, which are discussed at the end of which will complete this unit.	Comment by Author: American English tends to use "net" force instead of "resultant." You may consider following this convention.



1.1 Physical Quantities and Units
Many physical quantities will beare usedful throughout in the field of mMechanics. Even Although they may appear as simple and obvious, it is important to remind recall their definitions, the concepts that they represent, and their units of those quantities. It should be noticed that theThe system of units system followed used in physics is the International System of Units (SI) , also known also as the metric system.International system of units:
This is aThis is the standard system of units used worldwide to unify the units offor the scientifical measurements.

Length. Physical A physical quantity to evaluatethat gives the location of an object measured with respect to a determined reference and/or the dimensions of this object. In SI units system, lengthit is expressed in meters (m). (Hibbeler, 2010).	Comment by Author: Note that units are not italicized in American notation. Italicized symbols are reserved for mathematical quantities.
Time. Quantification of a succession of events or ofa variable status events. When an action or a process remains unchanged it is said to be time independent. In SI units system, it time is expressed in seconds (s). (Hibbeler, 2010).
Temperature. Quantification of level amount of heat thermal energy stored within in an object. In SI units system, it is expressed in kKelvin (K). (Halliday et al., 2021).	Comment by Author: Note that "to heat" is a verb and is  the transfer of thermal energy. "Heat" as a noun is discouraged.
Mass. Quantification of the amount of material contained in a substance. Mechanically, it represents alsoalso represents the resistance of a body against a change in linear velocity.  In SI units system, it mass is expressed in kilograms (kg). (Hibbeler, 2010).
Force. A “‘’push”’’ or ‘’“pull’’” action applied on to a body by its surrounding, either by direct contact or at a distance (Hibbeler, 2010). In SI units system, it force is expressed in nNewtons (N). It should be noticedNote that a newtonN is not a basic unit but, it is a compound unit of involving mass, length, and time: N = kg .m/s2. 	Comment by Author: Note that ,when spelled out, units such as joules, newtons, kelvin are not capitalized in American notation.	Comment by Author: Note that thin spaces (or sometimes center dots) are used to separate units in American notation. Please verify.
When any quantity evaluates to a very large or very small numbers, it would be worthis customary in SI to ‘’“reduce’’” the numerical value and ‘’“replace’’” the extra zeros in the number by with a prefix letters before the main unit symbol in SI. For example, when the duration of an impact is 0.003 s, it is worth towe write it as 3 × 10−33x10-3  s or 3 ms (milli-seconds); the letter ‘’“m’’” (for milli-) added to the main unit ‘’“s’’” (for seconds) is a prefix. Another example could be given foris a force of 5,000,000 N, which is  this could be written as 5 × 106 5x106 N or 5 MN (mega-nNewton); the letter ‘’“M’’” (for mega-) added to before the main unit ‘’“N’’” (for nNewtons) is a prefix. The first example above i reflects s a submultiple case (negative power of 10ten), while the second one example isillustrates a multiple case (positive power of 10ten).
Table 1.1 below summarizes all prefixes used for multiples and submultiples.:
	Table 1.1 Prefixes of SI Units Prefixes
	

	Multiple/Submultiple
	Exponential notation
	Nomenclature
	Symbol

	1,000,000,000
	109
	Giga
	G

	1,000,000
	106
	Mega
	M

	1,000
	103
	kilo
	k

	0.001
	10−-3
	milli
	m

	0.0000001
	10−-6
	micro
	

	0.0000000001
	10−-9
	nano
	n

	0.000000000001
	10−-12
	pico
	p


Self-Check Questions
1. Specify if the followingwhether the following statement is True or False and justify your answer
The volume of a body is a basic physical quantity. False:, since a volume represents the product of three lengths. TheIs units  m3 areis composed offrom three basic units of length (or the same one basic unit of length repeated three times).
2. Choose the correct answer
The equivalent prefix unit prefix used for a 1 tTon mass is:
      Gg               Mg                mg              ng
[bookmark: _Toc221687482]1.2 Newton’s Basic Axioms
Before stating Newton’s the three lawsaxioms of Newton, it is worth to clarifywe clarify the difference between two terms, used to ‘’“idealize’’” the representation of a body.
Particle. It A “particle” is thea representation of a solid having a considerable mass but a negligible size when measured with respect to the  a bigger referencecharacteristic lengths in the system under study (Beer et al., 2012). For example, when considering a car or group of cars driving across a huge bridge, their the sizecarss are small with respect to those of the bridge are not considerable, so and thus only the effect of their weights applied toon the bridge is consideredare taken in account. In the idealizedation model, each car is considered treated as a particle ‘’“pushing’’” down on the bridge through via its own weight. This is illustrated in Ffigure 1.1.
[image: ]
Figure 1.1 Cars crossing a bridge over Maracaibo lake (Venezuela).
Rigid Body. It is a representation ofA rigid body is a solid having both mass and size volume considerable (Beer et al., 2012). It is considered treated as a group of particles located at specific known positions distances one with respect to eachthe others , those distancesthat remain unchanged either before or afterby the application of a the load on the body. In other words, within solids modeled as rigid bodies, any change in position of the particles with respect to each other isthe displacements occurring within solids modeled as rigid bodies are accounted neglectedto be too small. 	Comment by Author: You may want to define "load" and explain how it differs from "force," "action," and "effort."
As an example, one can consider the house trailer of figure Figure 1.2, which is subjected to a systemthe following of forces as follows: its own weight, the normal reaction force from the road (exerted vertically upward through at the wheels), the normal reaction force exerted vertically upward from the back of the pick-up automobilethe pickup’s trailer hitch (through the metallic link), and the horizontal pulling force from exerted by the automobile trying tothe trailer hitch to move the trailer forward. The deformations developed within the trailer due to those these forces are negligible.
[image: ]Axiom: An axiom is a statement accepted as obviously true and used to develop further rationales.

Figure 1.2 Pick-up automobile truck pulling on a housea trailer.
It should be noticedNote that the three axioms of Newton (Hibbeler, 2010) are applicable on to an object particle located in a fixed frame of reference or in a frame of reference moving at constant velocity-steady-motion reference.
Axiom 1. When a particle is originally at rest or moving along in a straight line with ata constant velocity speed and then is subjected to a balanced system of forces, it will keepmaintains its original status motion before the application of the balanced forces.

This axiom is illustrated in Ffigure 1.3: consider that the forces  , , ….,    are balanced or in other words(i.e., they sum to equivalent to a zero force system) and are applied at to the particle. If, the particle was at rest (velocity v = 0) before the load forces wereapplication applied, the particle was at rest (velocity v = 0) it will remains in the same status state (at rest) after the application of those forces are applied. If the particle was in steady motion (velocity v = const.), before the forces were applied, it remains in the same state (in motion at constant velocity v) after the forces are appliedthe load application, the particle was in steady motion (velocity v = constant) it will remain in the same status after the application of those forces.
[image: ]
Figure 1.3 Particle under subjected to a balanced- force system.Aacceleration: This is the rate of change of in the velocity per unit time.

Axiom 2. If a particle of mass m is subjected to an unbalanced system of forces of that sum to  (i.e., the resultant force is  ), it will moves with an acceleration  in the same direction as    and whose . The magnitude of this acceleration is proportional to the magnitude of  through and inversely proportional to the mass m (). 
[image: ]
Figure 1.4 Particle aAccelerated particle underdue to the application of a resultant force.
This is illustrated schematically in Ffigure 1.4 and mathematically through equationEquation (1.1).
                                                                                                        (1.1)
[image: ]
[image: ]
Figure 1.5 (a) Car pulled forward on a winch (a), (b) Accelerated car accelerating before reaching the winch (b), (c) car Mmoving forward with at a constant velocity. at the back of the winch (c)
A practical example of the first two axioms is represented in Ffigure 1.5. Consider a defected car (i.e. at rest that is) to be mounted onto a flatbed truck by using the back of a winch. It A cable is attached to the car is attached to a rigid cable in order to be pulled it forward, as shown in figure Figure 1.5(a). When the cable starts to pull, the car is still on the horizontal road and at the start of pulling, the carand is subjected to thea system of three forces shown in Ffigure 1.5(b).; Tin this system the weight of the car   of the car and the normal reaction force  exerted by  of the road on the wheelsfloor will balance each other and, so the hence the resultant force in of this system reduces tois simply the tension   of the cable. A s per axiom 2, thewhose magnitude of the tension is equal to the mass of the car times multiplied by its acceleration as per axiom 2; the acceleration is developed due which isto the change of in the velocity of the car from zero0 (i.e., at rest) to a certain limit valuethe final velocity needed toat which the car moves the car forward towards the winch. 	Comment by Author: You may want to mention that you are ignoring friction between the tires and the road.
Figure 1.5(c) shows the system of forces exerted on the car wGaining this accelerationhen the car is now able to mountis on on the inclined back plane. I of the winch with the system of applied forces now is shown in figure 1.5(c); in that this case, the normal reaction force exerted by of the inclined plane balances cancels a part of the car’s weight while and the tension of exerted by the cable balances cancels the other part of theremaining weight of the car, leading to a system of three balanced forces or zero resultant force equivalent to 0. Since the car was already in steady motion, as per axiom 1 it will remain in that status state as per axiom 1 until the pulling process is finished. 	Comment by Author: This assumption of steady motion does not hold when the car goes from horizontal to inclined motion.
Axiom 3. TWhen two particles interact, each apply exerts a force oneach on the other; the forces are of the same magnitude but opposite in direction two mutual forces having same direction, opposite in sense and equal in magnitude. This principle is known as the principle of action and reaction.
Figure 1.6 shows two particles A and B applying exerting mutual forces such as  illustrating this third Newton’s axiom.
[image: ]	Comment by Author: Please note that the use of the solidus (/) is discouraged except for "and/or" because its meaning is ambiguous. Please verify all such constructions in the document.
Figure 1.6 Principle of aAction and rReaction principle.
[image: ]
Figure 1.7 A bBook resting on a table reflectdemonstratesing the principle of action and reaction.
Furthermore, Ffigure 1.7 represents shows a practical example explaining of the principle of action and reaction. Consider Treatthat the book ais a particle A and the table supporting theis book ais a particle B. The book applies its downward vertical descending weight on the table and mutually the table reacts by applies on the book an upward normal reaction forceying on the book a normal reaction force, vertical ascending,that is of the same equal in magnitude and but opposite in sense direction with respect to the weight of the book. The resultant force is zero so the book remains at rest; this force is responsible to hold the book on the table.
Self-Check Questions
1. Assign to each of the following cases the appropriate axiom of Newton’s axiom.
Case 1: Lift risen raised by a motor through via a tensioning cable (Axiom 2)
Case 2: A mother carrying her baby in her arms (Axiom 3)
Case 3: A couch at rest before and after people sit on it (Axiom 1)
2. Complete the following sentence:.
An 800 N man of weight 800 N is lying in the middle of a four-legged bed. Based on axiom 3 of Newton, each leg of the bed is exerts a reactionng by a force of 200 N. 
1.3 Scalar, Position, and Force Vectors
Scalar and vVector
Scalar. It A scalar is an algebraic numerical quantity designated exclusively bythat can be a  positive or negative value (Hibbeler, 2010). For example,: the abscissa of a point is −– 2 m (−2 is a scalar). The duration of a motion is 30 s (30 is a scalar).
Vector. It A vector is a geometric element representing a physical quantity and consisting is represented byof a line segment portion of a straight line having a specific orientation (Hibbeler, 2010).
A vector is drawn as an arrow, as shown in Ffigure 1.8. Four elements are needed to determine draw a vector:
· Origin: Starting point of the vector.
· Direction: Inclination of the line carry ing the vector; as globally it is measured determined by the algebraic angle formed between the horizontal and the vector line. If tThis angle rotates is positive if measured counterclockwise (ccw) it is counted positive while it is counted and negative if measuredfor a clockwise rotation (cw).
· Sense: Orientation towards whichof the vector is acting. On a well-defined directionA a vector may havehas two options for a sense. For instance, if the direction is horizontal, a vector may have either a leftward sense or a rightward sense. If the direction is vertical the sense could may be either downward or upward.
· Magnitude: Amount or value of the physical quantity that is represented by the vector. Geometrically, it the magnitude is the scale lengthdistance from between  the vector’s origin and the tip of the vector’sits arrow.
[image: ]
Figure 1.8 Representation of a vector.
A vector is denoted by a symbol topped with anby an over -arrow: . In some references Iit may also beis represented by a bold letter symbol with no over-out arrow: V. The magnitude of a vector, being no other than (i.e., its length), is denoted by the same letter with no over-out an arrow at the top:, V. Other Another way to denote vector magnitude is as followsnotation of a magnitude:  or . 
Position
It Position is a physical quantity specifying the location of a point of interest with respect to a reference point.  Mathematically, the position of a point in the space is specified by a vector, known as a position vector, whose origin is the point of reference and the whose tip is the target point or the point of interest. Figure 1.9 illustrates the position in space of a point P(x,y,zz) in the space referredwith respect to from  the origin OO of a direct Cartesian orthonormal reference frame (OO,,); where , are respectively unit vectors of along the x-, y,- and zz -axes. The scalar components of a position vector along the three axes is are calculated from the difference of in coordinates between the tip and origin:  while the magnitude is calculated by applying the the standard Pythagorean Theorem in the space: .
[image: ]
Figure 1.9 Representation of a position vector.
Force 
Definition and concept
By definition, inIn mechanics, a force is defined as the action exerted by a one body on another neighbor onebody (Beer et al., 2012). This action may be applied by direct contact or at a specified distance. Mathematically, a force is represented by a vector, which has a point of application, a direction, a sense , and a magnitude and hence, so theose four elements are needed to define mechanically thea mechanical force. A force is typically, denoted by its symbol the letter “F” with a rightward over-under a rightward-directed arrow:.	Comment by Author: Action is the integral of energy over time (Lagrangian mechanics). You may want to avoid giving the term "action" a different meaning.
In fFigure 1.10a is illustratedshows an example of a force: it is the action applied by the worker on the crate via the cable-pully system by the labor on the crate to raise the crateis latter through a cable around a pulley. Figure 1.10b shows the vector representation of this force  including its four elements: 
· The pPoint of application: the point of the cable at which the force is actingexerted. Mathematically, it the point of application is no other than the origin of the force vector. (Hibbeler, 2010).
· The dDirection: it is the angleular amount by which of the line of action ofbetween the force (i.e., along the cable) is inclined withand a respect to the horizontal line; mathematically, the direction it  is quantified bydescribed by the algebraic angle formed between the a horizontal line taken as reference (oriented from left to right) and the line of action of the force (Gross el et al., 2013).: Ttheis angle is counted positive when oriented measured counterclockwise and negative for awhen measured clockwise orientation.
· SThe sense: it is the orientation of the vector force; in the Ffigure 1.10b, the sense is downward.
· MThe magnitude: it is the amount or the intensity ofof the applied force;, measureding its quantity in nNewtons (N) according toin the International System of UnitsSI. Its symbol is the same as the vector force but without the over-arrow: F is the magnitude of  above. One must not confuse between thea vector, which is a “geometric” representation, and its magnitude, which is being a numerical valuescalar. F is the magnitude of   . In some references the magnitude is represented by or .
Numerous examples of forces cases may be cited categorized either as contact or distance forces: a person opening a door applies exerts a direct force or contact force on the door; a person trying to move a wardrobe from one place to the anoother also exerts a contact pushing force on his the furniture. On the other side, theT fhe force of attraction applied exerted by a magnet on a metallic key is a distance force, and; the same applies to the interaction force exerted between protons and electrons in an atom.
[image: ]
Figure 1.10 (a) Labor pullingWorker lifting-up a crate through via a pulley and cables system (a), (b) rRepresentation of his force action (b)exerted by the worker on the cable.
Special force case: the gravity force
Known Gravity also as weight represents practicallyis a force of the attraction force applied by the gravitybetween any two objects with mass. Earth is the largest mass by far in our immediate vicinity, so gravity is often taken to mean the force exerted by Earth on other objects. This force is called the “weight” of the object on an abject. It is a distance force since because the objects need does not need to touch the Earth to develop have a weight. The weight vector  has its point of application at the center of gravity of the object and is exerted in, a vertical direction with a, descending sense and a magnitude proportional to the magnitude of the gravity acceleration vector . ; Tthe coefficient of proportionality is nonet other than the mass m of the object:. 
                                                                                                            (1.2)
Since  and   have are exerted in the same direction (and particularly in the samefor gravity case the same sense because mass is always positivealso), equationEquation (1.2) may be applied used to calculate the magnitude W of the weight. In SI unitsthe International System of Units, the weight is measured in Newtons newtons (N), the mass in kilograms (kg), and the acceleration g in meters per second squared (m/s2).
The acceleration due to gravity acceleration value is essentially constant within the field in which gravity acts or in other words from planet toon any given planet; on Earth, this g  has an average value of 9.81 m/s2 ,  whereas ile on Mercury it is estimated to be 3.73 m/s2. However, since the mass represents physically the amount   of material included in an object body, the massit does not change depend onwith the location of the object, so and in consequence the weight of the object a body changes from one place to another when because the acceleration due to gravity acceleration changes. For instance, an object of mass 10 kg exhibits has a weight of 98.1 N on Earth, but a weight ofof  37.3 N on Mercury.
Concentrated and distributed force
When a force is applied at a region ofexerted on a part of a body which that is too much smaller than with respect to the overall size of the body, (i.e., region assimilated to a point), the force is said to be concentrated. Consider tThe case of figure Figure 1.10 applies as an example: the tension of the cable is applied exerted at a tiny point of on the crate (where the cable is connected to the crate,) and henceso it the tension is classified as a concentrated force (Gross el et al., 2013). This force is clearly represented in figure Figure 1.11 below.
[image: ]
Figure 1.11 Tension of aa cable as an example of concentrated force.
When the loadinga force is applied exerted overalong  a considerable space portion of the a body (or even along theover the entire body) and not at a specific tiny point or point(s, the force), it is said to be distributed. A loading force could may be distributed either over a volume space (N/m3), or over a surface area (N/m2), or over along a line (N/m). The most famous classical example for of a distributed load force is surprisingly the weight of an object: indeedin fact, the most common meaning of the weight  of an object is a concentrated vertical descending force applied exerted at the object’s center of gravity; however, this weight represents a resultant value force or an equivalent value force equivalent of to a group of ‘’“sub-weights’’” measuring that arethe the weights of all the points that constitute the entire object.; Ttheose points are ‘’“filling’’” the volume of the body and each of them ‘’carries’’them has its own ‘’sub-weight’’. In conclusionThus, the real weight of a body is a distributed force per unit volume of the body while whereas the “conventional” total single weight is the resulting, or the sum, of all the small per-unit-volume weights. Figure 1.12 illustrates this exampleconcept.
[image: ]
Figure 1.12 Weight of a body as an example of distributed load per unit volume.
External and internal forces
A system is said to be subjected to an external force when this force is applied by any component object in the environmentfrom the surrounding of thisthe structure. A component part global system is said to be subjected to an internal force when this force is applied by any ‘’“neighbouring’’” component belonging to the global system itself. 
 This We clarify this concept could be clarified by an example: going back to Ffigure 1.7, if the global system considered is the entire ‘’“set’’” (book + table), the environment surrounding of thisthe system is just the floor on which this system rests and thus the external forces become are the weight of the system (book +table) on one hand and the normal force applied exerted by the floor on the system to keep it at rest. I; in thisat case, the interaction forces developed between the book from on one side and the table from on the other side do not appear since they cancel each other according to the third Newton’s third axiom. However, when the book alone is considered as the main system, the table in that case is considered as to be part of the a surrounding environment, and thusso the external forces applied on to the book are its own weight (vertically downward) and the vertically upward normal reaction force applied exerted by the table on the book to keep it at rest on the surface of the table. For the book alone those these become external forces but for the entire book + table system (book + table) theose constitute internal forces. The difference between both cases is illustrated in Ffigures 1.13a and 1.13b.	Comment by Author: and the air in which the system is immersed
In conclusion, when the whole book + table system (book + table) is considered, the interaction forces between the two ‘’“components’’” of this global system (book and table, Figure 1.13a) are internal and thus they do not appear as external forces. except wWhen this global system is ‘’“split’’” into different isolatedseparate componentssystems and we consider the book alone as our system (Figure 1.13b); it is only in that case when the  internal forces from the larger system (i.e., the weight of book and the normal reaction force of the table) now become  applied by the other parts of the globalexternal forces exerted on the system appear(book).	Comment by Author: Please ensure that the intended meaning is maintained.
[image: ]	Comment by Author: Note that vector arrows should not extend over super or subscripts.
Figure 1.13 Table holding a book and resting on the floor showing: (a) external forces and (b)(a), internal forces. (b)
Application 1.1. A kid child is pushing from behind on a trailer toy of mass 1.2 kg to move accelerate it from rest to 0.8 m/s in 2 s. What is the magnitude of the force applied by the kid child on the trailer?
Solution 1.1. The initial velocity of the toy was is zero0 (i.e., the toy starts atfrom rest) while whereas its final velocity is 0.8 m/s that , which should beit reached reaches in 2 s. This results in an acceleration:

Applying Newton’sthe 2nd second axiom of Newton:gives

Application 1.2. Calculate the scalar components and the length of the position vector that extends relating from the origin OO of the a Cartesian reference (x,y,zz) coordinate system to a point P = (4.0, −-2.0, 5.0) (m).
Solution 1.2. The scalar components of  are:

The length of this vector is: .
Self-Check Questions
1. Complete the following sentence:
The position of a point B = (−-1, +2, +1) (m) is measured from a reference point A = (0, 3, −-1) (m). The scalar components of the relevant position vector are: −-1 m, ; −-1 m, and +2 m while and the distance separating B from A is  m.
2. Explain whether the reaction force of exerted by thea seat of a car on the body of itsa car driver is an external or internal force.
If the driver himself herself is isolated as the main bodysystem, then the seat is a support orpart of the surrounding environment and thus this force is external. But However, if the entire car with all its items areobjects inside it are included in the main system, this means thatthen both the driver and the seat are two componentspart of among the whole the system, in that which case the reactive normal reaction force of exerted by the seat on the driver is an internal force.
1.4 Vector Operations
Multiplication by a scalar
Consider a vector  having with well-definedall elementscomponents well determined. When this vector is multiplied by a scalar k, the result will beis a new vector  parallel or collinear to , having a magnitude  and having the same sense as  if k >0 or an opposite sense to  if k <0. Figure 1.14 shows couple of examples.
Dividing a vector  by a scalar k is similar the same as multiplying it by a scalar 1/k.
[image: ]
Figure 1.14 Representation Geometric representation of multiplication and division of a vector by a scalar.
Dot pProduct
The dot product of two vectors  and  is gives a scalar number obtained by multiplying the magnitudes of both vectors between themselves and by the cosine of the angle formed between them:
                                                                                (1.3)
Another formulation ofway to calculate the dot product, is the one that includes theto sum the products of the individual scalar components of both each vector instead of the magnitudes and the angle. This writes:
                                                             (1.4)
Cross pProduct
The cross product of two vectors  and  is gives a new vector  having whosea direction is perpendicular to the plane containing  and , whose, a sense is determined by the three fingers of the right-hand rule,  and a whose magnitude equal is to the product of the two magnitudes of  and  between them and byand the sine of the angle formed between  and . The Cartesian formulation is established by developinggiven by the following determinant:
                                                                              (1.5)
                                                                                                (1.6)
By expanding the determinant in Eequation (1.5), the amounts quantities multiplying the unit vectors ,  , and  represent respectivelyare the scalar components of  along the x- , y,- and zz -axes, which are denoted by V3x, V3y , and V3z.
[image: ]
Figure 1.15 Right-hand rule applied to cross product of vectors.
It is worth to remindRecall that the fingers’one formulation of the right-hand rule consists in forming using from tthe thumb, index finger, and middle finger to form three orthogonal axes oriented in the space. To find the sense of  , the rule consists inindex is oriented alonging the index along , and the middle finger along  ; the thumb then determines automaticallygives the sense of the cross product vector . This rule is illustrated in figureFigure 2.15.
Application 1.3. Consider two vectors:  and .
a. Calculate the dot product of the two vectors.
b. Determine the cross product .
c. Evaluate, using two different methods, the magnitude V of the vector .
Solution 1.3. From the Cartesian notations given, the scalar components of both the vectors are:  and .
a. Applying equationEquation (1.4): .
b. Applying equationEquation (1.5): 

c. Method 1: Pythagorean formula 
 
Method 2: Magnitude of cross product formula
Equation (1.6) requires the angle between  and  . 
This angle is found by combining equationEquations (1.3) and (1.4):

where:
 .
Tthis gives: .
Finally,: 
Addition and sSubtraction of vVectors
Addition The addition of vectors consists ofcan be done by using a graphical construction and not at allas opposed to a numerical operationcalculation. To add graphically add a series of vectors, ,  ,  , one starts from an arbitrary point OO in the plane and draws a vector parallel, with the same sense, and equal to . ; then fFrom the extremity of the drawn vector  just drawn, one draws a parallel vector, with the same sense, and equal to  . From the extremity of  one , repeats thethe same process untill reaching  . Finally, join the initial point OO and the extremity of the last vector  are joint by thea vector  . This “resultant” vector represents gives the vector sum: ++⋯ + ; it is named resulting vector which replaces , , … ,  keeping the same effect. Figure 1.16 illustrates the graphical vector sum methodology of graphical vector sum.
[image: ]
Figure 1.16 Graphical vectors addition.
It is extremely important to point outNote that vectors addition is a geometrical operation; it does not consist in of adding numbers or magnitudes and thus the magnitude of   is never equal to the sum of magnitudes of , , … ,  except when those the latter are collinear or parallel and all have theing same sense.
In a complementary context,S subtraction between vectors is indeed an indirect sum between of vectors. Although, for the sake of clarity and brevity, this operation is shown occurring between two vectors for sake of clarity and brevity, it could may be expanded to multiple vectors.
Consider the vectors’ subtraction:  . This expression could may be written as: . In the the graphical construction, once arriving at  , a vector parallel to  but of the opposite sense , equal but opposite vector must beis drawn in the vector diagram, as illustrated in figureFigure 1.17. This process is to be applied each time a subtraction operation precedes any vector in the summation sum for a multi-vectors addition or /subtraction.
[image: ]
Figure 1.17 Graphical vectors subtraction.
Application to force vectors
Composition of forces
Concurrent forces. Concurrent forces are concentrated forces having that are exerted at a common point of application, i.e.so they have the same vector origin (Hibbeler, 2010). For a solid modeled as a particle, this common origin represents is indeed the particle itself. Despite that sometimesNote that the visualization of the drawings ofn forces exerted on a body modeled as a particle may show the forces as having different origins,s the you can contrary, one might slide the forces along their lines of actions until they intersect all haveat the same origin,; this which will not change modify how thethe effect of those forces on affect the particle.
Resultant force. It A resultant force is a theoretical force that replaces a group of physical forces acting on a body and keeps produces the same effect as the original group to be replacedof forces (Hibbeler, 2010). Mathematically, theis resultant force  is determined by the sum vector sum of all forces to be replaced following equation (1.7) below:
                                                             	.		                      (1.7)
Obviously, oneOne of the methods to determine  is the graphical approach by based on constructing the a force- vector diagram. 
Case of two concurrent forces. The simplest case to start with resides isin two forces   and  that are concurrent at an origin OO and shifted rotated by an angle  with respect to each other.. The magnitudes F1  and F2 are well known. The resultant force  +  is constructed graphically as shown in figureFigure 1.18. The middle sketch in this latter figure illustrates the standard force- vector diagram to draw obtain  , and. tThe last right-most sketch in this figure, is an equivalent scheme to this graphical method; it is known as the parallelogram law, which. It consists in drawing from the tip of   a parallel and equalline segment to of magnitude F2 and then from the tip of  a parallel lineand equal segment to of magnitude F1 , forming . The result of those two operations is a parallelogram. The diagonal of the parallelogram drawn from the origin OO represents is the resultant force vector . NeverthelessHowever, the graphical approach no longer suffices at this stage is not sufficient anymore because; the four elements of the vector  have tomust be determined in a precise lymanner.
[image: ]
Figure 1.18 Resultant of two concurrent forces.
· The point of application: it is obvious that it is the origin OO, which is the common origin of the starting forces  and .
· The direction: it is along the diagonal of the parallelogram, starting of from the origin OO. The law of siness law in equationEquation (1.9) below allows quantifying thisgives the direction by evaluating the angles formed between  and each of   and   . 
· The sense:  is oriented from the origin OO to the tip corresponding to the vertex of the parallelogram opposite to OO.
· The magnitude: R is calculated by applying the generalized Pythagorean   Theorem in equation (1.8).
The generalized Pythagorean Theorem and the law of sines law are related applicable to any triangle ABC (Figure 1.19) through and are given by equationEquations (1.8) and (1.9), respectively:
                                                            (1.8)
                              .                                                      (1.9)
[image: ]
Figure 1.19 Triangle ABC showing notation used in Equations (1.8) and (1.9).
[image: ]
Figure 1.20 Resultant force due to tension in cables tensions of a crane system.
A practical example is illustrated in figureFigure 1.20 where the hook of the a crane is connected to a network of cables in order toto lift the metallic yellow bar. The zoom-inexpanded view of the isolated hook and its surroundings environment shows the applied forces in amore clearlyer way. The physical forces  and  are concurrent, so they may beir effect could be virtually replaced by the resultant force . The other two forces  and  are parallel and having same sense; obviously so the resultant force  will havehas the same direction and sense as  and  , and a magnitude equal to F3 + F4. Finally, due togiven the static equilibrium of the hook,  and  will must balance each other, i.e.so they are must be collinear, have the opposite sense, and have have the same magnitude.
Case of multiple concurrent forces. In manyMore complicated systems can have many more than two , the number of concurrent forces could be much greater than two. However, tThe construction of the vector diagram follows the same concept procedure as for two forces. 
[image: ]
Figure 1.21 Construction of rResultant force of equivalent to multiple concurrent forces.

Consider n concurrent forces  ,   ,   , … ,. In this case, tThe parallelogram law in that case is to be applied sequentially for to each two forces. The first parallelogram of  and  produces  as the resultant force. The second parallelogram will beis then constructed from   and  to give thea resultant force  . The next step consists This procedure is repeated toin constructing the parallelogram from  and  to result inobtain the final resultant force . . This procedure will be repeated till reaching the final resultant . 
All the ‘’“intermediate’’” resultants  ,  ,  , etc. … as well as the lastup to the final resultant  are calculated from equationEquations (1.8) and (1.9), each in its relevant parallelogram. Figure 1.21 illustrates the resultant force of four4 concurrent forces.
Decomposition of forces
It is totallyDecomposition of forces is the inverse procedure of constructing the resultant construction of forces and . It consists in replacing a single force by with two other forces for in thea two-dimensional case (2D) or by with three other forces for in thea  three-dimensional case (3D). Those These new forces produced are known as components of the original force. The decomposition of a force occurs is done along two (for the 2D case) or three (for the 3D case) predefined directions.
Decomposition into two components. For thea 2D case or a planar force, two directions are selected ; those are(conventionally named normally x and y ) and oriented to form a direct reference with an origin OO and a unit vector for in each direction or axis.:  is the unit vector for the xx- axis and  is the unit vector for the y -axis. The x -axis is normally chosen to be horizontal and increasing oriented from left to right while and the yy -axis may form globally any angle with the xx -axis and is oriented upward. For the special direction case when the yy -axis is perpendicular to the xx-axis axis, the frame of reference  is said to be a Cartesian oOrthonormal frame of reference; this type of referenceframe will be used as by default reference unless otherwise instructions edare stated. The force to be resolved has its point ofis applied atcation coincident with the origin OO of the reference (xy), which is denoted also by (OO, ,) and thea direction angle  of orientation is measured from the xx -axis and is considered counted positive when measured trigonometrically or counterclockwise (ccw) and negative when measured counter-trigonometrically or clockwise (cw) (Gross et al., 2013). 
The vector components are plotted drawn by using the inverse parallelogram law: from the tip of , a line parallel line to the yy-axis axis is drawn until it intersectsing the xx-axis axis and then a vector is drawn from OO till to this latter point of intersection., Tthis vector is denoted by   and is known called theas vector component of  or vector projection of  along x. The measure Fx is known asthe scalar component of  or the scalar projection of  along x. Fx is an algebraic quantity and , that is positive if  has the same orientation sense as the xx-axis axis or as  and it is negative in the opposite case.  The Cartesian notation of for  is written as the product of the scalar component its Fx scalar measure byand the corresponding unit vector: and thus  .	Comment by Author: Please ensure that the intended meaning is maintained.
This same principle applies for to the vector component  and the scalar component Fy along the yy-axis axis. The vector relation between the force vector and its components could may be written either as a standard vector sum [(equationEquation (1.10)]) or in as a Cartesian notation vector [(equationEquation (1.11)]):
                                                                                                                  (1.10)
                                                                                                               (1.11)
Figure 1.22a showsn the decomposition of a force in an arbitrary reference (OO, ,) and  while figureFigure 1.22b shows the decomposition it in an orthonormal reference (OO, ,);, this latter frame of reference will be used from now on as the default frame of reference.
[image: ]Trigonmetric laws: mathematical relationships within involving a right-angle triangle and that relateing the lengths of the sides to the trigonometric functions of the acute angles.

Figure 1.22 2D decomposition of a force in (a) an arbitrary frame of reference and (b) an(a), orthonormal frame of reference. (b)
In an orthonormal frame of reference, the scalar projections of the force  are deduced through the trigonometric lawsic laws:
                                                                                                                (1.12)
                                                                                                                (1.13)
Inversely, the composition of a force from two known perpendicular components could may be calculated as follows from the standard Pythagorean formula (to get the magnitude) and from the trigonometry in a right-angle triangle (to get the direction) as follows:
                                                                                                          (1.14)
                                                                                                                  (1.15)
A vector could thus be defined by just stating its scalar components such as:  Indeed tThis notation involves indirectly the direction, sense, and magnitude through equationEquations (1.14) and (1.15).
Decomposition in three components. For the 3D case or (i.e., a spatial force),, always the Cartesian reference frame (OOxyz) is always orthonormal and direct such that (xy) coincides with the plane of the screen page (same as the 2D case), while and the zz-axis axis is perpendicular to the plane of the screen page and oriented outwardsoutward from the page. The unit vectors , , and  are assigned respectively to the axes (OOx), (OOy), and (OOz) axes. In a direct reference frame, the thumb of the right hand is oriented along (OOx), the index finger along (OOy), and the middle finger along (OOz). The force  of applied at the point of application OO has its direction referred in the space defined bythrough three direction angles = (), = (), and = (). The cosines of those these angles are known as the cosine directions, which permit to ddetermine the three scalar components of the force through the following equationequations:	Comment by Author: You may want to define this notation. 
                                                                                                                (1.16)
                                                                                                                (1.17)
                                                                                                                (1.18)
The same concept explained concerninginvolving the vector and scalar projections of a force in the planar case could can be extended for to the spatial 3D spatial case, in which case and thus equationEquations (1.10) and (1.11) become:
                                                                                                       (1.19)
                                                                                                   (1.20)
The principle of decomposition of a spatial force is illustrated in figureFigure 1.23a.
[image: ]
Figure 1.23 3D decomposition of a force using (a) the cosine directions (a) and (b) the i, Intermediate directions. (b)
Inversely, in caseif the three scalar components of the a vector force are known, such as , then the magnitude and the direction angles of the force are can be determined by the using equations (1.21)-(1.24):
                                                                                                 (1.21)
                                                                                                                (1.22)
                                                                                                               (1.23)
                                                                                                                (1.24)
It is extremely important to noticeNote that the three cosine directions are not completely independent; indeed they are related together by the equationEquation (1.25), which  meansing that only two directions need to be known, and the third direction is deduced from this latter equationEquation 1.24. By raising squaring both members sides of the equationEquation (1.21) to the power 2 and thenand dividing both members by F2, one we gets:	Comment by Author: Please ensure that the intended meaning is maintained.
                                                                                (1.25)
On another side, figureFigure 1.23b showsn another approach to deal obtain with the direction of a force in the 3D space. The first step consists in projecting the force along the yy-axis axis and along the plane (xOOz), one which givesgets the scalar components Fy = F.cosand OOA = F.sin. In the second step, the vector component  is projected along the xx-axis  and zz-axis axes to get: Fx = OA.cosand Fz = OA.sin. T; this leads finally to the following equationequations:
                                                                                                     (1.26)
                                                                                                                 (1.27)
                                                                                                     (1.28)
Application 1.4. Consider two forces concurrent at a point A such that F1 = 20 kN and F2 = 30 kN shifted rotated by through an angle of 45° with respect to F1. Determine the resultant force by graphical cConstruction graphically and determine the resultant force. 
Solution 1.4. Applying the parallelogram law to draw the resultant, which gives one gets the diagram of in figureFigure 1.24. The remaining tasks are to cCalculate the magnitude R and the direction. Those are foundby using equationEquations (1.8) and (1.9), respectively.
[image: ]
Figure 1.24 Parallelogram law for Ssolution 1.4.
 	Comment by Author: Please verify significant digits.
 
Application 1.5. Repeat the previous application using the Cartesian notation.
Solution 1.5. The whole system is located in a Cartesian orthonormal reference frame (A, ,), as illustrated in figureFigure 1.25.
[image: ]
Figure 1.25 Two concurrent forces and their resultant force in a Cartesian reference frame.
The scalar components of  and   are calculated by using equationEquations (1.12) and (1.13):




Writing equationEquation (1.7) but in Cartesian notation one gets the followinggives:

By adding the  components together and the  components together oin the right memberside and , then identifying each component with the same component on the left memberside, the scalar components of the resultant gives:

By tracing  and   and then completing the parallelogram (which is here particularly a rectangle) one draws obtains the resultant force  as shown in figureFigure 1.25. 
Finally, applying by using equationEquations (1.14) and (1.15), we obtain the magnitude and the direction of  are calculated:
	Comment by Author: Please verify significant digits.

Note: It should be noticed thatThe tangentn function is  periodic. each n.. Upon inDepending on which of the four quadrants  is liesying, weone adds or subtracts the suitable multiple of . In the current application,  exists is in the first quadrant 1.
Application 1.6. Consider two concurrent forces concurrent applied at a particle coincident at with the origin OO of a direct Cartesian 3D reference frame (OO,,, ) such thatwith F1 = 20 kN and F2 = 30 kN .  forms an angle of 150° with the xx-axis axis and 30° with the zz-axis axis while  and forms an angle of 45° with the yy-axis axis, as shown in figureFigure 1.26. Determine the resultant force.
Solution 1.6. It is clear that theThe direction of the force  is given by  = 150° and  = 30° , thus so  could may be deduced from equationEquation (1.25): 

Taking in accountConsidering the position of  in the space (figureFigure 1.26), its scalar projection along the yy-axis axis is positive, and thusso the positive solution of cos should be keptis retained. 
Applying equationEquations (1.16)–-(1.18), the scalar components of  are:
.
[image: ]
Figure 1.26 Resultant force fromof two concurrent forces in a 3D Cartesian reference frame.
On another side and Aacccording to figureFigure 1.26, the scalar projections of  are is positive along the x and y axes and negative along the zz axis.. Equations (1.26)–-(1.28) calculate give the components of :
.
The components of the resultant force  are calculated given by the vector sum of  and  (or identification ofby using Cartesian notations as done in application 1.5 but this time for the 3D case) of  and    :
.
Finally, equationEquations (1.21)–-(1.24) serve to calculate the magnitude and the direction angles of the resultant force:
	Comment by Author: Please verify significant digits.



Self-Check Questions
1. Choose the correct answer:.
If two concurrent forces  and  have equal magnitudes, their resultant has gets also the same magnitude as of F1 and F2 only when the angle between  and  is:
        0°                         90°                         120°                          180°

2. Complete the following sentence:.
A force  forms an angle of 109.5° with the xx-axis axis, 48.2° with the yy-axis axis, and 48.2° with the zz-axis axis.
3. Specify if whether the following statement is True or False and justify your answer:
The cross product of two vectors having the same directions is a zero vector. True, since two vectors of with the same directions form between them an angle of 0° or 180°, whose and the sine of either angle is zero and thusso the producedresulting  vector has zero magnitude.
Summary
Statics is the branch ofin mMechanics that studiesying bodies that are either at rest or in steady motions. 
A particle is an ideal representation of a solid having witha mass but negligible size relatively to its location spatial reference frame. A particle can only translate (it cannot rotate). A rigid body is an ideal representation of a solid with considerable non-negligible mass and size. The Any deformations are within the solid are neglectedtoo small. A rigid body can translate and rotate.
A force is an action applied exerted on a solid body from by its surrounding environment. It The force maycould be external and, either active or reactive by an item supporting the body, or internal that in which case it isdevelops within the body and it does not affect the motion of the bodyappear except by if a system is chosen such that the point of application of the force is at the system boundarymaking a virtual cut in the body. Schematically, a force is represented by a vector, thus which is determined by a point of application, a direction, a sense, and a magnitude are needed to determine completely a force. In addition,T the weight of a body is is a particular type ofa force applied exerted by Earthby the’s gravity field on theis body. 	Comment by Author: Please ensure that the intended meaning is maintained.
A system of forces could can be replaced by an equivalent one force that produceshaving the same effect as the original system of forces. This equivalent force is the resultant force. InverselyConversely, a single force might may be resolved into two equivalent ones forces in athe plane or into three equivalent forcesones in the space, through by projectiong the forces along the relevant directions. Those These produced forces are known as components. 
When a body is subjected to a system of balanced forces, (i.e., with having a zero resultant force), the bodyit either remains at rest or performs amoves with constant velocity motion. The principle of action and reaction is issuedoriginates from this latter law as: the forces that two particles exert on each other apply mutual forces that are opposite in direction, collinear, and equal in magnitude. On the other side,If when the resultant force is not zero, the particle on which the force is exerted undergoes an moves with an acceleration proportional to the force through and inversely proportional to the mass of the particle. 
 
Unit 2 – Static Equilibrium

Study Goals

On completion of this unit, you will be able to …

… establish the mathematical conditions of equilibrium of particles and rigid bodies;.
… determine the moment of a couple and of a force about an axis;.
… identify the bearings types and assign the relevant reaction components;.
… distinguish between statically determinate and indeterminate systems;.
… calculate the bearings reactions.

2. Static Equilibrium
Introduction 
Either A particle or a rigid body are is said to be in static equilibrium when they are permanently at rest after despite possibly having forces exerted on them by other objectsbeing subjected to a system of forces. In other words, in static equilibrium, this means that a particle or a rigid body does not undergo is prevented from translation while and, in addition, a rigid body should in addition be prevented fromdoes not rotateion. The effort influencing that affectsthe rotation is called a moment and comes from is developed by the a force causing this motion and also byexerted on the rigid body at how far this force is from the pivotdistance from the axis of rotation. Mathematically, a system of balanced forces is a system havinghas a a zero resultant force. Since forces (and thus moments) are modelled as vectors from one hand, and since equilibrium conditions requires a zero vector resultant on another hand, this implies that the mathematical conditions of equilibrium are of vector type and hence sothey deal with geometrical quantities. However, the Ccartesian notation form which involves scalar components that cancould be implemented used to describeinto the vector conditions of equilibrium, thereby in order to converting the problem from a vector to a scalar formulation. 
In addition, the vector conditions of equilibrium involve all external forces, either be they active or reactive ones. The active onesforces, that which are well known, , depend on the application in which the subjected body is employed and on the user’s needs from this application. However, the reaction forces, the which are unknowns of the problem, depend on the type of bearing or support holding this body and preventing its motion once the active forces interactare applied. Nevertheless, identifying the type of bearing exclusively would not be enoughsuffice; the configurations and locations of theose supports bearings along the body induces ahave a key influence on the equilibrium and, above before all, on the stability of the solid as well as the sufficiency of the scalar equilibrium eequationquations to calculate the reactive forces needed for equilibrium. This will play a role in deciding determining whether the structure body is statically stable or unstable and whether it is,  determinate or indeterminate.
2.1 Equilibrium of particlesSsteady motion: is motion at a constant velocity; (i.e., having zero acceleration).

Vector condition of equilibrium
A system of forces is said to be in equilibrium when the forces involved in this system balance the effect of each other. . This condition leads means that the object on which the forces are applied isto  a rest or undergoes steady motion, of the body subjected to this system of forces as per Newton’s first axiom 1. In pParticularly, if the body is atthe rest status (i.e., its velocity is zero),of the body is known asin static equilibrium. 	Comment by Author: Please ensure that the intended meaning is maintained.
Mathematically, since each force is represented by a vector, the forces satisfy the equilibrium condition when the vector sum of all these forces is equivalent to a zero vector. Equation (2.1) reflects this condition:
                                                             		                      (2.1)
Although equationEquation (2.1) appears as to involveing summation, it does not consist of algebraic operations since vector addition is in practice a geometrical operation rather than a numerical operation. In this equationequation, no numbers or forces magnitudes are added; it is an addition of ‘’“geometrical elements’’” that willand is to be solved graphically in the scope of this sub-section.
Applying the graphical construction of equationEquation (2.1), the equilibrium is established when the resultanting force is equivalent to a zero vector, which is graphically determined when the extremity of the last vector in the summation coincides with the starting point of the first vector in the summation.
However, prior to to the constructingon of the polygon of forces to get the resultant forceing one, the original forces themselves should must exist and . They must be drawn on the body of interest. T; those hese forces are recognized by analyzing the effects of the surroundings on the body itself. This symbolic representation of the forces on the isolated body of interest is known in Mechanics mechanics as a Free free Body body Diagramdiagram (, abbreviated by FBD). 
The concept of equilibrium of forces and the relevant equationequation (2.1) are brought under spotnow clarified through two practical examples. Figure 2.1a shows tThe first example is shown in figure 2.1a , where which consists of an engine is held in equilibrium by a system of chains. Figure 2.1b represents shows the FBD of the engine, which  that is subjected to its own weight  and two tensile forces of the chains  and . exerted by the chains. Figure 2.1c represents shows the vector diagram of used to sum the force vectors summations: A is the starting point from which  is drawn. Then Next, the extremity B of  coincides withis the origin or starting point of , and finally the extremity C of  is the origin of the last forceweight  that ends at D., Tthe coincidence fact thatof D and coincides with the starting point A of the first vector denotesmeans that the equivalent resultant force of this system of three forces is zero. Given that the engine is at rest, it is and thus the engine is in static equilibrium.
[image: ]
Figure 2.1 (a) Engine hung hanging by from chains (a). (b), FBD of the engine (b). (c), Vector diagram of equilibrium. (c)
[image: A picture containing night sky

Description automatically generated]	Comment by Author: Normally, for a FBD of a rigid body, the body is abstracted away to a point and all forces are applied to the point.
The second example of equilibrium is illustrated in figureFigure 2.2a, which  showsing a young girl sitting on a swing hung suspended from a scaffoldto the main frame by two ropes. The importance of this example resides in the factis that there are two options of for thea  system of interest upon and on which the FBD changesdepends. The first case assumes that the isolated girl represents is the main system and thus the seat of the swing on which with which she sits is in contact represents a surroundingspart of her environment. This means that the normal ascending force of reaction  of reaction to that must balances the weight of the girl completes the FBD, as shown is figureFigure 2.2b (we assume no forces are exerted on the girl’s hands). Figure 2.2c illustrates shows the force diagramFBD, which is quite particular since because  and  are collinear hence and so, to ensure equilibrium,they are drawn as two parallel opposite andvectors of equal vectors magnitude but of opposite sense.to ensure equilibrium. The second case of system selectionto consider is could be  the girl and her seat togetheras the system, in that case, which case the axiom 3 of Newton’s third axiom imposes induces that the normal force  applied exerted by the seat on the girl is cancelled balanced by a parallel force ofn equal magnitude but and opposite force sense applied exerted by the girl on the seat. Another explanation of the ‘’“disappearance’’” of is that the seat is not anymoreno longer part of the environment a surrounding, it is a part  but is now considered part of the main system whose surroundings environment includesin that case are the two ropes. This results in the free body diagramFBD drawn inof figureFigure 2.2d, where the total weight of the system is compensated balanced by the tension of in the ropes. The equilibrium vector diagram is represented in figureFigure 2.2e.
[image: ]	Comment by Author: Note that, in panel (e), T1 + T2 > W. You may want to ensure that all vector diagrams give the intended result. Also, in panel (c), the vectors should be aligned vertically so facilitate the comparison of their lengths.
Figure 2.2 (a) Girl sitting on a swing in equilibrium (a),. (b) FBD of for the girl as isolated bodyas the system. (b), v (c) Vector force diagram of showing equilibrium of the girl. (d) (c), FBD of for the girl and her seat as isolated systemthe system. V (d), vector force diagram of showing equilibrium of the girl and the seat as the single system.
Scalar conditions of equilibrium
It is obvious thatA all forces applied exerted on a particle are  concurrent at the particle itself, which providing allows for thea possibility of an ‘’“exclusive’’” translational motion in caseif the resultant force of those forces is nont zero. The However, the condition of static equilibrium of a particle means practically that this particleit is not able toundergoing move in translation, and a particle, by definition, cannot hence rotateion does not play any role in a particle’s static equilibrium.
The mathematical condition of equilibrium is stated in equationEquation (2.1), which is a vector condition. The transition to scalar equationequations is possible by expressing each vector in its Cartesian notation; , whichthis latter involves the scalar components of each vector force.
Consider n forces , , ,….., applied exerted onat a particle in static equilibrium in a direct Cartesian reference frame (OO, ,, ). The In Cartesian notation, of each force writesis:

Replacing those latterInserting these e equationquations into equationEquation (1.8) gives, one gets:

Identifying between the left and right members the quantitiescoefficients multiplying, , and  the finalgives the scalar equationequations fulfilling the equilibrium condition of a particle become:
                                                          		                      (2.2)
                                                          		                      (2.3)
                                                          		                      (2.4)
One can easily remark thatT the single vector equationequation of for equilibrium has delivered thus produces the three scalar equationequations (2.2)–-(2.4), which can be. Those are useful algebraically to calculate the unknown forces needed to establish the static equilibrium of a particle. Physically speaking, the nullity zero magnitude of the three components of the resultant force means that the particle is prevented todoes not translate along any of the three directions x, y , and or zz simultaneously. 
Since theThe fact that there are three number of equation equations is three, this means that the spatial equilibrium equationequations in the space allow us to calculateing three unknown forces to establish the equilibrium. To noticeNote that an unknown could be either a magnitude or an angle (i.e., vector orientationdirection). Moreover, in caseif the equilibrium is planar then the number of equationequations reduces to two [((2.2) and (2.3))], so  and in consequence only two unknowns could may be calculated in afor 2D equilibrium case.
Application 2.1. PA particle A is subjected to the system of forces shown in figureFigure 2.3,. where F1 = 1000 N, F2 = 800 N, and F3 = 1200 N. Check ifwhether the static equilibrium condition is satisfied.
[image: ]
Figure 2.3 Particle under in space subjected to three forces in the space.
Solution 2.1. The equilibrium condition demands that tThe resultant force of those three forces must be zero; in other words, the algebraic sum of the components of all forces along each of the three axes must vanish, according as perto equationEquations (2.2) – (2.4).
  is parallel and opposite to the yy-axis axis, so  hence:  
The components of  are determined from by applying the classical projection calculations:

The scalar projections of  are not straightforward since because the direction of its line of action is not given directly;, instead, the coordinates of two points of its line of action are given:  and . The direction vector of  is , which has having a magnitude of .
The cosine directions of the line of action of  are calculated as follows:



The components of  are found by applying the set of equationequations (1.16)–-(1.18):

Finally, the components of the resultant force  are calculated given by the algebraic sums of the components of each of the forces:
.
One can noticeNote that Rx and Rz are not zero, meaning that the particle is not in equilibrium.
Application 2.2. As shown in Figure 2.4, bA block (B) of mass 5.0 kg rests on a smooth incline forming an angle of 30° with the horizontal and held at rest by  a counterweight (C) through a rope enrolled passing overaround a  pulley (P) as shown in figure 2.4. 
[image: ]
Figure 2.4 Block held motionlessresting on an incline by a rope.
Draw the FBD of block (B) and determine the normal reaction force exerted by of the incline on block B and the mass of the counterweight (C).
Solution 3.2. Figure 2.5a shows the a FBD applied atof block ( B) considered as a particle. It is subjected to its weight , oriented  vertically downward, the normal reaction force  of exerted on the box by the incline upward and perpendicular to the incline, the incline upward and perpendicular to the incline and the tension  of the rope parallel to the incline. To reach obtain the mass of the counterweight (C), one shouldwe continue drawing the FBD of the pulley (P) and of the counterweight ( C). Figure 2.5b shows the isolated pulley (P) subjected to the tensions of the rope that are the same from on each side of the pulley in order toto prevent rotation about the center of the pulley, and the normal force  represents is the reaction force exerted by of tthe pin connecting on the pulley to the incline. Figure 2.5c illustrates shows the particle counterweight( C) subjected to its own weight  balanced byand to the tension  of the rope.
[image: ]
Figure 2.5 FBD of the (a) block B (a), (b) the pulley (bP), and (c) the counterweight C.(c)
The equilibrium of the particle (B) requires equationEquations (2.2) and (2.3) to be satisfied:


The FDB of (the counterweight C) consists of two collinear forces that must balance each other, so they must be then opposite in sense and have equal magnitudes:

Note: Tthe reference frame (xy) hasve been selected alongplaced along and perpendicular to the incline for sake ofto simplifyicity in the expansion of the equationequations. However, the classical conventional horizontal-vertical (xy) reference frame could have been also selectedused, ; tthe final results will would not change.
Application 2.3. A particle of weight 100 N is held in equilibrium by two ropes AB and AC as shown in figureFigure 2.6. If each rope cannot withstand more than 200 N of tension, calculate the value of the angle . 
[image: ]
Figure 2.6 Particle held by two ropes in the a plane.
Solution 3.3. The FBD of the particle is illustrated in figureFigure 2.7.
[image: ]
Figure 2.7 FBD of a particle held by two ropes in the plane.
Applying equationthe equations of equilibrium (2.2) and (2.3) gives:


The first equationequation indicates that TC is greater than TA since cos < 1. It could be deduced then thatT the biggest tension possible is thus TC and hence, so TC = 200 N.
From the second equationequation,: 
Application 2.4. A particle O is holding a block at D of weight 100 N through a cable OD. In addition, it is held by two cables OA and OB as well as by a spring OC of stiffness 3000 N/m as shown in figureFigure 2.8. The spring is mounted in a smooth slot to so that it remains horizontal after elongation. Before mounting the whole system, the length of the spring was 0.15 m. Calculate the forces in each of the cables and the length OC. 
[image: ]
Figure 2.8 Particle O held in space by cables and spring. in the space
Solution 2.4. The FBD of the particle O is illustrated in figureFigure 2.9. It should be noticedNote that the cable OD transmits the effect of the weight of the block D to the particle O;, in other words,: TD = W = 100 N.
Before applying the equations of equilibriumequilibrium equations (2.2) – (2.4), it is wise towe find the scalar components of each force separately.
Force : The line of action of this force passes through O(0,0,0) and A(0, 0.4, 0.3) and thus the direction vector is  , whose magnitude is:
 . and thus Tthe cosine directions of this vector (i.e., of the force  ) are: 
One can now wTrite the scalar components of  are: 
[image: ]
Figure 2.9 FBD of a particle held by cables and a spring in the space.
Force : The line of action of this force passes through O(0,0,0) and B(−-0.1, 0, −-0.1) and thus the direction vector is  , whose magnitude is:
  , so and thus the cosine directions of this vector (i.e., of the force  ) are: 
One can now write the scalar components of  : 
Force : The line of action of this force is acting along the xx-axis axis and in the same sense as the x axis , so thus: 
Force : The line of action of this force is acting along the yy-axis axis and in the opposite sense, thusso: 
Applying equationEquation (2.2) gives: 


Applying equationEquation (2.3) gives: 


Applying equationEquation (2.4) gives:


Replacing in tThe first equationequation of equilibrium one findsgives . 
Applying Hooke’s law, the elongation of the spring: 
The final length of OC is: 

 Self-Check Questions
1. Specify if the followingwhether the following statement is True or False and justify your answer
A particle is subjected to two perpendicular forces F1 = 4 kN and F2  = 3 kN. To establish the equilibrium of this particle, a third force of magnitude 5 kN forming a clockwise angle of 143° with  an angle of 143° clockwise should be added to the system. True, because, by applying the parallelogram law, the resultant force of  and  has a magnitude of 5 kN and is shifted from  by an angle of 37° counterclockwise. The equilibrium is established when a force equal in magnitude and opposite in sense is applied to this particle.

2. Choose the correct answer.
A particle of mass 6 kg is sandwiched between two identical springs that are vertically collinear . Tvertically, the upper end of the upper spring is fixed to the ceiling and the lower end of the lower spring is fixed to the floor. The system deflects by 12 mm at equilibrium. The stiffness of each spring in N/m is:
      4905              2452.5               1226.25                 9810	Comment by Author: Why different number of significant digits?
2.2 Moment
Moment of a couple
In mechanics, the term couple denotes a pair of two parallel vector forces, opposite in sense, equal in magnitude, and separated by a distance d called the arm. 
When a couple is applied to a solid object, it has a tendency totends to produce rotation. When a driver tends to rotates a steering wheel, she is in fact applying a couple at two diametrically opposite points at on the periphery of the steering wheel. Another example of application toa couple resides isi then screwing and unscrewing of the nuts nuts of a car tire wheel, as shown in figureFigure 2.10. The couple is applied at the extremities of the key toolwheel wrench while and the arm represents is the length separating those extremities.
[image: ]
Figure 2.10 Application to of a couple to: unscrewing tire nuts.
The moment of a couple is defined as aa physical quantity measuring that determines the ability of a couple to produce rotation. Its units is are nNewton- meters (N .m) in the International systemSI system of units.
Mathematically, the moment of a couple, like the force, is also a vector. It is , drawn as a double-tipped arrow and is determined by the cross product between the arm vector  (oriented from   to  ) and the force   of the couple and as is expressed in equation (2.5):as
                                                                                                                 (2.5)
The elements of the vector moment  could arebe explained through based on the example of shown the figureFigure 2.11, which shows someone . Figure 2.11a represents the example of tightening a screw using with a screwdriver. The effort applied by the hand of the worker at the periphery of the screwdriver’s handle is a couple where the forces are separated by an arm equal to the diameter of the handle. This develops a moment  , also called named alsoa torque  ,  as shown in figureFigure 2.11b. Note that a; moment is a a more generalized terminology while whereas torque is more specific for to some mechanical applications where torsion or twisting is applied. Figure 2.11c serves atgraphically  analyzesing equationEquation (2.5) and definesing the elements of . 
[image: ]
Figure 2.11 (a) Tightening a screw (a), (b) moment (or tTorque) exerted on developed on screw driverscrewdriver (b), (c) sScheme of couple, sense of rotation, and vector moment. (c)
The arm vector  oriented from   to   and perpendicular to the couple as shown, forms with this couple (which is geometrically two parallel lines) a plane that is coincident with the plane of the screen page (xy)., Tthis constitutes the side- view plane of figureFigures 2.11a and 2.11b. According to equationEquation (2.5), one we defines the following elements of : 
· The Ppoint of application:  is a free vector since it depends exclusively on the distance separating the pair of forces between themselves, those which are not referred to any fixed position with respect to any frame of reference.
· The Ddirection:  is perpendicular to the plane formed by ( ,  , ) that is coincident towith the (xy) plane. In the case of the figureFigure 2.11c, the moment vector is perpendicular to the plane of the screen page (i.e., parallel to the zz-axis axis).
· The Ssense: Aapplying the right- hand rule where the index finger is oriented along    and, the middle finger along ;, the thumb’s orientation gives automatically the sense of . In the case ofFor figureFigure 2.11c, the moment vector is oriented inward into the page (opposite to the sense of the zz-axis axis that is out of plane). By curling the rest of the fingers about the line of the vector moment one obtains the sense of rotation of the couple. This is shown in the middle sketch of figureFigure 2.11c: it is a clockwise sense of rotation.The cclockwise sense of: rotation is similar the sense of rotation of ato  clock’s hand following the sequence: top-right-down-left.
clockwise sense: rotation similar to clock’s hand following the sequence: top-right-down-left

· The Mmagnitude: Ssince the angle between  and  is 90° and the according to the formula of the magnitude of the cross product is M = F⋅ d ⋅ sin (), we obtain thatone finds the magnitude of the couple moment as is a simplethe product of the force by the value of and the arm. This is known as the scalar formulation of the moment of a couple and; it is expressed in equation (2.6) as follows: 	Comment by Author: I'm not familiar with this notation. Is it supposed to mean the angle between these two vectors? In American notation, we simply use theta.
                                                                                                              (2.6)
In the International SystemSI system of units, M is expressed in N ⋅ m, F in N, and d in m.
The value of the moment is counted considered positive when the rotation occurs is counterclockwise (i.e., in the same sense as the coordinate axis) and negative for when the rotationa is clockwise rotation (i.e., opposite to the sense to of the coordinate axis).
When n couples are acting in a single plane, the vector moments are all parallel between themselves (all perpendicular to the plane of action of the couples), and thus in that particular caseso the resultant moment is determined by the algebraic sum of the moments developed all the couples which leads to equation (2.7):
                                                                                                      (2.7)
Application 2.5. The A driver is appliesying on to the a steering wheel of diameter 30 cm a couple of magnitude 10 N magnitude (figureFigure 2.12). Determine and draw the vector moment of this couple.
[image: ]
Figure 2.12 Rotation of a steering wheel by a couple.
Solution 2.5. First, one we should pay attention not to limit the answer to the determination of the magnitude of the moment exclusively. The determination of a vector requires finding all its elements.
According to the equaEtionquation (2.5) and since the forces and the arm are lieying within the plane of the steering wheel, the vector moment is actsing along a line perpendicular to this plane, with no fixed point of application since a couple moment is a free vector. 
[image: ]
Figure 2.13 Determination of the vector moment eat xerted on the steering wheel.

Furthermore, applying the right- hand rule, one can deduce that the sense of rotation is counterclockwise, and thusso the vector moment acts out of the plane  and naturally this induces a positive value of the moment, as calculated by the equationEquation (2.6):
M = +(10) ×⋅ ( 0.3) = + 3 N ⋅ m.
Those details are illustrated in figureFigure 2.13.
Application 2.6. The body shown in figureFigure 2.14 is subjected to a system of three couples. Determine the resulting equivalent moment applied to this body.
[image: ]
Figure 2.14 Body subjected to many three couples.
Solution 2.6. Since all the couples are acting in the same plane, which is the plane of the screenpage, all the corresponding vector moments act perpendicular to this plane and so , in other words those vectors are parallel between themto each other. This allows us to add the magnitudes of those moments (eq[see Equation .(2.7)]) to find the equivalent resulting moment MR.

The equivalent scheme is shown in figureFigure 2.15 below. It should be noticedNote that, despite the value of the resulting moment is being negative, only the absolute value is stated given on the equivalent scheme since because the sense of rotation is indicated: (clockwise) is indicated. This means, by convention,  naturally that the value moment is negative. In other words, the sense of rotation and the absolute value stated simultaneously determine the sign of this quantitythe moment.	Comment by Author: Please ensure that the intended meaning is maintained.
[image: ]
Figure 2.15 Original and equivalent couple applied on to a solid.
Moment of a force
The moment of a force about a point not belongingthat is not on to the line of action of the force, or about an axis passing through this point and orthogonal to the plane formed by the force and the point, is defined as a physical quantity measuring the ability of this force to produce rotation about the point (i.e., the axis). Its units in the SI system are n is Newton-meters (N. m) in the International system.
The distance separating the point of application of the force from the point of rotation O is the arm and is denoted specified by the position vector  . Twhile the distance d is measured from O to the line of action of the force. The vector formulation of the moment of a force about a point (i.e., an axis) is given by the equation (2.8):
                                                                                                                    (2.8)

[image: ]
Figure 2.16 (a) Illustration of the moment of a force about a point (a)., (b) Right-hand rule to find the sense of the moment. (b)
Figure 2.16a illustrates graphically equationEquation (2.8). The pPosition vector  is oriented from the axis OO to the point of application of the force  forming an angle   with theis latter. The distance d is the direct distance fromseparates O to from the line of action of the force, so hence d = r ⋅ sin.⋅The force   is oriented outward while where  belongs lies into the plane of the screenpage. The right-hand rule shown in figureFigure 2.16b states aligns the index finger withthat  acts along the index finger whileand the middle finger with  acts along the middle finger, and the sense of the thumb determines gives the sense of the vector moment. This analysis allows the us to determinenation of the elements of  :
· The Ppoint of application: Uunlike the moment vector of a couple, the moment about a point is not a free vector since it depends on the position of the force with respect to that the given point. ThusThus, the point of application of the moment in that case is the point O about which the rotation occurs. For this purposeThus, the index subscript “‘’O”’’ is added along to the symbol “‘’M”’’ of the moment.
· The Ddirection: Iinspired from by the cross product formulation of equationEquation (2.8), the line of action of  is the axis perpendicular to the plane formed by  and  and passing through the point O. 
· The Ssense: Tthe right-hand rule illustrated in figureFigure 2.16b determines the sense of the vector moment. In the case ofIn figureFigure 2.16a, the moment  is oriented downward. By curling the remaining four fingers of the right hand about the axis of , the sense of rotation is determined.
· The magnitude: it This is calculated given by the magnitude of the cross product, which is calculated as; this writes:
                                                                                               (2.9)
 As stated earlier, the trigonometric constraint leads to another formula:
                                                                                                         (2.10)
This which is known as the scalar formulation of the moment of a force. 
In the International System of units, M is expressed in N ⋅ m, F in N, and d in m.
The value of the moment is counted considered positive when the rotation occurs is counterclockwise (i.e., the same sense as the coordinate axis) and negative for when the rotation isa clockwise rotation (i.e., the opposite sense opposite to the coordinate axis).
Principle of transmissibility. It is obvious thatA a force sliding along its line of action keeps maintains the same position with respect to a point of interest O and thus, so the moment of this force about O remains unchanged with by the sliding operation. As a result, the cross product between an arbitrary position vector from O to an arbitrary point of the line of action of the acting force also remains also constant. This is known in mechanics as the principle of transmissibility of a force (Hibbeler, 2010), which . This principle is illustrated in figureFigure 2.17.
                                    (2.11)   
The deep concept of the moment of a force could be clarified using figureFigure 2.18. Consider a solid body subjected to a force  and a point O of this solid not belonging to the line of action of the force.   and O  belongare both in to the plane of the screenpage. Let (′’) be an axis passing through O and parallel to  and let () be another axis passing through O but perpendicular to the plane (O,), which is not othernon-other than the plane of the screenpage. The distance separating  from O and thus from () is denoted by d.                      
   
[image: ]
Figure 2.17 Principle of transmissibility keeping an unchanged moment about a point.
[image: ]
Figure 2.18 Equivalent schemes for constructing the a moment of a force about a point.
By adding toTwo forces are thus exerted on the solid: two forces  and  (marked in red ion figureFigure 2.18). The forces are  equal in magnitude, opposite in sense, collinear to (′’), (i.e., parallel to the original applied force  (marked in blue ion figureFigure 2.18), and havingare applied at O as point of application. Theose two additional forces are balanced, or in other words, equivalent to a zero- force system, so  and therefore they will not disturb the initial kinetic status state of the solid. At this stage,C consider now the pair of forces formed by the original applied force  and the force , which is one of the two added forces: thoese forces are parallel, opposite, equal in magnitude, and separated by a distance d , meaning that they form thea moment of couple of moment M = F⋅ d. This couple is equivalent to a vector moment acting along () and whose sense is determined by the right-hand rule (outward from the page in the case of figureFigure 2.18). The final system is now consistsing of a force  applied at O and a couple moment vector . 
By cNow comparing  the first initial and final statestus and the last final status of the system, one canwe conclude that applying a force at a certain distance from a point is equivalent to translating this force parallel to its direction till to the point of interest and adding the effect of the moment of this force about the point of interest. 
Finally, it is worthwe to close the topic of the moment of a force by a practical application: opening and closing a door. Figure 2.19a shows a young girl gripping the handle of a wooden door to open it—; it is a very frequent ‘‘operation‘‘ that anyonebody may use do many times a per day in couple of seconds. However, what is happening from a mechanical point of view is sketched in figureFigure 2.19b. 
[image: ]
Figure 2.19 (a) Opening a wooden door (a)., (b) Mechanical scheme forof the opening the door. opening (b)
The hinges of the door constitute the “‘‘pivot”‘‘ or the point O used throughout the theory of the moment of a force, t. The line passing through the hinges is denoted by ( and) is the axis of rotation; it belongs tois in the plane of the door, which is obviously coincidesnt with the plane of the screenpage. The action applied by the girl at the handle is the opening force and, it is perpendicular to the plane of the door ’s plane and hence thusit is oriented out of the plane of the paged. T, the horizontal vector joining from the point O (i.e., the axis of rotation/ or hinges) to the point of application of the force (i.e., the handle) is the position vector  whose magnitude is is equal to the width d of the door. This scheme is clarified in the top view of the door shown in figureFigure 2.19b. Since the force is distant from the hinge O by an arm equal to the door’s width, the opening (and also closing) effect is quantified by the moment of this force about the axis () being the same as point O. The vector moment  acts along the line of the hinges and is applied at O; its having magnitude equal tois the product of the force’s magnitude by and the width d of the door, according to equationEquation (2.10), and hasving a positive sign becausesince the sense of rotation is counterclockwise. ObviouslyT, the moment needed required to close the door induces clockwise rotationes clockwise and ishas a negative sign of the magnitude.
Since the door has an unchanged size and materialis rigid, it needs requiresa constant moments to be opened and closed. Therefore, values of the magnitude F and its the position at which it is applied from with respect to the hinges might can vary such providedas their product remains constant. Consequently, when the distance between the force and the hinges (axis of rotation) increases, the force decreases by the same scale factor and vice versa. This explains why, when someone tries toyou push or pull the door at points close from to the hinges, one it isfinds difficult to rotate the doories and needs requires a considerable amount of force to open or closedo so. In contrast,, while if then the effort is applied far from the hinges, the operation looks more comfortable since  door rotates more easily because the needed force required is lowsmall.
Application 2.7. Calculate the moment of the a force of 50 N force about the pivot A in the figureFigure 2.20
[image: ]
Figure 2.20 Application of a force turning to cause rotation about an axis.
Solution 2.7.  Figure 2.21 shows the clockwise sense of the moment about A, the direction of the moment vector is obviously perpendicular to the plane of the screenpage. The Given that counterclockwise rotation is positive by conventional sense being counterclockwise, the magnitude of the moment MA is negative.
[image: ]
Figure 2.21 Scheme Vector diagram of solution of application 2.7.1.3

Application 2.8. Determine the sense and the magnitude of the vertical force  that should be applied at the right and of the bar, as shown in figureFigure 2.22, in order toto keep theis bar horizontal. 
[image: ]
Figure 2.22 Bar prevented from rotationg.
Solution 2.8.  To keep the bar horizontal, this latterit must not rotate about the pivot A. Mechanically, this condition would beis realized when the resulting moment of all the forces about A cancel each other. Since all thhose moments act along the same direction (perpendicular to the plane of the screenpage), their magnitudes might can be added summed algebraically. Mathematically, one may write: we have
M MR = M/A + M/A = 0. 
This equationequation means that the moment of is  must be opposite to the that one of  , which we was found was negative in application 2.7. T; this implies that the moment of  must be positive, leading striving forto a rotation counterclockwise rotation about A. In conclusionThus,  must be downward having and have a magnitude calculated by:of

Components of the moment vector 
Until the present linesTo this point, one haswe have seen that, in the 2D case, it is sufficesient to consider a scalar formulation of the moment (either for a couple or for a force about an axis) since the vector moment his as been obviously directed perpendicular to the plane of the screen page (zz-axis axis) and could be oriented positively with respect to the zz-axis axis (this correspondings to a counterclockwise sense of rotation) or negatively opposite to the sensewith respect to the of zz-axis axis (this correspondings to a clockwise sense of rotation).
However, when it comes toin the 3D case, the vector formulation becomes a needrequires that we to determine accurately the vector moment, which can be positioned anywhere in the space upon depending on the force and the position vector (i.e. i.e., the arm).  By applying the Cartesian formulation of the equationEquation (2.8) [(i.e. i.e., equationEquation (2.5)],) one we can determine the three scalar components of the moment vector:
                                                                                                      (2.12)
Expanding the determinant of equationEquation (2.12) one getsgives:

This latter equationequation gives the scalar components MoxMOx,; Moy MOy, and Moz MOz of the moment vector  : 
                                                                                 (2.13)
Knowing Given the scalar components, it iswe now straightforward to calculate the magnitude and the angular orientationle direction of   by using equationEquations (2.14) – (2.17), which are similar to those used for the force case in equationEquations (1.21) – (1.24):
                                                                                        (2.14)
                                                                                                                (2.15)
                                                                                                                (2.16)
                                                                                                                 (2.17)
It is worth to remindRecall that this whole approach is applicable for either a moment of a force about an axis of or for a couple. In addition, equationEquation (2.14) is equivalent to the magnitude of the moment calculated by equationEquations (2.6) and (2.9).	Comment by Author: Please ensure that the intended meaning is maintained.
The vector components of   are visualized in figure 2.23 below.
[image: ]
Figure 2.23 Visualization of the three components of the moment vector.
The vector components of  are visualized in Figure 2.23, whichThis figure consists of the original case where a solid body is subjected to a spatial force  tending to rotate it about a point O, considered as coincident with the origin of a direct Cartesian reference frame. The vector  is the position vector from O to  the origin of the force. The vector moment  is determined by the equationEquation (2.8), as shown also in this the original statues  shown in of the figureFigure 2.23. This status state is in fact the superposition of three vector moments, which are the vector components of  along the xx-, yy- , and zz-axes. Each of theose vector components is shown separately along with the components of  and   that contribute in tothe creationg of this moment component. 
For instance, MOx is composed of two “‘’sub-moments’’:” the first in a positive ‘’sub-moment’’ coming from the product of the force Fy times and the arm rz; those these are orthogonal and thusso the no sine function is omittedappearing  since sin 90° is equal to unity.; by Upon applying the right-hand rule for to   and    on the first equivalent scheme in figureFigure 2.23, one canwe deduce the positive sense. The second ‘’sub-moment’’ is negative; it comes from the product of Fz times and the arm ry; those these are orthogonal and thusso the no sine function is omittedis appearing since sin 90° is equal to unity. Upon, by applying the right-hand rule for to  and   ion the first equivalent scheme in figureFigure 2.23, we one can deduce the negative sense. Finally, MOx is finally the algebraic sum of those two sub-moments, ; this as appears also in the first component of equationEquation (2.13). A similar analysis could be elaboratedholds for MOy   andre MOz
Resultant of parallel forces 
By definition, a system of forces is parallel when none of all theirthe lines of action of the forces do not intersect between themselves at any point. A system of parallel forces may consist of either concentrated forces or distributed forces (volumetric, areal, or linear distribution). This is illustrated in figureFigures 2.24a and 2.24b.
Like concurrent forces, it is important to replace a system of parallel forces by with a unique single one force that keeps produces the same effect as the original system: it this is the resultant force.

[image: ]
Figure 2.24 Resultant force forof parallel forces: (a) concentrated (a), (b) dDistributed. (b)
The concurrent case has shown that the point of application is obvious (is the same as the point of intersection of the two initial forces, whereas) while the direction needs mustto be calculated. In the case of parallel forces, it is completely the situation is reversed inverse: the location of the point of application of the resultant force (denoted by G in figureFigure 2.24) needs to be calculated by appropriate equations whilewhereas the direction of the resultant is naturally parallel to the forces that are replaced by theis resultant.
Consider a direct reference (O,,, ) where the forces are considered to beare all parallel to the yy-axis axis (but the sense could be either the same or the opposite). In other casescases, they the forces might be parallel to another axis;, however, the analysis remains the same. Since those forces are parallel to the yy-axis axis, this means that they globally can create moments about the xx- and zz -axes. The resultant  must have a magnitude and a sense equivalent to those of the original system and it must be applied located at a point G in order tot hahat produces theve  same moment about the xx- and zz -axes as the original system of forces. 
For the case of concentrated forces (figureFigure 2.24a), applying equationEquation (1.7) but in Cartesian notation gives:

Identifying between the left and right members gives one finds:
                                                             ,		                                                (2.18)
                                                       ,		                                   (2.19)
                                                             .		                                                (2.20)
In addition, the scalar components of the vector moment of the resultant force should be the same as the algebraic sum of those of the initial forces about the xx- and zz -axes:, hence:

Let  be the arm between  and (Ox), z1 the arm between  and (Ox), z2 the arm between  and (Ox), …, zn the arm between  and (Ox). Replacing in the previous equationequation each moment by the product of the magnitude of the force by and the corresponding value magnitude of the arm (without forgetting the positive and negative signs upon due to the sense of rotation), one obtains the distance separating the resultant force from the xx-axis axis established in equationEquation (2.21):
                                                              .		                      (2.21)
Applying the same rationale for the equivalent moment about (Oz), the location of the resultant far from zz-axis axis is determined by equation (2.22):
                                                               	.	                      (2.22)
Thus,  is the point of application of the resultant force  of the system of parallel forces. 
It is considerably important to notice that:Note the following:
1. Equations (2.18)–-(2.20) denote imply automatically that the direction of the resultant force is parallel to the yy-axis axis (i.e. i.e., parallel to the initial system of forces) since the components along the xx- and zz -axes are zero.
2. Equation (2.19) gives two pieces of information at same time: the sign of the sum at the right indicates the sense of the resultant; if positive then  is oriented along the orientation of the unit vector ,  and if negative  it is oriented in the opposite sense. Moreover, the magnitude R is the absolute value of the quantity at on the right.
3. In caseIf the forces awere parallel to another axis (the zz-axis axis for instance), the same equationequations are applicable just by inverting swapping the symbol zz with  y in all the equationEquations (2.19) – (2.22). In case of aIf the forces are parallelism to the xx-axis axis, then zz is switched swapped with x.
Moving to theConsider now the case of distributed force case (figureFigure 2.24b):, one may take inspiration from the concentrated case and make the suitable changes to establish the appropriate equationequations of the resultant. The mathematical function of distributed force is denoted by p(x,y,zz) . If a volumetric differential element dV is considered, the force applied at this element is simply p. dV. One can imagine that the distributed function could be partitioned into an infinite number of differential elements, each of force p. dV, such that one may consider that there isapplying a group of concentrated forces each of magnitude p dV p.dV and parallel to the yy-axis axis that are applied. Since those these are differential forces, one would we replace the discrete sums in the set of equationEquations (2.19)–-(2.22) by with an integrals:
                                                 	                    	               (2.23)
                                                    ,		                             (2.24)
                                                    		                             (2.25)
When the force is distributed over an area (line), the integral becomes a double (single) oneintegral. When in is distributed over a length, the integral become a single one.
In casef the magnitude of the distributed force is the same over the whole entire space [(mathematically p(x,y,zz) = constantconst.]), the distributed load is said to be uniform.
[image: ]
Figure 2.25 Table subjected to a system of parallel, concentrated forces.
This paragraph is closed by two examples about concentrated and distributed load faced in real life. The first example is depicted in figureFigure 2.25 that and showns a table carrying a couple of objects. Each object has a size small compared to the size of the table itself and thus each object is modeled as a particle that exerts its vertical descending weight on the table. Thus the table is subjected to a system of three concentrated parallel forces. 
Figure 2.26 illustrates an example about of a distributed load: the house roof of the house is covered by a considerable thick layer of snow that applies its weight along a certain determined area from the roof. Each point of this area is sustaining an effect from the snow and thus this is an aerial distributed loading. In case the thickness of the snow is constant this means that the distributed weight at each point of the roof is the same, in that case only, it is a uniformly distributed load.
[image: ]
Figure 2.26 Roof subjected to distributed parallel load.
Application 2.9. Determine the vector moment of the force of 500 N about the point A as shown in the figureFigure 2.27 below. All dimensions are in meters.
[image: ]
Figure 2.27 Application to components of moment vector.
Solution 2.9. The position vector  is the vector . The coordinates of A are straightforward from figureFigure 2.27: A(−-1,1,−-1) while B, belonging which is in theto plane (xOz), has the following coordinates:

The scalar components of the position vector  are calculated as follows:



Moreover, the components of the force are calculated as follows:



The next step consists inof using Equation (2.13) to calculateing the scalar components of the moment vector using equation (2.13):



[image: ]	Comment by Author: Should not the moment vector have a double arrow?
Figure 2.28 Vector representation of the moment about A.
Figure 2.28 shows a schematic drawing of the vector moment of produced about A by the force  about A in the space.
Finally, the magnitude and the direction angle of the moment could may be determined by applying equationEquations (2.14)–-(2.17):




Note: Another method could have been applied to find the magnitude MA  from equationEquation (2.9). To find the angle  between  and  , the two formulations of the dot product in its two ways of formulations should be  applied and equated.
From Tthe Cartesian formulation of the dot product gives:

From tThe definition of the dot product gives:

Calculating the angle  gives:

Finally,: 
Application 2.10. Determine the magnitude and the location of the system of forces shown in the figureFigure 2.29.
[image: ]
Figure 2.29 Application to involving parallel concentrated forces.
Solution 2.10. Applying equationEquation (2.19) by switchingwith y with zz swapped gives, one finds the sense and the magnitude of the resultant:

This result means that the resultant is parallel to the zz-axis axis but oriented downward due to the negative sign in the value of the scalar component. The magnitude of theis resultant is R = 1600 N.
Equations (2.21) and (2.22) allow can be used tothe calculateion of the location of the point of application:


The result is drawn shown in figureFigure 2.30 below.
[image: ]
Figure 2.30 Resultant force produced byof  parallel concentrated forces of Figure 2.29.
Application 2.11. Determine the resultant of the parallel linearly distributed load shown in the figureFigure 2.31 below.
[image: ]
Figure 2.31 Linearly distributed parallel load.ing
Solution 2.11. The load is distributed along a length, thus so the function in that case is p(x). The equationEquation of for p(x) is a straight line according to the figureFigure 2.31; it begins by at 100 N/m at x = 0 and ends by at 160 N/m at x = 1. This gives the following equationequation for p(x):
p(x) = 60 ⋅ x + 100.
Apply equationEquation (2.23) to find the magnitude and equationEquation (2.24) to find the location:


The result is drawn shown in figureFigure 2.32 below.
[image: ]
Figure 2.32 Resultant of thea linearly distributed parallel load shown in Figure 2.31.ing
Self-Check Questions
1. Name the two cases where the moment of a non-zerononzero  force about an axis is zero.
Case 1: Line The line of action of the force passes through the axis.
Case 2: Line The line of action of the force is parallel to the axis.

2. Choose the correct answer.
A person applies a perpendicular force of 15 N at the handle of a door distant that is 85 cm from the hinges by 85 cm. The force developed exerted on the door in caseif the person pushes at the mid-waydle between the hinges and the handle is: 
      30 N                   15 N                    7.5 N                   12.75 N 
       
3. Specify if the followingwhether the following statement is True or False and justify your answer
Two parallel forces of equal magnitudes develop produce the same moment about the same point. False since because two parallel forces are may not separated beby the same distance from the point of rotation.
4. Complete the following sentence.
A uniformly distributed loading of intensity 5 kN/m is applied along a bar AB of length 1.8 m. The magnitude of the moment (in absolute value) of produced by this loading about the point A measures is 8.1 kN.mN m.
2.3 Center of Gravity
Definition
The center of gravity (CG) of a body is the point of application of its weight (Beer et al., 2012). When a solid is modeled by a particle, this particle is no other than the center of gravity where the entire weight is concentrated. In a uniform field of gravity, the center of mass is coincident with the center of gravity (Hibbeler, 2010).
The location of the center of gravity of a rigid body is essential to draw the relevant FBD for and study the equilibrium study sincebecause the weight of a body is an external active force applied by the gravity field produced by Earth on the body. 
For a uniform rigid body in size and material, the location of the center of gravity is well known. For instance, a rectangular rigid body having a uniform thickness and made from same materialdensity has its center of gravity at the geometric center of the rectangle. However, when it comes to non-uniform or compound rigid bodiesy, the determiningation of the position of the center of gravity is not thatless straightforward. C; some calculations are needed in that this case to locate the center of gravity, before drawing the FBD and then studying the static equilibrium.	Comment by Author: Please ensure that the intended meaning is maintained.
[image: ]	Comment by Author: The mass of the strap is comparable to that of the pen, and the thickness of the strap is non-negligible, meaning that the strap can exert non-negligible forces on the pen to keep it horizontal (or slightly tipped). You may want to find a better image to explain the center of gravity.
Figure 2.33 Pen held by a rope at its center of gravity by a strap.
Another interesting aspect of this particular point, is that the center of gravity, is the balance point at which a body could be held without tipping. Figure 2.33 is showsing a pen, held by a vertical ropestrap at a point such that the pen is kept in aremains horizontal position. IndeedIn fact, the rope strap is attached at the center of gravity of the pen. Since the mass of the pen is not uniformly distributed, the center of gravity is not at the midpoint of the pen but is, it is rather shifted towards the lidcap.
 
Determination of the center of gravity by integration
Consider a rigid body located in a direct Cartesian reference frame (Oxyz). It Imagine dividing this body could be virtually divided into an infinite number of differential elements, each of weight  as shown in figureFigure 2.34a. 
[image: ]
Figure 2.34 Center of gravity of a body (a) : in a direct reference frame(a) and (b), in a rotated reference frame.(b)
Let x, y , and zz be the coordinates of any differential element in the body. All The weights of all the differential elements constitute a distributed parallel- force system; in the case of figureFigure 2.34a, they are parallel to the yy-axis axis. The total weight  of the body is applied exerted at the center of gravity of the body, which is denoted by G and whose coordinates , and  are to be determined. 
Applying equationEquations (2.23)– - (2.25) for figureFigure 2.34a and then rotateing the plane (yz) of by 90° about the xx-axis axis (figureFigure 2.34b). A then applying again equationEquation (2.25) to, one gets the three coordinates of G as follows: 
                                                                        		                             (2.26)
                                                                        ,		                             (2.27)
                                                                         		                             (2.28)
[image: ]
Figure 2.35 Center of mass of a body.
Figure 2.35 shows the center of mass Cm of a body. However, for a constant gravity and since dW = g ⋅ dm, g will simplifiesy in equationEquations (2.26) – (2.28) to give the following equationequations that indicatingshow that G and Cm are coincident:
                                                                         		                             (2.29)
                                                                        		                             (2.30)
                                                                         	.	                             (2.31)
Note It should be noticed that the denominator in equationEquations (2.26) – (2.28) represents is the total weight of the body. Similarly, it represents is the total mass in equationEquations (2.29) – (2.31).
For a planar body, equationEquations (2.28) and (2.31) will arebe disregardedomitted. 
Center of gravity of composite bodies
“‘’A composite body consists of series of ‘‘’simpler’’’ shaped bodies which may be rectangular, triangular, semicircular, etc.”’’ (Hibbeler, 2010, p.470).
This composite body may be virtually divided into a finite number n of regular “‘’sub-bodies’’,” each having of a known weight (i.e. i.e., mass) and location of center of gravity. Let We denote by Wi the weight (i.e. mi is the mass) of the component sub-bodynumber i in the composite body and (xi, yi, zi) are the coordinates of its center of gravitysub-body i. The coordinates of the center of gravity (i.e. i.e., the center of mass since gravity is assumed to be spatially uniform) of the composite body are deduced from equationEquations (2.26) – (2.28) (i.e.[ equationEquations (2.29) – (2.31) for the center of mass]) by replacing the integral by a discrete sum for i = 1 to n as follows:
                                                                    	,	                             (2.32)
                                                                   ,			                                 (2.33)
                                                                    	.	                             (2.34)
Similar equationEquations will be establishedhold for the center of mass Cm:
                                                                    ,		                             (2.35)
                                                                   ,		                             (2.36)
                                                                    .		                             (2.37)
For a planar composite body, equationEquations (2.34) and (2.37) will be disregardedcan be omitted. 
Application 2.12. Locate the center of gravity of the cone shown in figureFigure 2.36 knowing given that its density increases with its height according to:
 .
Solution 2.12. Since both planes (Oxy) and (Oyz) are planes of symmetry of the cone, it could be deduced that the center of gravity belongs must be onto the yy-axis axis, so hence 
The ordinate  is calculated from by using equationEquation (2.30), but the challenge is to find the differential mass dm of a differential element of the cone which is a disk at a height y,, of thickness dy , and ofa radius r that variesable with y. This is illustrated in figureFigure 2.37.

[image: ]
Figure 2.36 Cone with a variable density.
From this figureFigure 2.37 and applying the Thalès Theorem , we obtainone may write:

The differential mass of the disk is determined as follows:


The center of gravity of the differential element (i.e. i.e., the disk) is the same as its height y.
 All the elements needed to apply equationEquation (2.30) are now determinedknown, thusso:

[image: ]
Figure 2.37 Differential element from of a cone.
Application 2.13. Figure 2.38 shows a thin 2-mm-thick plate of 2 mm thickness made from a material of density 2500 kg/m3 from which a small square is cut. Locate the position of the center of mass of this plate.
Solution 2.13. This plate is a composite body that could be partitioned into three regular parts: a big rectangle denoted by part 1 (with no rectangular hole), a small square denoted by part 2 with a negative mass to cancel out the mass of part 1 in this region, and a right-angle triangle denoted by part 3 (see Figure 2.39). Let G1, G2 , and G3 be their respective centers of gravityies. This plate is located inis in a planar Cartesian reference frame (Oxy), as shown in figureFigure 2.39. We will apply Equations (2.35) and (2.36) are to be applied after finding the coordinates of G1, G2 , and G3 measured all from O and the mass of each part. For the latter, we have



[image: ]
Figure 2.38 Composite plate of with unknown center of gravity.
[image: ]
Figure 2.39 Partitioned composite plate from Figure 2.38.





It is worth at this stage toWe summarize all the calculated dataresults of the calculation in Ttable 2.1 which helps at to facilitate the application applying easilyof equationEquations (2.35) and (2.36).
	Table 2.1 SData summary of results for composite plate of Ffigure .2.38.

	Part
	mi (kg)
	xi (m)
	yi (m)
	mi.xi (kg m)
	mi.yi(kg m)

	1
	1.5
	0.25
	0.3
	0.375
	0.45

	2
	−-0.1125
	0.225
	0.175
	−-0.0253125
	−-0.0196875

	3
	0.45
	0.6
	0.2
	0.27
	0.09

	Whole
	1.8375
	
	
	0.6196875
	0.5203125





The center of gravity of the whole bodycomposite plate is  locatedshown in on figureFigure 2.39.
Self-Check Questions
1. Choose the correct answer.
Two identical cubes each having a side equal of lengthto 1 are placed on the floor one above the other, and  such that the lower cube is 1.5 times heavier that than the upper cube. The height above the floor of the center of gravity of the whole system from the floor is:
      0.5                     0.65                    0.75                     0.9 
2.4 Equilibrium of Rigid Bodies
Equations of EquilibriumEquilibrium equations 
It is well known thatA a rigid body has the possibility tocan translate along in any direction (like a particle) but also to rotate about any point in the space. This results means that the vector condition   is not anymoreno longer sufficesient as the sole condition for static equilibrium since because it does not prevent the rigid body from rotationg. To this ensure that a rigid body does not rotatelatter condition, one must ensure that the resultanting vector moment of produced by all the moments applied on to the body also must vanishes. Mathematically, another this condition gives rise to the vector equationequation must be satisfied  , where A is an arbitrary point in the space by through which may pass three imaginary directions parallel to the reference directions x, y , and zz may pass. By following the same rationale to develop the equationequations of a particle’s equilibrium, (i.e. i.e., switching to the Cartesian notation), we obtain the following six equations of equilibriumequilibrium equations would that ensure the static equilibrium of a rigid body in the space as follows:
                                                          ,		                      (2.38)
                                                          ,		                      (2.39)
                                                          ,		                      (2.40)
                                                          ,		                      (2.41)
                                                          ,		                      (2.42)
                                                          .		                      (2.43)
One can easily remark thatE each of the two vector equationequations of for equilibrium has delivered produced three scalar equationequations: Equations (2.38)−-(2.40) for the force conditions and Equations (2.41)−-(2.43) for the moment conditions. Theose equations are useful algebraically to calculate the unknown forces and/or moments needed to establish the static equilibrium of a rigid body. Physically speaking, the nullity of the three components of the resultant force means that the rigid body is prevented fromdoes not translation accelerate along in any of the three directions x, y , orand zz, simultaneously while the nullity of the three components of the resultant moment means that the rigid body is prevented fromdoes not change its rotational state about the three directions axes x, y , and zz simultaneously. 	Comment by Author: Please ensure that the intended meaning is maintained.	Comment by Author: Please ensure that the intended meaning is maintained.
Since Given the number ofsix equilibrium equationequations is six, this means that the equilibrium equations in the space allowwe can calculateing six unknown forces and/or moments to establish the equilibrium. To notice thatNote that an unknown could be either a magnitude or an angle of orientationle direction. Moreover, in casef the equilibrium is in a plane, thenar the number of equationequations reduces to three:; those are (2.38), (2.39), and (2.43). Consequently, only three unknowns could can be calculated in for a situation involving 2D equilibrium case.
Particular case: Parallel forces. Consider ing the particular casecase where all the applied forces applied on the rigid body are parallel between themselvesto each other (i.e. e.g., parallel to one of the axes of a reference Cartesian reference axesframe, say such as Oy)., Tthe resultant has itsis directedion exclusively along the yy-axis axis while whereas it allows canto rotate about thelong xx- and zz -axes. In thisat case, the six equationequations of equilibrium reduce only to three equations (quasi-planar problem). The remaining useful equationequations in this case are Equations (2.39), (2.41), and (2.43).
Application 2.14. A cube of sides 10 cm each and and that weighst 80 N is subjected to the system of forces shown in figureFigure 2.40 below. Determine the force and the moment couple to be applied at the origin O to maintain the cube in equilibrium of the cube. 
Solution 2.14. First, let assign a symbol of to each of the applied forces to avoid any confusion. F1 = 100 N,; F2 = 200 N,; F3 = 300 N,; F4 = 400 N, and the weight W = 80 N that is applied vertically downward at the center of the cube, vertical, downward (not shown ion figureFigure 2.2 for sake of clarity). The components of theose forces are:


[image: ]
Figure 2.40 Cube to be kept in equilibrium.
The resultant force of this system denotesis:

The balancing force  required to hold balance the resultant force and keep the body in equilibrium must be a n opposite vector opposite to  and having of the same magnitude:


The direction of this balancing force is determined by the three cosine directions:



The next step consists in of calculating the scalar components of the moment vector about the point, the with the three Ccartesian axes passing through O since it is the point at which the balancing elements are requested to be applied.
Forces   and  are passing through the xx-axis axis, whereas forceile   is parallel to this the x axis, so thus theose three forces do not develop produce a moment about (Ox)., Tthe remaining forces exert the following moment about (Ox):

Forces  and  are parallel to the yy-axis axis, while whereas force   is passesing through the xis axis, thus so those three forces do not develop moment about (Oy), the remaining forces exert the following moment about (Oy):

Forces  and  are parallel to the zz-axis axis and thus so those two forces do not develop produce a moment about (Oz), the remaining forces exert the following moment about (Oz):

The balancing moment vector  has the opposite scalar projections that are the opposite of those of the resulting moment:

The magnitude of the balancing moment is equals that of to the resulting moment and is  calculated as follows:

The direction of this balancing moment is found throughgiven by the three cosine directions:



Application 2.15. The square frame shown in the figureFigure 2.41 below is subjected to a system of parallel forces parallel to the xx-axis axis. Determine the magnitude, sense, and position of the point of application A of the force needed to establish the static equilibrium of for this frame.
Solution 2.15. Let  the unknown force needed to complete the equilibrium. By default, it will bewe considered that it is oriented along the positive sense of the xx-axis axis.  Since all forces are parallel to the xx-axis axis, Fby = Fbz = 0. The component Fbx  is calculated from equationEquation (2.38):

Thiss latter result denotes givesthat the magnitude Fb = 200 N and the a sense is opposite to the positive sense of the xx-axis axis.
[image: ]
[bookmark: _Hlk101714401]Figure 2.41 Frame in equilibrium under while subjected to parallel forces.
To locate the point of application  point A of  , we apply equationEquations (2.42) and (2.43):




Alternative sSets of pPlanar equilibrium eEquations of Equilibrium 
Consider a rigid body located in a direct planar reference (Oxy) subjected to a system of forces  , i = 1 to n in planar equilibrium. In figureFigure 2.42 shows one force is shown for the sake of clarity. Each force  could can be resolved into two rectangular components  and   that may replace the effect of the original force. All The scalar components Fix are responsible of for translation acceleration along in the x direction, whereas  while Fiy  are is responsible of for translation acceleration in thealong y direction. All rectangular components of the forces may cause the rotation of the body about any point in the plane. Those These three motions are known as degrees of freedom.	Comment by Author: Please ensure that the intended meaning is maintained.	Comment by Author: Please ensure that the intended meaning is maintained.
[image: ]
Figure 2.42 Planar equilibrium of a rigid body.
To prevent both translation and the rotation motion and thereby which establish the planar equilibrium, the resultant force components along the xx-axis  and yy-axis axes as well asand the resultant moment about an arbitrary point in the plane must vanish. One writesWe obtain the exclusively  three equationequations (2.38), (2.39), and (2.43) from the set of six spatial six equations of equilibriumequilibrium equations. Those These are reminded as follows:
                                                          ,		                      (2.38)
                                                          ,		                      (2.39)
                                                          		                      (2.43)
The next step consists in of proving that the selection of the arbitrary point at which to apply equationEquation (2.43) will does not affect the equilibriumresult of the calculation. Consider the point O as another an arbitrary point in the plane and calculate the sum of the moments about this point there::

This latter equationequation doeswill not change when zero iss are added and subtracted:

By multiplying equationEquation (2.38) by yA and Equation (2.39) by xA, the right sides members of theose two equationequations remain zero:. 

The first zero added in to the equation of  could can be replaced by  while and the second zero could can be replaced by , which gives to get:

This latter equationequation could can be rearranged as follows:

The amounts differences (xi- − xA) represent are the arms of the forces  about A while and (yi- − yA) represent are the arms of the forces  about the same point, meaning that the right member side of this the latter equationequation is non- other than . Finally, according to equationEquation (2.43), the sum of moments about A is zero; so replacing it in the expression of the moments about O, one gets:gives

This result shows that choosing either point O or A or any other arbitrary point will does not change the equilibrium condition of rotation. However, upon depending on the loading case and the geometry, the choice of some a particular point might help in simplifyications of the calculationsng operations.
In addition, this latter result was derived by using at some stage equationEquations (2.38) and (2.39) which mean physically a block of two translational motions along two perpendicular directions. Mathematically, one of those conditions might be replaced by . Mechanically, preventing two translations and one rotation is equivalent to the preventiong of one translation and two rotations about two arbitrary, distinct points in the plane. 
In conclusion, one may use alternative sets of equationequations of equilibrium as the original set (2.38), (2.39), and (2.43) without affecting the mechanical stateus of the body (equilibrium).
The first set consists of equations (2.44)-(2.46) as follows:
                                                          		                      (2.44)
                                                          		                      (2.45)
                                                          		                      (2.46)
The otherand the second set consists of equations (2.47)-(2.49) as follows:
                                                          		                      (2.47)
                                                          		                      (2.48)
                                                          		                      (2.49)
It is extremely important to nNotice that, for both previous sets of equationequilibrium equations of equilibrium, O and A are two arbitrary points in the plane that may be chosen within the plane but under one strict condition: The two points must not be onlong to a straight line perpendicular to the line of action along which forces are preventing counteringthe translational motion. In other words, for the first alternative set of eequationquations of equilibrium, equationEquation (2.44) is preventing constricting translation along the x direction, which is in thea horizontal directionplane, so ; points O and A could cannot lie on a vertical line (i.e. i.e., parallel to the yy-axis axis) because, in that particularthis case, the arm xA  −- xO  = 0 a, which nd this will leadmeans that the two remaining equationequations in thise set become dependent, (i.e. i.e., similar reducing the number of effective equationequations in the set decrease from three to two; consequently so the condition  is not appropriately replaced and hence thus not satisfied).
Applying the same rationale to the other second set of equationequilibrium equations of equilibrium, points O and A could cannot lie on a horizontal line (i.e. i.e., parallel to the xx-axis axis); otherwise, the equilibrium conditions would not be entirely satisfied.
Inspired from the latterby these two sets of equilibrium equationequations of equilibrium, a new set could also be also generated, based on constricting rotation prevention about three distinct arbitrary points in the plane. T; this is mechanically equivalent to prevention constricting of two translational motions and one rotational motion (i.e. i.e., as satisfied in the original set of equationequations of equilibrium). Considering three arbitrary points O, A , and B in the plane, the new alternative set of equationequations writesis:
                                                          		                      (2.50)
                                                          		                      (2.51)
                                                          .		                      (2.52)
This latter set is valid under the strict condition that the three points must belong be onto athe same straight line.
To prove this condition, consider the figureFigure 2.43, which showsing the force  and the three points O, A , and B belonging to the same straight line and separated from the line of action of   by respective the arms diO, diA , and diB. , respectively. All lines of arms are perpendicular to the same direction (i.e., the line of action of the force) and issuedoriginate from three points lying on the same straighta line, so they are all parallel between themselvesto each other. A; applying the Thalès Theorem of proportionality one may writegives: diA = KA⋅ diO and diB = KB⋅ diO , where Thalès theorem says that: a line parallel line to a triangle’s side divides the two other sides by equal proportions.

 and  are coefficients of proportionality. 
[image: ]
Figure 2.43 Moment of a force about three points lying on same a straight line.
ENow expanding equationEquations (2.50)–-(2.52) one writesgives:



One concludes that Tthe three equationequations have ended produced aby a single equationone,; those meaning that the three conditions are in fact a single one condition, and henceso not all motions are prevented constricted. Thus,meaning that the equilibrium conditions are not all satisfied by the choice of three points on the same straighta line.
Finally, it is worth to remindrecall that, for all four sets of equationequations, the sense of scalar projections along the xx- and yy-axis axis is consideredunted positive when the orientation is from left to right along the xx-axis axis and upward along the yy-axis axis. For A moments’ calculation, theis considered positive if it promotes sign is assigned for a counterclockwise rotation,; this asis shown in figureFigure 3.1.
The equilibrium of a particle in the a plane imposes a block of translations along in the x and y directions, so o. Only equationEquations (2.38) and (2.39) should be then satisfied. Theose are indeed identical to equationEquations (2.2) and (2.3).
Self-Check Questions
1. Choose the correct answer
When a rigid body is subjected exclusively to many force couples of forces, the element(s) needed to establish its static equilibrium is (are):
No elements are needed, the body is already in equilibrium.
Only a balancing force is needed.
Only a balancing moment is needed.
Both balancing force and moment are needed.
2. Choose the correct answer.
When a rigid body is subjected exclusively to many collinear forces, the element(s) needed to establish its static equilibrium is (are):
 No elements are needed, the body is already in equilibrium.
 Only a balancing force is needed.
 Only a balancing moment is needed.
 Both balancing force and moment are needed.
2.5 Bearing T types, Static Ddeterminacy
Definition of Bbearing
A bearing is a physical member object connected to the main rigid body under consideration to prevent its the latter’s motion along one or many several directions. A translational motion is blocked reduced by applying a force along in the direction of preventionopposite the translation, and while a rotational motion is blocked reduced by applying a couple moment about the axis along in the direction oppositewhich the rotation is prevented. To generalize, one we introduces the concept of degree of freedom (DOF), which represents a direction along which a rigid body may move, either in translation or rotation. Upon Depending on its type, a bearing may block constrain one or multiple degree of freedomsDOFs.
Bearings could may be split into many categories: 
· mMonovalent bearings that block one DOF;.
· bBivalent bearings that block two DOFs;.
· tTrivalent bearings that block three DOFs;.
· pPolyvalent bearings that block more than three DOFs (obviously in  the space).
Bearings exert one or many more components of reactive forces to that hold the a rigid body in its static equilibrium once the body is subjected to active forces. Both active and reactive forces belong to the category ofare external forces. However, active forces are well known since they are applied exerted by a user on the rigid body in the scope of anya practical application, whereas  while the reactive forcesions ofexerted by  the supports are unknowns and must be. Those are calculated in order toto satisfy the equations of equilibriumequilibrium equations, (i.e. i.e., either six conditions in the space or three conditions in the a plane).
Bearings tTypes and rReactions
Planar bearings
Consider thatPlanar bearings involve a the  rigid bodyy, and the applied forces, as well asand the bearings supporting the body, that all belong lie into the a plane (Oxy).
The following are the most common used supports are listed and described as follows:
Cable. It A cable is a linear tool support connected to the main body to or member preventing its motion just along its the line defined by the cable. A cable can apply only a  and exclusively in tensile force—it on. A cable collapses under compression and hence thusit does  cannot exert any reactive forceon in that sense. Figure 2.44a illustrates shows a cable acting on a member in 2D. The reaction developed byof the a  cable is produces a tensile force acting along the line of the cable, as shown in figureFigure 2.44b. Since the direction of the cable  of the cable is already known from the system’s configuration, the lone unknown in that case is the magnitude of the tensile force.  
[image: ]
Figure 2.44 (a) Cable support ing a member in the plane (a). (b), Cable rReactiveon force supplied by the cable(b) .
Rigid link. It is quite similar toA rigid link (see Figure 2.45a) is like a cable except that its rigidity allows it to exerting the a reaction forceon either in tension or compression without collapsing. It is illustrated in figure 2.45a. The concept of reaction force is similar tolike that of athe cable except that, for the rigid link, the reaction could have both senses: either tension or compression. The reaction force exerted byof  a weightless rigid link on a member is illustrated in figureFigure 2.45b.
Roller. A roller is a sSpherical or cylindrical item that restsing on a surface and preventsing the translation exclusively in the direction perpendicular to theis surface, so hence the only unknown is the magnitude of theis reaction force. Figure 2.46a shows a schematic of a roller connected to a rigid body, and  while Figure 2.46b shows the possible reaction forces is illustrated in figure 2.46b.
[image: ]
Figure 2.45 (a) Rigid link support in the plane. (a), Rigid link(b) R reaction force exerted by rigid link on member.(b)

[image: ]
Figure 2.46 (a) Roller support in the plane. (b) (a), Roller Rreaction force exerted by roller (b)on member.
Rocker. It A rocker is a pivot rounded from on the bottom and resting on a surface; it, preventsing also the translation exclusively in the direction perpendicular to this surface, so  hence the only unknown is the magnitude of theis reaction force. Figure 2.47a shows a schematic of a rocker connected to a rigid body while and Figure 2.47b shows the reaction force is illustrated in figure 2.47b.
Smooth supporting plane. It This is a rigid polished solid surface on which a point or a partial area of the rigid body can rest. It blocks prevents translational motion along a perpendicular direction to and toward the plane and in a unique sense. Also in that caseT the only unknown is the magnitude of this reaction force. This support is schematized in figureFigure 2.48a while and Figure 2.48b shows theits reaction force is illustrated in figure 2.48b.
[image: ]
Figure 2.47 (a) Rocker support in the plane (a). (b), Rocker reaction force exerted by rocker on member. (b)
[image: ]
Figure 2.48 (a) Smooth surface support in the plane. (b) (a), RSmooth surface reaction force exerted by smooth supporting.(b)
Slotted roller or /pin. A cCylindrical device confined between two smooth rigid planes where so it can rollstranslate parallel to planes, but it blocks the translationnot perpendicularly, so to those smooth planes hence the only unknown is the magnitude of theis reaction force. This bearing’s schematic is illustrated shown in figureFigure 2.49a, and. while its reaction force is illustrated shown in figureFigure 2.49b.	Comment by Author: Please note that the use of the solidus (/) is discouraged except for "and/or" because its meaning is ambiguous. Please verify all such constructions in the document.
Sliding pinned collar. This is a Hollowed cylindrical device tube containing through which slides freely a smooth, concentric smooth rod. A member is along which it can slide freely and pinned to the rigid cylindrical tubebody.. It This bearing prevents only translation in the perpendicular direction to the smooth rod, so  hence the only unknown is the magnitude of theis reaction force. This type of bearing is schematized shown in figureFigure 2.50a while and its reaction force is illustrated shown in figureFigure 2.50b.
[image: ]
Figure 2.49 (a) Slotted roller support in the plane. (b) (a), Slotted roller reaction force. (b)
[image: ]
Figure 2.50 (a) Sliding pinned collar support in the plane. (a), (b) Reaction force Sof sliding pinned collar. reaction force (b)
[image: ]
Figure 2.51 (a) Sliding fixed collar support in the plane (a), (b) sSliding fixed collar reaction components. (b)
Sliding fixed collar. Hollowed This is a cylindrical device tube through which passes freely containing a smooth, concentric smooth rod. The tube is along which it can slide freely and welded or otherwise completely adhered to the a rigid body. It prevents the translation in the perpendicular direction to the smooth rod and also the rotation within the plane. It allowsing only translation parallel to the smooth rod. This type of bearing is schematized shown in figureFigure 2.51a while and figureFigure 2.51b shows the corresponding reaction force and couple moment developed produced by a fixed collar.
Pin. Device A pin (also called a hinge) haswith two spaced flanks between which the a rigid body with a hole is positioned.d, Aa screw and fixed with a nut goes through a hole in the rigid body to connect it to the flanks and the rigid body together through the hole. A pin has two leaves is order toso that it can be fixed to the ground (Hibbeler, 2010). Figure 2.52a showsThe schematic of a pin (named also hinge) is illustrated in figure 2.52a. A pin prevents in the plane translation in the plane in all directions, which means that it exerted . This leads to aa reaction force directed along any inclination (with respect to the xx-axis axis) in the plane. However, one can replace this force (i.e. and itsthis unknown angle also) by with two rectangular orthogonal components, (i.e. i.e., a reaction force along the xx-axis axis blocking preventing translation in this direction and another one reaction force inalong the yy -direction preventing translation in this direction). Mechanically, when translation is blocked prevented along in two directions, it is automatically blocked completely. In Cconsequentlyce, a pin bearing exhibits produces two unknown reaction-force -components reaction:, those are one horizontal and another one vertical force, or one unknown magnitude force magnitude and its the corresponding direction . This is illustrated in(see figureFigure 2.52b). The In most of the cases, the approach of two rectangular orthogonal components is are adopted.
[image: ]
Figure 2.52 (a) Pin support in the plane (a),. (b) Components of pPin reaction components force(b).
Fixed support. It representsThis is any device constraining preventing the a body from undergoing any motion: —it blocks all translational and rotational motions. The end at which a fixed support is connected is said to be cantilevered. Figure 2.53a schematizes shows a fixed support. Since Because all degrees of freedomDOFs are blocked eliminated by a fixed support,  in the plane thus this type of bearing exhibits exerts three reaction components: two rectangular orthogonal force components and a couple moment. This is illustrated in figureFigure 2.53b.
[image: ]
Figure 2.53 (a) Fixed support in the plane (a), (b) fFixed support reaction components (b).
All the aforementioned these bearings and their characteristics are summarized in Table 2.2 below.
	Table 2.2 Supports types and reactions for 2D rigid bodies.

	Bearing Type
	Bearing symbol
	Number of prevented DOF
	Reaction components

	Cable
	

	1
	


	Rigid massless link
	

	1
	


	Roller
	

	1
	


	Rocker
	

	1
	


	Smooth supporting plane
	

	1
	


	Roller in smooth slot
	

	1
	


	Sliding pinned collar
	

	1
	


	Sliding fixed collar
	

	2
	


	Pin
	

	2
	


	Fixed support
	

	3
	





Spatial bearings
Consider Spatial bearings involvethat the a rigid body,  and the applied forces, as well asand the bearings supporting the body that, all referred are in the a 3D Cartesian frame of reference (Oxyz).
The following are the most common usedmost used supports are listed and described as follows:
Cable. It is aThis is a linear tool used exclusively in tension and connected to the main body or member to preventing its the motion of the latter just along its lineaxis and exclusively in tension. A cable collapses under compression and hence itthus does not exerts any no reaction in that sense. Figure 2.54a illustrates shows a cable acting on a member in 3D. For the reaction force developed, the same concept as a cable in the a plane applies in the 3D space. The reaction force is illustrated in figureFigure 2.54b. One should notice on another handNote that the rigid link in 3D the space follows is the same concept as one a rigid link in the a plane.
[image: ]
Figure 2.54 (a) Cable support in the space (a), (b) cable reaction force. (b)
Smooth supporting plane. It This is a rigid polished solid surface on which a point or a partial area of the rigid body can rest. It blocks translational motion along a perpendicular direction to the plane and. It is schematized in figureFigure 2.55a. For the reaction force developed, the same concept applies in 3D space as in the plane applies in the space. The reaction force is illustrated in figureFigure 2.55b.
[image: ]
Figure 2.55 (a) Smooth plane support in the 3D space (a), (b) sSmooth plane reaction force. (b)
Roller. A roller is a sSpherical or cylindrical item resting on a surface and preventing the translation exclusively in the direction perpendicular to this surface. Figure 2.56a shows a schematic of a roller connected to a rigid body. For the reaction force developed, the same concept applies in 3D space as in the a plane applies in the space. The reaction force is illustrated in figureFigure 2.56b. It should be noticedNote that the reaction may be oriented either upward or downward, depending on upon the case of the loading.
Ball and socket. This is a sSpherical device connected to a point of on the a rigid body and confined within a rigid housing. Figure 2.57a Its shows its schematic is illustrated intion figure 2.57a. This type of bearing allows the rotation in all directions but blocks translation in all directions. This is represented by three reaction force components acting along in three mutually perpendicular directions. Figure 2.57b schematizes shows theose components.
Circular single journal bearing. It This is a mechanical support of hollowed cylindrical shape consisting of lubricated internal rings  with lubricant in-between and is used to support shafts. It is schematized shown schematically in figureFigure 2.58a. It blocks both translation and rotation motions about the radial axes of the shaft; only longitudinal motions are allowed. This implies that the components of the reaction consists of two rectangular force components acting along two mutually perpendicular radial directions as well asand two rectangular moment components acting about the same axes. Figure 2.58b illustrates theose components.
[image: ]
Figure 2.56 (a) Roller support in the 3D space (a), (b) r Roller reaction force. (b)
[image: ]
Figure 2.57 (a) Ball and socket support in the 3D space (a), (b) bBall and socket reaction components. (b)
Square single journal bearing. It This is a mechanical support of hollowed prismatic shape consisting of lubricated internal rings with lubricant in-between and used to support shafts. It is shown schematicallyized in figureFigure 2.59a. It blocks both translation and rotation motions about the radial axes as well asand rotation about the longitudinal axis of the shaft; only longitudinal translation is allowed. Figure 2.59b illustrates the five reaction components generated by this type of support.
[image: ]
Figure 2.58 (a) Single circular journal bearing in the 3D space (a), (b) sSingle circular journal bearing reaction components. (b)
[image: ]
Figure 2.59 (a) Single square journal bearing in the 3D space (a), (b) Single square journal bearing reaction components. (b)
f[image: ]
Figure 2.60 (a) Single thrust bearing in the 3D space (a), (b) sSingle thrust bearing reaction components. (b)
Single thrust bearing. It This is a mechanical support of with a hollowed cylindrical shape consisting of lubricated internal rollers and/or balls. It is with lubricant in-between and used to support shafts (see. schematic illustration in It is schematized in figureFigure 2.60a). It blocks both translation and rotation motions about radial axes of the shaft as well asand longitudinal translation. O; only rotation about the longitudinal axis of the shaft is allowed. Figure 2.60b illustrates shows the five reaction components generated by this type of support.
Pin. Device A pin haswith two spaced flanks between which is the rigid body with a hole is positioned., Aa screw through the hole and a nut connect the flanks and with the rigid body together through the hole. A pin has two leaves is order to bethat are fixed to the ground or other support (Hibbeler, 2010). The A schematic drawing of a pin is illustrated appears in figureFigure 2.61a.  Besides In addition to preventing translation in all directions (as it does in the a plane), a pin bearing also prevents rotation also in the 3D space rotation motion about any radial direction (coincident with the radial direction of the hole drilled in the rigid body used to mount the pin). This results in five reaction components exhibited being exerted by thea pin, as in the space. This is illustrated in figureFigure 2.61b.
[image: ]
Figure 2.61 (a) Pin support in the space (a), (b) pPin reaction components. (b)
Hinge. Device A hinge consistsing of two thin holed plates with holes interfered interlocked together through male and female cylinders to allow rotation about the cylinder axis exclusively, all other motions are impossibleblocked. (see It is illustrated in figureFigure 2.62a). As an example, it isA hinge may be used, for example,  to mount a door on the frame such that the door can rotates exclusively only about the a vertical axis. Its The function of a hinge is very similar to that of a pin. It blocks thus five DOFs. The five reaction components are shown schematicallyzed in figureFigure 2.62b.

[image: ]
Figure 2.62 (a) Hinge support in the 3D space (a), (b) Hhinge reaction components. (b)
Fixed support. It representsA fixed support is any device device that constrainingblocks all translation and rotation  of athe body from any motion: it blocks all translation and rotation motions. The end at which thea fixed support is connected is said to be cantilevered. Figure 2.63a shows schematicallyzes a fixed support. All degrees of freedomDOFs in 3D space are blocked by thea fixed support, so in the space thus this type of bearing exhibits has six reaction components: three rectangular force components and three rectangular couple moment components. This is illustrated in figureFigure 2.63b.
[image: ]
Figure 2.63 (a) Fixed support in the 3D space (a), (b) fFixed- support reaction components. (b)
It should be noticedNote that, except for the cable and the supporting plane where the sense of the reaction forces is well -known, the senses of the reaction components of all other types of bearings may have both optionsare positive or negative along a determined given direction. The right correct sense will be known fromis determined by the algebraic signs obtained uponafter the calculationg of the components’ values.
All the aforementionedthese bearings and their characteristics are summarized in Table 2.3 below.
	Table 2.3 Supports types and reactions for 3D rigid bodies.

	Bearing Type
	Bearing symbol
	Number of prevented DOF
	Reaction components

	Cable
	

	1
	


	Smooth supporting plane
	

	1
	


	Roller
	

	1
	


	Ball and socket
	

	3
	


	Circular single journal bearing
	

	4
	


	Square single journal bearing
	

	5
	


	Single thrust bearing
	

	5
	


	Pin
	

	5
	


	Hinge
	

	5
	


	Fixed support
	

	6
	




It is important toWe now illustrate a couple ofseveral physical and practical examples to spot better understandon the use of  many of supports.
[image: ]
Figure 2.64 Reaction force (tensile) of a chain.
Figure 2.64 shows a heavy cylinder hung by a chain which is equivalent to a cable towards in terms of effect; the chain is applies aying one tensile reaction force (tensile) along the line of the chain, which is, being vertical in thise example. T; this reaction force is preventsing the cylinder from undergoing a free fall of the cylinder (motion) underdue to its own weight. 
Figure 2.65 illustrates the effect ofshows a door- damper’sgroom link that is designed trying to resist against the opening of the door by exerting a, this reactive force acting along the axis of the link.
[image: ]
Figure 2.65 Reaction force of exerted by a door-groom link’s damper.
Figure 2.66 shows a prismatic bar tested in a laboratory under a bending load. Ting; this bar is supported by two rollers at its extremities reacting that exert reaction forcesby  and  against to counter the bending load.
Figures 2.67 and 2.68 illustrate two applications of pins usage. Figure 2.67 shows how metallic bars members of a warehouse ceiling structure are pinned together while figureFigure 2.68 shows how the arms of a truck’s forklift are pinned to the main frame of the truck.
[image: ]
Figure 2.66 Reaction forces exerted bys of  two rollers on a bar under during bending test.
[image: ]
Figure 2.67 Metallic bars connected by pins.
Figure 2.69 shows a special thrust bearing where a layer ring of metallic balls are mounted connecteding it to aits housing to allowing rotation about the centerlines even aboutbut block translations in radial directions. Figure 2.70 shows a complete physical ball- and- socket device as well asand a section where half of its the housing is removed to visualize display the spherical item object inside.	Comment by Author: Please ensure that the intended meaning is maintained.
[image: ]
Figure 2.68 Application of pins for to articulate lift arms .articulations
[image: ]
Figure 2.69 Special thrust bearing.
[image: ]
Figure 2.70 Special ball-and-socket bearing.Ball and socket
[image: ]
Figure 2.71 Poles cantilevered to the ground.
A last final example is illustrated in figureFigure 2.71, which showsing multiple poles for supporting electrical purposesequipment: , wooden poles to hold cables and a metallic pole to hold lamps that are completely fixed to the ground such that noto prevent motion, either translation or rotation, along in any direction is possible either in translation or rotat.ion: Tthis is an application of a fixed support application.
Application 2.16. Calculate the reaction forcess at the fixed support A of the beam AB shown in figureFigure 2.72.
[image: ]
Figure 2.72 Fixed supported beam loaded in the plane.
Solution 2.16. The concentrated force at the free end be may be replaced by its rectangular components,  as shown in the FBD of figureFigure 2.73.

[image: ]
Figure 2.73 FBD of fixed supported beam under planar loading.
Applying the set (2.38) , (2.39), and (2.43) of equations of equilibriumequilibrium equations gives:



Application 2.17. A rigid weightless bar AB is pinned at A and connected at B to the wall by a cable BC , as shown in figureFigure 2.74. It The bar is subjected to two concentrated vertical forces. Calculate the reaction forcess at A and B.
[image: ]
Figure 2.74 2D Lloaded 2D bar supported by a pin and a cable.
Solution 2.4. First, it is mandatory to sketchwe draw the FDB by isolating the main body (bar AB) and showing all external forces applied. This FDB is shown in(see figureFigure 2.75).
[image: ]
Figure 2.75 FBD of bar AB.
The pPin at A generates two force components denoted by Ax and Ay while and the cable BC develops generates a tensile force of magnitude T along the line of the cable. The inclination α (i.e. i.e., direction) is known since because the lengths of AB and AC of the right-angle triangle ABC are known. Concerning the sense of each of the reactions, Tthe force in the cable can only beis obviously tensile and thus is oriented from B to C; however, the reaction forcess at the pin may have one or otherbe in either sense; by default, one maywe choose the same sense as the Cartesian axes x and y. Once calculated from by using the equilibrium equationequations, if theira positive (negative) sign means s were found positive, this means that the chosen sense is correct (incorrect)y act in reality in the same sense chosen from the start while if the sign is negative this would mean that they act in the opposite sense.
In the right- angle triangle ABC, AB = 4 m and BC = 3 m. Applying the Pythagorean theorem allows findinggives the length of the cable, BC = 5 m. Then Aapplying trigonometryic relations help at determinesing the trigonometric quantities of the directionorientation  of the tension in the cable:.


Applying the equations of equilibriumequilibrium equations (2.38), (2.39), and (2.43) gives:



Replacing Inserting T in the first two equationequations gives, one gets: Ax = 18.4 kN  and Ay = 11.2 kN.
Application 2.18. A square plate of weight 500 N is hinged at A and held by a cable BC connected to the plate by the hook B , as shown in figureFigure 2.76. Determine the reactions of the hinge and the tension of the cable.
[image: ]
Figure 2.76 3D loaded plate supported by a hinge and a cable. 
Solution 2.5. The FBD of the isolated doorplate is shown in figureFigure 2.77. There are six unknown reaction components. If the system is stablein equilibrium, then one is facingit is a stable determinate system. By default, the senses of the components of the reaction forces and moments at the hinge were are chosen in the positive orientation sense of the Cartesian axes. The weight, vertical descending, is parallel and opposite to the yy-axis axis and is exerted applied at the geometric center of the squareplate.
[image: ]
Figure 2.77 FBD of the square plate.
However, before applying the six equations of equilibriumequilibrium equations (equations (2.4)–-(2.9)), note that the tension of the cable is neither parallel nor orthogonal to any of the three Cartesian axes, so and hence its components as well asand the components of its vector moment about A should be expressed in Cartesian coordinates.
The coordinates of A, B, and C are: A(0.2, 0, 0); B(0, 0.1, 0.4); C(0, 0.4 ,0).
The components and the magnitudes of the direction vector  and the position vector  are as follows:


From the components of the direction vector  and its magnitude, the cosine directions of the cable’s tension  and then its scalar components could beare found:

From the components of the position vector and those of , the components of the moment of  about A become:

Applying the six equations of equilibriumequilibrium equations  one calculates:gives






Since Now that T is calculatedknown, Ay and Az  could may be found from the second and third equationequations:
Ay = 312.5 N, ; Az = 250 N.
The positive signs of the answers designate mean that they the physical forces act are exerted in reality in the orientations sense drawn in the FBD.
Stability and iInstability
It is already known that eExternal forces applied on to a rigid body may be either active forces or reactive forces. Those latter are applied by physical ‘‘itemsobjects‘‘ known as bearings or supports. Supports hold a solid that is, subjected to active forces, and prevent its motion. In other words, bearings or supports develop exert reactive forces, known as support reactions or bearings reactions in order toto balance counter the effect of the applied active forces and hence therebyto keep hold the solid body in static equilibrium. The entire system of external forces consisting of both active and reactive forces, must satisfy mathematically the equations of equilibriumequilibrium equations (2.38)–-(2.43) if forthe equilibrium occurs to hold in the space. This set of equationequations reduces to equationequations (2.38), (2.39), and (2.43) when it comes to a planar equilibrium. Globally, all the active forces are known towards in terms of direction, sense, and magnitude while whereas the reaction forces are unknown, so and thus the equations of equilibriumequilibrium equations are applied to calculate the bearing reaction forcess developed exerted on a solid body. Since the number of equations of equilibriumequilibrium equations is limited, (i.e. i.e., six equationequations in 3D and 3 three equationequations in 2D), one may calculate mathematically the six reaction forces only in the space and three reaction forces only in athe plane. However, this number of reaction forces in a physical status state of a body may not match the mathematical needingsrequirements; in other words, the number of reactive forces may be less thannot reach six but may also it may exceed six. Nevertheless, it is not guaranteed that sufficient number of  the reaction forces may suffice to ensure the stability of the body; it a. All depends on the configuration upon whichof the bearings are distributed and how they are placed located to hold the body. 
In the coming linesThe coming text contains , a detailed discussion will be carried outof concerning the stateus of a rigid body supported by bearings and subjected to external active forces. It is worth to note that, forfor sake of clarity and simplicity, the discussion will be conducted forconsiders the planar case, always but an extension to the spatial case is possible. 
Before starting the discussion, stating we give the definitions of a couple ofof several key terminologies terms that areis essential and helpful forto understanding the coming discussion.
Stability. A rigid body is said to be in stable equilibrium when it remains at rest under any possible type, direction, sense, and magnitude of external loading.
Instability. A rigid body is said to be in an unstable statuse if it when it is brought to motvesion under as the result of at least one case of loading, whatever regardless of are its type, direction, sense, and magnitude.
Unstable Equilibrium. A rigid body is said to be in unstable equilibrium when it is heldremains in equilibrium only under a particular loading case, but this equilibrium is broken once the loading case changes.
Statically determinate structure. A structure is said to be statically determinate when it is stable and when the number of unknown reaction forces is equals to the number of equations of equilibriumequilibrium equations (i.e. i.e., six6 unknowns in 3D and 3 three unknowns in 2D). In thatis case, all the reaction forces exerted byof the supports could may be determined by applying the equations of equilibriumequilibrium equations.
Statically indeterminate structure. A structure is said to be statically indeterminate when it is stable and when the number of unknown reaction forces exceeds the number of equations of equilibriumequilibrium equations (i.e. i.e., seven7 or more unknowns in 3D and four4 or more unknowns in 2D). In that case, the reaction forces exerted bys of the supports could cannot be determined by applying the equations of equilibriumequilibrium equations alone; additional equationequations are needed to determine all the reaction forces, which  those are known as deformations compatibility equationequations. H however, this is an advanced topic that does not belonggoes beyond to the scope of the presentthis textbook.
Statically Ddeterminate sStructure
Consider the structure shown in figureFigure 2.78. It is subjected to a known active force having a horizontal and vertical component, Px and Py , respectively. It is supported by a pin-type bearing at point A that is a pin type and another a roller-type bearing at point B being a roller type. A pin reacts by producing a two-components force reaction force denoted (by components are denoted Ax and Ay ) while whereas the reaction applied by a roller is a one-component force denoted by By. This is a planar problem having three unknowns Ax, Ay , and By. Despite the number ofhaving three equations of equilibriumequilibrium equations is also three,( i.e. i.e., equal tothe same as the number of unknowns), one may not judge determine that the structure is determinate unless without enmaking sureing about its stability. Mathematically, the structure is stable when the three unknowns admit a unique solution eachfor each. Otherwise, the structure would beis either totally unstable or in unstable equilibrium.unique solution: in terms of linear algebra, this corresponds to a non-zerononzero  Cramer’s determinant

Applying equationequations (2.38), (2.39), and (2.43)  one finds:gives



Going back to the second equationequation above, Ay can be determined as follows:

[image: ]
Figure 2.78 Statically determinate structure.
Since the three unknowns have got unique solutions each, this means that the structure is stable and thus statically determinate. Physically, the existence of those solutions means that the motion is prevented in from undergoing a horizontal translation (i.e. i.e., along the xx-axis axis) due to  , in a vertical translation (i.e. i.e., along the yy-axis axis) due to  and  , and in a planar rotation (i.e. i.e., about the outward zz-axis axis) due to the combination of the three components together. Consequently, this structure is in static equilibrium.
It is worth to notice thatI in equationEquation (2.43), one may choose any point in the plane to calculate the moments’ equilibrium and the equationequation remains satisfied. However, it is preferable to choose a specific point that simplifies at most the calculations of moments. In the case of figureFigure 2.78, point A looks like the most convenient onepoint because , since two unknown forces pass through it, their so their corresponding moments are zero (since their arms are have zero length) leading to the apparition of only one unknown By in the equationequation, which reduces considerably the calculations. The reader is invited, for sake of verification, to choose another point (e.g., B) and calculate the equilibrium of moments there.
Statically iIndeterminate Sstructure
Consider now the same previous structure under the same loading conditions. However, iIn addition to the pin at A and the roller at B, the structure is also supported by another pin at C , as shown in figureFigure 2.79. The number of equations of equilibriumequilibrium equations being always three, the problem exhibits has five unknowns: Ax, Ay, By, Cx , and Cy. It is clear that theThe number of unknowns is thus greater than the number of equationequations. In order toTo consider the structure is indeterminate, this latterit must be also be stable; this applies in case each of the equationequations admits many possible solutions. Otherwise, the structure would be either totally unstable or in unstable equilibrium.
Applying equationEquations (2.38), (2.39), and (2.43)  one findsgives:



The development of the three planar equations of equilibriumequilibrium equations has led to three equationequations that may admit an infinite number of options as solutions, thus so the structure is stable indeterminate. A part or even the totality of the bearings reactions could cannot be calculated exclusively by using the equilibrium equationequations exclusively. Solving the indeterminate structure does not belong tois now within the scope of the Statics topics.

[image: ]
Figure 2.79 Statically indeterminate structure.
Unstable sStructure 
Many case studies may induce involveto completely unstable structures or structures in unstable equilibrium. The coming lines willBelow, we illustrate couple ofseveral examples.
Figure 2.80 depicts the same structure but this time all three supports are roller types that induce reactions parallel between themselves (in that this case, all are vertical). As a first case, consider that the external active loading consists only of Py only (for this reason Px  is shown as ain dashed lines, since it will be applied in a further later stage).
[image: ]
Figure 2.80 Unstable structure supported by three rollers.
Apparently, the number of unknowns is equals to the number of equationequations, so and thus one would consider that the structure is determinate. However, it will be proven that this structure is unstable. 
Applying the three equations of equilibriumequilibrium equations (2.38), (2.39), and (2.43) gives:



Mathematically, the first equationEquation (0 = 0) means that the structure is in unstable equilibrium: no external loading is applied along the xx-axis axis but also no bearing- type force or position that induces a reaction along the xx -direction. However, in the absence of any horizontal reaction force, the application of any external active force on the structure (here it is denoted by Px  ion figureFigure 2.81) will break this unstable equilibrium and produce the motion ofmove the structure. Mathematically, equationEquation (2.38) gives: 0 = Px , which is not satisfied since because Px is an applied force and it is impossible tocannot be zero.0. In fact, tThe horizontal translation is not prevented in fact by any bearing. The remaining two equationequations involve in fact all the three unknowns, those which could cannot be solved obviously. Mechanically speaking, this structure is stable indeterminate in along the yy-axis axis and completely unstable along the xx-axis axis, meaning that, overall, it is unstable since the stability condition imposes imposes no motion prevention in all directions simultaneously.	Comment by Author: How can a "position" exert a force? You may want to clarify.
In conclusion, the equality between the number of equationequations and unknowns is a necessary but not sufficient condition to ensure the stability and determinacy of a structure. The way of locationng and distribution ofng the supports along the body plays a key role in stability. In figureFigure 2.80, the three rollers exert in fact three reaction forces s but their distribution is not appropriate: all of themthey are all have been directed to balance yy -components and the rotation of due to active loading, whereas while the xx-direction equilibrium has is not been satisfied. If fFor instance, if the roller C is rotated in a way that applies either an inclined or a completely horizontal reaction, the stability would have been keptbe permanently maintained.
Moving toConsider now another example inspired from from the previous one but with an additional roller mounted at point D , as shown in figureFigure 2.81. Apparently, the number of unknowns is greater than the number of equationequations, and thusso one would considermay think that the structure is indeterminate. However, by repeating the same rationale as the for the case of figureFigure 2.80 one would deducewe find that the structure is in an unstable equilibrium under the external loading Py [(i.e. i.e., equationEquation (2.38) results in 0 = 0]) and is totally unstable when the external loading Px is additionally applied [(i.e. i.e., equationEquation (2.38) results in 0 = Px).]. 
AlEven though the bearings exhibit exert more a greater reaction forces than needed, this redundancy in reactions, if not well configurefigured, might not ensure the equilibrium of the structure.
[image: ]
Figure 2.81 Unstable structure supported by four rollers.
Moving to the figureFigure 2.82 to illustrate a new case study of instability, one can see now sees that roller B is located such that the line of action of its reaction force passes through point A. Although the number of unknowns and the types of bearings at A and B are similar tolike the case in the figureFigure 2.78, the structure is not stable determinate as found in figureFigure 2.78. The change in position of one of the supports has indeed changed the stability status of the structure. Applying equationEquations (2.38), (2.39), and (2.43) gives:
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Figure 2.82 Unstable structure supported by a pin and a roller.
The first equationequation shows that the equilibrium along the xx-axis axis is established and determinate (Ax is calculated). The second equationequation shows that the equilibrium is established along the yy-axis axis, exists but the case is indeterminate since onbecause the e equationquations relate s Ay and By, those and accept may havean infinite number of possible values to satisfy the conditionsolutions. However, the third equationequation shows that the structure is unstable towards with respect to rotation because, the moment created by the active external forces Px and Py is not balanced by any reaction force’s contribution. All the lines of actions of the force reactions forces are concurrent at one point, this which implies and that the moments are unbalanced, so the structure is unstable of moments and thus instability of the structure.
Finally, it is obvious to state that any structure supported by bearings that exhibit produce fewer number of reaction forces (i.e. i.e., unknowns) less than the number of equations of equilibriumequilibrium equations (i.e. i.e., less fewer than six in 3D3D and less fewer than three in 2D2D), the structure is automatically unstable.
Application 2.19. The 90° arm shown in figureFigure 2.83 is supported by a ball and socket at O and held by a rigid weightless link AB. It is subjected to an external couple along the zz-axis axis and a concentrated force parallel to the yy-axis axis. Discuss the stability of this structure. In caseIf it is unstable, what solution could be suggested towould convert make it to stable determinate? Calculate the reaction forces of exerted by the bearings in that the latter case.
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Figure 2.83 3D- loaded arm supported by a ball and socket and a link.
Solution 2.19. The free body diagramFBD of the structure, (shown in figureFigure 2.84), proves shows that the bearings develop exert only four reaction-force  components (three forces force components are exerted by the ball and socket and a single force component is exerted along the link). In the space, at least six reactions are needed (and properly arranged) to establish the stability of the structure. This means that, this system lacks requires two more components to to gainbecome stableility. As is, the structure is unstable.
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Figure 2.84 FBD of the 3D arm.
To render the structure stable statically determinate stable statically, one of the solutions is to replace the ball and socket by a pin that  which allows only rotation only about the xx-axis axis. To the FBD of figureFigure 2.84, two couple moment components MOy and MOz  are added.
Before applying the six equations of equilibriumequilibrium equations, it is worth towe determine the components of  ands well as the components of its moment about O since it is an inclined force in the space.
The direction vector   of  has the following components and magnitude:


The position vector is  which allows usthis leads to the determineations of the scalar components of the vector moment as follows:

Applying the equations of equilibriumequilibrium equations (2.38)–-(2.43) gives:






Finally, replacing F by its value in the second and third equations of equilibriumequilibrium equations, one gets: Oy = 0 and Oz = 2 kN. The negative sign in MOy and MOz means that they act practically in the opposite sense to the right-hand rule. 
Application 2.20. The arm AB pinned at A and supported by a fixed sliding collar at B is loaded as shown in figureFigure 2.85. Discuss the stability status of the arm and suggest suitable modification(s) to render it determinate in case it is not. Calculate the reactions in that case.
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Figure 2.85 2D loaded arm supported by a pin and a fixed collar.
Solution 2.20. Figure 2.86 shows the free body diagram where with the four reaction components appear. The number offour unknowns, i.e. four is exceedingis greater than the number (three) of equations of equilibriumequilibrium equations, i.e. three. However, the structure is not definitely stable indeterminate. An irrelevant inappropriate arrangement of the bearings might lead to an instability. One has tomust apply the three equations of equilibriumequilibrium equations to pick upreach a conclusion:.
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Figure 2.86 FBD of the 2D arm.
The second equationequation has led to the determination of Ay. The two other equationequations are satisfied for an infinity of options for Ax, Bx , and MB. This We thus concludes that the structure is stable and indeterminate. A modification of bearing(s) should induce lead to the removal of one of those three unknowns. The simplest solution is the replacement of the pin by a roller at A , which removes the components Ax. From the first equationequation one gets Bx = −-16.5 kN (meaning that Bx acts practically from right to left). The third equationequation gives MB = −-1.25 kN.mN m; similarly, the negative sign means that this couple acts in the clockwise sense of rotation.
Application 2.21. Beam AB is supported by a pin at A and a roller at B and is loaded in the plane, as shown in figureFigure 2.87. Verify that the alternative set of equations of equilibriumequilibrium equations based on the nullity of three resultant moments about three points lying on the beam does not lead to the determination of reaction forces determination.
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Figure 2.87 Loaded beam supported by a pin and a roller.
Solution 2.21. The FBD of the beam is shown in figureFigure 2.88, where the pin A exerts two reaction components Ax and Ay  while the roller B exerts only one (By.).
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Figure 2.88 FBD of a loaded bemam in the plane supported by a pin and a roller.
Trying to find the three unknown reaction forces, apply the moments equilibrium about A, M, and B:



One can remark that tThis set of equationequation iwas not helpful at for determining Ax. IndeedIn fact, the three chosen points belong to thefall all on a same straight line. The second and third equationequations have lead to the same result. However, by choosing any other point not onout of the beam (for instance a e.g., point C 0.5 m above the point A by 0.5 m )vertically one calculates:
 
One can remark now that tThe three components of the reaction forces are now fully determined. This latter component could have been found also by applying equationEquation (2.43).
Self-Check Questions
1. Specify if whether the following statement is True or False and justify your answer.
When a rectilinear bar is supported by two pins, it is automatically stable indeterminate. True, since two pins generate four reaction components, two vertical and two horizontal,; those that can certainly balance the three equilibrium conditions in the plane.

2. Specify if whether the following statement is True or False and justify your answer.
A rigid body supported by six cables in the space is certainly in static equilibrium since because each cable induces exerts a reaction force, and; six reaction components are suffice enough to establish the equilibrium. False since because all those cables may be parallel between themselves or all of them intersecting at a single point, this will not prevent motion in all directions.

3. Choose the correct answer
a) A bulb hung vertically from the ceiling by its electrical cable has the following status:
       Stable determinate
       Stable indeterminate
       Unstable equilibrium    

       Completely unstable  

b) The type of support that might be used alone to hold a body in static equilibrium is:
       Ball and socket
       Hinge
       Single thrust bearing
       Fixed support

4. Complete the following sentence
A shaft supported by two single- thrust bearings is supported by ten reaction components. Its equilibrium status is stable indeterminate.
Summary
A free free-body diagram (FBD) is a schematic representation of an idealized solid with showing all the forces applied exerted onin it.
When a force is applied on to a rigid body and separated from an axis point by a distance known as the arm, the force develops creates a moment about this axis. Also, a moment is created by two equal and, parallel forces of the  and opposite forces sense separated by an arm; this is known as a couple. A moment is represented by a vector determined from the cross product between the position vector ‘’“axis of rotation –line of force line’’” and the force itself. 
The equilibrium conditions of a rigid body are expressed mathematically by a set of six equationequations for a rigid body in the space: , , , ,  and . For a particle’s equilibrium, only the first three equationequations apply. 
Externally, the active applied forces are balanced by another system of external forces named reactions,; those which are developed by bearings or supports mounted on the rigid body to hold it in equilibrium. A bearing may exert one to six components of reaction force in the space (i.e., one to three in the plane), depending  upon its type. To satisfy the six equations of equilibriumequilibrium equations, the total number of reaction-force components must be at least six, so thus  appropriate bearings should hold the rigid body. In addition, they should be located inbe arranged in an appropriate manner such that their reactions prevent all motions. In that case, the structure is said to be stable. When a rigid body may move along any direction it is said to be unstable. A statically determinate structure is a stable structure where all the reaction forces of exerted by its supports are determined exclusively from the equations of equilibriumequilibrium equations.  A statically indeterminate structure is a stable structure having with the number of reaction forces exceeding the number of equations of equilibriumequilibrium equations. 













Unit 3 –Planar Trusses

Study Goals

On completion of this unit, you will be able to …

… identify a simple and compound truss;.
… determine the internal forces in the bars of a truss using the method of joints;.
… determine the internal forces in the bars of a truss using the method of sections;.
… calculate the nodes displacements in a truss using the theorem of virtual works.



3. Planar Trusses
Introduction 
After studying in details the equilibrium of particles and rigid bodies, which are considered as “‘‘single-one component”‘‘ solids, the coming next step deals with the equilibrium of structures. A structure is a solid body made of several components or parts connected together (Beer et al., 2012). A special type of structures known as a truss will beis the topic of the actual present unit; this type is known as truss. A truss is a solid structure “‘‘composed of straight slender members”‘‘ (Gross et al., 2013, p.153). Each member is known as a bar and the points of where bars are joineding are known as nodes or joints. A bar is then thus a segment joining two nodes. In an ideal truss, all joints are considered as frictionless pins and all external forces are applied on at the joints. In some real cases, when the loads are applied on the bars, the problem could be mathematically converted to a joint-loaded truss. However, this latter case is out ofbeyond the scope of thise current unit.A sslender member: is a member is classified as slender when its length is much greater than its lateral dimensions.

Practically tTrusses are useful in many applications such as supporting the roof panels of warehouses or hangars, supporting bridges‘ floors supports, or supporting ceilings in football stadiums. Globally theose are spatial trusses (3D3D trusses) that are composed of many 2D2D “‘‘sub-trusses”‘‘ or planar trusses. Consequently, the study of an entire spatial truss consists in studying of a series of planar trusses forming the whole spatial trusse; for this reason, this unit considers only planar trusses will be exclusively considered in the present unit. 
One particular type of trusses will beis studied herein, namely, the: triangular truss. Besides the determiningation of the support reaction forcess exerted on the a loaded triangular truss, one we will determine the internal forces developed generated within the bars of the truss by applying two different methods: the method of joints and the method of sections. Finally, the displacements of the nodes of a triangular truss will beare evaluated by applying the Theorem of Virtual Works.
Simple Triangular trusses
Concept
A truss is said to be triangular when the joint bars form between themselves a multitude of interconnected triangles. Figure 3.1 shows the upper structure of a metallic bridge across the Keya Paha River in Nebraska; the structure which consists of a 3D3D truss that can be subdivided into many numerous 2D2D trusses, such as the planar truss ABCDE composed of the two interconnected triangles ABC and CDE. Thus,  hence ABCDE is a triangular truss.
[image: ]
Figure 43.1 Triangular planar truss making up part of a whole spatial truss of a bridge.
Figure 3.2 represents shows a simplified spatial truss of a roof,. It which consists of many interconnected planar wooden trusses connected together. By observing namely tThe planar truss ABCDE one can remark that it is formed by connecting triangles ABE, BEF, BDF, and BCD together. In consequence, the structure ABDCE is a planar triangular truss. 	Comment by Author: These are not exactly triangles. You may wish to comment on this point.
In both cases, wWhen the an entire spatial truss is loaded (by weights or persons or cars crossing the bridge, for instance, in the case of figureFigure 3.1, or by the weights of covering panels resting on the truss to complete the roof in the case of figureFigure 3.2), this the load will beis transmitted to through each of the planar trusses composing the whole truss and this through the pins at the joints connecting the bars together.
[image: ]
Figure 3.2 Triangular planar truss part of a whole spatial truss of a roof.
Two types ofA triangular trusses consists of two typesexist: a simple truss and a compound truss. Those We will be detail each belowed in the coming lines.
Simple truss
A simple truss is a particular triangular truss constructed as followsing: the basic structure begins by with a stable triangle denoted ABC, i.e. i.e., three bars and three nodes joinedt two by two. The second step consists in joining to to the two nodes of this triangle, say B and C, two bars connected themselves by a common node D, say BD and CD. The next step consists in joining to the nodes of the entire formed structure ABCD, say B and D, two bars connected themselves by a common node E, say EB and ED. This step is repeated as many times as desired. The final structure constitutes a simple truss.
Figure 3.3 illustrates a simple truss constructed as explained in the previous linesabove. Ten triangles are superimposed joined in the plane and connected through via pins to form the entire simple truss ABCDEFGHIJKL. This truss involves 12 nodes and 21 bars. 
Like any rigid body, a truss is supported by bearings, namely pins, rollers, and rockers, at any some ofof the nodes. Th; thoese bearings are different from internal pins that are joining the bars between themselves at the nodes. In figureFigure 3.3, the entire truss is supported by bearings at nodes A and L. 
[image: ]
Figure 3.3 Simple truss.
We nNow establish, a general relationship will be established between the number of nodes denoted by n of nodes and the number of bars denoted by b of bars in a simple truss. The idea is to count the number of nodes and bars involved in each step of the construction of the truss.
In step 1, the process starts with a triangle, which has three hence 3 bars and 3three nodes.
In step 2, the process adds two2 bars and one1 node.
SThis step 2 is repeated (n −- 3) times in order toto reach obtain a total number n of nodes.
The total number of bars becomesis: b = 3 + 2(n −- 3); by rearranging one we gets:
                                                                                                             (3.1)
Equation (3.1) represents is a necessary but not sufficient condition stating thatfor the truss in question isto be a simple truss. This idea is emphasized by returning back to the simple truss of figureFigure 3.3 which exhibits has b = 21 and n =12 meaning , which satisfiesthat equationEquation (3.1) is verified. However, this result does not confirm that the present truss is simple. To assure the existence of athat a truss is simple truss, one shouldwe must check up if the construction process matches that of a simple truss. A counter-examplecounterexample resides is obtained in the same truss of figureFigure 3.3 by removing the bar GI and adding a bar DF. This would not change the total number of nodes and bars, so  and thus equationEquation (3.1) remains satisfied  howeverbut the truss is not anymoreno longer a simple truss since its construction does not follow the construction rule of construction of a simple truss. A: arriving at the stage ABCDEG, node F is connected to this latter structure by three bars instead of two: FE, FD , and FG.
Compound truss
A compound truss is a category of triangular trusses consisting of many simple trusses connected between themselves. Each two pair of simple trusses involved in a compound truss could may be connected in two methodsways:
Method 1: Consider two simple trusses (ST1) and (ST2). This methods consists in putting in common a node of (ST1) with a node of (ST2) and then joining another node of (ST1) to another node of (ST2) by a bar that does not pass through the node that was put in common.
Method 2: Consider two simple trusses (ST1) and (ST2). This methods consists in joining two by two the, three distinct nodes from (ST1) to the three distinct nodes from (ST2) by three different bars that are neither parallel nor intersecting at a single point.
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Figure 3.4 Compound trusses constructed with methods (a) 1 and  (a), method(b) 2 (b).
Figure 3.4(a) illustrates a compound triangular truss ABCDEFG supported by a pin at A and roller at G constructed using method 1. In fact, structures ABCD from one side and DEFG from another part representare two simple trusses. Those and are joinedt by thea common node from both simple trusses which is D and thea bar BF not passing through D and joining node B from the first simple truss ABCD to node F from the second simple truss DEFG.
Figure 3.4(b) illustrates a compound triangular truss ABCDEFGH supported by a pin at A and a roller at G constructed using method 2. In fact, structures ABCD from one side and EFGH from another part representare two simple trusses and . Those are jointed by (i) a bar BF joining node B from the first simple truss ABCD to node F from the second simple truss DEFG, a (ii) bar DE joining node D from the first simple truss ABCD to node E from the second simple truss DEFG , and (iii) a bar CH CH joining node C from the first simple truss ABCD to node H from the second simple truss DEFG. Theose three bars are neither parallel between themselves nor intersecting at a single point.
Now, a general relationship will be established between the number n of nodes denoted by n and the number of bars denoted by b of bars in a simple truss. The idea is to count the numbers of nodes n1 and n2 of nodes and n2 and the numbers bars b1 and b2 of bars involved in each of the two simple trusses (ST1) and (ST2) , respectively, and add to them the number of items used for joining. 
Applying equationEquation (3.1) to (ST1) and (ST2) gives : b1 = 2n1- − 3 and b2 = 2n2- − 3
Method 1: n = n1 + n2 −– 1 (since a node from each is brought in common) and 
b = b1 + b2 + 1 = (2n1- − 3) + (2n2- − 3) + 1 = 2(n1+ + n2- − 1) −- 3 = 2n −- 3.
Method 2: n = n1 + n2 
b = b1 + b2 + 3 = (2n1- − 3) + (2n2- − 3) + 3 = 2(n1+ + n2) −- 3 = 2n −- 3.
In conclusion, for a compound truss, and regardless of the method of construction,:
                                                                                                             (3.2)
It is a similar condition as a simple truss and is , which also a necessary but not sufficient condition to getfor a compound truss.
Two-force and zero-force members
A truss can be loaded at any of the nodes in the plane;, the reactions of the supports would keep the truss in static equilibrium because, a; at this stage, one is dealing with external forces. The forces applied on at the nodes will be transmitted to the bars of the truss, which are all components of the same structure, so and therefore the forces developed in the bars are internal forces. Those would not appear in any free-body diagram FBD unless a virtual section is applied and a portion of the truss is isolated and its relevant FBD is plotted.
The coming lines are devoted toWe now prove that the internal forces developed in a bar act undoubtedly along the line of the bar, meaning that the internal forces is constitute an axial force (i.e., directed along the longitudinal axis of the bar). Since the whole truss is in static equilibrium, each component or portion from of this truss is obviously in equilibrium, namely, any selected and isolated bar.
Consider a bar AB picked upchosen from a truss in equilibrium, so  hence AB itself is in static equilibrium. Since a truss is loaded at its joining pins, the FBD of the rigid bar AB consists of forces applied at the nodes A and B that , which are pins. It is known that pins develop generate a force of arbitrary direction in the plane having an arbitrary direction. The forces applied by the pins A and B onat the bar AB are denoted respectively by   and  having , with each having its own direction in the plane. This is illustrated in figureFigure 3.5.
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Figure 3.5 FBD of an isolated bar from a truss.
Applying equations of equilibriumequilibrium equations (2.38), (2.39), and (2.43) on the bar AB gives:



This also means that also FB = 0 , which leads to zero forces, meaning that the truss is unloaded which is absurd false since the problem has startsed with a loaded truss. To satisfy the latter equationequation for an existing force FA (and thus FB), the line of this force must pass through B and hence so FA   must act along the bar’s line AB. To satisfy the two other equations of equilibriumequilibrium equations, FB must also act along the line of AB, and also being opposite in sense and equal in magnitude to FA.
One can then conclude that any bar of a truss is subjected to two axial forces, acting along the direction of the bar, opposite in sense and equal in magnitude. Hence, each member of a truss in is named called a two-force member. The unified notation of a force along a bar consists of an index denoting the name of the bar:   . Tthis could either pull on the bar, applying a tensile effort, or push on the bar, applying a compressive effort. This is schematized in figureFigure 3.6.
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Figure 3.6 Two-force member under either tension or compression.
It is worth to noticeNote the following:
· An internal force acting within a bar is an algebraic quantity: a tensile force iscounted positive while whereas a compressive force is counted negative.
· Since the force acts along the bars and since the lengths and inclinations of all bars are known, this implies that the directions of all forces in along all bars are known. Only their magnitudes are unknown. In other words, each bar generates one unknown that must satisfy the static equilibrium condition.
· By default, each force within a bar is considered as tensile force (outward from the member) in the FBD. Once calculated from the equations of equilibriumequilibrium equations, the signs of the values result indicates the true sense: when a positive result indicates that the force is tensile (as drawn by default in the FBD) while whereas a negative result indicates that the force isit is compressive in the case of negative sign.
In some special cases, couple of members might be free from any load, in that which case they are known as zero-force members. However, thoese members are helpful in increasing the stability of the structure.
Case 1: When exclusively only two bars intersect at one a given node and in addition this node is free from any external force (neither active nor reactive), those two bars are zero-force members.
Case 2: When exclusively three bars intersect at one a given node, two and two ofamong  them are collinear and in addition theis node is free from any external force (neither active nor reactive), those non- collinear bar is a zero-force member.
Theose two cases are illustrated in the example of figureFigure 3.7. Figure 3.7a shows a simple truss ABCDEFG supported by a pin at A and a roller at E and subjected to external loading  and  at joints F and D , respectively. One can notice thatN node G satisfies the conditions of case 1 for the zero-force member while node C satisfies the conditions of case 2. Their respective FBDs are depicted in figureFigures 3.7b and 3.7c. It should be noticed thatT the forces shown represent the action of each relevant bar on the node, trying to “‘’pull”’’ on the node. Thus, hence as per Newton’s third axiom, the node also is pullsing in its turn on the bar. All forces are thus considered tensile by default.
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[bookmark: _Hlk101716091]Figure 3.7 (a) Simple truss under external loading (a), (b) FBD of joint G (b), (c) FBD of joint C. (c)
It is obvious thatA a joint is considered as a particle, so  and thus two equations of equilibriumequilibrium equations preventing translation along xx and yy are tomust be satisfied.
Joint G:


The latter results show that the forces in the bars GF and GE are zero; in other words, i.e. , theose bars are zero-force members.
Joint C:


The latter results show that the force in the bar BC is zero;, i.e. in other words, this bar is a zero-force member.
Designing a truss denotes involves determining the forces developed within the bars that compose this truss. However, theose forces are internal and acting between the joining pins and the different bars. To let those internal forces appear one should isolate each component, apart and draw the relevant FBD, and then apply the equationequations of static equilibrium in order toto determine the forces developed in the members.
There are two methods followed available to determine the unknowns in the members: the method of joints and the method of sections. Theose will be developed in the coming sections.
Self-Check Questions
1. Specify if the followingwhether the following statement is True or False and justify your answer.
A truss consisting of 11 nodes and 19 bars is certainly a triangular truss. False; despite the relation b = 2n −– 3 is being satisfied, those bars may be arranged in another way thanso that generating the truss is neither aan either simple nor a compound truss.
2. Choose the correct answer.
A triangular truss ABC is pinned at A, supported by a roller at B and subjected to an external concentrated force at C.
       AB is a zero-force member   

       BC is a zero-force member
       AC is a zero-force member
       No zero-force members
3.2 Analysis using by method of joints
This method consists in isolating each joint of the entire truss in static equilibrium and drawing its FBD, which includes obviously the active forces, reactive forces, and forces applied by the bars on this the given node which are no other than the forces developed generated in the bars (applied by the pin joints on the members according to the principle of action and reaction). A joint is modeled as a particle. In the plane, the following two equations of equilibriumequilibrium equations are to be applied on to eacha particle, (i.e. i.e., to eachon a joint):
                                                          		                      (3.3)
                                                          		                      (3.4)
For a truss having with n joints, this set of equationequations iswill be applied n times in order toto determine all the unknowns whose number is equal to the number of bars b of bars. However, the types of scope of trusses types in the actual discussed hereindocument is are limited to simple and compound triangular trusses, where thea determined relationship between b and n exists is given by Eaccording to equationquations (3.1) and (3.2). In fact, the equationEquations (3.3) and (3.4) applied for to n joints generate 2n equationequations, which helpsing to solve b + 3 unknowns as per equationEquations (3.1) and (3.2). Given and knowing that the bars number ofhave b unknowns exhibited by the bars is b,, the three remaining unknowns will be indeedare the external reactions of the supports holding the whole truss in static equilibrium. It is worth to remindRecall that, in thea planar case, and to satisfy a globally statically determinate structure, the total number of reaction components must be total three, and, to avoid instability, those should be neither parallel between themselves nor intersecting at a single point in order to avoid instability. In other words, those 2n equationequations indirectly involve indirectly the three equations of equilibriumequilibrium equations of the whole truss counted as a rigid body and . Those wwould be used to check the values of the reaction forces that have already been already delivereddetermined by the 2n equations of equilibriumequilibrium equations of for the joints. Generally, trusses are supported by pins, rollers, and rockers.	Comment by Author: Please ensure that the intended meaning is maintained.
To simplify the calculations as possible and since because each set of equationequations (3.3) and (3.4) allows calculating two unknowns to be calculated, it is advised toone should start by selecting joints exhibiting with two unknown forces in two bars to avoid dealing with unknown quantities when going from onea joint to another.
Application 3.1. For the truss ABCDEFG of figureFigure 3.7a, consider P1 = 20 kN and P2 = 10 kN inclined by 30° fromwith the vertical, AC = BC = CD = DE = EG = EF = 1 m. Determine the forces developed in the bars of the truss.
Solution 3.1. From figureFigures 3.7b and 3.7c, bars BC, GE , and GF are zero-force members. Since all the joints A, B, D, E, and F exhibit have more than two unknowns (including the reaction forces at A and E), we it is worth in that case to determine the reaction forces at the supports A and E from based on the equilibrium of the whole truss (figureFigure 3.8), and, then move touse the method of joints. In thisat case, the equationequations that remain from for the last joint will beare used for checkverification.
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Figure 3.8 FBD of the whole truss ABCDEFG.
Equilibrium of the entire truss:




The next step consists of isolating each joint and then drawing the relevant FBD starting with joints exhibiting only two unknowns. Joint A is a good option to start with since Ax and Ay are now known, the only two unknowns that remain are the forces in members AB and AC. Then Mmoving then to joint C, we one can calculate the force in member CD. At this stage, joint B seems a suitable choice since the remaining unknown forces in bars passing through B are those in BD and BF. Joint E will be theis tackled next one to be tackled to find the forces in members EF and ED. The last remainingfinal member is DF; any joint between D and F is suitable; the remaining equationequations will beare used to check verify the problem’s resultsanswers. It should be noticedNote that the inclined members are the hypotenuses in of isosceles right-angle- triangles, meaning that they are inclined by 45°. Tensile forces will beare denoted by (T) while and compressive ones forces are denotedby ( C).
Joint A:
[image: ]
Figure 3.8a: FBD of joint A.
 (compressiveC),
 (tensileT).
Joint C has been treated in figureFigure 3.7c which gives: (tensileT)
Joint B:
[image: ]
Figure 3.8b: FBD of joint B. B
 (tensileT),
 (compressiveC).
Joint E:
[image: ]
Figure 3.8c: FBD of joint E.
, 
 (compressiveC).
Joint F:
[image: ]
Figure 3.8d: FBD of joint F
 (tensileT).
Now aAll forces are now determined, and; three equationequations remain for to be checkeding: the second equationequation of equilibrium for joint F and two equationequations for joint D. As stated earlier, one we could have applied the equilibrium condition to all seven joints to calculate the forces in all members and also the three reactions at the supports and then used the three equations of equilibriumequilibrium equations of the entire truss for checkingverification;, however, this choice in the present application would have complicated the calculations.
The second equationequation of equilibrium applied at joint F gives:
 (Checkedverified).
Joint D:
[image: ]
Figure 3.8e: FBD of joint D
 (Checkedverified),
 (Checkedverified).
Application 3.2. Determine, usingUse the method of joints to determine, the forces in all the members of the truss ABCDEF shown in figureFigure 3.9 supported by a pin at A and a roller at B.
Solution 3.2. The truss ABCDEF consists of two simple trusses ABF and CDE jointed together by three distinct bars AD, EF, and BC joining three distinct nodes from ABF to three distinct nodes from CDE, and those bars are neither parallel between themselves nor intersecting at a single point, so hence the entire truss is a compound truss. Resting Given that the structure rests on supports exhibiting with three reaction-force components that are neither parallel nor intersecting at a common point, the structure is globally stable determinate.
[image: ]
Figure 3.9 Planar compound triangular truss supported by a pin and a roller.
Noticing that jJoint E has no is free from any external loading and being is a node of intersection of only three bars, where with two among them are being collinear (CE and EF), so th; the member DE is thus a zero -force member:  and . In the light of this result, joint D is now showing has only two unknowns, namely,  that are the forces in AD and CD.
Joint D:
[image: ]
Figure 3.9a: FBD of joint D.
 
 (compressiveC).
Since AD = CF = 6 m and are parallel, this means that AFCD is a parallelogram, so and thus AF = CD = 5 m. In addition, the height FF’′ of the triangle AFB is equal to AD – EF = 3 m and having AF = 5 m, whichthis gives according to the Pythagorean formula in the triangle AFF’, AF′’ = 4 m. Thus, hence  F′’ is the midpoint of AB. One We concludes that F′’B = 4 m. In addition, CF′’ = 9 m, which  this means that the angle  between (CF′’) and (BC) is calculated from the trigonometric relationship in the right angle triangle BCF′’:

Joint C:
[image: ]
Figure 3.9b: FBD of joint C
 (compressiveC),
 (tensileT),
 (tensileT).
Joint F:
[image: ]
Figure 3.9c: FBD of joint F
 
 (tensileT).
Joint B:
[image: ]
Figure 3.9d: FBD of joint B.
 (compressiveC),
. 
Joint A:
[image: ]
Figure 3.9e: FBD of joint A.
, 
. 
Now that all forces in all members as well asand the reaction forces of the supports are determined, the three equations of equilibriumequilibrium equations of the entire truss will beare used to check the answers found for Ax, Ay , and By:
 (Checkedverified),
 (Checkedverified),
 (Checkedverified).
Self-Check Questions
1. Choose the correct answer
For a simple triangular truss ABCDEFGH loaded at a couple of its nodes supported by one pin and one roller, the number of equationequations needed to determine and check all the unknowns is: 
       11                   13                        16                      19 
    
 
 


2. Complete the following sentence:
Consider an equilateral triangular truss ABC, supported by a pin and a roller respectively at A and B, respectively, and subjected at node C to a vertical downward force of 22.5 kN. The forces developed in members AB, BC , and AC are respectively: +6.5 kN (tensileT),; −-13 kN (C) and −-13 kN (compressiveC).
3.3  Analysis using method of sections
This method consists in “‘’splitting’’” the truss into two portions by applying a virtual cut at a region involving purpose members needed to be designed. Figure 3.10a illustrates a section m-m passing through a couple ofseveral members of a loaded truss. 
[image: ]
Figure 3.10 (a) Section m-m through truss in equilibrium (a), and (b) an i Isolated portions (either left or right). (b)
By keeping continuing to apply forces (i.e., active and reactive) to one of the two portions (either left or right) with the external forces applied (i.e. active and reactive) and removing the other portion, the forces developed generated in the sectioned bars will appear in the FBD of the isolated portion, as shown in figureFigure 3.10b. T; theose forces represent the action of the removed portion on the isolated kept portion retained, so and thus the forces in those bars are responsible of for balancing the remaining external forces applied on to the isolated kept portion portionretained. In other words, those forces in the members are calculated by applying the equations of equilibriumequilibrium equations on to the isolated portion. It is obvious that aGiven that a portion of a truss is modeled as a rigid body,  and consequently three equations of equilibriumequilibrium equations will beare applied:
                                                          		                      (3.5)
                                                          		                      (3.6)
                                                          		                      (3.7)
In equationEquation (3.7), A could be any point in the plane, either a physical point belonging to the isolated portion or any other arbitrary point. This original set of equationequations (3.5) – (3.7) could be replaced by any other alternative set of equationequations, such as like replacing one of equationequations (3.5) or (3.6) by a sum of moments about another point B such that line AB is not perpendicular to the direction x if equationEquation (3.5) is kept or to the direction y if equationEquation (3.6) is kept. In addition, both equationEquations (3.5) and (3.6) could be replaced by two sums of moments about two distinct points B and C in the plane such that A, B , and C do not belong lie onto the same straight line. All in all, this method allows the solving three equationequations to be solved per for each section, hence so it is advised toone should select an appropriate section passing through three unknown bars to avoid keeping unknown values for the coming sections.
It should be noticed thatNote that, in the FBD of the isolated portion, the senses of the forces in the members are drawn by default as tensile (i.e., out of the member). After If the calculations  are donegive, a positive value, means that the force acts  in reality inin the sense drawn on the FBD, (i.e. i.e., a tensile force), whereas while a negative value means that the force acts opposite to the drawn sense drawn on the FBD, (i.e. i.e., a compressive force).
Finally, upon depending on the geometry of the truss and the loading case, it might be found reasonableone might  to mixcombine between the methods of joints and sections to determine in the easiest and shortest way the forces in the members.
Application 3.3. The truss ABCDEFG pinned at A and supported by a rocker at G is loaded at its nodes C, D , and F as shown in figureFigure 3.11. Determine the forces in members BD, BF , and DF using the method of sections.
Solution 3.3. It is obvious thatT the truss in question is a simple triangular truss noticed by following up its way of construction. Moreover, it is supported by three reaction components that are neither parallel nor concurrent at one point, so  hence the structure is globally stable determinate. Figure 3.12 shows tThe FBD of the entire truss is depicted in figure 3.12. First, the reaction forces at the pin and rocker are calculated by the three equations of equilibriumequilibrium equations in the plane:
[image: ]
Figure 3.11 Simple truss ABCDEFG supported by a pin and rocker.
[image: ]
Figure 3.12 FBD of the entire truss with two sections a-a and b-b.




Since Given that a unique section cannot pass by through the three desired targeted members, one findswe reasonable to perform consider two sections a-a passing through members BF, BD , and CD and b-b passing through members BF, DF, and DE.
Section a-a: The left portion is chosen to be isolated. The relevant FBD is illustrated shown in figureFigure 3.13 and showsing three unknown forces. However, it is requestedwe are asked to determine the forces in two members among of those three (the force in CD is not requested), meaning that it is not necessary to apply the whole all three equations of equilibriumequilibrium equations of the isolated left portion.
[image: ]
Figure 3.13 (a) Isolated left portion from cut a-a of Figure 3.12 and (b) i(a), Isolated right portion from cut b-b of Figure 3.12. (b)
Since the lines of action of  and  pass through point D, it wouldwe could be suitable to sum the moments of the forces about point D which helps atto determineing   automatically. Moreover, since  and  are horizontal (parallel to the xx-axis axis), by we directly calculate FBD by summing forces along the yy-axis axis, one calculates directly FBD:.
 (compressiveC),
 (tensileT).
Section b-b: The right portion is chosen to benow isolated. The relevant FBD is illustrated shown in figureFigure 3.13 b and showsing three unknown forces. However, it is requested towe must determine the forces in only one member among of those three members (the forces in DE is are not requested, and we already know the force in BF already found), meaning that it iswe need not necessary to apply the allwhole three equations of equilibriumequilibrium equations of the isolated right portion. Since  and  are horizontal (parallel to the xx-axis axis), we directly calculate FDF by summing the forces along the yy-axis axis, one calculates directly FDF.
 (tensileT).
Self-Check Questions
1. Specify if the followingwhether the following statement is is True or False and justify your answer.
A section passing through three parallel bars within a truss means that this truss is unstable by construction. True since the FBD of an isolated portion gives three unknowns that are all parallel. Ifn case  the external loading on the isolated portion contains one non parallel force to those three unknowns, this external force could not be balanced by none any of those three internal parallel forces.
2. Specify if the followingwhether the following statement is True or False and justify your answer.
The method of joints is a particular case of the method of sections. True; instead of cutting within the entire structure and isolating rigid body portions, the method of joints means practically that the cut is around a node. T, the isolated part in thisat case is a node, which is at the end a part of the entire truss.
3.4 The Principle of Virtual Work
Fundamental cConcept
The Theorem of Virtual Works has beenwas initially established initially in order toto determine the displacements and the slopes developed at any point of a deformable body under any external loading (Hibbeler, 2011). A particular application of this principle to trusses consists in evaluating the displacements developed generated at any selected node once with the truss is subjected to an certain external load.
First, the principle of Virtual Works will be established for a general deformable solid, following which then it will be applied to trusses.
It is worth to remindRecall that, in Mechanics, any force that performs acts over a displacement develops performsa work (denoted by U ) that equals to the product of the force by and the displacement (i.e. i.e., . The unit of the work in SI units is jJoules (J) for when thea force is in nNewtons (N) and the displacement in meters (m). 
Consider a deformable solid of an arbitrary shape in static equilibrium, supported by a ny type of bearing,s and subjected to a series of forces  ,  , , … ,  ,  as shown in figureFigure 3.14a. An arbitrary point A is selected and one iswe are interested into determininge the displacement  of the point a A in a the desired direction caused by the application of this series of forces. This displacement will appear in the calculations through the work developed at A. However, a work involves both force and displacement (which is the unknown of the problem). Since no real force is applied at point A, the idea is to remove virtually the series of real applied forces and then apply at point A a virtual external force  having the same desired direction of the displacement  and a unit magnitude; equal to 1; its sense could be either inward or outward. The right sense will beis determined at uponby the sign of  once the results from the calculated. Since the magnitude of the virtual force  is 1has unit magnitude, it is called also a unit force; the unit of this force is the same as the real forces  ,  ,  , … ,  (N; kN; MN; …). After applying , the series of real forces will be applied again, inducing this time the displacement  at A but also at  applied at A. The displacement  of due to  will developgenerates a the virtual external work Uext = P′’⋅   = 1⋅ .
[image: ]
Figure 3.14 (a) Deformable body in equilibrium under subjected to n external forces. (b) (a), Virtual unit force applied at a point of on the body. (b)
Consider an internal fiber of initial length L0 before the application of the a real loading. Once the a series of forces is applied, like any point of in the solid, this fiber will displace (either elongateion or shortening) by an amount denoted by  . Once the real loading is removed and the external virtual unit force is applied at A, an internal virtual force  will be developedis generated at in the internal fiber of the body, as shown in figureFigure 3.14b. To sum up, figureFigure 3.14a is showsing real displacements, either external () or internal ( ), created by the external real external loading  ,  , , … ,    whileand figureFigure 3.14b shows virtual forces; either the external unit force  or the internal virtual force .  After application of , the real loading  ,  , , … ,  is now applied, which develops generates the external virtual work Uext as stated earlier. Internally, the virtual force  is displaced by  due to the application of the real loading, which will develops an internal virtual work denoted by ui = p⋅ . The total internal work Uint is the sum of all internal works developed inon all internal fibers forming the solid, so and hence .elastic solid: solid body that absorbs energy under a certain loading and then releases it back in totality without losses once the loading is removed.

Finally, for an ideal elastic solid where no loss of work occurs, once may apply the conservation of energy between internal and external work. By equating Ue Uext and Ui Uint, one obtains the principle of virtual works as follows:
                                                          .		                      (3.8)
In some references, the principle of Virtual Works is named calledalso  the principle of Virtual Forces, since, in practice, those virtual works involves virtual forces, while whereas the displacements are real.
A positive (negative) sign of the calculated real displacement  indicates that it acts is in the same (opposite) sense as the applied unit virtual unit force while the negative sign indicates that the point displaces opposite to the sense of the unit virtual force.
Axial dDisplacement of a rRod
The internal fibers in the deformable solid, represent indeed a multitude of parts that form the entire solid. For a truss, theose are identified as the connected members or the bars connected together. CIn consequentlyce, the terms pi  in equationEquation (3.8) are no other than the virtual axial forces developed generated in all the members of the a truss under a unit force applied at the node in question; thoese are determined by either by the method of joints or by the method of sections. Since  is the final unknown, the remaining step resides in determining the real internal displacements j , (i.e. i.e., the axial displacements developed generated in the members under the real loading applied on to the truss). According to the theories eElastostatics theory, a uniform rod subjected to an axial force (either tensile or compressive) could may be simulated as a linear spring of stiffness k subjected to the same force, as illustrated in figureFigure 3.15. According to Hooke’s law, the axial deflection L of the extremity of a linear spring subjected to an axial force F is determined by: stiffness: physical property designating the amount of force needed to cause a unit of displacement along the line of action of the force.

. 
[image: ]
Figure 3.15 Uniform rod under axial force modeled by a linear spring.
The stiffness k of a uniform rod depends on the type of material from which the rod is made and alsoand on the geometry of theis rod, as. It is given by the equationEquation (3.9). H however, the proof of this equationequation is a topic of eElastostatics field, which goes beyond the scope of thise actual textbook. The stiffness is given by
                                                                       		                      (3.9)
where:
 k: (N/m) is the stiffness of a theoretical linear spring simulating the physical rod,  (N/m)
E: is the modulus of elasticity characteristic of the material and representinggives physically the amount of axial pressure needed tothat must be applied until to reaching (theoretically) a unit of relative displacement of the rod (i.e. i.e., to reach L = L0). E is also known as Young’s modulus (named after the British scientist Thomas Young) and is expressed in pPascals (Pa). For example, the Young’s modulus of steel material is 200⋅  × 109  Pa, and; aAluminum has a Young’s modulus of 70⋅ × 109 Pa.
 A (m2): is the area of the cross- sectional area of the uniform rod (m2). The cross section is the 2D2D shape obtained when virtually cutting virtually the rod perpendicularly to its longitudinal axis. For example, the cross section of a cylindrical rod is a circle; the cross section of a prismatic rod is a rectangle. Finally, 
L0 (m) is: the initial length of the rod before applying the axial force (m).
Application to trusses
Identifying each member of a truss as a uniform rod, L is no other than thea displacement j in the equationEquation (3.8) while and F is the axial force developed generated in the bar due to the real load applied toon the truss. Combining Hooke’s law with equationEquation (3.9), the axial displacement j  for each bar (j) is calculated by:
                                                                       		                      (3.10)
Finally, replacing using equationEquation (3.10) in equationEquation (3.8) one getsgives the principle of Virtual Works applied to a truss and allowing at findinggives the displacement of any node along a desired direction:
                                                          		                      (3.11)
wWhere:
  (m) is the r: Real displacement of the node in question along the desired direction under the real external load applied on to the truss (m), .
b is the : total number of bars in the truss,.
 fj is the: virtual axial force (N) developed generated in the bar (j) due to the virtual unit load applied on at the node in question along the desired direction, . (N)
Fj is the: real axial force developed generated in the bar (j (N)) due to the real external load applied toon the truss (N), .
L0j: is the length of the bar (j) (m), .
Ej is: Young’s modulus of the material forming the bar (j) (Pa), and.
 Aj is the : Area of the cross -sectional area of the bar (j) (m2).
Application 3.4. Determine the vertical displacement of the node D of the truss shown in figureFigure 3.11. All bars have a 12-mm-diameter circular cross section of 12 mm diameter and are and made from steel of with a Young’s modulus of 200 GPa.
Solution 3.4. For the truss of figureFigure 3.11, many values are have already been calculated in application 3.3 due to the real loading applied on the truss, namely,: 
Ax = −-25 kN,; Ay  = 33.75 kN,; Gy = 26.25 kN,; 
FBF = −-27.5 kN,; FBD = 8.84 kN,; FDF = 37.123 kN.
From figureFigure 3.13a, one canwe calculate the remaining unknown FCD:
 (tensileT).
From figureFigure 3.13b, one canwe calculate the remaining unknown FDE:
 (tensileT).
Joint E is the intersection of just three bars:  DE,; EF, and EG, where DE and EG are collinear. M; moreover, joint E is free from any external force, which; this implies that FEF = 0 and FEG = FDE = 26.25 kN.
Joint C:
 (tensileT),
 (tensileT).
[image: ]
Figure 3.11a: FBD of joint C.
Joint A:
[image: ]
Figure 3.11b: FBD of joint A.
 (compressiveC),
 (checkedverified).
Joint G:
[image: ]
Figure 3.11c: FBD of joint G.
 (compressiveC),
 (checkedverified).
Virtual unit force:
This step consists in removing the external real loading from the truss and applying a virtual unit force at the point D in the requested direction (vertical in that this problem). The equations of equilibriumequilibrium equations of the whole truss allow us to calculateing the reaction forces at the supports, then following which we applying the method of joints one can find to obtain the virtual forces developed generated in the members. Figure 3.16 illustrates the virtual case of loading.
[image: ]
Figure 3.16 Virtual unit force applied on to simple truss.



One can remark thatT the truss is geometrically and mechanically (external forces applied) is symmetric about the vertical axis passing through D. This allows us to calculateing the forces in the half of the truss and ; the rest is deduce d the forces in the other half by symmetry.
At joint C, it is obvious that BC is a zero-force member, so thus: fBC = 0 and fAC = fCD.
Joint A:
 (compressiveC),
 (tensileT)
[image: ]
Figure 3.16a: FBD of joint A.
Joint B:
[image: ]
Figure 3.16b: FBD of joint B.
 (tensileT),
 (compressiveC).
By symmetry: fFD = 0.707 kN ,; fDE = fEG = fAC  = fCD =0.5 kN,; fGF = −-0.707 kN. 
The cross- sectional area of the bars is .
It is advised toWe summarize all the data in Ttable 3.1 to simplify the application of equationEquation (3.11).
	Table 3.1 Data summary of truss in Figurefig. 3.11.

	Bar
	fj( (kN)
	Fj( (kN)
	L0j( (mm)
	Ej.Aj( (kN)
	fi.Fj.L0j/( Ej.Aj)

	AB
	−-0.707
	−-47.73
	1414.2
	22620
	2.109741

	AC
	0.5
	58.75
	1000
	22620
	1.29863

	BC
	0
	40
	1000
	22620
	0

	BD
	0.707
	8.84
	1414.2
	22620
	0.390742

	BF
	−-1
	−-27.5
	2000
	22620
	2.431477

	CD
	0.5
	58.75
	1000
	22620
	1.29863

	DF
	0.707
	37.123
	1414.2
	22620
	1.640895

	DE
	0.5
	26.25
	1000
	22620
	0.580239

	EF
	0
	0
	1000
	22620
	0

	EG
	0.5
	26.25
	1000
	22620
	0.580239

	FG
	−-0.707
	−-37.123
	1414.2
	22620
	1.640895

	
	
	D=11.97 mm



Application 3.5. Determine the horizontal displacement at node D of the truss ABCD pinned at A and supported by a roller at B as shown in figureFigure 3.17. The members AB, BC, CD, and AD have each have a cross- sectional area of 200 mm2 while and the area of cross- sectional area of AC is 250 mm2. All members are made from tTitanium of with a modulus of elasticity of 110 GPa modulus of elasticity. The lLengths of the members are given in mmmillimeters.
[image: ]
Figure 3.17 Simple truss ABCD supported by a pin and a roller.
Solution 3.5. Forces in all members should be determined under for the real- loading case and then under for a horizontal virtual unit force applied at D. The FBDs of for both cases are illustrated shown in figureFigures 3.18a and 3.18b, respectively.
Real case: One is able toWe find the forces in all members without passing throughconsidering the reactions of the supports. We combineA mixture between theboth methods of joints and with the method of sections will be adopted to solve the problem.
[image: ]
Figure 3.18 (a) FBD of entire truss under real load (a), (b) virtual force (b), and (c) section with upper portion kept (c).
Noticing that atAt joint D, the external force in figureFigure 3.18a is collinear with bar CD, meaning that bar AD is a zero-force member, as consequenceso:  FAD = 0 and FDC = 15 kN (tensileT).
Considering the FBD and the equilibrium of joint C:
[image: ]
Figure 3.18a: FDB of joint C.
 (compressiveC),
 (tensileT).
To find the force in AB one we uses the FBD of the isolated section in figureFigure 3.18c and summing the moments about C:
 
Virtual case: One is able toWe find the forces in all members without passing consideringthrough the reactions of the supports. A mixture between bothWe combine the methods of joints and ofwith the method of sections will be adoptedto solve the problem.
Noticing that atAt joint D, the unit force in figureFigure 3.18b is collinear with bar AD , meaning that bar CD is a zero-force member, as consequenceso: fCD = 0 and fAD = 1 kN (tensileT).
In this case, by removing the effect of CD, node C will bebecomes the intersection of only two effective members, AB and AC. Since no external force is applied at C, both members are zero-force members: fAC = fBC = 0. 
Moreover, by sectioning the truss in figureFigure 3.18b through AB, AC , and CD, the FBD would beis the same as in the real case shown in figureFigure 3.18c, except that the force of 20 kN at C does not exist. However, this would does not affect the sum of moments about C , which remains the same as for the real case meaning (i.e., that fAB = 0).
As In conclusion, the virtual case has only deliverproduces onlyed one non-zerononzero-force member, which is AD. Since iIn the real- loading case, the force in AD is zero, so equationEquation (3.11) gives simply D-horizontal = 0.
Self-Check Questions
1. Specify if the followingwhether the following statement is True or False and justify your answer.
A node of a truss supported by a rocker automatically has automatically a zero displacement without needing to apply the principle of virtual works. False since because a rocker blocks only one1 DOF perpendicularly to its plane of support. In a direction parallel to the plane of support of the roller, the joint is free to move.
2. Choose the correct answer:
A zero-force member has necessarilymust have:
      bBoth nodes with zero- displacement. 

      oOnly one node with zero- displacement.   

      bBoth nodes may that generally displace. 


Summary 
A truss is a solid structure composed of many slender members known as bars and which are connected together at their extremities by frictionless pins known as joints or nodes. ParticularlyA, a simple truss is a triangular truss constructed by joining in a repetitive manner two bars issued from one node to an already- stable triangle, while whereas a compound truss is formed by many simple trusses joinedt together either by one common node and one bar or by three non-concurrent bars. The numbers of bars (b) and nodes (n) in a triangular truss are related together by: b = 2n −- 3. This is a necessary but not a sufficient condition to havefor a simple or compound truss.
Each member of a truss only sustains exclusively forces acting along the line of the bar, either in tension or in compression;: theose are known as two-force members.
To calculate the forces developed generated in a truss members one may apply: (i) tThe method of joints , consisting in of applying the equilibrium of a particle on at each isolated node, (ii) tThe method of sections , consisting in of cutting virtually a certain desired region throughout the truss and applying the three planar equations of equilibriumequilibrium equations of a rigid body on one of the generated portions. 
Given a truss composed of b bars, tThe principle of Virtual Works allows us to calculateing in a truss composed of b bars the displacement  of any node along any desired direction by determining the forces Fj in the bars under the a real external loading. We can, then removeing the real loading and applying a unit virtual load on the node in question acting along the same desired direction and finding the virtual forces fj in the bars:

where L0j, Aj , and Ej  represent are respectively for the bar (j): the length, the area of the cross section , and the modulus of elasticity of the material of bar j, respectively.















Unit 4 –Internal Forces

Study Goals

On completion of this unit, you will be able to …

… locate the centroid of any geometrical shape;.
… calculate the moment of inertia of a surface about any system of axes;.
… establish the expressions of internal forces in beams;
… plot the diagrams of internal forces in beams.



4. Internal Forces
Introduction 
After locating the center of gravity of a body and, in extension, its center of mass, it will be interesting towe expand this aspect to locate the geometrical center of a body exhibiting either a volumetric, areal, or linear shape., Tthis geometrical center is known as the centroid. For a homogeneous uniform body located in a constant- gravity field, the center of gravity, center of mass, and centroid become are coincident. Furthermore, we develop the moment of inertia, which is another important geometrical aspect related particularly to surfaces will be developed: this quantity is known as the moment of inertia. It The moment of inertia represents practically a geometric resistance of a planar shape to bending about a given axis. This parameter depends on the shape, size, and position of the axis about which the moment of inertia is calculated.
On another side, aIn addition, a considerable part of this unit will beis devoted to the study of internal forces study. A special type of body is considered will be under spot: the beam element. Since those beam elements are developed within the internal faces of a loaded body or within different composing parts composing of a structure, virtual cuts will be performedare made at locations of interest where internal forces would appear. Theose internal forces are of four types: axial force, shear force, bending moment , and torque. Theose are algebraic quantities with a determined sign convention. By changing the location of the section, the amounts of internal forces change. Consequently, a series of expressions of for theose internal forces along the beam will be established and then plotted in terms of the beams length to observe determine their evolution of these forces, which. This evolution will be useful in future courses to design a loaded member. 



4.1 Center of areas, Moment of Inertia
Centroid of a volume
Inspired from by the coordinates of the center of mass expressed in equationEquations (2.29) – (2.31) and for a homogenous volume body, (i.e. i.e., constant density  constant,), one may write for a differential volumetric element dV as shown in figureFigure 4.1a, dm = ⋅ dV . Tthus, the coordinates of the centroid C of the volume become:
                                                                         		                             (4.1)
                                                                        		                             (4.2)
                                                                         		                             (4.3)
It is worth to remindRecall that the centroid is a geometrical point while whereas the center of gravity is a point of application of the weight. If the body is homogeneous, (i.e. i.e., hasving a constant density), both centers are coincident.
Centroid of an area
An area represents practically a geometrical shape within a plane, meaning that its centroid C lies within the same plane. Two coordinates are then needed to locate the centroid of an area, as illustrated in figureFigure 4.1b. Theose have are expressed as inions similar to equationEquations (4.1) and (4.2) as follows:
                                                                         		                             (4.4)
                                                                        		                             (4.5)
Centroid of a line
A line is a thin curve belonging also toin a plane, as shown in figureFigure 4.1c. Similarly As is the case for anto the area case, two coordinates are then neededrequired to locate the centroid C of a line, and theose are determined by the following equations:
                                                                         		                             (4.6)
                                                                        		                             (4.7)
[image: ]
[image: ]
Figure 4.1 Centroid of a (a) volume (a), (b) area (b), and (c) line (c).
From Based on figureFigure 4.1c, one we can deduce the expression of for dL by applying the Pythagorean theorem as follows:

One may reformulate this latter equation by either taking dx or dy out from the radical, which gives hence one gets two options to determinefor dL: 
                                                          ,		                      (4.8)
or:
                                                          		                      (4.9)
where y′’ represents is the derivative with respect to x of the line’s equationequation y = f(x) and x′’ represents is the derivative with respect to y of the line’s equationequation x = g(y).
First mMoment of an area
Similarly toLike the moment of a force about an axis, which  that representsis the product of this the given force by and the distance separating it from that the given axis, one may define a moment of an area about a specific axis as the product of this the area times and the distance separating the centroid of theis area from thise specific axis. T; this quantity is known as the first moment of an area about an axis. Physically, this quantity is useful in for calculating the transverse shear stresses developed in a beam. H, however, this topic belongs to the field of Mechanics of Materials field.shear stress: force per unit area tending to deform a material by slippage of cross-sections one with respect to the other

Since an area is located in a planar Cartesian reference (xOy), the first moment could may be defined about the xx- and yy-axis axes and ; it is denoted respectively by symbols Qx and Qy, respectively.. As per their definition, tThey are calculated, as per definition, as followsby the following equations:
                                                          		                      (4.10)
                                                          		                      (4.11)
Identifying equationequations (4.10) and (4.11) with equationequations (4.4) and (4.5), respectively, and knowing that the total surface of an area is , one may write other the following expressions of for the first moment as follows:
                                                          		                      (4.12)
                                                          		                      (4.13)
In the SI system, the units of the first moment areis cubic meters (m3). The first moment about an axis passing through the centroid of an area is zero.
Centroid of composite shapes
Following the same rationale adopted as used for the center of gravity of composite bodies (i.e. i.e., their center of mass) of composite bodies, a composite volume, area, or line may be sectioned into many regular shapes with well-known centroids locations. An The example is illustrated in figureFigure 4.2 showsing a composite area consisting of a semi-circle, rectangle, and triangle. Another example of a metallic vessel composed of a cylindrical and truncated volumes is shown in figureFigure 4.3. In the case ofFor a composite shape, the integral expressions established in equationEquations (4.1) – (4.7) will beare converted into discrete sums involving the a finite number n of regular shapes composing the final body.A vvessel is a: container for storing fluids. storage

[image: ]
Figure 4.2 Example of a composite area.
For a composite volume, the coordinates of the centroid C are determined by:
                                                                    		                             (4.14)
                                                                    		                             (4.15)
                                                                    		                             (4.16)
[image: ]
Figure 4.3 Metallic vessel as an example of a composite volume.
For a composite area, the coordinates of the centroid C are determined by:
                                                                   		                             (4.17)
                                                                    .		                             (4.18)
For a composite line, the coordinates of the centroid C are determined by:
                                                                   		                             (4.19)
                                                                    		                             (4.20)

Application 4.1. Locate by integration the centroid of the solid homogeneous hemisphere of radius R shown in the figureFigure 4.4.
[image: ]
Figure 4.4 Solid hemisphere.
Solution 4.1. Since both planes (Oxy) and (Oyz) are planes of symmetry of the hemisphere, it could be deduced that the centroid belongs lies on the to yy-axis axis, so hence .
[image: ]
Figure 4.5 Differential volumetric element from for a hemisphere.
The ordinate  is calculated from equationEquation (4.2), but the challenge is to find the differential volume dV of a differential element of the hemisphere, which is a disk at a height y, of thickness dy , and a of radius r that variesable with y. The extremity of this disk is located and the , angulear wise, at an angle  measured from the xx-axis axis. This is illustrated in figureFigure 4.5. It should be noticed thatNote that the hemisphere is homogeneous, meaning that the center of gravity and the centroid are coincident.
From trigonometric relationships in a right-angle triangle:


The volume of a disk of radius r and thickness dy is given by:


The denominator in equationEquation (4.2) represents physicallyis the total volume of the hemisphere:


Calculating the numerator N of equationEquation (4.2) gives:

Finally,:   
Application 4.2. Determine by integration the position of the centroid of the shaded area under the curve shown in figureFigure 4.6, and then deduce the values of the first moments about the xx- and yy -axes.
[image: ]
Figure 4.6 Non uniform area delimited by a curve.
Solution 4.2. For an area, the set of equationEquations (4.4) and (4.5) should be applied. However, two options of differential element dA might be chosen. This is illustrated in figureFigures 4.7a and 4.7b. We will solve the problem using both approachesCalculations for both choices will come.
[image: ]
Figure 4.7 Differential thin element parallel to (a) yy-axis axis and (b)(a), to xx-axis axis. (b)
Option 1:
The differential element in figureFigure 4.7a is a thin rectangle of thickness dx parallel to the yy-axis axis and of height delimited extending from thebetween xx-axis axis toand the curve. The coordinates of its local centroid are:
  and  
The area of this element is: 
The total area under the curve is found by integrating dA as follows:

The coordinates of the centroid are found from equationEquations (4.4) and (4.5):


Option 2:
The differential element in figureFigure 4.7b is a thin rectangle of thickness dy parallel to the xx-axis axis and of width delimited extending frombetween  the curve and to the vertical line x = 1. The coordinates of its local centroid are:
  and  
The area of this element is: 
The total area under the curve is found by integrating dA as follows:

The coordinates of the centroid are found from equationEquations (4.4) and (4.5):


Calculation of the first moments from equationequations (4.10) and (4.11) gives:


Application 4.3. A metallic rod hasve thea curved shape of a cubic polynomial, equation as shown in figureFigure 4.8. Locate the centroid of this rod.
[image: ]
Figure 4.8 Bent metallic rod.
Solution 4.3. The A differential element of length dL of the rod is shown in figureFigure 4.9.
[image: ]
Figure 4.9 Differential Llinear differential element from of a rod.
Since the given equationEquation of the rod is in of the form x = g(y), one finds the derivative x′’:
 .
Applying equationEquation (4.9) gives:

The total length of the rod is:

The coordinates of the centroid are found by equationapplying equations (4.6) and (4.7):


Note: The integrals in this application are calculated by numerical methods.; Tthe primitives of such these functions would beare given as in the appendix.
Application 4.4. A homogeneous rod is bent in the shape shown in the figureFigure 4.10. Locate the coordinates of its centroid.
[image: ]
Figure 4.10 Compound bent rod.
Solution 4.4. It is straightforward to locate the centroid of each of the uniform straight lines at the midpoint of each. However, one should locate the centroid of the semi-circle by integration and then go back to the composite- line case to locate the entire centroid using equationEquations (4.19) and (4.20).
Since (Oy) is an axis of symmetry of the semicircle, the centroid of this shape is located on thisat axis, so  and thus its abscissa is zero. The differential element of a semi-circular line is shown in figureFigure 4.11.
[image: ]
Figure 4.11 Differential linear element from for a semi-circular rod.
 ;    ;  :

[image: ]
Figure 4.12 Centroids of different parts of a composite line.
Now, aThell quantities of thefor each three portions of the whole line shown in figureFigure 4.12 are summarized in the Ttable 4.1 below. 
	Table 4.1 Data summary of for composite line from Figure fig. 4.10.

	Part
	Li
	xi
	yi
	Li⋅ xi
	Li⋅ yi

	1
	4
	−-4
	0
	−-16
	0

	2
	2
	0
	−-4/
	0
	−-8

	3
	5
	4
	1.5
	20
	7.5

	Whole
	15.2832
	
	
	4
	−-0.5





Application 4.5. A homogeneous solid consists of a cylinder that is blindly hollowed with a cone at its top, as shown in figureFigure 4.13. Calculate the position of the centroid.
Solution 4.5. Since both planes (Oxy) and (Oyz) are planes of symmetry of the body, it could be deduced that the centroid belongs lies on theto yy-axis axis hence , so .
The composite body consists of three shapes:
Cone: ; 
Hole cylinder:; 
Main cylinder:; 
The centroids of each of the three shapes are shown in figureFigure 4.14, and  while allthe data are summarized in Tthe table 4.2 below.

[image: ]
Figure 4.13 Compound volumetric homogeneous solid.
	Table 4.2 Data summary of for composite body of Figure fig. 4.13.

	Part
	Vi
	yi
	Vi⋅ yi

	1
	0.1131
	1.9
	0.21489

	2
	−-0.01885
	1.3
	−-0.024505

	3
	0.4524
	0.8
	0.36192

	Whole
	0.54665
	
	0.552305




[image: ]
Figure 4.14 Centroids of parts forming the composite volume.
Application 4.6. A structure formed by three rigid bars each having a weight of 300 N, is supported by a pin at A and a roller in a smooth slot at B, as shown in figureFigure 4.15. Determine the values of the bearings reactions.
Solution 4.6. Since all the whole weight ins vertically downward wherever the whole center of gravity is located, and since all shapes are uniform rods, thus the centroid of each bar is located at its the midpoint of the given bar. In consequenceThus, the weight of each bar is applied vertically downward at the center of the relevant given bar, vertical downward as illustrated in the FBD of the structure in figureFigure 4.16.

[image: ]
Figure 4.15 Structure made of tThree -rigid -bars structure supported by a pin and slotted roller.
The inclined bar forms geometrically the hypotenuse of an isosceles right angle triangle, hence so it forms an angle of 45° with each of the horizontal and vertical directions. In addition, the reaction of the roller is normal to the plane of the slot, which means that its line of action forms and angle of 15° with the vertical line.
Applying equations of equilibriumthe equilibrium equations of a rigid body gives:




[image: ]
Figure 4.16 FBD of the three-bars structure subjected to its own weight.
Moment of inertia of an area
Preliminary examples
The concept of moment of inertia of an area, known also as the second moment, will isbe introduced through two physical examples, where a distribution of forces  of forces actsing on the area haveand their its magnitude is proportional to the area A of the elements forming the entire area. In addition, and simultaneously this magnitude varies linearly with the distance separating the elements from an the axis of interest.
The first example, inspired from the field of mechanics of materials field, is illustrated in figureFigure 4.17a, where the cross section of a straight member (i.e. i.e., beam) is subjected to a distributed loading  , which is compressive above the xx-axis axis and tensile below the same x axis. The magnitude of  is given by: . This distribution constitutes a couple that seeks totrying to bend the cross section about the xx-axis axis passing through the centroid C. 
The magnitude of the resultant  of the force distribution  is given by:
[image: ]
Figure 4.17 (a) Cross section of a beam under bending (a)., (b) Wall under hydrostatic pressure. (b)

This latter integral is no other than the first moment Qx of the cross section about the xx-axis axis. Since this latter axis passes through the centroid C of the cross section, the first moment is zero, so  and thus the resultant force F = 0. This is an expected result since because the distribution of forces is formsing a couple (: equal and opposite forces).
Moreover, tThe magnitude of the couple M is given by:

This latter integral represents gives the moment of inertia of the area or the second moment of the area about the xx-axis axis, which is denoted by the symbol Ix. Physically, it represents a kind of ‘’geometric resistance’’ of the cross section against bending. As more as this quantity increases, as more as difficult becomes the rotation of the cross section becomes more difficult. Mathematically, it consists is formed byof  the summation of the products of area elements by and the square of the distance separating each element from the axis of bending. ConcsequentlyConsequently, a moment of inertia is always a positive quantity, expressed in m4 in SI units.	Comment by Author: Please ensure that the intended meaning is maintained.
The second example, inspired from fluid mechanics field, is illustrated in figureFigure 4.17b. In this example,  where thethe wall of a concrete structure is, submerged under a column of fluid and, is subjected to a hydrostatic pressure Ph. Since Tthe pressure of the fluid increases linearly with the height depth, and also relatedso to the developed force generated through on the area as a coefficientis  of proportional to the depthity. The, this fluid will developthus generates a distributed hydrostatic force  applied on the area elements A of the wall with theas following smagnitude:

where  is the density of the fluid and g is the acceleration of due tothe gravity.
The magnitude of the resultant force  of produced by the force distribution  is given by:

This resultlatter integral is no other than the first moment Qx of the wall’s area about the xx-axis axis. 
MoreoverIn addition, the magnitude of the couple M is given by:

This resultlatter integral represents is the moment of inertia of the area or the second moment of the wall about the xx-axis axis. It contributes to the resistance of the wall against bending due to hydrostatic pressure.
Mathematical expressions
In the light of theThe previous examples and calculations show that, one canwe can calculate the moments of inertia about the xx- and yy -axes, respectively, from by using the following equationequations:
                                                          		                      (4.21)
                                                          		                      (4.22)
The differential element dA and the distances separating it from both axes as well as the direct distance r with from the origin O is are shown in figureFigure 4.18.
[image: ]
Figure 4.18 Differential element in an arbitrary area.
The differential element dA is in practice chosen in practice as a rectangular strip of thin differential thickness (either dx or dy ) while with the width dependings on the curves delimiting that delimit the area of interest. This is depicted in figureFigures 4.19a and 4.19b.
[image: ]
Figure 4.19 Differential rectangular strip element parallel to (a) xx-axis axis and to (b) (a), to yy-axis axis. (b)	Comment by Author: Please verify that this figure is cited in the text.
Polar moment of inertia
In figureFigure 4.18, considering the straight distance r separating the origin O from the element dA, one we defines the polar moment of inertia of an area with respect to the pole O as the amount JO , which is given by:

                                                          		                      (4.23)
This is ‘“‘an integral of great importance in problems concerning the torsion of cylindrical shafts and in problems dealing with the rotations of slabs”‘‘ (Beer aet al., 2012, p.475).
Replacing Using the Pythagorean Theorem in  (4.23) Equation

Replacing equationEquations (4.21) and (4.22) in this latter expression one findsgives the following relationship between the polar and second moments as follows:
                                                          		                      (4.24)
Radius of gyration of an area
Imagine that a physical area having a total surface A like the one shown in figureFigure 4.18 is converted into a very thin but very long rectangular strip parallel either to the xx-axis axis or the yy-axis axis while conserving always the same valuearea A of the surface as depicted in(see figureFigures 4.20a and 4.20b). The distance denoted by kx at whichConsider this strip should be held parallel and away to thefrom xx-axis axis. The perpendicular distance  kx from the x axis required in order toto reach the same value of the moment of inertia Ix of as the original real area in known theas radius of gyration of the area about the xx-axis axis. The same concept applies for to the radius of gyration ky about the yy-axis axis when the strip is held parallel and away fromto the yy-axis axis to reach the same value of the moment of inertia Iy of the original real area.
Applying equationEquation (4.21) to the strip in figureFigure 4.20a gives:

                                                          .		                      (4.25)
Applying equationEquation (4.22) to the strip in figureFigure 4.20b gives:

                                                          		                      (4.26)
[image: ]
Figure 4.20 Radius of gyration about the (a) xx-axis axis (a), (b) yy-axis axis (b), and (c) pole O. (c)
Additionally, this physical area having a total surface A could be is converted into a very thin annular strip centered at the pole O while conserving always the same valuearea A of the surface as depicted in(see figureFigure 4.20c). The radial distance denoted by kO at which this strip should be held parallel and away from pole O in order toto reach the same value of the polar moment of inertia JO of as the original real area in known asthe polar radius of gyration of the area about the pole O.
Applying equationEquation (4.23) to the strip in figureFigure 4.20c gives:

                                                          		                      (4.27)
Finally, raising squaring both equationEquations (4.25) and (4.26), to power 2 , adding together member by member, and then identifying with equationEquations (4.24) and (4.27) gives one finds the followinga relationship between the three radii of gyrations as follows:
                                                           .		                      (4.28)
Product of inertia
Referring again to figureFigure 4.18, the product of inertia Ixy of an area denoted by Ixy with respect to the xx- and yy -axes is defined by the following integral:
                                                          		                      (4.29)
This property “‘’is required in order toto determine the maximum and minimum moments of inertia for the area. These maximum and minimum values are important properties needed for designing structural and mechanical members such as beams, columns and shafts.’’” (Hibbeler, 2010, p.530).
Unlike moments of inertia, a product of inertia could can be either positive in caseif both coordinates of the element dA have the same sign or negative when those coordinates have opposite signs. Consequently, when one or both axes are axes of symmetry of the area, the product of inertia is zero. This is illustrated in by an the example in figureFigure 4.21, where a T-shape section exhibits has the yy-axis axis as an axis of symmetry. To aAny differential element dA of coordinates x and y corresponds to a symmetric element dA′’ of coordinates −–x and y. By summing all such pairs of such elements in equationEquation (4.29) with equal and opposite abscissas, the product of inertia will vanishes,.
[image: ]
Figure 4.21 T-shape area with an axis of symmetry.

Moments of inertia of standard shapes
Rectangle. Consider a rectangular area of height h and width b located in a centroidal Cartesian reference (xy), as shown in figureFigure 4.22a. Two rectangular strips will be considered as differential elements dA: one parallel to the xx-axis axis and the another parallel to the yy-axis axis, as shown in figureFigures 4.22b and 4.22c, respectively.
[image: ]
Figure 4.22 Rectangular area with (a) central axes (a), (b) differential element parallel to xx-axis axis, and (c)(b), to yy-axis axis. (c)
From figureFigure 4.22b, dA = b.dy .; Aapplying equationEquation (4.21) gives:

From figureFigure 4.22c, dA = h⋅ dx. ; Aapplying equationEquation (4.22) gives:

Circle. Consider a circular area of radius R located in a centroidal Cartesian reference (xy), as shown in figureFigure 4.23a. The differential element dA is a rectangular strip parallel to the xx-axis axis, as shown in figureFigure 4.23b.
From the trigonometry we have:  and ;  
The area of the rectangular differential strip is: .
Applying equationEquation (4.21) gives:

[image: ]
Figure 4.23 (a) Circular area with central axes (a)and (b) d, Differential element parallel to xx-axis axis. (b)
To determine Iy, one might consider a differential strip parallel to the xx-axis axis. H, however, one may also use Iy established previously for a rectangle and apply it on to the differential rectangle of dimensions 2x × and dy , which gives a differential moment of inertia dIy. By integrating along , we obtain the total moment of inertia of the circle will be then established.:


The polar moment of inertia is determined by using equationEquation (4.24):

For several standard shapes, Table 4.3 summarizes the expressions of of their moments of inertia of some standard shapes about their centroidal axes. Theose would beare useful in many future applications.
	Table 4.3 Moments of inertia of standard shapes.

	Name
	Shape
	Ix
	Iy
	JO

	Rectangle
	

	
	
	

	Circle
	

	
	
	

	Isosceles triangle
	

	
	
	

	Right -angle triangle
	

	
	
	

	Ellipse
	

	
	
	



The Parallel-Axis Theorem
This theorem establishes a relationship between the moment of inertia of an area about an axis passing through the centroid of this area and the moment of inertia about an axis parallel to the centroidal axis and separated from this centroidal axis by a known distance.
Figure 4.24 illustrates a shaded area with centroidal axes (CX) and (CY) with a differential element dA with coordinates X and Y measured in the centroidal reference. Another reference (xOy) having (Ox) parallel to (CX) and (Oy) parallel to (CY), is located such that thea distance dx separates (Ox) and from (CX) and a distance dy  separates (Oy) and from (CY).
[image: ]
Figure 4.24 Area located in two parallel reference frames.s
The moment of inertial about (Ox) is determined by:

The first integral represents is the moment of inertia about the centroidal axis (CX) such as: . T while the last integral is no other that the total surface .
The integral in the middle represents is the first moment of the area about the centroidal axis (CX),  which is zero: .
The final expression of for Ix becomesis:
                                                          		                      (4.30)
Similarly, one finds for Iy,:
                                                          		                      (4.31)
Expressing the polar moment of inertia JO:

and since   and   , the final expression of for JO writesis:
                                                          		                      (4.32)
In conclusion, the Parallel-Axis Theorem (known also as Steiner’s Ttheorem) for any moment of inertia (either about an axis or polar) states that “‘‘the moment of inertia for an area about an axis is equal to its moment of inertia about a parallel axis passing through the area‘s centroid plus the product of the area and the square of the perpendicular distance between the axes‘”‘ (Hibbeler, 2010, p.513).
Establishing tThe expression of for the product of inertia is as follows:

The first integral represents is the product of inertia about the centroidal axes (CX) and (CY) such as: . T while the last integral is no other that the total surface .
The two middle integrals arein the middle represent the first moments of the area about the centroidal axes (CY) and (CX), respectively,  which are zero: and .
The final expression of for Ixy becomesis:
                                                          		                      (4.33)
Moments of inertia of composite areas
A composite area is a planar shape composed of many numerous regular shapes connected together, such as triangles, rectangles, and circles. GivenKnowing the moment of inertia of each shape about a centroidal axis, one we can use the Parallel-Axis Theorem to calculate the moment of inertia of each shape about another specific axis. The total moment of inertia of the entire composite area will beis the algebraic sum of the moments of inertia of the composing shapes.
Figure 4.25 shows a composite area sectioned into many regular “‘’sub-areas”’’ with their “‘’local”’’ centroidal axes (x1y1), (x2y2), and (x3y3). The moments of inertia and also the product of inertia are determined by adding summing the moments of inertia (i.e. i.e., the product of inertia) of each part established as given by from the parallel-axis axis theorem.
[image: ]
[bookmark: _Hlk101717356]Figure 4.25 Composite area sectioned into regular parts.



Moments of inertia about inclined axes
Upon Given the loading case and the geometry of the a structure, a mechanical designer would may need sometimes the inertia properties of the cross section about inclined axes.
Figure 4.26 shows an arbitrary area of total surface A located in an original reference (Oxy) and in another reference (OXY) obtained by rotating (Oxy) about O by an algebraic angle  (counted considered positive for a counterclockwise rotation). 
[image: ]
Figure 4.26 Arbitrary area in an inclined reference frame.
The coordinates (X, Y) in the new reference (XY) of a differential element dA are deduced from its original coordinates (x, y) by applying the following formulas of rotation of references as follows:


The target goal is to express the new inertias IX, IY , and IXY in terms of the original inertias Ix, Iy, Ixy , and :.


By nNoticeing that ,  , and , so  this latterthe inertia Ix expression becomes:
                        		                      (4.34)
By performingS similar calculations for IY and IXY the following equations are foundgive:
                        		                      (4.35)
              		                      (4.36)
This latter set of equationEquations (4.34) – (4.36) is are called the transformation equationequations.
Another formulation of this setthe transformation equations can be established by applying two the trigonometric identities  and 
 to the original set and simplifying the calculations, which gives:
    and    
                        		        (4.36)
                        		          (4.37)
                        		                        (4.38)
By adding equationEquations (4.36) to equationEquation (4.37) one can deducewe find that that the polar moment of inertia JO is independent of :

The angle of rotation of the axes  at which the moment of inertia is optimum corresponds to the value that vanishes themakes the derivative of IX vanish with respect to :An optimum is: either a maximum or a minimum.


                                                                                                     (4.39)
This latter equationEquation (4.39) shows that there are two angles ′’ and ′′’’ that satisfy the condition of optimum inertia IX, this optimum being either a maximum or a minimum. Theose two angle values correspond to k = 0 and k = 1 in equationEquation (4.39);, higher values of k will respectively lead again to either ′ or ′′’ or ’’, respectively,  sincebecause the tangent tan function has a period of .  In addition, ′ and ′′ ’ and ’’  are shifted by 90°,° as per equationEquation (4.39), meaning that the two directions that optimize the moments of inertia are perpendicular between to each otherthem. Thoese directions are named called the Principal Directions of Inertia and denoted by (Ox0) and (Oy0).; Oone of them represents is the axis about which the moment of inertia is maximalum and the other is the axis about which the moment of inertia is minimualm. Since Given that the sum IX + IY is constant and independent of , one we can deduce that, when IX is maximum, IY is minimum and vice versa. I they are denoted in thisat special case, they are denoted by Ix0  and Iy0 , respectively. 
To determine the expressions of  the optimum moments of inertia, equationEquation (4.39) is replaced used in equationEquations (4.36) and (4.37) to find the following: obtain
                                		            (4.40)
                                		                         (4.41)
By replacing using equationEquation (4.39) in equationEquation (4.38) to express the product of inertia in the principal reference of inertia, it is found thatwe obtain Ix0y0 = 0. This means that, in a reference where the product of inertia is zero, the moments of inertia are optimal. Consequently, any axis of symmetry of an area is a principal axis of inertia since because the product of inertia about such an axis is zero. 
When the principal axes of inertia have the centroid of the area as their origin, they will be namedare called the central principal axes of inertia.
Application 4.7. Determine the moments of inertia of the area of figureFigure 2.38 about the centroidal axes parallel to the original axes (Ox) and (Oy).
Solution 4.7. Figure 4.27 shows the center of gravity G (coincident with the centroid) located as found in application 2.13. MoreoverThe, local axes at each the centers of gravity of each part are also shown.
[image: ]
Figure 4.27 Composite area sectioned into three parts.
To We now calculate the moments of inertia about the central axes (GX) and (GY). First, it is important towe find the coordinates of each center in the reference (GXY), those which will be the distances separating (GX) and (GY) from the parallel axes passing through G1, G2 , and G3.:
G1(X1 = 0.25 −- 0.337 = −-0.087 m, Y1 = 0.3 −- 0.283 = 0.017 m),
G2(X2 = 0.225 −- 0.337 = −-0.112 m, Y2 = 0.175 −- 0.283 = −-0.108 m),
G3(X3 = 0.6 −- 0.337 = 0.263 m, Y3 = 0.2 −- 0.283 = −-0.0183 m).
The coming next step consists in of calculating the moments of inertia of each shape about the “‘‘local central axes”‘‘ passing through G1, G2 , and G3 , respectively, and being parallel to (GX) and (GY):.





Applying the parallel-axis axis theorem to each of the three parts gives:






The total moments of inertia about (GX) and (GY) are:


Application 4.8. Calculate the moments of inertia, the product of inertia, and the radii of gyration with respect to the xx- and yy -axes of the shaded area shown in figureFigure 4.28.
[image: ]
Figure 4.28 Non regular area delimited by a cubic polynomial curve.
Solution 4.8. There are two options are available for the choice of a ddifferential rectangular strip dA : either parallel to the xx-axis axis or parallel to the yy-axis axis, as shown in figureFigures 4.29a and 4.29b, respectively.
[image: ]
Figure 4.29 Differential rectangular strip parallel to (a) xx-axis axis and (b)(a), to yy-axis axis. (b)
Adopting Bboth options will lead at the end to the same result. For both options, a local central reference (XY) passing through the centroid of the strip is shown.
Option 1:
The differential element in figureFigure 4.29a is a thin rectangle of thickness width dy parallel to the xx-axis axis and of width length delimited betweenby the yy-axis axis and the curve. The coordinates of its local centroid are:
  and  
The area of this element is: 
The total surface of the shaded area is found by integrating dA as follows:

To find Ix, apply the definition, which gives: 
To find Iy, consider the differential inertia of the rectangular strip along the centroidal axis Y (from Ttable 4.1) and then apply the parallel axis theorem to reach the yy-axis axis:


A similar approach will be applied to findgives the product of inertia Ixy , with the only difference being that    since the X - and Y -axes are axes of symmetry of the differential rectangle.


Option 2:
The differential element in figureFigure 4.29b is a thin rectangle of thickness dy parallel to the yy-axis axis of width length delimited between by the curve and the horizontal line y = 1. The coordinates of its local centroid are:
  and  
The area of this element is: 
The total surface of the shaded area is found by integrating dA as follows:

To find Iy, apply the definition: 
To find Ix, consider the differential inertia of the rectangular strip along the centroidal axis X (from Ttable 4.1) and then apply the parallel axis theorem to reach the xx-axis axis:


A similar approach will be applied to findgives the product of inertia Ixy , with the only difference being that    since the X- and Y -axes are axes of symmetry of the differential rectangle.


The polar moment of inertia is: 
The three radii of gyrations are:



One can check that 
Application 4.9. Consider the right triangle in figureFigure 4.30. Its the right-angle triangle area is located in its a centroidal Cartesian reference frame. Calculate and draw the centroidal principal directions of inertia as well asand the maximum and the minimum moments of inertia. Dimensions are in millimeters mm.
[image: ]
Figure 4.30 Right-angle triangle located in a Cartesian central reference frame.
Solution 4.9. According to Ttable 4.1, both moments of inertia about the centroidal axes (Cx) and (Cy) could may be directly calculated as follows:


However, the product of inertia should be determined by integration. For the sake of simplicity, a general right-angle triangle of any dimensions h and b will be considered in a Cartesian reference frame (OXY) coincident with the right-angle sides, as shown in figureFigure 4.31a. Consider aA differential rectangular strip parallel to the X-axis axis is considered. A differential product of inertia dIXY will be established by using the parallel-axis axis theorem. The parallelism is between (OXY) and a local central reference for the differential rectangle, where obviously the differential product of inertia is zero since because this local reference consists of axes of symmetry for the differential rectangle. The hypotenuse is an straight inclined straight line whose equationequation is simple to be found as writtengiven in figureFigure 4.31a.
[image: ]
Figure 4.31 (a) Differential strip element in a right-angle triangle (a.), (b) Principal direction of inertia. (b)


The local centroid of the differential strip has the following coordinates:
  ,   
The differential area of the strip is: 
The parallel-axis axis theorem writesgives:



To find the product of inertia about the centroidal axes (Cx) and (Cy), apply the parallel-axis axis theorem as follows:


Apply equationEquation (4.39) to determine the principal directions of inertia:


The central principal principle directions (Cx0) and (Cy0) are drawn shown in figureFigure 4.31b.
Calculate Imax and Imin from equationEquations (4.40) and (4.41):



.
Finally, one should associate each value of the optimal results to the corresponding direction; that is, i.e. , if Imax is about (Cx0) or (Cy0). For this purpose, one can replace ′’0 in equationEquation (4.36):

Thus, Ix0 = Imax , whichthis implies obviously that Iy0 = Imin.
Self-Check Questions
1. Choose the correct answer.
A cone of radius R and height h is welded at the top of a cylinder made from of the same material and having the same radius as the cone but a height h′’. In order toTo get the center of gravity of the whole body located at the interface cone-cylinder interface (i.e. i.e., at the base of the cone and; i.e.  at the top of the cylinder) the ratio h′’/h must be:	Comment by Author: Please ensure that the intended meaning is maintained.
                                             1                       
2. Complete the following sentence:
For a square of side length d located within its central principal reference of inertia, the three radii of gyration measure    about the xx-axis axis,   about the yy-axis axis, and    about the pole C.
3. Specify if the followingwhether the following statement is True or False and justify your answer.
Any two perpendicular radial directions of a circle are centroidal principal directions of inertia. True because , since any radial line is an axis of symmetry, so  and consequently the product of inertia in that reference is zero.
4.2 Internal Beam Internal Loading
External and iInternal fForces
 A solid body is in equilibrium when the system offorces applied forces onto the body balance each other, which; this results in an equivalent zero force. The applied forces applied on to the body are divided into two categories: the active forces, which  that “r‘’refer to the physically prescribed forces in a mechanical system”’’ (Gross et al., 2013, p.11) such as own weight, water pressure of water, and the traction of a motor; and the reaction forces, which that refer to constraints applied by the surrounding environment on the main body to prevent its motion. ; one may cite asE examples of reaction forces include the normal reaction of a planar support, the tension in a holding cable or chain, and the reactive force applied by a hinge. On In a FBD, the main body is isolated from its surrounding supports and then the active and reaction forces are then drawn. 
By definition,A an external force is a force that acts is exerted by an object exterior tofrom outside on the main body (Gross et al., 2013) and this involvesmay be either an both active and or reaction forces. Internal forces are forces acting exerted bybetween  the different various components of the main body. W; when the FBD of the entire body is drawn, those internal forces do not appear due tobecause they all cancel because of the principle of action and reaction (Newton’s third axiom). Internal forces appear when the different components constituting the main system are “‘’separated”’’ and isolated from each other. In Mechanics, such; this separation  to visualize internal forces is named called in Mechanics cutting or sectioning and the use of this technique is called theor method of sections. It Sectioning consists of passing an imaginary line or plane of section to virtually cut the body at a location place where the internal forces need to be visualized and calculated. When separated, the internal forces that appear in a component represent the action of the other component(s) that has(ve) beenwas (were) stuck connected to it. ;T he internal forces become external on this isolated component the internal forces become external whilewhereas they “‘’disappear”’’ when the component is “‘’re-joined”t’’ with its neighboring components. 
This fullyFigure 4.32 detailsled described this concept is illustrated in figure 4.32.
[image: ]
Figure 4.32 Visualization of external and internal forces.
In Figure 4.32, tThe original case consists of a body in static equilibrium subjected to an external loading involving active loads (in black color) and reactive forces (in blue). Since the body is shown as one ‘’package’’ unit or as an entire body, the internal forces do not appear. At a location of interest within the body, an imaginary virtual cut a-a isn applied to split the main body into two virtual portions: one at the left of the cut and another at its right. Since the entire body has beenis in equilibrium, it is obvious that each portion of theis body satisfies also the conditions of equilibrium. However, after the cutonly only a part of the external loading remain is applied on to each portion. Therefore,; to keep maintain the equilibrium, the only solution that this part of the external loading would must be compensated by internal efforts forces that appear at the location of the cut. Due to the principle of action and reaction, theose efforts forces applied at to the two portions are equal in magnitude and opposite in sense. When re-assembling the left and the right portion stogether, the internal forces will balance each other and the main body from which the study has started is obtained regained with itsin static equilibrium. 
It should be noticed thatNote that the equations of equilibriumequilibrium equations are applicable to any portion produced from bya sectioning the body, which allows us operation in order toto evaluate the internal forces that keep maintain the equilibrium established.
Beams
By definition, aA rectilinear beam is a straight member whose length is much larger greater than its lateral dimensions (cross section). A beam is  conceived to support mainly transverse loading and this for any practical application, such as concrete slabs in buildings, or metallic standard profiles for frames and chassis (Hibbeler, 2010). This loading could may be consist either of concentrated or distributed forces and/or moments or any combination of themthereof. The Awhole beam remains in static equilibrium thanks because ofto the reaction forces exerted by s of the bearings that are supporting this beam, such as pins, rollers, and fixed supports. Figures 4.33a–, 4.33b, 4.33c and 4.33d show different standard configurations of supported beams with the relevant name of each configuration. Both applied loads and reaction forces of exerted by the supports constitute an external loading system under that acts onwhich the beam is subjected. Furthermore, it is known that when any a system satisfies the conditions of static equilibrium, any sub-system or, part of the entire initial system must keep be in the state ofan equilibrium status. This leads means that, any portion of theis beam must remain in equilibrium. ThisSuch a portion of a beam may be is obtained by from a virtual transverse cross section at any point within the length ofpoint along the beam, and; one may keep either the portion at the left or at the right portion may be retainedof the cut. At any of thoseFor either portions (either left or right), only a part of the total external load remains, sos and hence In order to establish the equilibrium of the considered portion requires that, a system of forces must be applied at the location of the cut in order toto balance the effect of this part of the applied externally applied load. 
T; this balancing of the loading is known as internal loading since because it appears appears within the material of the cross-section of the beam only once when the beam isthis latter is ““cut.””; Whenby considering the entire beam in equilibrium, internal loading does not appear since because, in thisat case, the whole external loading is compensated balanced by the reaction forces exerted by theof supports. One may conclude that internal loadings applied on at cuts of two adjacent portions are equal in magnitudes and opposite in senses, which is the same conclusion reached by; one may also deduce this aspect from applying the classical principle of action and reaction, known as Newton’s first lawaxiom.; indeed In fact, the internal loading applied at the cut of on the left portion, represents practicallyis the action force applied by the right portion on the left one portion and vice versaand inversely the internal loading applied at the cut of the right portion of the beam represents the reaction of the left portion.	Comment by Author: Please ensure that the intended meaning is maintained.
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Figure 4.33 (a) Simply supported beam (a), (b) oOverhang beam (b), (c) fFixed-fFree or cantilever beam, and (d) fFixed-fFixed or double cantilever beam.	Comment by Author: Please verify that this figure is cited in the text.
It should be noticed thatNote that internal loadings develop produce stresses within the cross -sections of a beam in equilibrium. Depending on; upon the levels of  the stress es reached with respect to the strength of the beam’s material, the beam might be able  may or may not to support the applied externally applied load. Aing, the beam that can support the load is said to be “safe,” whereas one that cannot support the load leads to or unable to support and then one talks about failure of the beam.
We next discussThe coming lines will deal with all aspects of internal loading developed within a rectilinear beam: free body diagramFBDs, types, sign conventions, calculation equationof equations, variations, and relationships. 
Internal fForces and mMoments
Free bBody dDiagram
It is worth toWe begin with the most general case of a loaded beam, which is the three-dimensional 3D case (3D) or spatial case. Next, we  and then the analyzesis will be reduced to the two-dimensional case (2D2D) or planar case.
Consider a simply supported beam in equilibrium located in a 3D3D Cartesian direct reference (Oxyz) such that the origin O is coincident with the center of gravity of the cross -section at the left end of the beam. The, x axis is oriented to the right along the length of the beam and is, known ascalled the longitudinal axis. The while y and zz axes are, the transverse axes and, are coplanar to the cross section of the left end of the beam. The; y axis belongs lies into the plane of the screen while and the zz axis pointsis  outward. This is illustrated in figureFigure 4.34.
[image: ]
Figure 4.34 3D external loading case on for a beam in equilibrium.
As stated earlier, the internal loading appears within the beam after a virtual transverse cut at any cross -section through the of abscissa x. This cut is denoted by a-a, in Figure 4.34 and generates a left portion and a right portion, each subjected to a part of the external load. At the center of gravity G of the cross cross-sectional cutal cut G, the internal loading must appear in the free body diagramFBD shown in figureFigure 4.35 and compensate for the part of the external loading applied on to the relevant left portion.
[image: ]
Figure 4.35 3D internal loading case on a portion of a beam in equilibrium.
Types
To ensure the equilibrium of any of theall portions, the internal loading system must balance the resultant forces and moments acting along each of the three axes x, y , and zz. This means that in, 3D, one may distinguish in 3D six types of internal loadings (Hibbeler, 2011):
· The axial force N, which is an: internal force acting along the longitudinal axis (xx-axis axis) of the portion of the beam ’s portion and that compensatesing the resultant component of the external forces acting along the xx-axis axis of the same portion.
· The shear force Vy, which is an: internal force acting along the transverse axis (yy-axis axis) of the portion of the beam’s portion and that compensatesing for the resultant component of the external forces acting along the yy-axis axis of the same portion.
· The shear force Vz, which is an: internal force acting along the transverse axis (zz-axis axis) of the portion of the beam ’s portion and that compensatesing the resultant component of the external forces acting along the zz-axis axis of the same portion.
· The torsional moment Mx, which is the: internal moment acting about the longitudinal axis (xx-axis axis) of the portion of the beam’s portion and that compensatesing for the resultant component of the external moments acting along the xx-axis axis of the same portion.
· The bending moment My, which is the: internal moment acting about the transverse axis (yy-axis axis) of the portion of the beam ’s portion and which compensatesing the resultant component of the external moments acting along the yy-axis axis of the same portion.
· The bending moment Mz, which is an: internal moment acting about the transverse axis (zz-axis axis) of the portion of the beam’s portion and which compensatesing the resultant component of the external moments acting along the zz-axis axis of the same portion.
Sign convention
The six types of internal loading described in the previous section are in fact algebraic quantities that could may be either positive or negative. The assignment of algebraic signs follows obeys the following convention (Hibbeler, 2011):
· The axial force N: it is counted positive when it acts outward from the cross -section or physically when the portion is under tension. This means that, at for the left (right) portion, N is positive when it has the same (opposite) sense as the xx-axis axis while at the right portion N is positive when it is oriented opposite to the x-axis. 
· The shear force Vy: it is counted positive when it acts downward (opposite the sense to of the yy-axis axis) at in the left portion and thus it is positive also when it acts upward (same as the sense as of the yy-axis axis) at in the right portion. 
· The shear force Vz: it is counted positive when it acts inward (opposite the sense to of the zz-axis axis) at in the left portion and thus it is positive also when it acts outward (same as the sense as of the zz-axis axis) at in the right portion. 
· The torsional moment Mx: it is counted positive when it acts outward from the cross-section. This means that, at for the left portion, Mx Mx is positive when it rotates following the right-hand rule around the xx-axis axis while whereas, at for the right portion, MxMx is positive when it rotates opposite to the right-hand rule around the xx-axis axis. 
· The bending moment My: it is counted positive when it rotates following the right-hand rule around the yy-axis axis while whereas, forat the right portion, it is positive when it rotates opposite to the right-hand rule around the yy-axis axis. 
· The bending moment Mz: it is counted positive when it rotates following the right-hand rule (trigonometric or counterclockwise) around the zz-axis axis while whereas, forat the right portion, it is positive when it rotates opposite to the right-hand rule (clockwise) around the zz-axis axis. 
Calculation of internal forces
Since a system of internal loading ensures the equilibrium of any portion of a beam, it is obvious that the six components of the internal loading system are may be calculated by applying the forces and moments equilibrium equationequations along the three axes x, y , and zz:.
Axial force:  
                                                                   		                        (4.42)
Shear force along y:  
                                                                   		                        (4.43)
Shear force along zz:  
                                                                   		                        (4.44)
Torsional moment:  
                                                                   		                        (4.45)
Bending moment about yy-axis axis:  
                                                                   		                        (4.46)
Bending moment about zz-axis axis:  
                                                                   		                        (4.47)
The switch to the planar- beam case, means that the external loading belongs lies either to in the plane (xOy) plane or to in the plane (xOz) plane, in that which case only three components of internal loading remain acting: N; , Vy; , Mx , and Mz in plane (xOy) plane  or N,; Vz,; Mx , and My in plane (xOz) plane. In each of those two cases, the beam is said to be subjected to simple bending if N = 0 or to compound bending if N  0. 
Variation of iInternal fForces and Mmoments
The scope of the current analysis focusses on a very basic standard case of a beam : it consistings of a 2D2D loaded beam in with simple bending under static equilibrium located in the a direct Cartesian reference (Oxy), as illustrated in figureFigure 4.36. Figure 4.37 shows tThe FBD of both the left and right portions is depicted in figure 4.37of the beam. The purpose is to analyze the evolution ofhow the shear force Vy and the bending moment Mz evolve along the beam’s length. Mathematically speaking, one the goal is toaims determineing the expressions of for Vy(x) and Mz(x) upon given the type ofthe type of external loading. The plotted graphs of those two latter functions are known  respectively as diagrams of shear force and bending moment diagrams, respectively..
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Figure 4.36 2D external loading case ofn a beam in equilibrium.

[image: ]
[bookmark: _Hlk101717683]Figure 4.37 2D internal loading ofcase in a beam in equilibrium.
Distributed loading
Consider a differential element of length dx located at anon the abscissa x picked up from a beam under subjected to distributed loading of magnitude q. Figure 4.38 shows and draw it free body diagramthe FBD of the beam under equilibrium and following the sign convention of internal loadings; this is illustrated in figure 4.38. 
[image: ]
Figure 4.38 Differential element of a beam under distributed loading.
On this free body diagramFBD, the resulting intensity of the portion of the distributed loading on dx is a concentrated force measuring of magnitude q.dx and located at a distance h from the right section, which is denoting the position of the center of gravity of this partial distributed loading. This distance h is obviously locatesd within dx and thus it represents mathematically a proportion fraction of this dx, which is denoted by . 	Comment by Author: Please ensure that the intended meaning is maintained.
Applying the equations of equilibriumequilibrium equations of for the differential element dx, and neglecting higher power orders of dx (i.e. i.e., dx2 <<<< dx) one obtainsgives:
,

                                                                   ,		                        (4.48)


                                                                   		                        (4.49)
Equation (4.48) shows that the shear force developed generated in a distributed-loaded beam represents is the integral of the expression of the magnitude of the distributed loading, while and equationEquation (4.49) shows that the expression of the bending moment is the mathematical integral of the expression of the shear force. In other words, if the beam is subjected to a uniformly distributed loading (q = const.ant), the shear force varies linearly along the length of the beam while the bending moment exhibits is a parabolic expression function of x. If the beam is subjected to a linearly distributed loading (q = a⋅ x + b), the shear force varies in a parabolically evolution along the length of the beam while and the bending moment exhibits is a cubic polynomial expression function of x. Obviously, i If q = 0 (i.e. i.e., no distributed loading), the shear force becomes constant along the beam while and the bending moment varies linearly.

Concentrated loading
Figure 4.39 shows the free body diagramFBD of two differential elements dx picked up around a concentrated force and a concentrated couple, respectively. 
[image: ]
Figure 4.39 Differential elements of a beam under concentrated force and concentrated couple.
Applying the equations of equilibriumequilibrium equations for to each case, one gets: gives


                                                                   		                        (4.50)


                                                                   		                        (4.51)

Equation (4.50) shows that the shear force just after the concentrated force drops decreases when the external concentrated force is downward and jumps increases when the concentrated force is upward. Each time, the value of change (i.e. drop or jumpdecrease or increase) is equals to the magnitude of the concentrated force.
Equation (4.51) shows that the bending moment just after the concentrated couple drops when the external concentrated couple acts counterclockwise and jumps when the concentrated couple acts clockwise. Each time, the magnitude of the value of change (i.e. drop or jump) discontinuityis equals to the magnitude of the concentrated couple.
Application 4.10. A 90° arm cantilevered at O and free at A is subjected at its free end to a force  as shown in figureFigure 4.40. Determine the internal efforts developed at cross  section B, which is  distant from O by 1 m. from O.
[image: ]
Figure 4.40 Fixed-fFree 90° arm loaded in the space.


Solution 4.10. The external loading (i.e. i.e., active loading) should be completed by the reactions at the fixed support O. However, one may “‘’shorten”’’ the solution by cutting at B and keeping the right portion, which does not involve anyhas no support. Figure 4.41 shows tThe FBD of this portion is depicted in figure 4.41.
[image: ]
Figure 4.41 FBD of the right sectioned portion of a 90° arm.
The six components of internal efforts are calculated using equationEquations (4.42) – (4.47). However, bBefore using this latter set of equations, it is convenient to find the components of the external moment developed generated by the external force  about point B. For tThis purpose requires, the components of the position vector   are needed::
B(1,0,0) and A(4,0,4) give .

The internal efforts at B couldare be calculated as follows:






Application 4.11. Plot Draw the diagrams of the shear force and bending moment of the beam cantilevered at A and free at B shown in figureFigure 4.42.
[image: ]
Figure 4.42 Fixed-fFree beam in planar equilibrium.
Solution 4.11. The three components of reactions components (Ax, Ay , and MA) exhibitsat the fixed support at A are determined by applying the equations of equilibriumequilibrium equations in the plane of the entire beam:.



Since the external loading is changesing twice along the beam, first time at the reactions at A and the second nexttime  at the active concentrated force of 10 kN, two sections should be performed taken to take in account for the change of in external forces and hence thus inof internal forces. The loading case implies that keeping retaining the right portion leads to easier calculations. Figure 4.43 shows the FBDs of the whole beam as well asand of the two kept portions are illustrated in figure 4.43. The origin of the xx-axis axis is always coincident with point A.
[image: ]
Figure 4.43 FBD of entire fixed-free beam and sectioned portions of a thereof.fixed-free beam
The next step consists in calculating the expressions of Vy(x) and Mz(x) using the equilibrium equationequations (4.43) and (4.47) for the two intervals of cuts.
Cut 1: 0 < x < 1


Cut 2: 1 < x < 1.5


One can remark that forFor both cuts, the shear force is equals to the derivative of the bending moment, which emphasizes the validity of equationEquation (4.49). Moreover, calculating the difference of shear forces just after and before the concentrated force one can findgives , which verifies equationEquation (4.50).
Finally, figureFigure 4.44 depicts shows the diagrams of the shear force and bending moment.
[image: ]
Figure 4.44 Diagrams of shear force and bending moment of for a fixed-free beam under concentrated force.
Self-Check Questions
1. Specify if whether the following statement is True or False and justify your answer.
In a planar truss, two types of internal loadings are developed. False because, since all bars in a truss only sustain exclusively forces along the bars, (i.e. i.e., axial forces).
2. Choose the correct answer:
A simply supported beam of length L is subjected to a downward distributed load  where P is a known force. The bending moment at the middle of the beam is equal to:
       P.L/2                −-P.L/2              P.L/ 2              −-P.L/ 2                       
4.3 Beams with different support conditions
Simply supported beam under uniformly distributed load
Figure 4.45 illustrates a simply supported beam subjected along its entire length L to a uniformly distributed load of intensity q and the relevant diagrams of the shear force and bending moment. The resultant force of from this uniform distribution is equal to the area of the rectangle q.L and is applied at the center of the rectangle, which coincides with the midpoint of the beam, (i.e. i.e., x = L/2.). Due to the symmetry of the case, the vertical reaction forces of at the supports are upward with equal magnitudes q.L/2. 
Since the load does not changeremains constant along the entire beam, this means that there is only one cut to need be performed at any abscissa x , generating only one expression for Vy and one expression for Mz. Theose are normally established by isolating either the left or right portion of the cut, drawing its FBD, and applying the e equations of equilibriumquilibrium equations. However, due to the particularity of the case, one can integrate equationEquations (4.48) and (4.49) as follows:Bboundary conditions are : specific “‘‘already-known”‘‘ values of some quantitiesvalues at the ends of an intervals that allow us to , helping in establishing general expressions of for those quantities within the interval.



The constants C1  and C2 are determined from based on the boundary conditions of Vy and Mz at the pin (i.e. i.e., at x = 0), respectively, by writing the equilibrium equationequations of the cut portion at x = 0 , as illustrated in figureFigure 4.45 and which gives  and . The final expressions for s of the shear force and bending moments becomeare:


[image: ]
Figure 4.45 Diagrams of shear force and bending moment of for a simply supported beam under a uniformly distributed load.
From the diagrams and since because Vy is the derivative of Mz, it is clear thatwe see that, when Vy is zero at the middle center of the beam, Mz passes goes throughby  a maximum. Moreover, at the supports (i.e. i.e., x = 0 and x = L), since the reactions are onlyconsist of concentrated forces, so the shear force Vy exhibits respectively a jumps up and a drops, respectively, each time with the magnitude of each discontinuity equal to the magnitudes of the reaction forces. In addition, since those supports do not exert no couplinge reaction, the bending moment Mz is zero.
Simply supported beam under concentrated force
Figure 4.46 illustrates shows a simply supported beam subjected to a concentrated force located at a distance a from the pin, (i.e. i.e., at the origin of the xx-axis axis). Applying  and  one getsgives the vertical reactions. T while the horizontal component is zero since because there is no horizontal external horizontal forces.
[image: ]
Figure 4.46 Diagrams of shear force and bending moment of a simply supported beam under subjected to a concentrated force.
Since the external loading is changesing twice, two cuts have been performedare made. For sake of simplicity, the left portion has been keptis retained for the first cut, while and the right one portion is retained forhas been the isolated portion corresponding to the second cut. Figure 4.46 shows tThe relevant FBDs are shown in figure 4.46. Applying the equations of equilibriumequilibrium equations at each cut, one establishes the expressions of Vy1(x), Vy2(x), Mz1(x) , and Mz2(x).
Cut 1: 0 < x < a


Cut 2: a < x < L


From the diagrams and since Vy is the derivative of Mz, Mz increases linearly it is clear that when Vy is positive and constant, Mz is linearly increasing while whereas the opposite occurs when Vy is negative and constant. The amount of drop in the shear force at x = a is clearly equals to the magnitude P of the concentrated force. At that point, the slope of the bending moment changes, indicating that it passes by a maximum. Moreover, at the supports (i.e. i.e., x = 0 and x = L), since the reaction forces are the only concentrated forces, so the shear force Vy exhibits respectively a jumps and a drops each time, with the magnitude of the discontinuities equal to the magnitudes of the reaction forces. In additionFinally, since those supports do not exert no couplinge reaction, the bending moment Mz is zero.
Fixed-fFree beam under uniformly distributed load
Figure 4.47 illustrates shows a fixed-free beam subjected along its entire length L to a uniformly distributed load of intensity q and the relevant diagrams of the shear force and bending moment. The resultant force of from this uniform distribution is equals to the area of the rectangle q.L of the rectangle and is applied at the center of the rectangle, which coincides with the midpoint of the beam, (i.e. i.e., x = L/2.). Applying  and  one we gets the vertical and couple reactions, while whereas the horizontal component is zero since due to the lack ofno  horizontal external horizontal forces.
Since the load does not change along the entire beam, this means that there is only one cut to need be performed at any abscissa position x , which generatesing only one expression for Vy and one expression for Mz. One We could have integrated equationEquations (4.48) and (4.49) but, for sake of diversity to diversify thein methods used, the we consider the equilibrium of the isolated right portion shown in figureFigure 4.47 will be written:.
[image: ]
Figure 4.47 Diagrams of shear force and bending moment of fixed-free beam under with applied uniformly distributed load.


From the diagrams and since Vy is the derivative of Mz, the slope of the parabolic bending moment is upward but decreases continuously along x becauseit is clear that since Vy is positive but linearly decreasing, the slope of the parabolic bending moment is upward but decreases continuously along x. Both quantities reach zero at the free end (i.e. i.e., x = L), where neither no a concentrated force or /couple nor a support exists while at the fixed support (i.e. i.e., at x = 0). B booth Vy and Mz quantities attainreach  values equal inthe magnitude to of the relevant components of the reaction efforts.
Fixed-fFree beam under concentrated force
Figure 4.48 illustrates a fixed-free beam subjected to a concentrated force located appliedat a distance a from the cantilever, (i.e. i.e., at the origin of the xx-axis axis). Applying  and , we one gets the vertical and the couple reactions, while whereas the horizontal component is is zero since nodue to the lack of horizontal external horizontal forces.
[image: ]
Figure 4.48 Diagrams of shear force and bending moment of fixed-free beam under with applied concentrated force.
Since Given that the external loading is changesing twice, two cuts have been performedare made. For sake ofTo diversifty thein methods used, equationEquations (4.48) and (4.49) will beare integrated in over each interval portion of cut and the boundary and continuity conditions will beare used to evaluate determine the constants of integration.
Cut 1: 0 < x < a


The constants C1  and C2 are determined from the boundary conditions of for Vy1 and Mz1 , respectively, at the cantilever (i.e. i.e., at x = 0) respectively by writing the equilibrium equationequations of for the cut portion at x = 0 , as illustrated in figureFigure 4.48 and which gives  and . The final expressions of for the shear force and bending moments becomeare:


Cut 2: a < x < L


The constants C3  and C4 are determined from the boundary conditions of for Vy2 and Mz2 at the free end (i.e. i.e., x = L), which is free from any concentrated force/ or moment and also not supported by any bearing, which meansing that  and .
The final expressions of for the shear force and bending moments become:are


From the diagrams and since because Vy is the derivative of Mz, Mz increases linearly when Vy is zero, Mz is constant In the absence of any externally applied couple, this constant is zero it is clear that when Vy is positive and constant, Mz is linear increasing while when Vy is zero, Mz is constant and in the absence of any external couple applied, this constant is zero. On the another side, the amount of drop in shear force at x = a is clearly equals to the magnitude P of the concentrated force. Both quantities reach zero at the free end (i.e. i.e., x = L) where neither noa concentrated force or /couple nor a support exist while at the fixed support (i.e. i.e., x = 0) both quantities reach values equal inattain a magnitude equal to the relevant components of the reaction.
Self-Check Questions
1. Specify if the followingwhether the following statement is True or False and justify your answer.
In an overhang beam, the bending moment at the intermediate support is zero. False, because,since  if a cut is made just before and just after of this isolated support which is isolated, a bending moment will appear from the part of the beam before the cut and thus another bending moment must appear at the cut just after the support to keep maintain equilibrium.
2. Choose the correct answer:
Consider two identical beams of length L each., tthe first beam is fixed-free while and the second beam is simply supported. Uniformly distributed loads of intensities q and q′‘ are applied respectively on the first and second beams, respectively. What should be the ratio q′‘/q that develops generates the same maximum bending moment (in absolute value) in both beams?
      1/4                       1/2                      2                       4
Summary
To locate by integration the centroid of a shape of size S, that which could be either a volume, an area, or a length, one shouldwe consider a differential element of size dS , measured the coordinates xx, yy , and zz of its local centroid, and then apply the following equationequations:

To locate the centroid of a composite body, one divides it into a finite number n of regular shapes each of size Si, measures the coordinates xi, yi , and zi  of its local centroid, then appliesy the following equationequations:

The moment of inertia of an area about an axis or a pole is the integral of the product of a differential element dA and the square of the distance D (i.e. i.e., abscissa, ordinate, or polar distance) separating the element from the axis or the pole:  
The parallel-axis axis theorem establishes a relationship between the moment of inertia of an area about an axis passing through the centroid  and the moment of inertia I about an parallel axis parallel and separated by a distance d from the centroidal one such that: .
The principal directions of inertia represent a particular rotation of the original reference at which the moments of inertia are optimal.
Internal forces appear on the FBD of when a portion of a sectioned beam is isolated along with the remaining external loading applied at to this portion. Internal forces are calculated from equations of equilibriumequilibrium equations applied to the isolated cut portion.
On a beam, the internal forces change with the length, (i.e. i.e., abscissa x ) each time the external load changes, so and hence the number of cuts is the same as the number of external loading variations.  Diagrams of those internal efforts maycould be plotted as functions of x.









Unit 5 –Solid- State Friction

Study Goals

On completion of this unit, you will be able to …

… analyze the aspect of dry friction and its influence on the equilibrium of bodies.
… investigate the effect ofhow dry friction on affects bodies at rest or, in sliding or rolling motion.
… explore the practical side of friction through pulley- and- belt applications.



5. Solid- State Friction
Introduction 
Throughout this textbook, all contacts between different surfaces have been considered as smooth, (i.e. i.e., ideal). This assumption has led to further simplifications in the different governing laws applied on to a solid. However, in reality, all surfaces exhibit a certain level of roughness , meaning that different faces forming of the solid are not perfectly flat smooth despite their flat smooth appearance at on the macroscopic scale. A miscroscopic analysis of surfaces reveals some substructures in the surfaceir profiles and,; as more deviations from the ideal shape get accentuatedincrease, the surface is becomes qualified featuring as roughness and waveyiness. In consequence, a planar contact between faces of solids is in factbecomes reduce to contact at certain points levels, those points beingwhich are the peaks of the wavy and rough profiles surfaces of the faces. Mechanically speaking, this results in non-perpendicular reaction force exerted from by the planar support face on the solid,; instead so a tangential component of this reaction force that is tangential to the surface appears. This tangential component is known as the friction force. It acts as a reaction force when the solid is at rest and as an action force against the motion when the solid moves.
The scope of the present unit is limited to the dry friction or Coulomb friction (after the name of the French engineer Charles-Augustin de Coulomb) (Gross et al.,2013) where the friction force acts directly between two main surfaces of contact in the absence of any intermediate “‘‘softer‘‘” material such as a fluid or lubricant. Three different statuses types of the friction force and their influence will beare analyzed and calculated: friction force on a body at rest or (static friction), friction force on a translating body or (sliding friction), and friction force on a rotating body with a forward motion or (rolling friction).



5.1 Static fFriction
Fundamental cConcept of Coulomb fFriction
Consider a rigid block of weight  resting on a rough deformable horizontal plane. This block is subjected to a horizontal force  trying to move this block horizontally along the horizontal plane, as illustrated in figureFigure 5.1a. Due toBecause of the irregular profile of both contact surfaces of contact, the support exerts along its whole surface a non-uniform distribution of both normal forces  and tangential or frictional forces  as shown in figureFigure 5.1b. 
[image: ]
Figure 5.1 (a) Block resting on a rough surface (a), (b) nNon uniform distribution of normal and friction forces (b), (c) expanded view ofZoom-in on contacting surfaces, and (d) resultant reaction forces of produced by the rough planar support.
A microscopic analysis on of the contacting surfaces in figureFigure 5.1c reveals in fact that contact is made ate existence of  points of contact instead of over the a wwhole area of contactsurface., Aat each point acts a “‘’part”’’ of this normal and tangential distribution of forces is acting. Applying the law of parallelograms (here it is a rectangle), the resultant of the reaction at each contact point (i) is an inclined force  .
Applying the equationequation of equilibrium along in the xx -direction, the distribution of friction forces, (i.e. i.e., their resultant ),  must be opposite to the horizontal pulling force  while and their magnitudes must be equal: Hs = P. The equationequation of equilibrium along the yy -direction imposes that, the distribution of normal forces, (i.e. i.e., their resultant ),  must be opposite in sense to the vertical downward weight  while their magnitudes must be equal: N = W. If the block is modeled as a particle, the lines of all of the four forces‘ lines of of action must pass through the center of gravity G and the entireto satisfy the equilibrium is satisfiedconditions. However, for thea rigid- body model, the resultant of the reaction force is applied at a certain point O that is a distance dt from G by an amount d, as illustrated in figureFigure 5.1d. By applying the third equationequation of equilibrium,  , we obtain one determines d = (P/W)⋅) h.
Static eEquilibrium
By Upon progressively increasing the intensity of the pulling force  , the magnitude of the dry friction or Coulomb friction  increases in proportion similarly to keep maintain the block in static equilibrium, thereby playing the role of a tangential support reaction.  is known as the static friction force.
[image: ]
Figure 5.2 (a) Normal and friction force components at static equilibrium (a), (b) impending motion (b), (c) motion.n (c)
As Hs increases along aswith increment of P increases and since  N remains constant, so the static resultant reaction  increases not only obviously in magnitude but also its in direction angle  increases. This status is depicted in figureFigure 5.2a. Note that “‘‘tThe orientation of the friction force always opposes the direction of the motion that would occur in the absence of friction”‘‘. (Gross et al., 2013, p. 264). However, upon depending on the complexity of the loading case, one may select an arbitrary sense for the friction force and then determine the sense of the friction force is not straightforward: it is to be assumed and then uponmay by the algebraic sign at the end of calculations one can judge about the real effect of friction force on the system in question.	Comment by Author: Please ensure that the intended meaning is maintained.
Impending mMotion
The magnitude of the static friction force Hs cannot increase indefinitely to keep maintain the balance with P. In fact, Hs has an upper limit value denoted by H0 and known as the limiting static friction force beyond which the static equilibrium cannot is notbe  conserved and the block enters in motion statusmoves. H0 represents is the maximum value of Hs that keeps retainsthe static equilibrium; in other terms words, at Hs = H0 the body is in impending motion status , meaning that it is on the verge to of translatinge horizontally, (i.e. i.e., to slidinge on the support). According to the experiments of Charles-Augustine de Coulomb, H0 is proportional to the magnitude of the normal reaction N such as:
                                                                   		                                  (5.1)
where 0 is denoted by the coefficient of static friction. This coefficient depends mainly on the roughness of the contacting surfaces. For instance, for a contact metal- ice contact, 0  ranges between from 0.03 to – 0.05 whereas while for a contact wood-wood contact, the range of 0 ranges fromis 0.3 to– 0.7 (Hibbeler, 2010). Contact For ssteel-steel contact, exhibits a range of 0 ranges fromof 0.15 to– 0.5, and tires on snow have ; this range measures 0 = 0.7 – 0.9 for a contact of tires on snow (Gross et al., 2013).
Figure 5.2b shows the angle  of static friction denoted by . Since   and using equationEquation (5.1) one getsgives:
                                                                   		                        (5.2)
The condition of static equilibrium imposes , (i.e. i.e., )
For a 2D2D case, the limiting zone in which  may lie keepingretains static equilibrium under any external load is described by a static friction wedge constructed by two lines at shifted angles each by  from the surface normal line to the supporting plane, as illustrated in figureFigure 5.3a. 
[image: ]
Figure 5.3 Limiting regions for the support reaction for static equilibrium: (a) static friction wedge in 2D (a) and (b), static friction cone in 3D. (b)
For thea 3D3D case, the limiting zone in which  may lie keeping and still maintain static equilibrium under any external load is thea static friction cone , which is constructed from theby revolution rotatingof an inclined line inclined by  with respect to the surface normal intersecting together at the supporting surface. This case is depicted in figureFigure 5.3b.
It is worth to citeWe now present several couple of  practical examples reflecting involvingthe influence of the static friction force. Figure 5.4a illustratedshows an athlete trying to pushing the a cart full of heavy weight platesweights. If the floor and the bottom of the cart were perfectly smooth, a slight effort from the man athlete could havewould suffice been sufficient to produce produce the motion. Besides Tthe roughness of the contact surfaces that influence ondetermines the coefficient of static friction, and the value of the weight plays a huge role sincedetermines the normal reaction is equal to the weightforce, meaning so that the limiting static friction force H0 increases when as the weight increases. This explains why on it is difficult to move furniture over rough floors one finds lot of difficulties to move a certain piece of furniture!. 
[image: ]
Figure 5.4 Example of static friction force: (a) contact steel cart -on rough floor (a), (b) contact loaded wooden palette on -rotating metallic platform. (b)
Figure 5.4b shows aThe second example is illustrated in figure 5.4b where a heavy package consisting of a wooden palette carrying many rows of boxes is restsing on a rotating metallic platform. In absence of friction force, the whole packagepallet might slip offon the platform and tip on the floor.
The sStatic friction force  plays a key role in keeping maintaining the stability of solid bodies. It is responsible of for the adherence between the body and its supporting surface. As long asProvided Hs has notis less reached than H0, contacting surfaces adhere permanently to each other. One Another example ismay cite the adherence between carrs tires and the road, where desired acceleration iss and decelerations are  possible while on icy roads or an undesired sliding motion may occur.
Sliding mMotion
Once P exceeds even slightly the limiting static friction force H0, the friction force drops from H0 to a lower value Hk known as the kinetic friction force or sliding friction force , which tries toalso opposes the motion of the block that has been launched. In that case, the kinetic resultant reaction  forms an angle  with the normal line to the surface. This angle  angle of kinetic friction is called the“Kkinetic” is a: term belonging to the ‘‘field of kinetics, which analyzes field‘‘ where the relationship between motion and its causes. is analyzed

Finally, it is worth toFigure 5.5 summarizes the theory of dry friction or Coulomb friction Hs by by the graph of figure 5.5, showing the evolution ofhow the friction force evolves as the external pulling force P increases.
[image: ]
Figure 5.5 Evolution ofF the friction force along as a function ofwith the applied pulling force.
Self-Check Questions
1. Specify if the followingwhether the following statement is True or False and justify your answer.
It is easier to move a package of 60 kg on a horizontal floor of with a coefficient of static friction of 0.1 rather than a package of 30 kg on a horizontal floor of with a coefficient of static friction of 0.3. True, sinceI in both cases, N = W (equilibrium along in the yy -direction); however, in the first case,  while whereas, in the second case,  hence , so .
2. Complete the following sentence:
The resultant reaction at the impending motion of a crate of weight 800 N resting on a support of coefficient of static friction of 0.4 is inclined from the horizontal by 68.2°   and has a magnitude of 861.63 N.
5.2 Sliding fFriction
Characteristics of kKinetic- fFriction fForce
Referring to graph of figureFigure 5.5, the kinetic friction force  appears after the impending motion point, (i.e. i.e., when P goes slightly beyond the limiting static friction force H0.). In thaist case, the static resultant reaction  goes out ofexits the static friction wedge in the plane of the static friction cone in the space. The Sstatic equilibrium is thus broken, and the sliding motion is launchedbegins because  and this latterthe reaction becomes a kinetic one reaction .
Unlike the static friction force, the kinetic friction force acts as an active force on the solid trying working to slow down the sliding motion of the body, which ; this latter tendsing to overcome the surface contact asperities to and keep maintain theits motionn on. In consequence, the sense of the kinetic friction force is opposite to the sense of the velocity vector . Denoting by  the unit vector indicating the direction of , one may write:Aasperities are a: group of discrete spots distributed along a surface due to a pronounced unevenness in flatnessof the surface.

                                                                   		                                  (5.3)
Contrarily In contrast to with the static friction force, one may not assume at randomly the sense of action in the case of the kinetic friction force. This aspect is emphasized  in a couple of cases depicted in figureFigures 5.6a–5.6-d.
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Figure 5.6 Sense of kinetic friction force upon with respect to relative velocity of betweenthe contact surfaces: (a) support unmovable (a), (b) support moving opposite to the body (b), (c) support moving slower and in the same sense as the body( c), and (d) support moving faster and in the same sense as the body. (d)
If tThe case of figureFigure 5.6a is straightforward, but the sense of  in the remaining cases depends on the relative velocity between the support and the body. In each case,, all time the kinetic friction force trying works to slow reduce down the bodyrelative velocity.
Concerning Tthe magnitude Hk, it is independent of the velocity of the motionbody. The law of friction established by Coulomb states is similarly to the static friction force by assigning, a proportionality between the kinetic friction Hk and the normal N of the support such as:
                                                                   		                                  (5.4)
where k  is denoted by the coefficient of kinetic friction, which is. Values of this coefficient are globally generally about 15% lower less than those of the corresponding coefficient of static friction. (Hibbeler, 2010).  Similarly toAs in equationEquation (5.2), the kinetic direction  is determined by:
                                                                   	.	                        (5.5)
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Figure 5.7 Heat Ggeneration of thermal energy in absence of lubricant due to dry kinetic friction force.
If the static friction can be beneficial in most of the cases, “‘‘kinetic friction is often undesirable due to the resulting loss in energy. In the contact areas, mechanical energy is converted to thermal energy resulting in a temperature increase”‘‘. (Gross et al., 2013, p.263). For this reason, lubricating fluids are often used between contact surfaces to decrease as possible the effect of kinetic friction. Figure 5.7 shows the enormous significantamount of heat generated due to dry contact (i.e., whenre lubricant is completely absent between the polishing disk and the metallic shaft). In contrast, figureFigure 5.8 shows the positive effect of the a lubricant in when cutting metal cutting process.
[image: ]
Figure 5.8 Lubrication rReducestion the of heatthermal energy generatedion due to kinetic friction. using lubricant
Application to friction: Ccontact pulley-belt
In the mechanical and industrial fields, one may encounters enormous cases where contact between components are in contact is used in order toto generate motion of any desired mechanism. One of thesuch methods to transmit power from a motor to an inertial body (such as a fan  or wheel or turbine…) is the system of a pulley and a flat V-belt, as shown in figureFigure 5.9.
[image: ]
Figure 5.9 Pulley-flat- belt system.
[image: ]
[bookmark: _Hlk101718086]Figure 5.10 (a) Tensile forces acting on a flat belt around over a pulley. (a) (b), FBD of a differential belt element. (b)
Figures 5.10a and 5.10b show aA mathematical friction analysis is to be carried out starting from figures 5.10a and 5.10b whichof  depict respectively a flat belt acting stretched overaround a pulley with tension forces  and  then and a FBD of a differential element of length ds picked up fromof the flat belt (since the reaction distribution along over the contact whole region of contact is not known).  denotes the differential normal force applied by the pulley on the differential element of the flat belt while and  denotesd the friction force applied by the pulley on the belt element tryi, workingng  to oppose either the impending motion for the static case or the sliding motion for the kinetic case. Thus, hence:  where dH is either H0 or Hs depending respectively on the status ofwhether the system is in the state of impending motion or sliding. The coefficient; same applies for , being is either 0 or k, respectively.. Applying to the differential element of the flat belt the two equations of equilibriumequilibrium equations of for a particle, on the differential element of the flat belt and considering also for very small angles so that  and  , and neglecting the product of two differential quantities (i.e. i.e., ), one writes:we obtain


Equatind dN from both previous expressions:Combining these equations gives

This latter equationwhich shows that the tension in the flat belt is independent of the pulley’s diameter and, it depends solely on the angular contact surface. To Iintegratinge this latter equationequation requires, the limits of the integrals boundaries are needed. Rreferring to figureFigure 5.10a, the contact surface is extends frombounded between   = 0 and to  = . At theose boundaries, the tension force T is respectively equal to T1 and T2 , so thus:

Applying at both members the base eExponentiating the left- and right-hand sides  of the natural logarithmgives, one finds:
                                                                   		                                  (5.6)
where:
T2  is the: tension force in nNewtons (N) developed generated in the flat belt under impending motion or sliding motion relative to the surface of the pulley and acting in the same sense as the relative motion;
T1 : is the tension force in nNewtons (N) developed generated in the flat belt under impending motion or sliding motion relative to the surface of the pulley and acting against the relative motion: T1< < T2;.
 is the: coefficient of static friction for impending motion or kinetic friction for sliding motion between the contact surfaces and the pulley -flat belt;.
 is the: angular portion extension of the belt in contact with the pulley and is expressed in radians (rad).
Note. Considering equationEquation (5.5) under the particular case of impending motion, weone can deduce that static equilibrium is maintained for  while slipping occurs either when  or .
Application 5.1. A wooden crate weighting 300 N rests on a horizontal rough floor of with a coefficient of static friction of 0.2. If a pulling force of 65 N is applied through an inclined attached rope as shown in figureFigure 5.11, check itswhat is its equilibrium status?.
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Figure 5.11 Crate on a rough floor to be pulled by a rope over a rough floor.
Solution 5.1. The FBD of the crate is illustrated in figureFigure 5.12 and includesing the friction force  acting against the pulling effortforce.
[image: ]
Figure 5.12 FBD of the crate resting on the rough floor under pulling force.
Applying the three equations of equilibriumequilibrium equations of a rigid body in the plane gives:



Since the sign of d was isfound  positive, this means that the reaction of the floor acts indeed atto the right of the central vertical line. Moreover, since d < 40 cm, the reaction acts on a ‘‘“physical”‘‘ region of the crate and not outside. This result indicates that no tipping will occurs.
On another side,T the limiting static friction force . Since H was found to be greater than> H0, the crate will does not then remain in static equilibrium, it is indeedbut slidesing along over the floor.
Application 5.2. A block of mass 20.4 kg rests on a rough incline of coefficient of static friction 0 = 0.6 and is held by a cable parallel to the incline and connected to a counterweight of 10.2 kg through a pulley,  as shown in figureFigure 5.13. Determine the interval of of variation of the angle  of the incline that holdsfor which the the block remains in static equilibrium of the block.
[image: ]
Figure 5.13 Block resting on a rough incline and held by a cable and counterweight.
Solution 5.2. Two possible scenarios may govern thise present system:. Either the tension in the cable is large and overcomes the effect of the weight, in which case such that the static friction force  will acts downward along the incline, or the tension is small and cannot overcome the effect of the weight, in which case leading the particle blockto slips downalong the incline. The latter case which implies the development of a static friction force  acting uppward along the incline to oppose slipping. The FBDs of the block upon for both scenarios is are depicted in figureFigures 5.14a and 5.14b.
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Figure 5.14 FBD of the a block on the a rough incline when (a) T is large and (b)(a), T is small. (b)
For both cases, the equilibrium along the yy-axis axis remains the same:

For the case of figureFigure 5.14a, the equilibrium along xx-axis axis leads to:

In order toTo keep , the angle must satisfy:  
The Sstatic equilibrium persists when 
Replacing Hs in the function of , the inequation becomes leads to:
,

.
This inequateionquation is satisfied for   and . T  
Those latter result show that the relevant inequationresult is satisfied for when .
For the case of figureFigure 5.b, the equilibrium along the xx-axis axis leads to:

In order toTo keep ensure , the angle must satisfy :  
 Replacing Hs in the function of , the inequation becomes:gives

.
This einequationquation is satisfied for   and  , which gives  and . And counting forGiven the condition , the second part of the solution is to be keptretained.
Finally, since the angular interval in over which which a may vary keeping the static equilibrium is maintained is from between 0° and to 56.35°	Comment by Author: Please ensure that the intended meaning is maintained.
Application 5.3. A disk of diameter 200 mm pivoted at its center C rotates under a couple of 40 N ⋅ m. A brake consisting of a 90° arm pinned at O requires a minimum force P = 300 N at its handle to stop the rotation ng motion of the disk (see as shown in figureFigure 5.15). Calculate the coefficient of static friction between the disk and the arm. Evaluate also the reactions at the pin O of the brake’s arm.
[image: ]
Figure 5.15 Braking system of a rotating disk.
Solution 5.3. Since the couple is moving the disk in a counterclockwise sense of rotation, the arm must apply a braking force that createsing a clockwise moment about the center of the disk C with the same magnitude as the applied couple, which this leads to a friction force oriented leftwards applied by the arm on the disk.  while tThe normal reaction is vertical upwards. Due to the principle of action and reaction, the disk exerts on the arm a force of equal magnitude but and opposite forcesin sense. By Sseparating the disk from the arm and drawing the FBD of each of them according to this analysis give, one gets the schemes illustrated in figureFigure 5.16.

[image: ]
Figure 5.16 FBD of the isolated disk and arm.
Applying Imposing the equilibrium of the disk towards with respect to rotation about C gives:

The law of friction allows writing:gives 
Using the FBD of the arm and applying equationthe equation of equilibrium of moments about O give:



Application 5.4. A block is to be lifted at a constant speed by sliding along a rough incline through under the effect of a force  applied on a belt attached to the block and enrolled around two rough drums A and B, as shown in figureFigure 5.17. Knowing that the maximum tension sustained by the belt is 400 N and the coefficient of kinetic friction between all contacting surfaces is k = 0.1, calculate the maximum mass of the block that could be risen pulled along up the incline.
[image: ]
Figure 5.17 System of two drums and a belt to lift a block by sliding.
Solution 5.4. Since the motion is oriented upward, the kinetic friction forces at contact surfaces act downward, meaning that the tension in the belt is increasing from point to point starting from the block, passing by contact points at drum A and finally at drum B. One may then deduce that the highest tension developed in the belt is no other than the lifting force P = 400 N. 
On another handConversely, figureFigure 5.18 illustrated shows the FBD of the isolated block, drum A, and drum B. 
At drum B, the contact angle is B = 180° =  (rad) thus:, so

At drum A, the contact angle is A = 45° =  (rad) thus, so:


[image: ]
Figure 5.18 FBD of isolated block and drums.
Writing Enforcing the equilibrium of the block with the xx-axis axis parallel to the incline and the yy-axis axis perpendicular to the incline givesit:


Finally, using the Coulomb law of friction [(equationEquation (5.4)]) and replacing N and Hk by their expressions in terms of W give:


The maximum mass is: 
Self-Check Questions
1. Choose the correct answer.
The minimum horizontal tension force in a rope necessary to lift a vertical weight of 250 N around a drum for a coefficient of static friction 0.25 is about:
      141 N                  169 N                 183 N               212 N      
2. Specify if the followingwhether the following statement is True or False and justify your answer.
A cubic crate of weight W resting on a rough horizontal floor and pulledis subjected to a horizontal tensile force of magnitude P exerted at the middle of its vertical side. It will  by a horizontal force of magnitude P will tip if P > W.. True, because the weight passes is exerted effectively atby the middle of the horizontal facecenter of gravity, so the line of action passes through the middle of the horizontal face when the crate is on the floors. Since both forces are half the length of the cube’s sides are far fromfrom each corner edge of the cube by same distance (equal half of cube’s side length), the sum of moments about this corner edge vanishes when P = W. If P exceeds > W, the  its moment due to P becomes greater than the moment of the weightdue to W, so and thus the cube will tip.
3. Complete the following sentence:
A particle of weight 120 N moves on a rough incline of 60°. Once the kinetic friction force measures one-third of the weight, the coefficient of kinetic friction between contact surfaces reaches a value of 2/3  while the pulling force, which is  being parallel to the incline, has a magnitude of 144 N.
5.3 Rolling fFriction
When an object such as a cylinder, disk, or drum rolls on a flat surface, the zone of contact is a point whose position changes instantaneously continuously through the duringation of the motion. When the materials of both objects and supports are very rigid, the planar support exerts a perpendicular reaction on the rolling solid. However, in practice, there are no indefinitely rigid materials. In caseIf the supporting plane is made from a material that is relatively softer than the rolling object, this itplane  will deform under the action of the weight of the rolling object, meaning that this latter is “‘‘pushed”‘‘ slightly within by the instantaneously deformed shape of the supporting plane. This will leads to an inclined reaction  exerted on the rolling object that tending to slow reduces down its motionits velocity and, in consequence, this implies the necessity of a driving force  to acting on the rolling object is required in order toto overcome the effect of and maintain the motion. This phenomenon is depicted in figureFigure 5.19.
[image: ]
Figure 5.19 Resistance to rolling motion.
The main effect then to the apparition of causing the rolling resistance force is thus the deformability of surfaces. The surface roughness and adherence level play a secondary role in that this case, contrarily in contrast withto the sliding motion phenomenon. The condition ensuring the dynamic equilibrium of the a rolling object (i.e., motion at constant- velocity motion) consists inis the intersection of ,, and  denoted byat the center of gravity G in figureFigure 5.19. Summing the moments of those these forces about the point of intersection between and the horizontal supporting plane one getsgives:  at equilibrium. Since the amounts of deformations are small, one can approximate , so hence:	Comment by Author: Please ensure that the intended meaning is maintained.
                                                                   		                                  (5.7)
The distance a (in millimeters mm) denotes is the coefficient of rolling resistance. This coefficient decreases as thewith increasing rigidity of the contacting materials increases.. However, it depends also on the speed of rotation and the surface status. Equation (5.7) interprets explains why, under the same conditions, heavy objects exhibit have higher rolling resistance to rolling than lighter objects under same conditions, needing higher levels oftherefore requiring greater driving force. “‘‘Furthermore, since W⋅ a/r is generally small compared to k⋅ W, the force needed to roll a cylinder over the surface will be much less than that needed to slide it across the surface.”‘‘ (Hibbeler, 2010, p.435).
Figure 5.20 illustrates shows an example of rolling resistance between the a cement floor and the relatively soft rubbery wheels of a pallet truck;, however, it remains easier to move the package through by using the truck rather than by rolling it directly on the floor (without the wooden pallet) or sliding it with the wooden pallet.
[image: ]
Figure 5.20 Example of rRolling resistance between the pallet truck wheels and the floor.
Figures 5.21a and 5.21b illustrate a comparativeshows example between a rigid bowling ball rolling on a relatively rigid floor (which explains the high speed of the ball), demonstrating  and theits “‘‘easy”‘‘ rolling motion along its path. Figure 5.21b shows schematically while the deformable nature of the football stadium ground increases the rollingthe  resistance of a deformable soccer ball over a grass field. The ball to roll of a football ball which may stop after travelling a relatively ‘‘limited distance.s‘‘ along the pitch.
[image: ]
Figure 5.21 Rolling resistance force: (a) low on a bowling floor and (b)(a), high on a football grass fieldground (b).
Finally, it is worth toTable 5.1 summarizes the differences between sliding and rolling friction in table 5.1.
	Table 5.1 Sliding Ffriction vs rRolling fFriction.

	Sliding Ffriction
	Rolling fFriction

	Two planar contact surfaces between the body and the support
	Contact point between a curved rolling body and a flat supporting plane

	Occurs due to roughness of contacting surfaces
	Occurs due to the deformation of contacting surfaces

	The coefficient of kinetic friction depends on (texture) of the surface
	The coefficient of rolling friction depends on the toughness hardness of the surface

	Formula: 
	Formula: 



Application 5.5. The grass of the lawn grass is rectified compacted by a 65 kg cylinder of mass 65 kg rolling at constant velocity under thanks to a force P = 90 N acting along the arm AC , as shown in figureFigure 5.22. Calculate the value of the coefficient of rolling friction.
[image: ]
Figure 5.22 Lawn roller overcoming the resistance of the grass.
Solution 5.5. Indeed,T the horizontal component  of  is contributesing to overcominge the rolling resistance while and its vertical component  is added to the effect ofincreases the effective weight of the roller’s weight. The FBD of the cylinder showsing the resistance to rolling  is depicted in figureFigure 5.23.
[image: ]
Figure 5.23 FBD of the lawn- rolling cylinder.





Self-Check Questions
1. Choose the correct answer.
A rolling cylinder having the coefficient of rolling resistance a/r = 0.12 , may have a coefficient of kinetic friction of:
      0.09                     0.12                   0.21                  none of the previous answers      
2. Complete the following sentence:
A 100 N steel cylinder of 100 N weight begins to roll on a wooden incline once the inclination angle reaches 3°. The driving force P is equal to= 5.233 N  whileand the ratio a/r measures is 0.0523.
Summary
When a body rests on a rough surface, the reaction force exerted on the body is rather generally inclined (i.e., has having a normal and a tangential component). This latter component is termed called the dry friction force or Coulomb friction force. Moreover, the static friction force is defined to havehas a sufficiently large magnitude to resist theagainst a driving force. Although tThe static friction force increases to maintain the static equilibrium of the body, it cannot but not increase indefinitely: the limiting static friction force is the maximum possible value static friction force before the sliding motion starts; a status state known as impending motion. The magnitude of the limiting static friction force is proportional to the normal component of the reaction force through and the coefficient of proportionality is called the coefficient of static friction, this latterwhich depends on the roughness of the contacting surfaces making contact. Once the limiting static friction is overcome, the level of frictional force drops decreases slightly and reachesto a value known as the kinetic friction force. It Kinetic friction tends to opposes the sliding motion generated by the driving active force and . This force is also proportional to the normal component of the normal reaction, with the coefficient of proportionality being through the coefficient of kinetic friction.
A flat belt about passing over a rough pulley develops generates a tensileon force on one side of the belt‘s. This tensile force exceeds  side overcoming the friction with the pulley plus greater than the tensileon force on the other opposite side of the pulley, with the tensile force depending by an exponentially on amount depending of the coefficient of friction and depending on the angular contact between the pulley and the flat belt.
When a rolling solid rolls on a relatively softer surface, the deformation of theis latter develops produces an inclined reaction force known as the rolling resistance force. This requiresA a driving force is thus required to overcome the rolling resistance and maintain the motion. The driving is latter force is proportional to the weight of the roller and the horizontal distance separating the line of action of the weight from the tip point of application of the resistancet force. This distance is termed called the coefficient of rolling resistance.
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Source: Ammodramus (2010). CC0 1.0.
-------------------------------------------------------------------------------------- 
Figure 3.2 Triangular planar truss part of a whole spatial truss of a roof.Triangular planar truss part of a whole spatial truss of a roof
Source: Pondereva (2012). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 3.3 Simple truss.
Source: Fmiser (2012). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 3.4 Compound trusses constructed with method (a) 1 and (b) 2.Compound trusses constructed with method 1 (a), method 2 (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.5 FBD of an isolated bar from a truss.FBD of an isolated bar from a truss
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.6 Two-force member under either tension or compression.Two-force member under either tension or compression
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.7 (a) Simple truss under external loading, (b) FBD of joint G, (c) FBD of joint C.Simple truss under external loading (a), FBD of joint G (b), FBD of joint C (c)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.8 FBD of the whole truss ABCDEFG.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.8a: FBD of joint A.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.8b: FBD of joint B.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.8c: FBD of joint E.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.8d: FBD of joint F.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.8e: FBD of joint D.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.9 Planar compound triangular truss supported by a pin and a roller.Planar compound triangular truss supported by a pin and a roller
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.9a: FBD of joint D.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.9b: FBD of joint C.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.9c: FBD of joint F.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.9d: FBD of joint B.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.9e: FBD of joint A.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.10 (a) Section m-m through truss in equilibrium, and (b) an isolated portions (either left or right).Section m-m through truss in equilibrium (a), Isolated portions (either left or right) (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.11 Simple truss ABCDEFG supported by a pin and rocker.Simple truss ABCDEFG supported by a pin and rocker
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.12 FBD of the entire truss with two sections a-a and b-b.FBD of the entire truss with two sections a-a and b-b
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.13 (a) Isolated left portion from cut a-a of Figure 3.12 and (b) isolated right portion from cut b-b of Figure 3.12.Isolated left portion from cut a-a (a), Isolated right portion from cut b-b (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.14 (a) Deformable body in equilibrium subjected to n external forces. (b) Virtual unit force applied at a point on the body.Deformable body in equilibrium under n external forces (a), Virtual unit force applied at a point of the body (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.15 Uniform rod under axial force modeled by a linear spring.Uniform rod under axial force modeled by a linear spring
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.11a: FBD of joint C.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.11b: FBD of joint A.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.11c: FBD of joint G.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.16 Virtual unit force applied to simple truss.Virtual unit force applied on simple truss
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.16a: FBD of joint A.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.16b: FBD of joint B.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Table 3.1 Data summary of truss in Figure 3.11.Data summary of truss fig.3.11
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.17 Simple truss ABCD supported by a pin and a roller.Simple truss ABCD supported by pin and roller
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.18 (a) FBD of entire truss under real load, (b) virtual force, and (c) section with upper portion kept.FBD of entire truss under real load (a), virtual force (b), section with upper portion kept (c)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.18a: FDB of joint C.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.1 1 Centroid of a (a) volume, (b) area, and (c) line.Centroid of a volume (a), area (b), line (c)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.2 Example of a composite area.Example of a composite area
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.3 Metallic vessel as an example of a composite volume.Metallic vessel as example of composite volume
Source: Jmk7 (2009). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 4.4 Solid hemisphere.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.5 Differential volumetric element for a hemisphere.Differential volumetric element from a hemisphere
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.6 Nonuniform area delimited by a curve.Non uniform area delimited by a curve
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.7 Differential thin element parallel to (a) y axis and (b) to x axis.Differential thin element parallel to y-axis (a), to x-axis (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.8 Bent metallic rod.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.9 Linear differential element of a rod.Differential linear element from a rod
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.10 Compound bent rod.
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.11 Differential linear element for a semicircular rod.Differential linear element from a semi-circular rod
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.12 Centroids of different parts of a composite line.Centroids of different parts of a composite line
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Table 4.1 Data for composite line from Figure 4.10.Data summary of composite line fig.4.10
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.13 Compound volumetric homogeneous solid.Compound volumetric homogeneous solid
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Table 4.2 Data summary for composite body of Figure 4.13.Data summary of composite body fig.4.13
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.14 Centroids of parts forming the composite volume.Centroids of parts forming the composite volume
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.15 Structure made of three rigid bars supported by a pin and slotted roller.Three-rigid-bars structure supported by a pin and slotted roller
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.16 FBD of the three-bar structure subjected to its own weight.FBD of the three-bars structure subjected to its own weight
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.17 (a) Cross section of a beam under bending. (b) Wall under hydrostatic pressure.Cross section of a beam under bending (a), Wall under hydrostatic pressure (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.18 Differential element in an arbitrary area.Differential element in an arbitrary area
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.19 Differential rectangular strip element parallel to (a) x axis and to (b) y axis.Differential rectangular strip element parallel to x-axis (a), to y-axis (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.20 Radius of gyration about the (a) x axis, (b) y axis, and (c) pole O.Radius of gyration about x-axis (a), y-axis (b), pole O (c)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.21 T-shape area with an axis of symmetry.T-shape area with an axis of symmetry
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.22 Rectangular area with (a) central axes, (b) differential element parallel to x axis, and (c) to y axis.Rectangular area with central axes (a), differential element parallel to x-axis (b), to y-axis (c)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.23 (a) Circular area with central axes and (b) differential element parallel to x axis.Circular area with central axes (a), Differential element parallel to x-axis (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Table 4.3 Moment of inertia of standard shapes.
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.24 Area located in two parallel reference frames.Area located in two parallel references
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.25 Composite area sectioned into regular parts.Composite area sectioned into regular parts
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.26 Arbitrary area in an inclined reference frame.Arbitrary area in an inclined reference
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.27 Composite area sectioned into three parts.Composite area sectioned in three parts
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.28 Nonregular area delimited by a cubic polynomial curve.Non regular area delimited by a cubic polynomial curve
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.29 Differential rectangular strip parallel to (a) x axis and (b) to y axis.Differential rectangular strip parallel to x-axis (a), to y-axis (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.30 Right triangle in a Cartesian central reference frame.Right-angle triangle located in Cartesian central reference
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.31 (a) Differential strip element in a right triangle. (b) Principal direction of inertia.Differential strip element in a right-angle triangle (a), Principal direction of inertia (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.32 Visualization of external and internal forces.Visualization of external and internal forces
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.33 (a) Simply supported beam, (b) overhang beam, (c) fixed-free or cantilever beam, and (d) fixed-fixed or double cantilever beam. Simply supported beam (a), Overhang beam (b), Fixed-Free or cantilever beam, (d) Fixed-Fixed or double cantilever beam
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.34 3D external loading for a beam in equilibrium.3D external loading case on a beam in equilibrium
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.35 3D internal loading on a portion of a beam in equilibrium.3D internal loading case on a portion of a beam in equilibrium
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.36 2D external loading of a beam in equilibrium.2D external loading case on a beam in equilibrium
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.37 2D internal loading of a beam in equilibrium.2D internal loading case in a beam in equilibrium
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.38 Differential element of a beam under distributed loading.Differential element of a beam under distributed loading
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.39 Differential elements of a beam under concentrated force and concentrated couple.Differential elements of a beam under concentrated force and couple
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.40 Fixed-free 90° arm loaded in space.Fixed-Free 90° arm loaded in the space
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.41 FBD of the right sectioned portion of a 90° arm.FBD of the right sectioned portion of a 90° arm
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.42 Fixed-free beam in planar equilibrium.Fixed-Free beam in planar equilibrium
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.43 FBD of entire fixed-free beam and sectioned portions thereof.FBD of entire and sectioned portions of a fixed-free beam
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.44 Diagrams of shear force and bending moment for a fixed-free beam under concentrated force.Diagrams of shear force and bending moment of a fixed-free beam under concentrated force
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.45 Diagrams of shear force and bending moment for a simply supported beam under a uniformly distributed load.Diagrams of shear force and bending moment of a simply supported beam under uniformly distributed load
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.46 Diagrams of shear force and bending moment of a simply supported beam subjected to a concentrated force.Diagrams of shear force and bending moment of a simply supported beam under concentrated force
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.47 Diagrams of shear force and bending moment of fixed-free beam with applied uniformly distributed load.Diagrams of shear force and bending moment of fixed-free beam under uniformly distributed load
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.48 Diagrams of shear force and bending moment of fixed-free beam with applied concentrated force.Diagrams of shear force and bending moment of fixed-free beam under concentrated force
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.1 (a) Block resting on a rough surface, (b) nonuniform distribution of normal and friction forces, (c) expanded view of contacting surfaces, and (d) resultant reaction forces produced by the rough planar support.Block resting on a rough surface (a), Non uniform distribution of normal and friction forces (b), Zoom-in on contacting surfaces, (d) resultant reaction forces of the rough planar support
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.2 (a) Normal and friction force components at static equilibrium, (b) impending motion, (c) motion.Normal and friction force components at static equilibrium (a), impending motion (b), motion (c)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.3 Limiting regions for the support reaction for static equilibrium: (a) static friction wedge in 2D and (b) static friction cone in 3D.Limit regions for the support reaction for static equilibrium: static friction wedge in 2D (a), static friction cone in 3D (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.4 Example of static friction force: (a) steel cart on rough floor, (b) loaded wooden palette on rotating metallic platform.Example of static friction force: contact steel cart-floor (a), contact loaded wooden palette-rotating metallic platform (b)
Source: Ardha (2018). CC0; Heb (2011). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 5.5 Friction force as a function of applied pulling force.Evolution of the friction force along with the applied pulling force
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.6 Figure 5.6 Sense of kinetic friction force with respect to relative velocity between contact surfaces: (a) support unmovable, (b) support moving opposite to the body, (c) support moving slower and in same sense as the body, and (d) support moving faster and in same sense as the body.Sense of kinetic friction force upon relative velocity of the contact surfaces: support unmovable (a), support moving opposite to the body (b), support moving slower and in same sense as the body( c), support moving faster and in same sense as the body (d)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.7 Generation of thermal energy in absence of lubricant due to dry kinetic friction force.Heat generation in absence of lubricant due to dry kinetic friction force
Source: Ganguly (2012). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 5.8 Lubrication reduces the thermal energy generated due to kinetic friction.  Reduction of heat generation due to kinetic friction using lubricant
Source: Mckechnie (2005). CC BY-SA 2.0.
-------------------------------------------------------------------------------------- 
Figure 5.9 Pulley-flat-belt system.Pulley-flat belt system
Source: Ukexpat (2009). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 5.10 (a) Tensile forces acting on a flat belt over a pulley. (b) FBD of a differential belt element.Tensile forces acting on a flat belt around a pulley (a), FBD of a differential belt element (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.11 Crate pulled by a rope over a rough floor.Crate on a rough floor to be pulled by a rope
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.12 FBD of the crate resting on the rough floor under pulling force.FBD of the crate resting on the rough floor under pulling force
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.13 Block resting on a rough incline and held by a cable and counterweight.Block resting on a rough incline and held by a cable and counterweight
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 


Figure 5.14 FBD of a block on a rough incline when (a) T is large and (b) T is small.FBD of the block on the rough incline when T is large (a), T is small (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.15 Braking system of a rotating disk.Braking system of a rotating disk
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.16 FBD of the isolated disk and arm.FBD of the isolated disk and arm
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.17 System of two drums and a belt to lift a block by sliding.System of two drums and a belt to lift a block by sliding
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.18 FBD of isolated block and drums.FBD of isolated block and drums
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.19 Resistance to rolling motion.Resistance to rolling motion
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.20 Example of rolling resistance between pallet truck wheels and floor.Rolling resistance between the pallet truck wheels and the floor
Source: Wikiaanvullen (2009).CC BY-SA 3.0 (Unp), 2.5, 2.0, 1.0 (Gen).
-------------------------------------------------------------------------------------- 
Figure 5.21 Rolling resistance force: (a) low on a bowling floor and (b) high on a grass field.Rolling resistance force: low on a bowling floor (a), high on a football ground (b)
Source: Mormegil (2007).CC BY-SA 3.0 ; Jfd34 (2012). Public Domain
-------------------------------------------------------------------------------------- 
Table 5.1 Sliding friction vs rolling friction.Sliding Friction vs Rolling Friction
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.22 Lawn roller overcoming the resistance of grass.Lawn roller overcoming the resistance of the grass
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.23 FBD of lawn-rolling cylinder.FBD of the lawn rolling cylinder
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
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