

323


	IU

	Mechanics-Statics

	DLBROMS_E



Learning Objectives
The eEquilibrium of material bodies is a natural, but also necessary, status state at to which the majority of aspects objects in the universe tend to converge. The motion of our planet itself is governed by equilibrium laws; the steady contact of people with the Earth represents alsoalso represents a type of equilibrium which that prevents them from flying off the surface of Earth. One may add many standard examples of objects used in daily life that are in equilibrium, such as cars, buildings, bridges, and machines.
Statics, belongsing to the Solid Mechanics field of study and, is the science that deals with the studies the equilibriumy of objects’ equilibrium. Equilibrium is the result of a group of efforts that balance each other to keep the an object either at rest or just in a steady motion along a straight line.
In the presentthis course, one you will first learn first the three basic laws axioms of Newton, the concept of force and moment, and the replacement of a system of forces by a single one force and vice versa. Then oneWe will then see discuss the different types of efforts which that might be applied on to a solid as well asand the different types of bearings and supports that can hold this a solid, the representation of thoese efforts, and the calculation of supports reactions in supporting structure through the mathematical conditions of equilibrium, known as static determinacy. SA special attention will be assignedbe given to to a particular type of structures: planar trusses.	Comment by Author: Please ensure that the intended meaning is maintained.
Also one will experienceWe will also discuss the difference between external and internal efforts and the importance of those the latter ones in the equilibrium process as well as how to prevent fracture or instability prevention. The location of the center of gravity of complex objects belongs is another also to one of the most key topics that areto be covered in this course.
Friction force takes occupies a considerable area part ofin this course since because it treats key aspects in practical life such as adherence between car tires and road, contact between two articulations, and power transmission through systems of pulleys and flat belts.
It is obvious thatE equilibrium, the main topic of this e present course, is thus practically becomes in essence a starting point or an initial status state in the study ofto the future motion or dynamics studieskinematics of objects. 



Unit 1 – Basic Physical Quantities 

Study Goals

On completion of this unit, you will be able to …

… understand the concept of force;.
… apply the Newton’s three well-known theorems of Newtonaxioms;.
… distinguish between external and internal forces;.
… execute all mathematical operations about involving vectors.

1. Basic Physical Quantities, Vectors
Introduction 
Mechanics is a branch of physics that studies the status state of objects either at rest or in motion. The reason behind thisA given latter statusstate resides is caused byin a system of actions, known as forces and/or moments, applied on to the object in question. Both solids and fluids constitute materials of interest in Mechanics. Statics is a sub-branch of Mechanics that deals with the equilibrium of rigid bodies: this equilibrium could be exhibited by eithercan be manifested by an object at rest or moving with constant velocity motion.
The essential physical quantities that are behindthat create the status state of any object are forces and moments. Consequently, the study of equilibrium of a rigid body requests requires theoretical and mathematical knowledge of aspects dealing with those latterthese quantities. One may cite alsoalso cite a couple of ‘’indirect’’ physical quantities that would beare used in Mechanics, namely, the length, the mass, the weight , and the time.
‘’Mechanics is based on only a few laws of nature which have an axiomatic character. These are statements based on numerous observations and regarded as being known from experience. The conclusions drawn from these laws are also confirmed by experience.’’ (Gross et al., 2013, p.1). Therefore, the knowledge of the three laws of Newton’s three laws of in Mechanics is of high importancecrucial. In addition, the concepts of force, types of forces, resultant force, and decomposition of forces will be discussed in detailed. This necessitates a considerable knowledge about vectors and their vector operations, which are discussed at the end of which will complete this unit.



1.1 Physical Quantities and Units
Many physical quantities will beare useful throughout in the field of Mechanics. Even Although they may appear as simple and obvious, it is important to remind recall their definitions, the concepts, and the units of theose quantities. It should be noticed that theThe system of units system followed used in physics is the International System of Units (SI) , also known also as the metric system.International system of units:
This is aA standard system of units used worldwide to unify the units offor the scientifical measurements.

Length. Physical quantity to evaluatethat gives the location of an object measured with respect to a determined reference and/or the dimensions of this object. In SI units system, lengthit is expressed in meters (m). (Hibbeler, 2010).	Comment by Author: Note that units are not italicized in American notation. Italicized symbols are reserved for mathematical quantities.
Time. Quantification of a succession of events or ofa variable status events. When an action or a process remains unchanged it is said to be time independent. In SI units system, it time is expressed in seconds (s). (Hibbeler, 2010).
Temperature. Quantification of level amount of heat thermal energy stored within in an object. In SI units system, it is expressed in kKelvin (K). (Halliday et al., 2021).	Comment by Author: Note that "heat" is the transfer of thermal energy.
Mass. Quantification of the amount of material contained in a substance. Mechanically, it represents alsoalso represents the resistance of a body against change in linear velocity.  In SI units system, it mass is expressed in kilograms (kg). (Hibbeler, 2010).
Force. A ‘’push’’ or ‘’pull’’ action applied on to a body by its surrounding, either by direct contact or at a distance (Hibbeler, 2010). In SI units system, it force is expressed in nNewtons (N). It should be noticedNote that a newtonN is not a basic unit, it is a compound unit of involving mass, length, and time: N = kg .m/s2. 	Comment by Author: Note that ,when spelled out, units such as joules, newtons, kelvin are not capitalized in American notation.	Comment by Author: Note that thin spaces (or sometimes center dots) are used to separate units in American notation. Please verify.
When any quantity evaluates to a very large or very small numbers, it would be worthis customary to ‘’reduce’’ the numerical value and ‘’replace’’ the extra zeros in the number by a prefix letters before the main unit symbol in SI. For example, when the duration of an impact is 0.003 s, it is worth towe write it as 3 × 10−33x10-3 s or 3 ms (milli-seconds); the letter ‘’m’’ (for milli-) added to the main unit ‘’s’’ (for seconds) is a prefix. Another example could be given foris a force of 5,000,000 N, which is  this could be written as 5 × 106 5x106 N or 5 MN (mega-nNewton); the letter ‘’M’’ (for mega-) is added to before the main unit ‘’N’’ (for nNewtons) is a prefix. The first example above i reflects s a submultiple case (negative power of 10), while the second one example isillustrates a multiple case (positive power of 10).
Table 1.1 below summarizes all prefixes used for multiples and submultiples.:
	Table 1.1 SI Units Prefixes
	

	Multiple/Submultiple
	Exponential notation
	Nomenclature
	Symbol

	1,000,000,000
	109
	Giga
	G

	1,000,000
	106
	Mega
	M

	1,000
	103
	kilo
	k

	0.001
	10−-3
	milli
	m

	0.0000001
	10−-6
	micro
	

	0.0000000001
	10−-9
	nano
	n

	0.000000000001
	10−-12
	pico
	p


Self-Check Questions
1. Specify if the following statement is True or False and justify your answer
The volume of a body is a basic physical quantity. False:, since a volume represents the product of three lengths. TheIs units  m3 areis composed offrom three basic units of length (or the same one basic unit of length repeated three times).
2. Choose the correct answer
The equivalent prefix unit prefix used for a 1 tTon mass is:
      Gg               Mg                mg              ng
[bookmark: _Toc221687482]1.2 Newton’s Basic Axioms
Before stating Newton’s the three lawsaxioms of Newton, it is worth to clarifywe clarify the difference between two terms, used to ‘’idealize’’ the representation of a body.
Particle. It This is thea representation of a solid having a considerable mass but a negligible size when measured with respect to  a bigger referencecharacteristic lengths in the system under study (Beer et al., 2012). For example, when considering a car or group of cars driving across a huge bridge, their the size of the carss with respect to those that of the bridge are is not considerable, so and thus only the effect of their weights applied toon the bridge is consideredare taken in account. In the idealizedation model, each car is considered as a particle ‘’pushing’’ down on the bridge through its own weight. This is illustrated in Ffigure 1.1.
[image: ]
Figure 1.1 Cars crossing bridge over Maracaibo lake (Venezuela).
Rigid Body. It This is a representation of a solid having both considerable mass and size considerable (Beer et al., 2012). It is considered treated as a group of particles located at specific known distances one with respect to eachthe others, and theose distances remain unchanged either before or afterby the application of a the load on the body. In other words, anythe displacements occurring within solids modeled as rigid bodies are accounted treated as negligibleto be too small. 
As an example, one can consider the house trailer of figure Figure 1.2, which is subjected to a systemthe following of forces as follows: its own weight, the normal reaction force from the road (vertically upward through at the wheels), the normal reaction force vertically upward from the back of the pick-up automobilethe pickup’s trailer hitch (through the metallic link), and the horizontal pulling force from the automobile trying tothe trailer hitch trying to move the trailer forward. The deformations developed within the trailer due to those these forces are negligible.
[image: ]Axiom: statement accepted as obviously true and used to develop further rationales.

Figure 1.2 Pick-up automobile truck pulling on a housea trailer.
It should be noticedNote that the three axioms of Newton (Hibbeler, 2010) are applicable on a particle located in a fixed frame of reference or in a frame of reference moving at constant velocity-steady-motion reference.	Comment by Author: In American English, we speak of "Newton's laws."
Axiom 1. When a particle is originally at rest or moving along in a straight line with ata constant velocity speed and then is subjected to a balanced system of forces, it will keepmaintains its original status motion before the application of the balanced forces.

This axiom is illustrated in Ffigure 1.3: consider that the forces  , ,….    are balanced or in other words(i.e., they sum to equivalent to a zero force system) and are applied at to the particle. If, the particle was at rest (velocity v = 0) before the load forces wereapplication applied, the particle was at rest (velocity v = 0) it will remain in the same status state (at rest) after the application of those forces are applied. If the particle was in steady motion (velocity v = const.), before the forces were applied, it remain in the same state (in motion at constant velocity v) after the forces are appliedthe load application, the particle was in steady motion (velocity v = constant) it will remain in the same status after the application of those forces.
[image: ]
Figure 1.3 Particle under subjected to a balanced- force system.Aacceleration: rate of change of in the velocity per unit time.

Axiom 2. If a particle of mass m is subjected to an unbalanced system of forces of resultant  , it will moves with an acceleration  in the same direction as    and whose magnitude is proportional to the magnitude of  through and inversely proportional to the mass m. 	Comment by Author: You may want to define "resultant" or say "that sum to F" or speak of a "net force."
[image: ]
Figure 1.4 Particle aAccelerated particle underdue to the application of a resultant force.
This is illustrated schematically in Ffigure 1.4 and mathematically through equation (1.1).
                                                                                                        (1.1)
[image: ]
[image: ]
Figure 1.5 Car pulled forward on a winch (a), Accelerated car before reaching the winch (b), Moving forward with a constant velocity at the back of the winch (c)
A practical example of the first two axioms is represented in figure 1.5. Consider a defected car (i.e. at rest) to be mounted on the back of a winch. It is attached to a rigid cable in order to be pulled forward as shown in figure 1.5(a). When the car is still on the horizontal road and at the start of pulling, the car is subjected to a system of three forces shown in figure 1.5(b); in this system the weight of the car   and the normal reaction   of the floor will balance each other and hence the resultant of this system reduces to the tension   of the cable whose magnitude is equal to the mass of the car times its acceleration as per axiom 2; the acceleration is developed due to the change of velocity of the car from 0 (i.e. at rest) to a certain limit value needed to move the car forward towards the winch. Gaining this acceleration the car is now able to mount on the inclined back plane of the winch with the system of applied forces now is shown in figure 1.5(c); in that case the normal reaction of the plane balances a part of the weight while the tension of the cable balances the other part of the weight leading to a system of three balanced forces equivalent to 0. Since the car was already in steady motion, as per axiom 1 it will remain in that status until the pulling process is finished. 
Axiom 3. Two particles apply each on the other two mutual forces having same direction, opposite in sense and equal in magnitude. This principle is known as principle of action and reaction.
Figure 1.6 shows two particles A and B applying mutual forces such as  illustrating this third Newton’s axiom.
[image: ]
Figure 1.6 Action and Reaction principle
[image: ]
Figure 1.7 Book resting on a table reflecting the principle of action and reaction
Furthermore, figure 1.7 represents a practical example explaining the principle of action and reaction. Consider that the book is a particle A and the table supporting this book is a particle B. The book applies its vertical descending weight on the table and mutually the table reacts by applying on the book a normal reaction force, vertical ascending, equal in magnitude and opposite in sense to the weight of the book; this force is responsible to hold the book on the table.
Self-Check Questions
1. Assign to each of the following cases the appropriate Newton’s axiom.
Case 1: Lift risen by a motor through a tensioning cable (Axiom 2)
Case 2: A mother carrying her baby in her arms (Axiom 3)
Case 3: A couch at rest before and after people sit on it (Axiom 1)
2. Complete the following sentence.
A man of weight 800 N is lying in the middle of a four-legged bed. Based on axiom 3 of Newton, each leg is reacting by a force of 200 N. 
1.3 Scalar, Position and Force Vectors
Scalar and Vector
Scalar. It is an algebraic quantity designated exclusively by a positive or negative value (Hibbeler, 2010). For example: the abscissa of a point is – 2 m. The duration of a motion is 30 s.
Vector. It is a geometric element representing a physical quantity and consisting of a segment portion of a straight line having a specific orientation (Hibbeler, 2010).
A vector is drawn as an arrow as shown in figure 1.8. Four elements are needed to determine a vector:
· Origin: Starting point of the vector.
· Direction: Inclination of the line carrying the vector; globally it is measured by the algebraic angle formed between the horizontal and the vector line. If this angle rotates counterclockwise (ccw) it is counted positive while it is counted negative for a clockwise rotation (cw).
· Sense: Orientation towards which the vector is acting. On a well-defined direction a vector may have two options for a sense. For instance, if the direction is horizontal, a vector may have either leftward sense or rightward sense. If the direction is vertical the sense could be either downward or upward.
· Magnitude: Amount or value of the physical quantity that is represented by the vector. Geometrically, it is the scale length between the origin and the tip of the vector’s arrow.
[image: ]
Figure 1.8 Representation of a vector
A vector is denoted by a symbol topped by an arrow . In some references it is represented by a bold letter without arrow V. The magnitude of a vector, being no other than its length, is denoted by the same letter without an arrow at the top, V. Other notation of a magnitude:  or .
Position
It is a physical quantity specifying the location of a point of interest with respect to a reference point.  Mathematically, the position of a point in the space is specified by a vector, known as position vector, whose origin is the point of reference and the tip is the target point or the point of interest. Figure 1.9 illustrates the position of a point P(x,y,z) in the space referred from the origin O of a direct Cartesian orthonormal reference (O,,); where , are respectively unit vectors of x-, y- and z-axes. The scalar components of a position vector along the three axes is calculated from the difference of coordinates between tip and origin  while the magnitude is calculated applying the standard Pythagorean Theorem in the space: .
[image: ]
Figure 1.9 Representation of a position vector
Force 
Definition and concept
By definition, in mechanics, a force is the action exerted by a body on another neighbor one (Beer et al., 2012) applied by direct contact or at a specified distance. Mathematically, a force is represented by a vector which has a point of application, a direction, a sense and a magnitude and hence those four elements are needed to define mechanically the force, denoted by its symbol under a rightward-directed arrow:.
In figure 1.10a is illustrated an example of a force: it is the action applied by the labor on the crate to raise this latter through a cable around a pulley. Figure 1.10b shows the vector representation of this force  including its four elements: 
· The point of application: the point of the cable at which the force is acting. Mathematically it is no other than the origin of the vector. (Hibbeler, 2010).
· The direction: it is the angular amount by which of the line of action of the force (i.e., along the cable) is inclined with respect to the horizontal line; mathematically it is quantified by the algebraic angle formed between the horizontal line taken as reference (oriented from left to right) and the line of action of the force (Gross el al., 2013): this angle is counted positive when oriented counterclockwise and negative for a clockwise orientation.
· The sense: it is the orientation of the vector force; in the figure 1.10b, the sense is downward.
· The magnitude: it is the amount or the intensity of the applied force, measuring its quantity in Newtons (N) according to the International System of Units. Its symbol is the same as the vector force but without the arrow above. One must not confuse between the vector which is a “geometric” representation and its magnitude being a numerical value. F is the magnitude of   . In some references the magnitude is represented by or .
Numerous examples of force cases may be cited either as contact or distance forces: a person opening a door applies a direct force or contact force on the door; a person trying to move a wardrobe from one place to the other also exerts a contact pushing force on his furniture. On the other side, the force of attraction applied by a magnet on a metallic key is a distance force; same applies to the interaction force between protons and electrons in an atom.
[image: ]
Figure 1.10 Labor pulling-up a crate through pulley and cable (a), Representation of his force action (b)
Special force case: the gravity force
Known also as weight represents practically the attraction force applied by the gravity on an abject. It is a distance force since the object does not need to touch the Earth to develop a weight. The weight vector  has its point of application at the center of gravity of the object, a vertical direction, descending sense and a magnitude proportional to the magnitude of the gravity acceleration vector  ; the coefficient of proportionality is not other than the mass m of the object. 
                                                                                                            (1.2)
Since  and   have the same direction (and particularly for gravity case the same sense also), equation (1.2) may be applied to calculate the magnitude W of the weight. In the International System of Units, the weight is measured in Newtons (N), the mass in kilograms (kg) and the acceleration g in meters per second squared (m/s2).
The gravity acceleration value is constant within the field in which gravity acts or in other words from planet to planet; on Earth this g has an average value of 9.81 m/s2  while on Mercury it is estimated to be 3.73 m/s2. However, since the mass represents physically the amount  of material included in a body, the mass does not change with the location and in consequence the weight of a body changes from place to another when the gravity acceleration changes. For instance, an object of mass 10 kg exhibits a weight of 98.1 N on Earth, but a weight of  37.3 N on Mercury.
Concentrated and distributed force
When a force is applied at a region of a body which is too small with respect to the overall size of the body, i.e. region assimilated to a point, the force is said to be concentrated. The case of figure 1.10 applies as an example: the tension of the cable is applied at a tiny point of the crate (where the cable is connected to the crate) and hence it is classified as a concentrated force (Gross el al., 2013). This force is clearly represented in figure 1.11 below.
[image: ]
Figure 1.11 Tension of a cable as example of concentrated force
When the loading is applied along a considerable space of the body (or even along the entire body) and not at specific tiny point(s), it is said to be distributed. A loading could be distributed either over a volume space (N/m3) or over a surface area (N/m2) or over a line (N/m). The most famous classical example for a distributed load is surprisingly the weight of an object: indeed, the most common meaning of the weight of an object is a concentrated vertical descending force applied at the center of gravity; however this weight represents a resultant value or an equivalent value of a group of ‘’sub-weights’’ measuring the weights of all the points that constitute the entire object; those points are ‘’filling’’ the volume of the body and each of them ‘’carries’’ its own ‘’sub-weight’’. In conclusion, the real weight of a body is a distributed force per volume of the body while the “conventional” single weight is the resulting or the sum of all the small weights. Figure 1.12 illustrates this example.
[image: ]
Figure 1.12 Weight of a body as example of distributed load per unit volume
External and internal force
A system is said to be subjected to an external force when this force is applied by any component from the surrounding of this structure. A component part global system is said to be subjected to an internal force when this force is applied by any ‘’neighbour’’ component belonging to the global system itself. 
 This concept could be clarified by an example: going back to figure 1.7, if the global system considered is the entire ‘’set’’ (book + table), the surrounding of this system is just the floor on which this system rests and thus the external forces become the weight of the system (book +table) on one hand and the normal force applied by the floor on the system to keep it at rest; in that case the interaction forces developed between the book from one side and the table from other side do not appear since they cancel each other according to the third Newton’s axiom. However, when the book alone is considered as the main system, the table in that case is considered as a surrounding, and thus the external forces applied on the book are its own weight vertical downward and the vertical upward normal reaction applied by the table on the book to keep it at rest on the surface of the table. For the book alone those become external forces but for the entire system (book + table) those constitute internal forces. The difference between both cases is illustrated in figure 1.13a and 1.13b.
In conclusion, when the whole system (book + table) is considered the interaction forces between the two ‘’components’’ of this global system are internal and thus they do not appear except when this global system is ‘’split’’ into different isolated components; it is only in that case when the internal forces applied by the other parts of the global system appear.
[image: ]
Figure 1.13 Table holding a book and resting on the floor showing: external forces (a), internal forces (b)
Application 1.1. A kid is pushing from behind on a trailer toy of mass 1.2 kg to move it from rest to 0.8 m/s in 2 s. What is the magnitude of the force applied by the kid on the trailer?
Solution 1.1. The initial velocity of the toy was 0 (from rest) while its final velocity is 0.8 m/s that should be reached in 2 s. This results in an acceleration:

Applying the 2nd axiom of Newton:

Application 1.2. Calculate the scalar components and the length of the position vector relating the origin O of the Cartesian reference (xyz) to a point P(4, -2, 5) (m)
Solution 1.2. The scalar components of  are:

The length of this vector is: 
Self-Check Questions
1. Complete the following sentence
The position of a point B(-1, +2, +1) is measured from a reference point A(0, 3, -1). The scalar components of the relevant position vector are: -1 ; -1 and +2 while the distance separating B from A is  .
2. Explain whether the reaction force of a seat of a car on the body of a car driver is external or internal force.
If the driver himself is isolated as main body, the seat is a support or surrounding and thus this force is external. But if the entire car with all its items are included in the main system, this means that both driver and seat are two components among the whole system, in that case the reactive force of the seat is internal.
1.4 Vector Operations
Multiplication by a scalar
Consider a vector  having all elements well determined. When this vector is multiplied by a scalar k, the result will be a new vector  parallel or collinear to , having a magnitude  and having same sense as  if k >0 or an opposite sense to  if k <0. Figure 1.14 shows couple of examples.
Dividing a vector  by a scalar k is similar as multiplying it by a scalar 1/k.
[image: ]
Figure 1.14 Representation of multiplication and division of a vector by a scalar
Dot Product
The dot product of two vectors  and  is a scalar number obtained by multiplying the magnitudes of both vectors between themselves and by the cosine of the angle formed between them:
                                                                                (1.3)
Another formulation of the dot product, is the one that includes the scalar components of both vector instead of the magnitudes and the angle. This writes:
                                                             (1.4)
Cross Product
The cross product of two vectors  and  is a new vector  having a direction perpendicular to the plane containing  and , a sense determined by the three fingers of the right-hand rule  and a magnitude equal to the product of the two magnitudes of  and  between them and by the sine of the angle formed between  and . The Cartesian formulation is established by developing the following determinant:
                                                                              (1.5)
                                                                                                (1.6)
By expanding the determinant in equation (1.5), the amounts multiplying the unit vectors ,  and  represent respectively the scalar components of  along x- , y- and z-axes, denoted by V3x, V3y and V3z.
[image: ]
Figure 1.15 Right-hand rule applied to cross product of vectors
It is worth to remind that the fingers’ right-hand rule consists in forming from the thumb, index and middle finger three orthogonal axes oriented in the space. To find the sense of  , the rule consists in orienting the index along , and the middle finger along  ; the thumb determines automatically the sense of the cross product vector . This rule is illustrated in figure 2.15.
Application 1.3. Consider two vectors:  and .
a) Calculate the dot product of the two vectors
b) Determine the cross product 
c) Evaluate, using two different methods, the magnitude V of the vector .
Solution 1.3. From the Cartesian notations given, the scalar components of both vectors are:  and 
a) Applying equation (1.4): 
b) Applying equation (1.5): 

c) Method 1: Pythagorean formula 
 
Method 2: Magnitude of cross product formula
Equation (1.6) requires the angle between  and   
This angle is found by combining equations (1.3) and (1.4):

where:
 
this gives: 
Finally: 
Addition and Subtraction of Vectors
Addition of vectors consists of a graphical construction and not at all a numerical operation. To add graphically a series of vectors, , … ,  one starts from an arbitrary point O in the plane and draws a vector parallel, same sense and equal to  ; then from the extremity of the drawn vector  one draws a parallel vector, same sense and equal to  . From the extremity of  one repeats the same process till  . Finally, the initial point O and the extremity of the last vector  are joint by a vector  . This vector represents the vector sum ++… + ; it is named resulting vector which replaces , , … ,  keeping the same effect. Figure 1.16 illustrates the methodology of graphical vector sum.
[image: ]
Figure 1.16 Graphical vectors addition
It is extremely important to point out that vectors addition is a geometrical operation; it does not consist in adding numbers or magnitudes and thus the magnitude of   is never equal to the sum of magnitudes of , , … ,  except when those latter are collinear or parallel and having same sense.
In a complementary context, subtraction between vectors is indeed an indirect sum between vectors. Although this operation is shown occurring between two vectors for sake of clarity and brevity, it could be expanded to multiple vectors.
Consider the vectors’ subtraction:  . This expression could be written as:. In the graphical construction, once arriving at  , a parallel, equal but opposite vector must be drawn in the vector diagram as illustrated in figure 1.17. This process is to be applied each time a subtraction operation precedes any vector in the summation for a multi-vectors addition/subtraction.
[image: ]
Figure 1.17 Graphical vectors subtraction
Application to force vectors
Composition of forces
Concurrent forces. Concurrent forces are concentrated forces having a common point of application, i.e. same vector origin (Hibbeler, 2010). For a solid modeled as particle, this common origin represents indeed the particle itself. Despite that sometimes the visualization of the drawn forces on a body modeled as particle shows the contrary, one might slide the forces along their lines of actions until they intersect at the same origin; this will not change the effect of those forces on the particle.
Resultant force. It is a theoretical force that replaces a group of physical forces acting on a body and keeps the same effect as the original group to be replaced (Hibbeler, 2010). Mathematically, this resultant  is determined by the sum vector of all forces to be replaced following equation (1.7) below:
                                                             		                      (1.7)
Obviously, one of the methods to determine  is the graphical approach by constructing the force vector diagram. 
Case of two concurrent forces. The simplest case to start with resides in two forces   and  concurrent at an origin O and shifted by an angle . The magnitudes F1 and F2 are well known. The resultant  +  is constructed graphically as shown in figure 1.18. The middle sketch in this latter figure illustrates the standard force vector diagram to draw  . The last sketch in this figure, is an equivalent scheme to this graphical method; it is known as the parallelogram law. It consists in drawing from the tip of   a parallel and equal segment to  and then from the tip of  a parallel and equal segment to  . The result of those two operations is a parallelogram. The diagonal drawn from the origin O represents the resultant . Nevertheless, the graphical approach at this stage is not sufficient anymore; the four elements of the vector  have to be determined in a precise manner.
[image: ]
Figure 1.18 Resultant of two concurrent forces
· The point of application: it is obvious that it is the origin O, common origin of the starting forces  and .
· The direction: it is along the diagonal of the parallelogram of origin O. The sines law in equation (1.9) allows quantifying this direction by evaluating the angles formed between  and each of   and   . 
· The sense:  is oriented from the origin O to the tip corresponding to the vertex of the parallelogram opposite to O.
· The magnitude: R is calculated by applying the generalized Pythagorean   Theorem in equation (1.8)
The generalized Pythagorean Theorem and the sines law are related to any triangle ABC (Figure 1.19) through equations (1.8) and (1.9) respectively:
                                                            (1.8)
                                                                                    (1.9)
[image: ]
Figure 1.19 Triangle ABC
[image: ]
Figure 1.20 Resultant force cables tensions of a crane system
A practical example is illustrated in figure 1.20 where the hook of the crane is connected to a network of cables in order to lift the metallic yellow bar. The zoom-in of the isolated hook and its surroundings shows the applied forces in a clearer way. The physical forces  and  are concurrent, their effect could be virtually replaced by the resultant . The other two forces  and  are parallel and having same sense; obviously the resultant  will have same direction and sense as  and  , and a magnitude equal to F3 + F4. Finally, due to the static equilibrium of the hook,  and  will balance each other, i.e. they are collinear, opposite and have same magnitude.
Case of multiple concurrent forces. In many complicated systems, the number of concurrent forces could be much greater than two. The construction of the vector diagram follows the same concept as for two forces. 
[image: ]
Figure 1.21 Resultant of multiple concurrent forces

Consider n concurrent forces  ,   ,   ,… ,. The parallelogram law in that case is to be applied for each two forces. The parallelogram of  and  produces  as resultant. The second parallelogram will be constructed from   and  to give a resultant  . The next step consists in constructing the parallelogram from  and  to result in . This procedure will be repeated till reaching the final resultant . 
All the ‘’intermediate’’ resultants  ,  ,  , etc… as well as the last resultant  are calculated from equations (1.8) and (1.9), each in its relevant parallelogram. Figure 1.21 illustrates the resultant of 4 concurrent forces.
Decomposition of forces
It is totally the inverse procedure of the resultant construction of forces. It consists in replacing a single force by two other forces for a two-dimensional case (2D) or by three other forces for a three-dimensional case (3D). Those new forces produced are known as components of the original force. The decomposition of a force occurs along two (for 2D case) or three (for 3D case) predefined directions.
Decomposition in two components. For a 2D case or planar force, two directions are selected; those are named normally x and y and oriented to form a direct reference with an origin O and a unit vector for each direction or axis:  is the unit vector for x-axis and  is the unit vector for y-axis. The x-axis is chosen to be horizontal oriented from left to right while the y-axis may form globally any angle with the x-axis and is oriented upward. For the special direction when y-axis is perpendicular to x-axis, the reference is said to be Cartesian Orthonormal reference; this type of reference will be used as default reference unless other instructions are stated. The force to be resolved has its point of application coincident with the origin O of the reference (xy) denoted also by (O, ,) and a direction angle  measured from x-axis counted positive when measured trigonometrically or counterclockwise (ccw) and negative when measured counter-trigonometrically or clockwise (cw) (Gross et al., 2013). 
The components are plotted by using the inverse parallelogram law: from the tip of , a parallel line to y-axis is drawn until intersecting the x-axis then a vector is drawn from O till this latter point of intersection, this vector is denoted by   and is known as vector component of  or vector projection of  along x. The measure Fx is known as scalar component of  or scalar projection of  along x. Fx is an algebraic quantity, that is positive if  has the same orientation as x-axis or  and it is negative in the opposite case.  The Cartesian notation of is written as the product of its scalar measure by the corresponding unit vector and thus  .
This same principle applies for the vector component  and the scalar component Fy along y-axis. The vector relation between the force vector and its components could be written either as standard vector sum (equation (1.10)) or in Cartesian notation vector (equation (1.11)):
                                                                                                                  (1.10)
                                                                                                               (1.11)
Figure 1.22a shown the decomposition of a force in an arbitrary reference (O, ,)  while figure 1.22b shows it in an orthonormal reference (O, ,), this latter reference will be used from now on as the default reference.
[image: ]
Figure 1.22 2D decomposition of a force in an arbitrary reference (a), orthonormal reference (b)Trigonmetric laws: mathematical relationships within a right-angle triangle relating the lengths of the sides to the trigonometric functions of the acute angles

In an orthonormal reference, the scalar projections of the force  are deduced through trigonometric laws:
                                                                                                                (1.12)
                                                                                                                (1.13)
Inversely, the composition of a force from two known perpendicular components could be calculated from the standard Pythagorean formula (to get the magnitude) and from the trigonometry in a right-angle triangle (to get the direction) as follows:
                                                                                                          (1.14)
                                                                                                                  (1.15)
A vector could thus be defined by just stating its scalar components such as:  Indeed this notation involves indirectly the direction, sense and magnitude through equations (1.14) and (1.15).
Decomposition in three components. For the 3D case or spatial force, always the Cartesian reference (Oxyz) is orthonormal and direct such that (xy) coincides with the plane of the screen (same as the 2D case) while the z-axis is perpendicular to the plane of the screen and oriented outwards. The unit vectors , , and  are assigned respectively to (Ox), (Oy) and (Oz) axes. In a direct reference, the thumb of the right hand is oriented along (Ox), the index finger along (Oy) and the middle finger along (Oz). The force  of point of application O has its direction referred in the space through three direction angles = (), = () and = (). The cosines of those angles are known as the cosine directions which permit to determine the three scalar components of the force through the following equations:
                                                                                                                (1.16)
                                                                                                                (1.17)
                                                                                                                (1.18)
The same concept explained concerning the vector and scalar projections of a force in the planar case could be extended for the spatial case and thus equations (1.10) and (1.11) become:
                                                                                                       (1.19)
                                                                                                   (1.20)
The principle of decomposition of a spatial force is illustrated in figure 1.23a.
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Figure 1.23 3D decomposition of a force using the cosine directions (a), Intermediate directions (b)
Inversely, in case the three scalar components of the vector force are known such as  the magnitude and the direction angles of the force are determined by the equations (1.21)-(1.24):
                                                                                                 (1.21)
                                                                                                                (1.22)
                                                                                                               (1.23)
                                                                                                                (1.24)
It is extremely important to notice that the three cosine directions are not completely independent; indeed they are related together by the equation (1.25) meaning that only two directions need to be known, the third is deduced from this latter equation. By raising both members of the equation (1.21) to the power 2 and then dividing both members by F2, one gets:
                                                                                (1.25)
On another side, figure 1.23b shown another approach to deal with the direction of a force in the space. The first step consists in projecting the force along the y-axis and along the plane (xOz), one gets the scalar components Fy = F.cosand OA = F.sin. In the second step, the vector component  is projected along x-axis and z-axis to get: Fx = OA.cosand Fz = OA.sin; this leads finally to the following equations:
                                                                                                     (1.26)
                                                                                                                 (1.27)
                                                                                                     (1.28)
Application 1.4. Consider two forces concurrent at a point A such that F1 = 20 kN and F2 = 30 kN shifted by an angle of 45°. Construct graphically and determine the resultant force. 
Solution 1.4. Applying the parallelogram law to draw the resultant one gets the diagram of figure 1.24. The remaining tasks are to calculate the magnitude R and the direction. Those are found using equations (1.8) and (1.9) respectively.
[image: ]
Figure 1.24 Parallelogram law solution 1.4
 
 
Application 1.5. Repeat the previous application using the Cartesian notation.
Solution 1.5. The whole system is located in a Cartesian orthonormal reference (A, ,) as illustrated in figure 1.25
[image: ]
Figure 1.25 Two concurrent forces and their resultant in a Cartesian reference
The scalar components of  and   are calculated by equations (1.12) and (1.13):




Writing equation (1.7) but in Cartesian notation one gets the following:

By adding the  components together and the  components together in the right member, then identifying with the left member, the scalar components of the resultant give:

By tracing  and   and then completing the parallelogram (which is here particularly a rectangle) one draws the resultant  as shown in figure 1.25. 
Finally, applying equations (1.14) and (1.15), the magnitude and the direction of   are calculated:


Note: It should be noticed that tan function is periodic each n.. Upon in which of the four quadrants  is lying, one adds or subtracts the suitable multiple of . In the current application,  exists in quadrant 1.
Application 1.6. Consider two forces concurrent applied at a particle coincident with the origin O of a direct Cartesian 3D reference (O,,, ) such that F1 = 20 kN and F2 = 30 kN .  forms an angle of 150° with the x-axis and 30° with the z-axis while  forms an angle of 45° with the y-axis as shown in figure 1.26. Determine the resultant force.
Solution 1.6. It is clear that the direction of the force  is given by  = 150° and  = 30° thus  could be deduced from equation (1.25): 

Taking in account the position of  in the space (figure 1.26), its scalar projection along y-axis is positive and thus the positive solution of cos should be kept. 
Applying equations (1.16)-(1.18), the scalar components of  are:

[image: ]
Figure 1.26 Resultant of two concurrent forces in a 3D Cartesian reference
On another side and according to figure 1.26 the scalar projections of  are positive along x and y and negative along z. Equations (1.26)-(1.28) calculate the components of :

The components of the resultant  are calculated by the vector sum (or identification of Cartesian notations as done in application 1.5 but this time for 3D case) of  and    :

Finally, equations (1.21)-(1.24) calculate the magnitude and the direction angles of the resultant:




Self-Check Questions
1. Choose the correct answer.
If two concurrent forces  and  have equal magnitudes, their resultant gets also the same magnitude as of F1 and F2 only when the angle between  and  is:
        0°                         90°                         120°                          180°

2. Complete the following sentence.
A force  forms an angle of 109.5° with x-axis, 48.2° with y-axis and 48.2° with z-axis.
3. Specify if the following statement is True or False and justify your answer
The cross product of two vectors having same directions is a zero vector. True, since two vectors of same directions form between them an angle of 0° or 180° whose sine is zero and thus the produced vector has zero magnitude.
Summary
Statics is the branch in Mechanics studying bodies that are either at rest or in steady motions. 
A particle is an ideal representation of a solid having a mass but negligible size relatively to its location reference. A particle can only translate. A rigid body is an ideal representation of a solid with considerable mass and size. The deformations are too small. A rigid body can translate and rotate.
A force is an action applied on a solid body from its surrounding. It could be external, either active or reactive by an item supporting the body, or internal that develops within the body and it does not appear except by making a virtual cut in the body. Schematically, a force is represented by a vector, thus a point of application, direction, sense and magnitude are needed to determine completely a force. In addition, the weight of a body is a particular type of force applied by the gravity field on this body. 
A system of forces could be replaced by an equivalent one having the same effect as the original system. This equivalent force is the resultant. Inversely, a single force might be resolved into two equivalent ones in the plane or three equivalent ones in the space, through projections along the relevant directions. Those produced forces are known as components. 
When a body is subjected to a system of balanced forces, i.e. having a zero resultant, it either remains at rest or performs a constant velocity motion. The principle of action and reaction is issued from this latter law as: two particles apply mutual forces that are opposite, collinear and equal in magnitude. On the other side, when the resultant is not zero, the particle moves with an acceleration proportional to the force through the mass of the particle. 
 
Unit 2 – Static Equilibrium

Study Goals

On completion of this unit, you will be able to …

… establish the mathematical conditions of equilibrium of particles and rigid bodies.
… determine the moment of a couple and of a force about an axis.
… identify the bearings types and assign the relevant reaction components.
… distinguish between statically determinate and indeterminate systems.
… calculate the bearings reactions.

2. Static Equilibrium
Introduction 
Either A particle or a rigid body are said to be in static equilibrium when they are permanently at rest after being subjected to a system of forces. In other words this means that a particle is prevented from translation while a rigid body should in addition be prevented from rotation. The effort influencing the rotation is called moment and is developed by the force causing this motion and also by how far this force is from the pivot of rotation. Mathematically, a system of balanced forces is a system having a zero resultant. Since forces (and thus moments) are modelled as vectors from one hand, and since equilibrium conditions require a zero vector resultant on another hand, this implies that the mathematical conditions of equilibrium are of vector type and hence they deal with geometrical quantities. However, the cartesian notation form which involves scalar components could be implemented into the vector conditions of equilibrium in order to convert the problem from a vector to a scalar formulation. 
In addition, the vector conditions of equilibrium involve all external forces, either active or reactive ones. The active ones, that are well known, depend on the application in which the subjected body is employed and on the user’s needs from this application. However, the reaction forces, the unknowns of the problem, depend on the type of bearing or support holding this body and preventing its motion once the active forces interact. Nevertheless, identifying the type of bearing exclusively would not be enough; the configurations and locations of those supports along the body induces a key influence on the equilibrium and before all the stability of the solid as well as the sufficiency of the scalar equilibrium equations to calculate the reactive forces needed for equilibrium. This will play a role in deciding whether the structure is statically stable or unstable,  determinate or indeterminate.
2.1 Equilibrium of particles
Vector condition of equilibriumsteady motion: motion at a constant velocity; i.e., having zero acceleration.

A system of forces is said to be in equilibrium when the forces involved in this system balance the effect of each other. This condition leads to a rest or steady motion of the body subjected to this system of forces as per Newton’s axiom 1. Particularly, the rest status of the body is known as static equilibrium. 
Mathematically, since each force is represented by a vector, the forces satisfy the equilibrium when the vector sum of all forces is equivalent to a zero vector. Equation (2.1) reflects this condition:
                                                             		                      (2.1)
Although equation (2.1) appears as involving summation, it does not consist of algebraic operations since vector addition is in practice a geometrical operation rather than numerical. In this equation, no numbers or forces magnitudes are added; it is an addition of ‘’geometrical elements’’ that will be solved graphically in the scope of this sub-section.
Applying the graphical construction of equation (2.1), the equilibrium is established when the resulting force is equivalent to a zero vector, graphically when the extremity of the last vector in the summation coincides with the starting point.
However, prior to the construction of the polygon of forces to get the resulting one, the original forces themselves should exist. They must be drawn on the body of interest; those forces are recognized by analyzing the effects of the surroundings on the body itself. This symbolic representation of the forces on the isolated body of interest is known in Mechanics as Free Body Diagram, abbreviated by FBD. 
The concept of equilibrium of forces and the relevant equation (2.1) are brought under spot through two practical examples. The first example is shown in figure 2.1a where an engine is held in equilibrium by a system of chains. Figure 2.1b represents the FBD of the engine that is subjected to its own weight  and two tensile forces of the chains  and . Figure 2.1c represents the vector diagram of force vectors summations: A is the starting point from which  is drawn. Then extremity B of  coincides with the origin or starting point of  and finally the extremity C of  is the origin of the last force  that ends at D, the coincidence of D and the starting point A of the first vector denotes that the equivalent force of this system of three forces is zero and thus the engine is in static equilibrium.
[image: ]
Figure 2.1 Engine hung by chains (a), FBD of the engine (b), Vector diagram of equilibrium (c)
The second example of equilibrium is illustrated in figure 2.2a showing a young girl sitting on a swing hung to the main frame by two ropes. The importance of this example resides in the fact that there are two options of a system of interest upon which the FBD changes. The first case assumes that the isolated girl represents the main system and thus the seat with which she is in contact represents a surroundings. This means that the normal ascending force of reaction  to balance the weight of the girl completes the FBD as shown is figure 2.2b. Figure 2.2c illustrates the force diagram which is quite particular since  and  are collinear hence they are drawn as two opposite and equal vectors to ensure equilibrium. The second case of system selection could be the girl and her seat together, in that case, the axiom 3 of Newton induces that the normal  applied by the seat on the girl is cancelled by an equal and opposite force applied by the girl on the seat. Another explanation of the ‘’disappearance’’ of is that the seat is not anymore a surrounding, it is a part of the main system whose surroundings in that case are the ropes. This results in the free body diagram drawn in figure 2.2d where the total weight of the system is compensated by the tension of the ropes. The equilibrium vector diagram is represented in figure 2.2e.
[image: ]
Figure 2.2 Girl sitting on a swing in equilibrium (a), FBD of the girl as isolated body (b), vector force diagram of equilibrium of the girl (c), FBD of the girl and her seat as isolated system (d), vector force diagram of equilibrium of the girl and seat as single system
Scalar conditions of equilibrium
It is obvious that all forces applied on a particle are concurrent at the particle itself providing a possibility of an ‘’exclusive’’ translational motion in case the resultant of those forces is not zero. The static equilibrium of a particle means practically that this particle is not able to move in translation and hence rotation does not play any role in a particle’s static equilibrium.
The mathematical condition of equilibrium is stated in equation (2.1) which is a vector condition. The transition to scalar equations is possible by expressing each vector in its Cartesian notation; this latter involves the scalar components of each vector force.
Consider n forces , , ,….., applied at a particle in static equilibrium in a direct Cartesian reference (O, ,, ). The Cartesian notation of each force writes:

Replacing those latter equations in equation (1.8), one gets:

Identifying between left and right members the quantities multiplying,  and  the final scalar equations fulfilling the equilibrium condition of a particle become:
                                                          		                      (2.2)
                                                          		                      (2.3)
                                                          		                      (2.4)
One can easily remark that the single vector equation of equilibrium has delivered three scalar equations (2.2)-(2.4). Those are useful algebraically to calculate unknown forces needed to establish the static equilibrium of a particle. Physically speaking, the nullity of the three components of the resultant means that the particle is prevented to translate along the three directions x, y and z simultaneously. 
Since the number of equations is three, this means that the equilibrium equations in the space allow calculating three unknown forces to establish the equilibrium. To notice that an unknown could be either a magnitude or an angle direction. Moreover, in case the equilibrium is planar the number of equations reduces to two ((2.2) and (2.3)) and in consequence only two unknowns could be calculated in a 2D equilibrium case.
Application 2.1. A particle A is subjected to the system of forces shown in figure 2.3. where F1 = 1000 N, F2 = 800 N and F3 = 1200 N. Check if the static equilibrium condition is satisfied.
[image: ]
Figure 2.3 Particle under three forces in the space
Solution 2.1. The resultant of those three forces must be zero; in other words, the algebraic sum of the components of all forces along each of the three axes must vanish, according to equations (2.2) – (2.4).
  is parallel and opposite to y-axis hence:  
The components of  are determined from classical projection calculations:

The scalar projections of  are not straightforward since the direction of its line of action is not given directly, instead, the coordinates of two points of its line of action are given:  and . The direction vector of  is  having a magnitude of 
The cosine directions of the line of action of  are calculated as follows:



The components of  are found by the set of equations (1.16)-(1.18):

Finally, the components of the resultant  are calculated by algebraic sums of the components of each of the forces:

One can notice that Rx and Rz are not zero, meaning that the particle is not in equilibrium.
Application 2.2. A block (B) of mass 5 kg rests on a smooth incline forming an angle of 30° with the horizontal and held at rest by a counterweight (C) through a rope enrolled around a pulley (P) as shown in figure 2.4. 
[image: ]
Figure 2.4 Block resting on an incline by a rope
Draw the FBD of (B) and determine the normal reaction of the incline and the mass of the counterweight (C).
Solution 3.2. Figure 2.5a shows the FBD applied at (B) considered as a particle. It is subjected to its weight  vertical downward, the normal reaction  of the incline upward and perpendicular to the incline and the tension  of the rope parallel to the incline. To reach the mass of (C), one should continue drawing FBD of (P) and (C). Figure 2.5b shows the isolated pulley (P) subjected to the tensions of the rope that are the same from each side in order to prevent rotation about the center of the pulley, the normal  represents the reaction of the pin connecting the pulley to the incline. Figure 2.5c illustrates the particle (C) subjected to its own weight  balanced by the tension  of the rope.
[image: ]
Figure 2.5 FBD of the block (a), the pulley (b), the counterweight (c)
The equilibrium of the particle (B) requires equations (2.2) and (2.3) to be satisfied:


The FDB of (C) consists of two collinear forces that must balance each other, they must be then opposite and equal magnitudes:

Note: the reference (xy) have been selected along and perpendicular to the incline for sake of simplicity in the expansion of the equations. However the classical (xy) reference could have been also selected, the final results will not change.
Application 2.3. A particle of weight 100 N is held in equilibrium by two ropes AB and AC as shown in figure 2.6. If each rope cannot withstand more than 200 N tension, calculate the value of the angle . 
[image: ]
Figure 2.6 Particle held by two ropes in the plane
Solution 3.3. The FBD of the particle is illustrated in figure 2.7
[image: ]
Figure 2.7 FBD of a particle held by two ropes in the plane
Applying equations of equilibrium (2.2) and (2.3):


The first equation indicates that TC is greater than TA since cos <1. It could be deduced then that the biggest tension is TC and hence TC = 200 N.
From the second equation: 
Application 2.4. A particle O is holding a block at D of weight 100 N through a cable OD. In addition, it is held by two cables OA and OB as well as by a spring OC of stiffness 3000 N/m as shown in figure 2.8. The spring is mounted in a smooth slot to remain horizontal after elongation. Before mounting the whole system, the length of the spring was 0.15 m. Calculate the forces in each of the cables and the length OC. 
[image: ]
Figure 2.8 Particle held by cables and spring in the space
Solution 2.4. The FBD of the particle O is illustrated in figure 2.9. It should be noticed that the cable OD transmits the effect of the weight of the block D to the particle O, in other words: TD = W = 100 N.
Before applying the equations of equilibrium (2.2) – (2.4), it is wise to find the scalar components of each force separately.
Force : The line of action of this force passes though O(0,0,0) and A(0, 0.4, 0.3) and thus the direction vector is  whose magnitude is:
  and thus the cosine directions of this vector (i.e. of the force  ) are: 
One can now write the scalar components of  : 
[image: ]
Figure 2.9 FBD of a particle held by cables and a spring in the space
Force : The line of action of this force passes though O(0,0,0) and B(-0.1, 0, -0.1) and thus the direction vector is  whose magnitude is:
  and thus the cosine directions of this vector (i.e. of the force  ) are: 
One can now write the scalar components of  : 
Force : The line of action of this force is acting along the x-axis and in the same sense thus: 
Force : The line of action of this force is acting along the y-axis and in the opposite sense thus: 
Applying equation (2.2): 


Applying equation (2.3): 


Applying equation (2.4):


Replacing in the first equation of equilibrium one finds  
Applying Hooke’s law, the elongation of the spring: 
The final length of OC: 

 Self-Check Questions
1. Specify if the following statement is True or False and justify your answer
A particle is subjected to two perpendicular forces F1 = 4 kN and F2 = 3 kN. To establish the equilibrium of this particle, a third force of magnitude 5 kN forming with  an angle of 143° clockwise should be added to the system. True, because applying the parallelogram law, the resultant of  and  has a magnitude of 5 kN and is shifted from  by an angle of 37° counterclockwise. The equilibrium is established when a force equal in magnitude and opposite in sense is applied to this particle.

2. Choose the correct answer.
A particle of mass 6 kg is sandwiched between two identical springs collinear vertically, the upper end of the upper spring is fixed to the ceiling and the lower end of the lower spring is fixed to the floor. The system deflects by 12 mm at equilibrium. The stiffness of each spring in N/m is:
      4905              2452.5            1226.25            9810
2.2 Moment
Moment of a couple
In mechanics, the term couple denotes a pair of two parallel vector forces, opposite in sense, equal in magnitude and separated by a distance d called arm. 
When a couple is applied to a solid object, it has a tendency to produce rotation. When a driver tends to rotate a steering wheel, he is in fact applying a couple at two diametrically opposite points at the periphery of the steering wheel. Another example of application to couple resides in screwing and unscrewing the nuts of a car tire as shown in figure 2.10. The couple is applied at the extremities of the key tool while the arm represents the length separating those extremities.
[image: ]
Figure 2.10 Application to a couple: unscrewing tire nuts
The moment of a couple is defined as a physical quantity measuring the ability of a couple to produce rotation. Its unit is Newton-meter (N.m) in the International system.
Mathematically, the moment of a couple, like the force, is also a vector, drawn as double arrow and determined by the cross product between the arm vector  (oriented from   to  ) and the force   of the couple as expressed in equation (2.5):
                                                                                                                 (2.5)
The elements of the vector moment  could be explained through the example of the figure 2.11. Figure 2.11a represents the example of tightening a screw using a screwdriver. The effort applied by the hand of the worker at the periphery of the screwdriver’s handle is a couple where the forces are separated by an arm equal to the diameter of the handle. This develops a moment  named also torque   as shown in figure 2.11b; moment is a generalized terminology while torque is more specific for some mechanical applications where torsion or twisting is applied. Figure 2.11c serves at analyzing equation (2.5) and defining the elements of . 
[image: ]
Figure 2.11 Tightening a screw (a), Torque developed on screw driver (b), Scheme of couple, sense of rotation and vector moment (c)
The arm vector  oriented from   to   and perpendicular to the couple as shown, forms with this couple (which is geometrically two parallel lines) a plane that is coincident with the plane of the screen (xy), this constitutes the side view plane of figures 2.11a and 2.11b. According to equation (2.5), one defines the following elements of : 
· The point of application:  is a free vector since it depends exclusively on the distance separating the pair of forces between themselves, those are not referred to any fixed position with respect to any frame reference.
· The direction:  is perpendicular to the plane formed by ( ,  , ) that is coincident to (xy) plane. In the case of the figure 2.11c, the moment vector is perpendicular to the plane of the screen (parallel to z-axis).
· The sense: applying the right hand rule where the index is oriented along   , the middle finger along , the thumb’s orientation gives automatically the sense of . In the case of figure 2.11c, the moment vector is oriented inward (opposite to the sense of the z-axis that is out of plane). By curling the rest of the fingers about the line of the vector moment one obtains the sense of rotation of the couple. This is shown in the middle sketch of figure 2.11c: it is a clockwise sense of rotation.clockwise sense: rotation similar to clock’s hand following the sequence: top-right-down-left

· The magnitude: since the angle between  and  is 90° and according to the formula of the magnitude of the cross product M = F⋅ d⋅ sin () one finds the magnitude of the couple moment as a simple product of the force by the value of the arm. This is known as scalar formulation of the moment of a couple; it is expressed in equation (2.6) as follows: 
                                                                                                              (2.6)
In the International System of units, M is expressed in N⋅ m, F in N and d in m.
The value of the moment is counted positive when the rotation occurs counterclockwise (i.e. same sense as the coordinate axis) and negative for a clockwise rotation (i.e. opposite sense to the coordinate axis)
When n couples are acting in a single plane, the vector moments are all parallel between themselves (all perpendicular to the plane of action of the couples) and thus in that particular case the resultant moment is determined by the algebraic sum of the moments developed all the couples which leads to equation (2.7):
                                                                                                      (2.7)
Application 2.5. The driver is applying on the steering wheel of diameter 30 cm a couple of 10 N magnitude (figure 2.12). Determine and draw the vector moment of this couple.
[image: ]
Figure 2.12 Rotation of a steering wheel by a couple
Solution 2.5. First, one should pay attention not to limit the answer to the determination of the magnitude of the moment exclusively. The determination of a vector requires finding all its elements.
According to the equation (2.5) and since the forces and the arm are lying within the plane of the steering wheel, the vector moment is acting along a line perpendicular to this plane, with no fixed point of application since a couple moment is a free vector. 
[image: ]
Figure 2.13 Determination of the vector moment at the steering wheel

Furthermore, applying the right hand rule, one can deduce that the sense of rotation is counterclockwise and thus the vector moment acts out of plane and naturally this induces a positive value of the moment calculated by the equation (2.6):
M = +(10) ⋅ ( 0.3) = + 3 N⋅ m
Those details are illustrated in figure 2.13.
Application 2.6. The body shown in figure 2.14 is subjected to a system of three couples. Determine the resulting equivalent moment applied to this body.
[image: ]
Figure 2.14 Body subjected to many couples
Solution 2.6. Since all the couples are acting in the same plane, which is the plane of the screen, all the corresponding vector moments act perpendicular to this plane, in other words those vectors are parallel between them. This allows to add the magnitudes of those moments (eq.(2.7)) to find the equivalent resulting moment MR.

The equivalent scheme is shown in figure 2.15 below. It should be noticed that, despite the value of the resulting moment is negative, only the absolute value is stated on the equivalent scheme since the sense of rotation is indicated: clockwise. This means naturally that the value is negative. In other words, the sense of rotation and the absolute value stated simultaneously determine the sign of this quantity.
[image: ]
Figure 2.15 Original and equivalent couple applied on a solid
Moment of a force
The moment of a force about a point not belonging to the line of action of the force, or an axis passing through this point and orthogonal to the plane formed by the force and the point, is defined as a physical quantity measuring the ability of this force to produce rotation about the point (i.e. the axis). Its unit is Newton-meter (N.m) in the International system.
The distance separating the point of application of the force from the point of rotation O is the arm denoted by the position vector  while the distance d is measured from O to the line of action of the force. The vector formulation of the moment of a force about a point (i.e. an axis) is given by the equation (2.8):
                                                                                                                    (2.8)

[image: ]
Figure 2.16 Illustration of the moment of a force about a point (a), Right-hand rule to find the sense of the moment (b)
Figure 2.16a illustrates graphically equation (2.8). Position vector  is oriented from the axis O to the point of application of the force  forming an angle   with this latter. d is the direct distance from O to the line of action of the force hence d = r⋅ sin⋅  is oriented outward while  belongs to the plane of the screen. The right-hand rule shown in figure 2.16b states that  acts along the index finger while  acts along the middle finger, the sense of the thumb determines the sense of the vector moment. This analysis allows the determination of the elements of  :
· The point of application: unlike the moment vector of a couple, the moment about a point is not a free vector since it depends on the position of the force with respect to that point. Thus the point of application of the moment in that case is the point O about which rotation occurs. For this purpose, index ‘’O’’ is added along the symbol ‘’M’’ of the moment.
· The direction: inspired from the cross product formulation of equation (2.8), the line of action of  is the axis perpendicular to the plane formed by  and  and passing through the point O. 
· The sense: the right-hand rule illustrated in figure 2.16b determines the sense of the vector moment. In the case of figure 2.16a, the moment  is oriented downward. By curling the remaining four fingers of the right hand about the axis of , the sense of rotation is determined.
· The magnitude: it is calculated by the magnitude of the cross product; this writes:
                                                                                               (2.9)
 As stated earlier, the trigonometric constraint leads to another formula:
                                                                                                         (2.10)
This known as the scalar formulation of the moment of a force. 
In the International System of units, M is expressed in N⋅ m, F in N and d in m.
The value of the moment is counted positive when the rotation occurs counterclockwise (i.e. same sense as the coordinate axis) and negative for a clockwise rotation (i.e. opposite sense to the coordinate axis)
Principle of transmissibility. It is obvious that a force sliding along its line of action keeps the same position with respect to a point of interest O and thus the moment of this force about O remains unchanged with the sliding operation. As a result, the cross product between an arbitrary position vector from O to an arbitrary point of the line of action of the acting force remains also constant. This is known in mechanics as principle of transmissibility of a force (Hibbeler, 2010). This principle is illustrated in figure 2.17.
                                    (2.11)   
The deep concept of moment of a force could be clarified using figure 2.18. Consider a solid body subjected to a force  and a point O of this solid not belonging to the line of action of the force.   and O  belong to the plane of the screen. Let (’) an axis passing through O and parallel to  and () another axis passing through O but perpendicular to the plane (O,) which is not other than the plane of the screen. The distance separating  from O and thus from () is denoted by d.                      
   
[image: ]
Figure 2.17 Principle of transmissibility keeping an unchanged moment about a point
[image: ]
Figure 2.18 Equivalent schemes for a moment of a force about a point
By adding to the solid two forces  and  (marked in red on figure 2.18) equal in magnitude, opposite in sense, collinear to (’), i.e. parallel to the original applied force  (marked in blue on figure 2.18) and having O as point of application. Those two additional forces are balanced or in other words equivalent to a zero force system and therefore they will not disturb the initial status of the solid. At this stage, consider the pair of forces formed by the original applied force  and the force  which is one of the two added forces: those are parallel, opposite, equal in magnitude and separated by a distance d meaning that they form a couple of moment M = F⋅ d. This couple is equivalent to a vector moment acting along () and whose sense is determined by the right-hand rule (outward in the case of figure 2.18). The final system is now consisting of a force  applied at O and a couple moment vector . 
Now comparing the first initial status and the last final status of system, one can conclude that applying a force at a certain distance from a point is equivalent to translating this force parallel to its direction till the point of interest and adding the effect of the moment of this force about the point of interest. 
Finally, it is worth to close the topic of the moment of a force by a practical application: opening and closing a door. Figure 2.19a shows a young girl gripping the handle of a wooden door to open it; it is a very frequent ‘‘operation‘‘ that anybody may use many times a day in couple of seconds. However what is happening from a mechanical point of view is sketched in figure 2.19b. 
[image: ]
Figure 2.19 Opening a wooden door (a), Mechanical scheme of the door opening (b)
The hinges of the door constitute the ‘‘pivot‘‘ or the point O used throughout the theory of moment of a force, the line passing through the hinges denoted by () is the axis of rotation; it belongs to the plane of the door which is obviously coincident with the plane of the screen. The action applied by the girl at the handle is the opening force, it is perpendicular to the door’s plane and hence it is oriented out of plane, the horizontal vector joining the point O (i.e. axis of rotation/hinges) to the point of application of the force (i.e. the handle) is the position vector  whose magnitude is equal to the width d of the door. This scheme is clarified in the top view of the door shown in figure 2.19b. Since the force is distant from the hinge O by an arm equal to the door’s width, the opening (and also closing) effect is quantified by the moment of this force about the axis () being the same as point O. The vector moment  acts along the line of the hinges and applied at O having magnitude equal to the product of the force’s magnitude by the width d of the door, according to equation (2.10) having a positive sign since the sense is counterclockwise. Obviously, the moment needed to close the door rotates clockwise and has a negative sign of the magnitude.
Since the door has an unchanged size and material, it needs a constant moment to be opened and closed. Therefore, values of the magnitude F and its position from the hinges might vary such as their product remains constant. Consequently, when the distance between the force and the hinges (axis of rotation) increases, the force decreases by the same scale and vice versa. This explains why when someone tries to push or pull the door at points close from the hinges, one finds difficulties and needs considerable amount of force to open or close, while then the effort is applied far from the hinges, the operation looks more comfortable since the needed force is low.
Application 2.7. Calculate the moment of the force of 50 N about the pivot A in the figure 2.20
[image: ]
Figure 2.20 Application of a force turning about an axis
Solution 2.7.  Figure 2.21 shows the clockwise sense of the moment about A, the direction of the vector is obviously perpendicular to the plane of the screen. The positive conventional sense being counterclockwise, the magnitude of the moment MA is negative.
[image: ]
Figure 2.21 Scheme solution of application 1.3

Application 2.8. Determine the sense and the magnitude of the vertical force  that should be applied at the right and of the bar as shown in figure 2.22 in order to keep this bar horizontal. 
[image: ]
Figure 2.22 Bar prevented from rotation
Solution 2.8.  To keep the bar horizontal, this latter must not rotate about the pivot A. Mechanically this condition would be realized when the resulting moment of all the forces about A cancel each other. Since all those moments act along same direction (perpendicular to the plane of the screen), their magnitudes might be added algebraically. Mathematically, one may write:
MR = M/A + M/A = 0 
This equation means that the moment of is opposite to the one of  which was found negative in application 2.7; this implies that the moment of  must be positive leading to a rotation counterclockwise about A. In conclusion,  must be downward having a magnitude calculated by:

Components of the moment vector 
Until the present lines, one has seen that in 2D case, it is sufficient to consider a scalar formulation of the moment (either for a couple or for a force about an axis) since the vector moment is obviously directed perpendicular to the plane of the screen (z-axis) and could be oriented positively with z-axis (this corresponds to a counterclockwise sense of rotation) or negatively opposite to the sense of z-axis (this corresponds to a clockwise sense of rotation).
However, when it comes to the 3D case, the vector formulation becomes a need to determine accurately the vector moment which can be positioned anywhere in the space upon the force and the position vector (i.e. the arm).  By applying the Cartesian formulation of the equation (2.8) (i.e. equation (2.5)) one can determine the three scalar components of the moment vector:
                                                                                                      (2.12)
Expanding the determinant of equation (2.12) one gets:

This latter equation gives the scalar components Mox; Moy and Moz of the moment vector  : 
                                                                                 (2.13)
Knowing the scalar components it is now straightforward to calculate the magnitude and the angle direction of   by equations (2.14) – (2.17), similar to those used for the force case in equations (1.21) – (1.24):
                                                                                        (2.14)
                                                                                                                (2.15)
                                                                                                                (2.16)
                                                                                                                 (2.17)
It is worth to remind that this whole approach is applicable for either a moment of a force about an axis of for a couple. In addition, equation (2.14) is equivalent to the magnitude of the moment calculated by equations (2.6) and (2.9).
The vector components of   are visualized in figure 2.23 below.
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Figure 2.23 Visualization of the three components of the moment vector
This figure consists of the original case where a solid body is subjected to a spatial force  tending to rotate it about a point O, considered as coincident with the origin of a direct Cartesian reference.  is the position vector from O   the origin of the force. The vector moment  is determined by the equation (2.8) as shown also in this original status of the figure 2.23. This status is in fact the superposition of three vector moments which are the vector components of  along x-, y- and z-axes. Each of those vector components is shown separately along with the components of  and   that contribute in the creation of this moment component. 
For instance, MOx is composed of two ‘’sub-moments’’: the first in a positive ‘’sub-moment’’ coming from the product of the force Fy times the arm rz; those are orthogonal and thus no sine is appearing since sin90° is equal to unity; by applying the right-hand rule for   and    on the first equivalent scheme in figure 2.23 one can deduce the positive sense. The second ‘’sub-moment’’ is negative; it comes from the product of Fz times the arm ry; those are orthogonal and thus no sine is appearing since sin90° is equal to unity, by applying the right-hand rule for  and   on the first equivalent scheme in figure 2.23 one can deduce the negative sense. MOx is finally the algebraic sum of those two sub-moments; this appears also in the first component of equation (2.13). A similar analysis could be elaborated for MOy  are MOz
Resultant of parallel forces 
By definition a system of forces is parallel when all their lines of action do not intersect between themselves at any point. A system of parallel forces may consist of either concentrated forces or distributed forces (volumetric, areal or linear distribution). This is illustrated in figures 2.24a and 2.24b.
Like concurrent forces, it is important to replace a system of parallel forces by a unique one that keeps the same effect as the original system: it is the resultant force.

[image: ]
Figure 2.24 Resultant of parallel forces: concentrated (a), Distributed (b)
The concurrent case has shown that the point of application is obvious (same as the point of intersection of the two initial forces) while the direction needs to be calculated. In the case of parallel forces, it is completely the inverse: the location of the point of application of the resultant force (denoted by G in figure 2.24) needs to be calculated by appropriate equations while the direction of the resultant is naturally parallel to the forces that are replaced by this resultant.
Consider a direct reference (O,,, ) where the forces are considered to be all parallel to the y-axis (but the sense could be either the same or the opposite). In other cases they might be parallel to another axis, however the analysis remains the same. Since those forces are parallel to y-axis, this means that they globally create moments about x- and z-axes. The resultant  must have a magnitude and a sense equivalent to those of the original system and located at a point G in order to have same moment about x- and z-axes as the original system. 
For the case of concentrated forces (figure 2.24a), applying equation (1.7) but in Cartesian notation:

Identifying between left and right member one finds:
                                                             		                                                (2.18)
                                                       		                                   (2.19)
                                                             		                                                (2.20)
In addition, the scalar components of the vector moment of the resultant should be the same as the algebraic sum of those of the initial forces about x- and z-axes, hence:

Let  the arm between  and (Ox), z1 the arm between  and (Ox), z2 the arm between  and (Ox),…, zn the arm between  and (Ox). Replacing in the previous equation each moment by the product of the magnitude of the force by the corresponding value of the arm (without forgetting the positive and negative signs upon the sense of rotation), one obtains distance separating the resultant from x-axis established in equation (2.21):
                                                              		                      (2.21)
Applying the same rational for the equivalent moment about (Oz), the location of the resultant far from z-axis is determined by equation (2.22):
                                                               		                      (2.22)
Thus  is the point of application of the resultant  of the system of parallel forces. 
It is considerably important to notice that:
1. Equations (2.18)-(2.20) denote automatically that the direction of the resultant is parallel to the y-axis (i.e. to the initial system of forces) since the components along the x- and z-axes are zero.
2. Equation (2.19) gives two information at same time: the sign of the sum at the right indicates the sense of the resultant; if positive then  is oriented along the orientation of the unit vector   and if negative it is oriented in the opposite sense. Moreover, the magnitude R is the absolute value of the quantity at the right.
3. In case the forces were parallel to another axis (z-axis for instance), the same equations are applicable just by inverting the symbol z with y in all the equations (2.19) – (2.22). In case of a parallelism to the x-axis, then z is switched with x.
Moving to the distributed force case (figure 2.24b), one may take inspiration from the concentrated case and make the suitable changes to establish the appropriate equations of the resultant. The mathematical function of distributed force is denoted by p(x,y,z) . If a volumetric differential element dV is considered, the force applied at this element is simply p.dV. One can imagine that the distributed function could be partitioned to infinite number of differential elements, each of force p.dV, such that one may consider that there is a group of concentrated forces each of magnitude p.dV and parallel to y-axis that are applied. Since those are differential forces, one would replace the discrete sums in the set of equations (2.19)-(2.22) by an integral:
                                                 	                    	               (2.23)
                                                    		                             (2.24)
                                                    		                             (2.25)
When the force is distributed over an area, the integral becomes a double one. When in is distributed over a length, the integral become a single one.
In case the magnitude of the distributed force is the same over the whole space (mathematically p(x,y,z) = constant), the distributed load is said to be uniform.
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Figure 2.25 Table subjected to a system of parallel concentrated forces
This paragraph is closed by two examples about concentrated and distributed load faced in real life. The first example is depicted in figure 2.25 that shown a table carrying a couple of objects. Each object has a size small compared to the size of the table itself and thus each object is modeled as a particle that exerts its vertical descending weight on the table. Thus the table is subjected to a system of three concentrated parallel forces. 
Figure 2.26 illustrates an example about distributed load: the house roof is covered by a considerable thick layer of snow that applies its weight along a certain determined area from the roof. Each point of this area is sustaining an effect from the snow and thus this is an aerial distributed loading. In case the thickness of the snow is constant this means that the distributed weight at each point of the roof is the same, in that case only, it is a uniformly distributed load.
[image: ]
Figure 2.26 Roof subjected to distributed parallel load
Application 2.9. Determine the vector moment of the force of 500 N about the point A as shown in the figure 2.27 below. All dimensions are in meters.
[image: ]
Figure 2.27 Application to components of moment vector
Solution 2.9. The position vector  is the vector . The coordinates of A are straightforward from figure 2.27: A(-1,1,-1) while B, belonging to plane (xOz) has the following coordinates:

The scalar components of the position vector  are calculated as follows:



Moreover, the components of the force are calculated as follows:



The next step consists in calculating the scalar components of the moment vector using equation (2.13):



[image: ]
Figure 2.28 Vector representation of the moment about A
Figure 2.28 shows a schematic draw of the vector moment of the force about A in the space.
Finally, the magnitude and the direction angle of the moment could be determined applying equations (2.14)-(2.17):




Note: Another method could have been applied to find the magnitude MA from equation (2.9). To find the angle  between  and  , the dot product in its two ways of formulations should be applied and equated.
From the Cartesian formulation:

From the definition:

Calculating the angle :

Finally: 
Application 2.10. Determine the magnitude and the location of the system of forces shown in the figure 2.29
[image: ]
Figure 2.29 Application to parallel concentrated forces
Solution 2.10. Applying equation (2.19) by switching y with z, one finds the sense and the magnitude of the resultant:

This result means that the resultant is parallel to z-axis but oriented downward due to the negative sign in the value of the scalar component. The magnitude of this resultant is R = 1600 N.
Equations (2.21) and (2.22) allow the calculation of the location of the point of application:


The result is drawn in figure 2.30 below.
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Figure 2.30 Resultant of parallel concentrated forces
Application 2.11. Determine the resultant of the parallel linearly distributed load shown in the figure 2.31 below.
[image: ]
Figure 2.31 Linearly distributed parallel loading
Solution 2.11. The load is distributed along a length, thus the function in that case is p(x). The equation of p(x) is a straight line according to the figure 2.31; it begins by 100 N/m at x = 0 and ends by 160 N/m at x = 1. This gives the following equation for p(x):
p(x) = 60 ⋅ x + 100
Apply equation (2.23) to find the magnitude and equation (2.24) to find the location:


The result is drawn in figure 2.32 below.
[image: ]
Figure 2.32 Resultant of a linearly distributed parallel loading
Self-Check Questions
1. Name the two cases where the moment of a non-zero force about an axis is zero.
Case 1: Line of action of the force passes through the axis.
Case 2: Line of action of the force is parallel to the axis.

2. Choose the correct answer.
A person applies a perpendicular force of 15 N at the handle of a door distant from the hinges by 85 cm. The force developed on the door in case the person pushes at the middle between the hinges and the handle is: 
      30 N                   15 N                    7.5 N                   12.75 N 
       
3. Specify if the following statement is True or False and justify your answer
Two parallel forces of equal magnitudes develop the same moment about the same point. False since two parallel forces are not separated by the same distance from the point of rotation
4. Complete the following sentence.
A uniformly distributed loading of intensity 5 kN/m is applied along a bar AB of length 1.8 m. The magnitude of the moment (in absolute value) of this loading about the point A measures 8.1 kN.m.
2.3 Center of Gravity
Definition
The center of gravity (CG) of a body is the point of application of its weight (Beer et al., 2012). When a solid is modeled by a particle, this particle is no other than the center of gravity where the entire weight is concentrated. In a uniform gravity, the center of mass is coincident with the center of gravity (Hibbeler, 2010).
The location of the center of gravity of a rigid body is essential to draw the relevant FBD for equilibrium study since the weight of a body is an external active force applied by the gravity field on the body. 
For a uniform rigid body in size and material, the location of the center of gravity is well known. For instance, a rectangular rigid body having uniform thickness and made from same material has its center of gravity at the center of the rectangle. However, when it comes to non-uniform or compound rigid body, the determination of the position of the center of gravity is not that straightforward; some calculations are needed in that case to locate the center of gravity, before drawing the FBD and then studying the static equilibrium.
[image: ]
Figure 2.33 Pen held by a rope at its center of gravity
Another interesting aspect of this particular point, is that the center of gravity, is the balance point at which a body could be held without tipping. Figure 2.33 is showing a pen, held by a vertical rope at a point such that the pen is kept in a horizontal position. Indeed, the rope is attached at the center of gravity of the pen. Since the mass of the pen is not uniformly distributed, the center of gravity is not at the midpoint of the pen, it is rather shifted towards the lid.
 
Determination of the center of gravity by integration
Consider a rigid body located in a direct Cartesian reference (Oxyz). It could be virtually divided into an infinite number of differential elements, each of weight  as shown in figure 2.34a. 
[image: ]
Figure 2.34 Center of gravity of a body: in a direct reference (a), in a rotated reference (b)
Let x, y and z the coordinates of any differential element in the body. All weights of all differential elements constitute a distributed parallel force system; in the case of figure 2.34a they are parallel to y-axis. The total weight  of the body is applied at the center of gravity of the body denoted by G whose coordinates and  are to be determined. 
Applying equations (2.23) - (2.25) for figure 2.34a and then rotating the plane (yz) of 90° about x-axis (figure 2.34b) then applying again equation (2.25), one gets the three coordinates of G as follows: 
                                                                        		                             (2.26)
                                                                        		                             (2.27)
                                                                         		                             (2.28)
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Figure 2.35 Center of mass of a body
Figure 2.35 shows the center of mass Cm of a body. However, for a constant gravity and since dW = g⋅ dm, g will simplify in equations (2.26) – (2.28) to give the following equations indicating that G and Cm are coincident:
                                                                         		                             (2.29)
                                                                        		                             (2.30)
                                                                         		                             (2.31)
It should be noticed that the denominator in equations (2.26) – (2.28) represents the total weight of the body. Similarly, it represents the total mass in equations (2.29) – (2.31).
For a planar body, equations (2.28) and (2.31) will be disregarded. 
Center of gravity of composite bodies
‘’A composite body consists of series of ‘’simpler’’ shaped bodies which may be rectangular, triangular, semicircular, etc.’’ (Hibbeler, 2010, p.470).
This composite body may be virtually divided into a finite number n of regular ‘’sub-bodies’’, each having a known weight (i.e. mass) and location of center of gravity. Let denote by Wi the weight (i.e. mi the mass) of the component number i in the composite body and (xi, yi, zi) the coordinates of its center of gravity. The coordinates of the center of gravity (i.e. the center of mass) of the composite body are deduced from equations (2.26) – (2.28) (i.e. equations (2.29) – (2.31)) by replacing the integral by a discrete sum for i = 1 to n as follows:
                                                                    		                             (2.32)
                                                                   		                             (2.33)
                                                                    		                             (2.34)
Similar equations will be established for the center of mass Cm:
                                                                    		                             (2.35)
                                                                   		                             (2.36)
                                                                    		                             (2.37)
For a planar composite body, equations (2.34) and (2.37) will be disregarded. 
Application 2.12. Locate the center of gravity of the cone shown in figure 2.36 knowing that its density increases with its height according to:
 
Solution 2.12. Since both planes (Oxy) and (Oyz) are planes of symmetry of the cone, it could be deduced that the center of gravity belongs to y-axis hence 
The ordinate  is calculated from equation (2.30) but the challenge is to find the differential mass dm of a differential element of the cone which is a disk at a height y, of thickness dy and a radius r variable with y. This is illustrated in figure 2.37.

[image: ]
Figure 2.36 Cone with a variable density
From this figure 2.37 and applying Thalès Theorem one may write:

The differential mass of the disk is determined as follows:


The center of gravity of the differential element (i.e. disk) is the same as its height y
All the elements needed to apply equation (2.30) are now determined, thus:

[image: ]
Figure 2.37 Differential element from a cone
Application 2.13. Figure 2.38 shows a thin plate of 2 mm thickness made from a material of density 2500 kg/m3 from which a small square is cut. Locate the position of the center of mass of this plate.
Solution 2.13. This plate is a composite body that could be partitioned into three regular parts: big rectangle denoted by part 1, small square denoted by part 2 and right-angle triangle denoted by part 3. Let G1, G2 and G3 their respective center of gravities. This plate is located in a planar Cartesian reference (Oxy) as shown in figure 2.39. Equations (2.35) and (2.36) are to be applied after finding the coordinates of G1, G2 and G3 measured all from O and the mass of each part.



[image: ]
Figure 2.38 Composite plate of unknown center of gravity
[image: ]
Figure 2.39 Partitioned composite plate





It is worth at this stage to summarize all the calculated data in table 2.1 which helps at applying easily equations (2.35) and (2.36).
	Table 2.1 Data summary of composite plate fig.2.38

	Part
	mi
	xi
	yi
	mi.xi
	mi.yi

	1
	1.5
	0.25
	0.3
	0.375
	0.45

	2
	-0.1125
	0.225
	0.175
	-0.0253125
	-0.0196875

	3
	0.45
	0.6
	0.2
	0.27
	0.09

	Whole
	1.8375
	
	
	0.6196875
	0.5203125





The center of gravity of the whole body is located on figure 2.39.
Self-Check Questions
1. Choose the correct answer.
Two identical cubes each having a side equal to 1 are placed on the floor one above the other such that the lower is 1.5 times heavier that the upper. The height of the center of gravity of the whole system from the floor is:
      0.5                     0.65                    0.75                     0.9 
2.4 Equilibrium of Rigid Bodies
Equations of Equilibrium 
It is well known that a rigid body has the possibility to translate along any direction (like a particle) but also to rotate about any point in the space. This results that the vector condition   is not anymore sufficient for static equilibrium since it does not prevent the rigid body from rotation. To this latter condition, one must ensure that the resulting vector moment of all the moments applied on the body also vanishes. Mathematically, another vector equation must be satisfied  where A is an arbitrary point in the space by which three imaginary directions parallel to the reference directions x, y and z may pass. By following the same rationale to develop the equations of a particle’s equilibrium, i.e. switching to the Cartesian notation, six equations of equilibrium would ensure the static equilibrium of a rigid body in the space as follows:
                                                          		                      (2.38)
                                                          		                      (2.39)
                                                          		                      (2.40)
                                                          		                      (2.41)
                                                          		                      (2.42)
                                                          		                      (2.43)
One can easily remark that each of the two vector equations of equilibrium has delivered three scalar equations (2.38)-(2.40) for the force conditions and (2.41)-(2.43) for the moment conditions. Those are useful algebraically to calculate unknown forces and/or moments needed to establish the static equilibrium of a rigid body. Physically speaking, the nullity of the three components of the resultant force means that the rigid is prevented from translation along the three directions x, y and z simultaneously while the nullity of the three components of the resultant moment means that the rigid body is prevented from rotation about the three directions x, y and z simultaneously. 
Since the number of equations is six, this means that the equilibrium equations in the space allow calculating six unknown forces and/or moments to establish the equilibrium. To notice that an unknown could be either a magnitude or an angle direction. Moreover, in case the equilibrium is planar the number of equations reduces to three; those are (2.38), (2.39) and (2.43). Consequently only three unknowns could be calculated in a 2D equilibrium case.
Particular case: Parallel forces. Considering the particular case where all the applied forces on the rigid body are parallel between themselves (i.e. to one of the reference Cartesian axes, say Oy), the resultant has its direction exclusively along y-axis while it allows to rotate along x- and z-axes. In that case, the six equations of equilibrium reduce only to three (quasi-planar problem). The remaining useful equations are (2.39), (2.41) and (2.43)
Application 2.14. A cube of side 10 cm each and weight 80 N is subjected to the system of forces shown in figure 2.40 below. Determine the force and the moment couple to be applied at the origin O to maintain the equilibrium of the cube. 
Solution 2.14. First, let assign a symbol of each of the applied forces to avoid any confusion. F1 = 100 N; F2 = 200 N; F3 = 300 N; F4 = 400 N and the weight W = 80 N that is applied at the center of the cube, vertical, downward (not shown on figure 2.2 for sake of clarity). The components of those forces are:


[image: ]
Figure 2.40 Cube to be kept in equilibrium
The resultant force of this system denotes:

The balancing force  to hold the body in equilibrium must be an opposite vector to  and having same magnitude:


The direction of this balancing force is determined by the three cosine directions:



The next step consists in calculating the scalar components of the moment vector about point the three cartesian axes passing through O since it is the point at which the balancing elements are requested to be applied.
  and  are passing through x-axis while   is parallel to this axis thus those three forces do not develop moment about (Ox), the remaining forces exert the following moment about (Ox):

 and  are parallel to y-axis while   is passing through this axis thus those three forces do not develop moment about (Oy), the remaining forces exert the following moment about (Oy):

 and  are parallel to z-axis thus those two forces do not develop moment about (Oz), the remaining forces exert the following moment about (Oz):

The balancing moment vector  has the opposite scalar projections of the resulting moment:

The magnitude of the balancing moment is equal to the resulting moment and  calculated as follows:

The direction of this balancing moment is found through the three cosine directions:



Application 2.15. The square frame shown in the figure 2.41 below is subjected to a system of parallel forces to the x-axis. Determine the magnitude, sense and position of the point of application A of the force needed to establish the static equilibrium of this frame.
Solution 2.15. Let  the unknown force needed to complete the equilibrium. By default, it will be considered that it is oriented along the positive sense of x-axis.  Since all forces are parallel to x-axis, Fby = Fbz = 0. The component Fbx is calculated from equation (2.38):

This latter result denotes that the magnitude Fb = 200 N and the sense is opposite to the positive sense of x-axis.
[image: ]
Figure 2.41 Frame in equilibrium under parallel forces
To locate the point of application  A of  , apply equations (2.42) and (2.43):




Alternative Sets of Planar Equations of Equilibrium 
Consider a rigid body located in a direct planar reference (Oxy) subjected to a system of forces  , i = 1 to n in planar equilibrium. In figure 2.42 one force is shown for the sake of clarity. Each force  could be resolved into two rectangular components  and   that may replace the effect of the original force. All scalar components Fix are responsible of translation along x direction while Fiy are responsible of translation along y direction. All rectangular components of the forces may cause the rotation of the body about any point in the plane. Those thee motions are known as degrees of freedom.
[image: ]
Figure 2.42 Planar equilibrium of a rigid body
To prevent both translation and the rotation motion which establish the planar equilibrium, the resultant components along x-axis and y-axis as well as the resultant moment about an arbitrary point in the plane must vanish. One writes exclusively three equations (2.38), (2.39) and (2.43) from the set of spatial six equations of equilibrium. Those are reminded as follows:
                                                          		                      (2.38)
                                                          		                      (2.39)
                                                          		                      (2.43)
The next step consists in proving that the selection of the arbitrary point to apply equation (2.43) will not affect the equilibrium. Consider the point O as another arbitrary point in the plane and calculate the sum of the moments there:

This latter equation will not change when zeros are added and subtracted:

By multiplying equation (2.38) by yA and (2.39) by xA, the right members of those two equations remain zero. 

The first zero added in the equation of  could be replaced by  while the second zero could be replaced by  to get:

This latter equation could be rearranged as follows:

The amounts (xi- xA) represent the arms of the forces  about A while (yi- yA) represent the arms of the forces  about the same point meaning that the right member of this latter equation is no other than . Finally, according to equation (2.43), the sum of moments about A is zero; replacing it in the expression of the moments about O, one gets:

This result shows that choosing either point O or A or any other arbitrary point will not change the equilibrium condition of rotation. However, upon the loading case and geometry, the choice of some particular point might help in simplifications of the calculating operations.
In addition this latter result was derived by using at some stage equations (2.38) and (2.39) which mean physically a block of two translation motions along two perpendicular direction. Mathematically, one of those conditions might be replaced by . Mechanically, preventing two translations and one rotation is equivalent to the prevention of one translation and two rotations about two arbitrary distinct points in the plane. 
In conclusion one may use alternative sets of equations of equilibrium as the original set (2.38), (2.39) and (2.43) without affecting the mechanical status of the body (equilibrium).
The first set consists of equations (2.44)-(2.46) as follows:
                                                          		                      (2.44)
                                                          		                      (2.45)
                                                          		                      (2.46)
The other set consists of equations (2.47)-(2.49) as follows:
                                                          		                      (2.47)
                                                          		                      (2.48)
                                                          		                      (2.49)
It is extremely important to notice that for both previous sets of equations of equilibrium, O and A are two arbitrary points that may be chosen within the plane but under one strict condition: The two points must not belong to a straight line perpendicular to the line of action along which forces are preventing the translational motion. In other words for the first alternative set of equations of equilibrium, equation (2.44) is preventing translation along x direction which is a horizontal direction; points O and A could not lie on a vertical line (i.e. parallel to y-axis) because in that particular case the arm xA - xO = 0 and this will lead that the two remaining equations in the set become dependent, i.e. similar reducing the number of effective equation in the set from three to two; consequently the condition  is not appropriately replaced and hence not satisfied.
Applying the same rationale to the other set of equations of equilibrium, points O and A could not lie on a horizontal line (i.e. parallel to x-axis) otherwise the equilibrium conditions would not be entirely satisfied.
Inspired from the latter two sets of equations of equilibrium, a new set could be also generated, based on rotation prevention about three distinct arbitrary points in the plane; this is mechanically equivalent to prevention of two translation and one rotation motion (i.e. satisfied in the original set of equations of equilibrium). Considering three arbitrary points O, A and B in the plane, the new alternative set of equations writes:
                                                          		                      (2.50)
                                                          		                      (2.51)
                                                          		                      (2.52)
This latter set is valid under the strict condition that the three points must belong to the same straight line.
To prove this condition, consider the figure 2.43 showing the force  and the three points O, A and B belonging to the same straight line and separated from the line of action of   by respective arms diO, diA and diB. All lines of arms are perpendicular to the same direction (line of action of the force) and issued from three points lying on the same straight line, they are all parallel between themselves; applying Thalès Theorem of proportionality one may write: diA = KA⋅ diO and diB = KB⋅ diO where Thalès theorem: a parallel line to a triangle’s side divides the two other sides by equal proportions

 and are coefficients of proportionality. 
[image: ]
Figure 2.43 Moment of a force about three points lying on same straight line
Now expanding equations (2.50)-(2.52) one writes:



One concludes that the three equations have ended by a single one; those three conditions are in fact a single one and hence not all motions are prevented meaning that the equilibrium conditions are not all satisfied by the choice of three points on the same straight line.
Finally, it is worth to remind that, for all four sets of equations, the sense of scalar projections along x- and y-axis is counted positive when the orientation is from left to right along x-axis and upward along y-axis. For moments’ calculation, the positive sign is assigned for a counterclockwise rotation; this is shown in figure 3.1.
The equilibrium of a particle in the plane imposes a block of translation along x and y directions. Only equations (2.38) and (2.39) should be then satisfied. Those are indeed identical to equations (2.2) and (2.3).
Self-Check Questions
1. Choose the correct answer
When a rigid body is subjected exclusively to many couples of forces, the element(s) needed to establish its static equilibrium is (are):
No elements are needed, the body is already in equilibrium
Only a balancing force is needed
Only a balancing moment is needed
Both balancing force and moment are needed
2. Choose the correct answer
When a rigid body is subjected exclusively to many collinear forces, the element(s) needed to establish its static equilibrium is (are):
 No elements are needed, the body is already in equilibrium
 Only a balancing force is needed
 Only a balancing moment is needed
 Both balancing force and moment are needed
2.5 Bearing types, Static determinacy
Definition of Bearing
A bearing is a physical member connected to the main rigid body to prevent its motion along one or many directions. A translational motion is blocked by applying a force along the direction of prevention while a rotational motion is blocked by applying a couple moment about the axis along which the rotation is prevented. To generalize, one introduces the concept of degree of freedom (DOF) which represents a direction along which a rigid body may move, either in translation or rotation. Upon its type, a bearing may block one or multiple degree of freedoms
Bearings could be split into many categories: 
· Monovalent bearings that block one DOF.
· Bivalent bearings that block two DOF.
· Trivalent bearings that block three DOF.
· Polyvalent bearings that block more than three DOF (obviously in the space).
Bearings exert one or many components of reactive forces to hold the rigid body in its static equilibrium once subjected to active forces. Both active and reactive forces belong to the category of external forces. However, active forces are well known since they are applied by a user on the rigid body in the scope of any practical application while the reactions of the supports are unknowns. Those are calculated in order to satisfy the equations of equilibrium, i.e. either six conditions in the space or three conditions in the plane.
Bearings Types and Reactions
Planar bearings
Consider that the rigid body and the applied forces, as well as the bearings supporting the body, all belong to the plane (Oxy).
The most common used supports are listed and described as follows:
Cable. It is a linear tool connected to the main body or member preventing its motion just along its line and exclusively in tension. A cable collapses under compression and hence it does not exert any reaction in that sense. Figure 2.44a illustrates a cable acting on a member in 2D.The reaction developed by a cable is a tensile force acting along the line of the cable as shown in figure 2.44b. Since the direction of the cable  is already known from the systems configuration, the lone unknown in that case is the magnitude of the tensile force.  
[image: ]
Figure 2.44 Cable support in the plane (a), Cable reaction force (b) 
Rigid link. It is quite similar to a cable except that its rigidity allows exerting the reaction either in tension or compression without collapsing. It is illustrated in figure 2.45a. The concept of reaction force is similar to the cable except that the reaction could have both senses: either tension or compression. The reaction of a weightless link is illustrated in figure 2.45b.
Roller. Spherical or cylindrical item resting on a surface and preventing the translation exclusively in the direction perpendicular to this surface hence the only unknown is the magnitude of this reaction. Figure 2.46a shows a schematic of a roller connected to a rigid body while the reaction force is illustrated in figure 2.46b.
[image: ]
Figure 2.45 Rigid link support in the plane (a), Rigid link reaction force (b)

[image: ]
Figure 2.46 Roller support in the plane (a), Roller reaction force (b)
Rocker. It is a pivot rounded from bottom and resting on a surface, preventing also the translation exclusively in the direction perpendicular to this surface hence the only unknown is the magnitude of this reaction. Figure 2.47a shows a schematic of a rocker connected to a rigid body while the reaction force is illustrated in figure 2.47b.
Smooth supporting plane. It is a rigid polished solid surface on which a point or a partial area of the rigid body can rest. It blocks translational motion along a perpendicular direction to the plane and in a unique sense. Also in that case the only unknown is the magnitude of this reaction. This support is schematized in figure 2.48a while its reaction force is illustrated in figure 2.48b.
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Figure 2.47 Rocker support in the plane (a), Rocker reaction force (b)
[image: ]
Figure 2.48 Smooth surface support in the plane (a), Smooth surface reaction force (b)
Slotted roller/pin. Cylindrical device confined between two smooth rigid planes where it can rolls parallel, but it blocks the translation perpendicularly to those smooth planes hence the only unknown is the magnitude of this reaction. This bearing’s schematic is illustrated in figure 2.49a. while its reaction force is illustrated in figure 2.49b.
Sliding pinned collar. Hollowed cylindrical device containing a concentric smooth rod along which it can slide freely and pinned to the rigid body. It prevents only translation in the perpendicular direction to the rod hence the only unknown is the magnitude of this reaction. This type of bearing is schematized in figure 2.50a while its reaction force is illustrated in figure 2.50b.
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Figure 2.49 Slotted roller support in the plane (a), Slotted roller reaction force (b)
[image: ]
Figure 2.50 Sliding pinned collar support in the plane (a), Sliding pinned collar reaction force (b)
[image: ]
Figure 2.51 Sliding fixed collar support in the plane (a), Sliding fixed collar reaction components (b)
Sliding fixed collar. Hollowed cylindrical device containing a concentric smooth rod along which it can slide freely and welded or completely adhered to the rigid body. It prevents the translation in the perpendicular direction to the rod and also the rotation within the plane allowing only translation parallel to the rod. This type of bearing is schematized in figure 2.51a while figure 2.51b shows the corresponding reaction force and couple developed by a fixed collar.
Pin. Device with two spaced flanks between which the rigid body with a hole is positioned, a screw and a nut connect the flanks and the rigid body together through the hole. A pin has two leaves is order to be fixed to the ground (Hibbeler, 2010). The schematic of a pin (named also hinge) is illustrated in figure 2.52a. A pin prevents in the plane translation in all directions. This leads to a reaction force directed along any inclination (with respect to the x-axis) in the plane. However, one can replace this force (i.e. this unknown angle also) by two rectangular components, i.e. a force along x-axis blocking translation in this direction and another one along y-direction. Mechanically, when translation is blocked along two directions, it is automatically blocked completely. In consequence, a pin baring exhibits two unknown-components reaction, those are one horizontal and another vertical force, one unknown magnitude force and its direction . This is illustrated in figure 2.52b. The most of the cases the approach of two rectangular components is adopted.
[image: ]
Figure 2.52 Pin support in the plane (a), Pin reaction components (b)
Fixed support. It represents any device constraining the body from any motion: it blocks all translation and rotation motions. The end at which a fixed support is connected is said to be cantilevered. Figure 2.53a schematizes a fixed support. Since all degrees of freedom are blocked by a fixed support in the plane thus this type of bearing exhibits three reaction components: two rectangular force components and a couple moment. This is illustrated in figure 2.53b.
[image: ]
Figure 2.53 Fixed support in the plane (a), Fixed support reaction components (b)
All the aforementioned bearings and their characteristics are summarized in Table 2.2 below.
	Table 2.2 Supports types and reactions for 2D rigid bodies

	Bearing Type
	Bearing symbol
	Number of prevented DOF
	Reaction components

	Cable
	

	1
	


	Rigid massless link
	

	1
	


	Roller
	

	1
	


	Rocker
	

	1
	


	Smooth supporting plane
	

	1
	


	Roller in smooth slot
	

	1
	


	Sliding pinned collar
	

	1
	


	Sliding fixed collar
	

	2
	


	Pin
	

	2
	


	Fixed support
	

	3
	





Spatial bearings
Consider that the rigid body and the applied forces, as well as the bearings supporting the body, all referred in the 3D Cartesian reference (Oxyz).
The most common used support are listed and described as follows:
Cable. It is a linear tool connected to the main body or member preventing its motion just along its line and exclusively in tension. A cable collapses under compression and hence it does not exert any reaction in that sense. Figure 2.54a illustrates a cable acting on a member in 3D. For the reaction force developed, the same concept as a cable in the plane applies in the space. The reaction force is illustrated in figure 2.54b. One should notice on another hand that the rigid link in the space follows the same concept as one in the plane.
[image: ]
Figure 2.54 Cable support in the space (a), cable reaction force (b)
Smooth supporting plane. It is a rigid polished solid surface on which a point or a partial area of the rigid body can rest. It blocks translational motion along a perpendicular direction to the plane. It is schematized in figure 2.55a. For the reaction force developed, the same concept as in the plane applies in the space. The reaction force is illustrated in figure 2.55b.
[image: ]
Figure 2.55 Smooth plane support in the space (a), Smooth plane reaction force (b)
Roller. Spherical or cylindrical item resting on a surface and preventing the translation exclusively in the direction perpendicular to this surface. Figure 2.56a shows a schematic of a roller connected to a rigid body. For the reaction force developed, the same concept as in the plane applies in the space. The reaction force is illustrated in figure 2.56b. It should be noticed that the reaction may be oriented either upward or downward upon the case of loading.
Ball and socket. Spherical device connected to a point of the body and confined within a rigid housing. Its schematic is illustrated in figure 2.57a. This type of bearing allows the rotation in all directions but blocks translation in all directions. This is represented by three reaction force components acting along three perpendicular directions. Figure 2.57b schematizes those components.
Circular single journal bearing. It is a mechanical support of hollowed cylindrical shape consisting of internal rings with lubricant in-between and used to support shafts. It is schematized in figure 2.58a. It blocks both translation and rotation motions about radial axes of the shaft; only longitudinal motions are allowed. This implies that the components of the reaction consists of two rectangular force components acting along two perpendicular radial directions as well as two rectangular moment components acting about the same axes. Figure 2.58b illustrates those components.
[image: ]
Figure 2.56 Roller support in the space (a), Roller reaction force (b)
[image: ]
Figure 2.57 Ball and socket support in the space (a), Ball and socket reaction components (b)
Square single journal bearing. It is a mechanical support of hollowed prismatic shape consisting of internal rings with lubricant in-between and used to support shafts. It is schematized in figure 2.59a. It blocks both translation and rotation motions about radial axes as well as rotation about the longitudinal axis of the shaft; only longitudinal translation is allowed. Figure 2.59b illustrates the five reaction components generated by this type of support.
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Figure 2.58 Single circular journal bearing in the space (a), Single circular journal bearing reaction components (b)
[image: ]
Figure 2.59 Single square journal bearing in the space (a), Single square journal bearing reaction components (b)
[image: ]
Figure 2.60 Single thrust bearing in the space (a), Single thrust bearing reaction components (b)
Single thrust bearing. It is a mechanical support of hollowed cylindrical shape consisting of internal rollers and/or balls with lubricant in-between and used to support shafts. It is schematized in figure 2.60a. It blocks both translation and rotation motions about radial axes of the shaft as well as longitudinal translation; only rotation about the longitudinal axis of the shaft is allowed. Figure 2.60b illustrates the five reaction components generated by this type of support.
Pin. Device with two spaced flanks between which the rigid body with a hole is positioned, a screw and a nut connect the flanks and the rigid body together through the hole. A pin has two leaves is order to be fixed to the ground (Hibbeler, 2010). The schematic of a pin is illustrated in figure 2.61a.  Besides preventing translation in all directions (as it does in the plane), a pin bearing prevents also in the space rotation motion about any radial direction (coincident with radial direction of the hole drilled in the rigid body to mount the pin). This results in five reaction components exhibited by a pin in the space. This is illustrated in figure 2.61b.
[image: ]
Figure 2.61 Pin support in the space (a), Pin reaction components (b)
Hinge. Device consisting of two thin holed plates interfered together through male and female cylinder to allow rotation about the cylinder axis exclusively, all other motions are impossible. It is illustrated in figure 2.62a. As an example, it is used to mount a door on the frame such that the door can rotate exclusively about the vertical axis. Its function is very similar to a pin. It blocks thus five DOF. The five reaction components are schematized in figure 2.62b.

[image: ]
Figure 2.62 Hinge support in the space (a), Hinge reaction components (b)
Fixed support. It represents any device constraining the body from any motion: it blocks all translation and rotation motions. The end at which a fixed support is connected is said to be cantilevered. Figure 2.63a schematizes a fixed support. All degrees of freedom are blocked by a fixed support in the space thus this type of bearing exhibits six reaction components: three rectangular force components and three rectangular couple moment components. This is illustrated in figure 2.63b.
[image: ]
Figure 2.63 Fixed support in the space (a), Fixed support reaction components (b)
It should be noticed that, except the cable and the supporting plane where the sense of the reaction is well-known, the senses of the reaction components of all other types of bearings may have both options along a determined direction. The right sense will be known from the algebraic signs after the calculation of the components’ values.
All the aforementioned bearings and their characteristics are summarized in Table 2.3 below.
	Table 2.3 Supports types and reactions for 3D rigid bodies

	Bearing Type
	Bearing symbol
	Number of prevented DOF
	Reaction components

	Cable
	

	1
	


	Smooth supporting plane
	

	1
	


	Roller
	

	1
	


	Ball and socket
	

	3
	


	Circular single journal bearing
	

	4
	


	Square single journal bearing
	

	5
	


	Single thrust bearing
	

	5
	


	Pin
	

	5
	


	Hinge
	

	5
	


	Fixed support
	

	6
	




It is important to illustrate a couple of physical and practical examples to spot on the use of many of supports.
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Figure 2.64 Reaction force (tensile) of a chain
Figure 2.64 shows a heavy cylinder hung by a chain which is equivalent to a cable towards effect; the chain is applying one reaction force (tensile) along the line of the chain, being vertical in the example; this reaction is preventing a free fall of the cylinder (motion) under its own weight. 
Figure 2.65 illustrates the effect of a door damper’s link trying to resist against opening of the door, this reactive force acting along the axis of the link.
[image: ]
Figure 2.65 Reaction force of a door link’s damper
Figure 2.66 shows a prismatic bar tested in a laboratory under bending loading; this bar is supported by two rollers at its extremities reacting by  and  against the bending load.
Figures 2.67 and 2.68 illustrate two application of pins usage. Figure 2.67 show how metallic bar members of a warehouse ceiling structure are pinned together while figure 2.68 show how the arms of a truck’s forklift are pinned to the main frame of the truck.
[image: ]
Figure 2.66 Reactions of two rollers on a bar under bending test
[image: ]
Figure 2.67 Metallic bars connected by pins
Figure 2.69 shows a special thrust bearing where layer of metallic balls are mounted connecting it to its housing allowing rotations even about radial directions. Figure 2.70 shows a complete physical ball and socket device as well as a section where half of its housing is removed to visualize the spherical item inside.
[image: ]
Figure 2.68 Application of pins for lift arms articulations
[image: ]
Figure 2.69 Special thrust bearing
[image: ]
Figure 2.70 Ball and socket
[image: ]
Figure 2.71 Poles cantilevered to the ground
A last example is illustrated in figure 2.71 showing multiple poles for electrical purposes, wooden to hold cables and metallic to hold lamps that are completely fixed to the ground such that no motion along any direction is possible either in translation or rotation: this is a fixed support application.
Application 2.16. Calculate the reactions at the fixed support A of the beam AB shown in figure 2.72.
[image: ]
Figure 2.72 Fixed supported beam loaded in the plane
Solution 2.16. The concentrated force at the free end be may be replaced by its rectangular components as shown in the FBD of figure 2.73.

[image: ]
Figure 2.73 FBD of fixed supported beam under planar loading
Applying the set (2.38) , (2.39) and (2.43) of equations of equilibrium:



Application 2.17. A rigid weightless bar AB is pinned at A and connected at B to the wall by a cable BC as shown in figure 2.74. It is subjected to two concentrated vertical forces. Calculate the reactions at A and B.
[image: ]
Figure 2.74 2D loaded bar supported by a pin and a cable
Solution 2.4. First, it is mandatory to sketch the FDB by isolating the main body (bar AB) and showing all external forces applied. This FDB is shown in figure 2.75.
[image: ]
Figure 2.75 FBD of bar AB
Pin at A generates two components denoted by Ax and Ay while the cable BC develops a tensile force of magnitude T along the line of the cable. The inclination (i.e. direction) is known since the lengths of AB and AC of the right-angle triangle ABC are known. Concerning the sense of each of the reactions, the force in the cable is obviously tensile and thus oriented from B to C; however, the reactions at the pin may have one or other sense; by default one may choose same sense as the Cartesian axes x and y. Once calculated from the equilibrium equations, if their signs were found positive, this means that they act in reality in the same sense chosen from the start while if the sign is negative this would mean that they act in the opposite sense.
In the right angle triangle ABC, AB = 4 m and BC = 3 m. Applying Pythagorean theorem allows finding the length of the cable, BC = 5 m. Then applying trigonometric relations help at determining the trigonometric quantities of the direction  of the tension in the cable.


Applying the equations of equilibrium (2.38), (2.39) and (2.43):



Replacing in the first two equations, one gets: Ax = 18.4 kN  and Ay = 11.2 kN.
Application 2.18. A square plate of weight 500 N is hinged at A and held by a cable BC connected to the plate by the hook B as shown in figure 2.76. Determine the reactions of the hinge and the tension of the cable.
[image: ]
Figure 2.76 3D loaded plate supported by a hinge and a cable 
Solution 2.5. The FBD of the isolated door is shown in figure 2.77. There are six unknown reaction components. If the system is stable, then one is facing a stable determinate system. By default, the senses of the components of the reaction at the hinge were chosen in the positive orientation of the Cartesian axes. The weight, vertical descending, is parallel and opposite to y-axis and applied at the center of the square.
[image: ]
Figure 2.77 FBD of the square plate
However, before applying the six equations of equilibrium (equations (2.4)-(2.9)), the tension of the cable is neither parallel nor orthogonal to any of the three Cartesian axes and hence its components as well as the components of its vector moment about A should be expressed.
The coordinates of A, B and C are: A(0.2, 0, 0); B(0, 0.1, 0.4); C(0, 0.4 ,0)
The components and the magnitudes of the direction vector  and the position vector  are as follows:


From the components of the direction vector  and its magnitude, the cosine directions of the cable’s tension  and then its scalar components could be found:

From the components of the position vector and those of , the components of the moment of  about A become:

Applying the six equations of equilibrium one calculates:






Since T is calculated, Ay and Az could be found from the second and third equations:
Ay = 312.5 N ; Az = 250 N
The positive signs of the answers designate that they act in reality in the orientations drawn in the FBD.
Stability and Instability
It is already known that external forces applied on a rigid body may be either active forces or reactive forces. Those latter are applied by physical ‘‘items‘‘ known as bearings or supports. Supports hold a solid, subjected to active forces, and prevent its motion. In other words, bearings or supports develop reactive forces, known as support reactions or bearings reactions in order to balance the effect of the applied active forces and hence to keep the solid body in static equilibrium. The entire system of external forces consisting of both active and reactive forces, must satisfy mathematically the equations of equilibrium (2.38)-(2.43) if the equilibrium occurs in the space. This set of equations reduces to equations (2.38),(2.39) and (2.43) when it comes to a planar equilibrium. Globally, all the active forces are known towards direction sense and magnitude while the reaction forces are unknown and thus the equations of equilibrium are applied to calculate the bearing reactions developed on a solid body. Since the number of equations of equilibrium is limited, i.e. six equations in 3D and 3 equations in 2D, one may calculate mathematically six reaction forces only in the space and three reaction forces only in the plane. However, this number of reaction forces in a physical status of a body may not match the mathematical needings; in other words the number of reactive forces may not reach six but also it may exceed six. Nevertheless, it is not guaranteed that sufficient number of reaction forces may ensure the stability of the body. All depends on the configuration upon which the bearings are distributed and located to hold the body. 
In the coming lines, a detailed discussion will be carried out concerning the status of a rigid body supported by bearings and subjected to external active forces. It is worth to note that, for sake of clarity and simplicity, the discussion will be conducted for planar case, always an extension to the spatial case is possible. 
Before staring the discussion, stating definitions of a couple of key terminologies is essential and helpful to understand the coming discussion.
Stability. A rigid body is said to be in stable equilibrium when it remains at rest under any possible type, direction, sense and magnitude of external loading.
Instability. A rigid body is said to in an unstable status when it is brought to motion under at least one case of loading, whatever are its type, direction, sense and magnitude.
Unstable Equilibrium. A rigid body is said to be in unstable equilibrium when it is held in equilibrium only under a particular loading case, but this equilibrium is broken once the loading case changes.
Statically determinate structure. A structure is said to be statically determinate when it is stable and when the number unknown reaction forces is equal to the number of equations of equilibrium (i.e. 6 unknowns in 3D and 3 unknowns in 2D). In that case, all the reactions of the supports could be determined by applying the equations of equilibrium.
Statically indeterminate structure. A structure is said to be statically indeterminate when it is stable and when the number unknown reaction forces exceeds the number of equations of equilibrium (i.e. 7 or more unknowns in 3D and 4 or more unknowns in 2D). In that case, the reactions of the supports could not be determined by applying the equations of equilibrium alone; additional equations are needed to determine all the reaction forces those are known as deformations compatibility equations however this is an advanced topic that does not belong to the scope of the present textbook.
Statically Determinate Structure
Consider the structure shown in figure 2.78. It is subjected to a known active force having a horizontal and vertical component, Px and Py respectively. It is supported by a bearing at point A that is a pin type and another bearing at point B being a roller type. A pin reacts by a two-components force reaction denoted by Ax and Ay while the reaction applied by a roller is a one-component force denoted by By. This is a planar problem having three unknowns Ax, Ay and By. Despite the number of equations of equilibrium is also three, i.e. equal to the number of unknowns, one may not judge that the structure is determinate unless making sure about its stability. Mathematically, the structure is stable when the three unknowns admit unique solution each. Otherwise, the structure would be either totally unstable or in unstable equilibrium.unique solution: in terms of linear algebra, this corresponds to a non-zero Cramer’s determinant

Applying equations (2.38), (2.39) and (2.43) one finds:



Going back to the second equation, Ay can be determined as follows:

[image: ]
Figure 2.78 Statically determinate structure
Since the three unknowns have got unique solutions each, this means that the structure is stable and thus statically determinate. Physically, the existence of those solutions means that the motion is prevented in horizontal translation (i.e. along x-axis) due to  , in vertical translation (i.e. along y-axis) due to  and  and in planar rotation (i.e. about outward z-axis) due to the combination of the three components together. Consequently, this structure is in static equilibrium.
It is worth to notice that in equation (2.43) one may choose any point in the plane to calculate the moments’ equilibrium and the equation remains satisfied. However, it is preferable to choose specific point that simplifies at most the calculations of moments. In the case of figure 2.78, point A looks the most convenient one, since two unknown forces pass through it, their corresponding moments are zero (since their arms are zero) leading to the apparition of only one unknown By in the equation which reduces considerably the calculations. The reader is invited, for sake of verification, to choose another point (e.g. B) and calculate the equilibrium of moments there.
Statically Indeterminate Structure
Consider now the same previous structure under same loading conditions. In addition to the pin at A and roller at B, the structure is also supported by another pin at C as shown in figure 2.79. The number of equations of equilibrium being always three, the problem exhibits five unknowns: Ax, Ay, By, Cx and Cy. It is clear that the number of unknowns is greater than the number of equations. In order to consider the structure is indeterminate, this latter must be also stable; this applies in case each of the equation admits many possible solutions. Otherwise, the structure would be either totally unstable or in unstable equilibrium.
Applying equations (2.38), (2.39) and (2.43) one finds:



The development of the three planar equations of equilibrium has led to three equations that may admit an infinite number of options as solution, thus the structure is stable indeterminate. A part or even the totality of the bearings reactions could not be calculated by the equilibrium equations exclusively. Solving indeterminate structure does not belong to the scope of the Statics topics.

[image: ]
Figure 2.79 Statically indeterminate structure
Unstable Structure 
Many case studies may induce to completely unstable structures or structure in unstable equilibrium. The coming lines will illustrate couple of examples.
Figure 2.80 depicts the same structure but this time all three supports are roller types that induce reactions parallel between themselves (in that case all vertical). As a first case, consider that the external active loading consists of Py only (for this reason Px is shown in dashed lines, since it will be applied in a further stage).
[image: ]
Figure 2.80 Unstable structure supported by three rollers
Apparently, the number of unknowns is equal to the number of equations and thus one would consider that the structure is determinate. However, it will be proven that this structure is unstable. 
Applying the three equations of equilibrium (2.38), (2.39) and (2.43):



Mathematically, the first equation (0=0) means that the structure is in unstable equilibrium: no external loading is applied along x-axis but also no bearing type or position that induces a reaction along x-direction. However, in the absence of any horizontal reaction force, the application of any external active force on the structure (here it is denoted by Px on figure 2.81) will break this unstable equilibrium and produce the motion of the structure. Mathematically, equation (2.38) gives: 0 = Px which is not satisfied since Px is an applied force and it is impossible to be 0. The horizontal translation is not prevented in fact by any bearing. The remaining two equations involve in fact all the three unknowns, those could not be solved obviously. Mechanically speaking, this structure is stable indeterminate in y-axis and completely unstable along x-axis meaning that overall it is unstable since the stability condition imposes motion prevention in all directions simultaneously.
In conclusion, the equality between the number of equations and unknowns is a necessary but not sufficient condition to ensure stability and determinacy of a structure. The way of locating and distributing the supports along the body plays a key role in stability. In figure 2.80, the three rollers exert in fact three reactions but their distribution is not appropriate: all of them have been directed to balance y-components and rotation of active loading while x-direction equilibrium has not been satisfied. If for instance, the roller C is rotated in a way that applies either an inclined or a completely horizontal reaction, the stability would have been kept permanently.
Moving to another example inspired from the previous one but with an additional roller mounted at point D as shown in figure 2.81. Apparently, the number of unknowns is greater than the number of equations and thus one would consider that the structure is indeterminate. However, by repeating the same rationale as the case of figure 2.80 one would deduce that the structure is in an unstable equilibrium under the external loading Py (i.e. equation (2.38) results in 0=0) and totally unstable when the external loading Px is additionally applied (i.e. equation (2.38) results in 0=Px). 
Even though the bearings exhibit more reaction forces than needed, this redundancy in reactions, if not well configured, might not ensure the equilibrium of the structure.
[image: ]
Figure 2.81 Unstable structure supported by four rollers
Moving to the figure 2.82 to illustrate a new case study of instability, one can see now that roller B is located such that the line of action of its reaction force passes through point A. Although the number of unknowns and the types of bearings at A and B are similar to the case in the figure 2.78, the structure is not stable determinate as found in figure 2.78. The change in position of one of the supports has indeed changed the stability status of the structure. Applying equations (2.38), (2.39) and (2.43):



[image: ]
Figure 2.82 Unstable structure supported by a pin and a roller
The first equation shows that the equilibrium along x-axis is established and determinate (Ax is calculated). The second equation shows that the equilibrium along y-axis exists but the case is indeterminate since on equations relates Ay and By, those may have infinite number of possible values to satisfy the condition. However, the third equation shows that the structure is unstable towards rotation, the moment created by the active external forces Px and Py is not balanced by any reaction’s contribution. All the lines of actions of the force reactions are concurrent at one point, this implies and unbalance of moments and thus instability of the structure.
Finally, it is obvious to state that any structure supported by bearings that exhibit number of reaction forces (i.e. unknowns) less than the number of equations of equilibrium (i.e. less than six in 3D and less than three in 2D) the structure is automatically unstable.
Application 2.19. The 90° arm shown in figure 2.83 is supported by a ball and socket at O and held by a rigid weightless link AB. It is subjected to an external couple along z-axis and a concentrated force parallel to y-axis. Discuss the stability of this structure. In case it is unstable, what solution could be suggested to convert it to stable determinate? Calculate the reactions of bearings in that latter case.
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Figure 2.83 3D loaded arm supported by a ball and socket and a link
Solution 2.19. The free body diagram of the structure, shown in figure 2.84, proves that the bearings develop only four reaction components (three forces by the ball a socket and a single force along the link). In the space, at least six reactions are needed (and properly arranged) to establish the stability of the structure. This means that, this system lacks two more components to gain stability. As is, the structure is unstable.
[image: ]
Figure 2.84 FBD of the 3D arm
To render the structure stable determinate statically, one of the solutions is to replace the ball and socket by a pin which allows only rotation about x-axis. To the FBD of figure 2.84, two couple moment components MOy and MOz are added.
Before applying the six equations of equilibrium, it is worth to determine the components of  as well as the components of its moment about O since it is an inclined force in the space.
The direction vector   of  has the following components and magnitude:


The position vector is and this leads to the determinations of the scalar components of the vector moment as follows:

Applying the equations of equilibrium (2.38)-(2.43):






Finally, replacing F by its value in the second and third equations of equilibrium, one gets: Oy = 0 and Oz = 2 kN. The negative sign in MOy and MOz means that they act practically in the opposite sense to the right-hand rule. 
Application 2.20. The arm AB pinned at A and supported by a fixed sliding collar at B is loaded as shown in figure 2.85. Discuss the stability status of the arm and suggest suitable modification(s) to render it determinate in case it is not. Calculate the reactions in that case.
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Figure 2.85 2D loaded arm supported by a pin and fixed collar
Solution 2.20. Figure 2.86 shows the free body diagram where four reaction component appear. The number of unknowns, i.e. four is exceeding the number of equations of equilibrium, i.e. three. However, the structure is not definitely stable indeterminate. An irrelevant arrangement of the bearings might lead to an instability. One has to apply the three equations of equilibrium to pick up a conclusion.




[image: ]
Figure 2.86 FBD of the 2D arm
The second equation has led to the determination of Ay. The two other equations are satisfied for infinity of option for Ax, Bx and MB. This concludes that the structure is stable and indeterminate. A modification of bearing(s) should induce the removal of one of those three unknowns. The simplest solution is the replacement of the pin by a roller at A which removes the components Ax. From the first equation one gets Bx = -16.5 kN (meaning that Bx acts practically from right to left). The third equation gives MB = -1.25 kN.m; similarly the negative sign means that this couple acts in the clockwise sense of rotation.
Application 2.21. Beam AB is supported by a pin at A and a roller at B and loaded in the plane as shown in figure 2.87. Verify that the alternative set of equations of equilibrium based on the nullity of three resultant moments about three points lying on the beam does not lead to reactions determination.
[image: ]
Figure 2.87 Loaded beam supported by a pin and a roller
Solution 2.21. The FBD of the beam is shown in figure 2.88 where the pin A exerts two reaction components Ax and Ay while the roller B exerts only one By.
[image: ]
Figure 2.88 FBD of a loaded bema in the plane supported by pin and roller
Trying to find the three unknown reactions, apply the moments equilibrium about A, M and B:



One can remark that this set of equation was not helpful at determining Ax. Indeed, the three chosen points belong to the same straight line. The second and third equations have led to the same result. However, by choosing any other point out of the beam for instance a point C above the point A by 0.5 m vertically one calculates:
 
One can remark now that the three components of the reactions are fully determined. This latter component could have been found also by applying equation (2.43).
Self-Check Questions
1. Specify if the following statement is True or False and justify your answer
When a rectilinear bar is supported by two pins, it is automatically stable indeterminate. True, since two pins generate four reaction components, two vertical and two horizontal; those can certainly balance the three equilibrium conditions in the plane.

2. Specify if the following statement is True or False and justify your answer
A rigid body supported by six cables in the space is certainly in static equilibrium since each cable induces a reaction; six reaction components are enough to establish the equilibrium. False since all those cables may be parallel between themselves or all of them intersecting at a single point, this will not prevent motion in all directions.

3. Choose the correct answer
a) A bulb hung vertically from the ceiling by its electrical cable has the following status:
       Stable determinate
       Stable indeterminate
       Unstable equilibrium    

       Completely unstable  

b) The type of support that might be used alone to hold a body in static equilibrium is:
       Ball and socket
       Hinge
       Single thrust bearing
       Fixed support

4. Complete the following sentence
A shaft supported by two single thrust bearings is supported by ten reaction components. Its equilibrium status is stable indeterminate.
Summary
A free body diagram (FBD) is a schematic representation of an idealized solid with all forces applied in it.
When a force is applied on a rigid body and separated from an axis point by a distance known as arm, the force develops a moment about this axis. Also a moment is created by two equal, parallel and opposite forces separated by an arm; this is known as couple. A moment is represented by a vector determined from the cross product between the position vector ‘’axis of rotation – force line’’ and the force. 
The equilibrium conditions of a rigid body are expressed mathematically by a set of six equations for a rigid body in the space: , , , ,  and . For a particle’s equilibrium, only the first three equations apply. 
Externally, the active applied forces are balanced by another system of external forces named reactions; those are developed by bearings or supports mounted on the rigid body to hold it in equilibrium. A bearing may exert one to six components of reaction in the space (i.e., one to three in the plane) upon its type. To satisfy the six equations of equilibrium, the total number of reaction components must be at least six thus appropriate bearings should hold the rigid body. In addition, they should be located in appropriate manner such that their reactions prevent all motions. In that case the structure is said to be stable. When a rigid body may move along any direction it is said to be unstable. A statically determinate structure is a stable structure where all the reactions of its supports are determined exclusively from the equations of equilibrium.  A statically indeterminate structure is a stable structure having number of reactions exceeding the number of equations of equilibrium. 













Unit 3 –Planar Trusses

Study Goals

On completion of this unit, you will be able to …

… identify a simple and compound truss.
… determine the internal forces in the bars of a truss using the method of joints.
… determine the internal forces in the bars of a truss using the method of sections.
… calculate the nodes displacements in a truss using the theorem of virtual works.



3. Planar Trusses
Introduction 
After studying in details equilibrium of particles and rigid bodies which are considered as ‘‘one component‘‘ solids, the coming step deals with equilibrium of structures. A structure is a solid body made of several components or parts connected together (Beer et al., 2012). A special type of structures will be the topic of the actual unit; this type is known as truss. A truss is a solid structure ‘‘composed of straight slender members‘‘ (Gross et al., 2013, p.153). Each member is known as bar and the points of joining are known as nodes or joints. A bar is then a segment joining two nodes. In an ideal truss, all joints are considered as frictionless pins and all external forces are applied on the joints. In some real cases, when the loads are applied on the bars, the problem could be mathematically converted to a joint-loaded truss. However, this latter case is out of scope of the current unit.slender member: a member is classified as slender when its length is much greater than its lateral dimensions

Practically trusses are useful in many applications such as supporting roof panels of warehouses or hangars, bridges‘ floors supports, or ceilings in football stadiums. Globally those are spatial trusses (3D trusses) that are composed of many 2D ‘‘sub-trusses‘‘ or planar trusses. Consequently, the study of an entire spatial truss consists in studying of a series of planar trusses forming the whole spatial trusse; for this reason planar trusses will be exclusively considered in the present unit. 
One particular type of trusses will be studied: triangular truss. Besides the determination of the support reactions exerted on the loaded triangular truss, one will determine the internal forces developed within the bars of the truss by applying two different methods: the method of joints and the method of sections. Finally, the displacements of the nodes of a triangular truss will be evaluated applying the Theorem of Virtual Works.
Simple Triangular trusses
Concept
A truss is said to be triangular when the joint bars form between themselves a multitude of interconnected triangles. Figure 3.1 shows the upper structure of a metallic bridge across Keya Paha River in Nebraska which consists of a 3D truss that can be subdivided into many 2D trusses, such as the planar truss ABCDE composed of two interconnected triangles ABC and CDE hence ABCDE is a triangular truss.
[image: ]
Figure 4.1 Triangular planar truss part of a whole spatial truss of a bridge
Figure 3.2 represents a simplified spatial truss of a roof. It consists of many planar wooden trusses connected together. By observing namely the planar truss ABCDE one can remark that it is formed by connecting triangles ABE, BEF, BDF and BCD together. In consequence, the structure ABDCE is a planar triangular truss. 
In both cases, when the entire spatial truss is loaded (by weights or persons or cars crossing the bridge for instance in case of figure 3.1, or by weights of cover panels resting on the truss to complete the roof in case of figure 3.2) this load will be transmitted to each of the planar trusses composing the whole truss and this through the pins at the joints connecting the bars together.
[image: ]
Figure 3.2 Triangular planar truss part of a whole spatial truss of a roof
A triangular truss consists of two types: simple truss and compound truss. Those will be detailed in the coming lines.
Simple truss
A simple truss is a particular triangular truss constructed as following: the basic structure begins by a stable triangle denoted ABC, i.e. three bars and three nodes joint two by two. The second step consists in joining to two nodes of this triangle, say B and C, two bars connected themselves by a common node D, say BD and CD. The next step consists in joining to nodes of the entire formed structure ABCD, say B and D, two bars connected themselves by a common node E, say EB and ED. This step is repeated as many times as desired. The final structure constitutes a simple truss.
Figure 3.3 illustrates a simple truss constructed as explained in the previous lines. Ten triangles are superimposed in the plane and connected through pins to form the entire simple truss ABCDEFGHIJKL. This truss involves 12 nodes and 21 bars. 
Like any rigid body a truss is supported by bearings, namely pins, rollers and rockers at any of the nodes; those are different from internal pins that are joining the bars between themselves at the nodes. In figure 3.3, the entire truss is supported by bearings at nodes A and L. 
[image: ]
Figure 3.3 Simple truss
Now, a general relationship will be established between the number of nodes denoted by n and number of bars denoted by b in a simple truss. The idea is to count the number of nodes and bars involved in each step of the construction of the truss.
In step 1, the process starts with a triangle hence 3 bars and 3 nodes
In step 2, the process adds 2 bars and 1 node
This step 2 is repeated (n-3) times in order to reach a total number n of nodes.
The total number of bars becomes: b = 3 + 2(n-3); by arranging one gets:
                                                                                                             (3.1)
Equation (3.1) represents a necessary but not sufficient condition stating that the truss in question is a simple truss. This idea is emphasized by returning back to the simple truss of figure 3.3 which exhibits b = 21 and n =12 meaning that equation (3.1) is verified. However, this result does not confirm that the present truss is simple. To assure the existence of a simple truss, one should check up if the construction process matches that of a simple truss. A counter-example resides in the same truss of figure 3.3 by removing the bar GI and adding a bar DF. This would not change the total number of nodes and bars and thus equation (3.1) remains satisfied however the truss is not anymore a simple truss since its construction does not follow the construction rule of a simple truss: arriving at the stage ABCDEG, node F is connected to this latter structure by three bars instead of two: FE, FD and FG.
Compound truss
A compound truss is a category of triangular truss consisting of many simple trusses connected between themselves. Each two simple trusses involved in a compound truss could be connected in two methods:
Method 1: Consider two simple trusses (ST1) and (ST2). This methods consist in putting in common a node of (ST1) with a node of (ST2) and then joining another node of (ST1) to another node of (ST2) by a bar that does not pass through the node that was put in common.
Method 2: Consider two simple trusses (ST1) and (ST2). This methods consist in joining two by two, three distinct nodes from (ST1) to three distinct nodes from (ST2) by three different bars that are neither parallel nor intersecting at a single point.
[image: ]
Figure 3.4 Compound trusses constructed with method 1 (a), method 2 (b)
Figure 3.4a illustrates a compound triangular truss ABCDEFG supported by a pin at A and roller at G constructed using method 1. In fact, structures ABCD from one side and DEFG from another part represent two simple trusses. Those are joint by a common node from both simple trusses which is D and a bar BF not passing through D and joining node B from the first simple truss ABCD to node F from the second simple truss DEFG.
Figure 3.4b illustrates a compound triangular truss ABCDEFGH supported by a pin at A and roller at G constructed using method 2. In fact, structures ABCD from one side and EFGH from another part represent two simple trusses. Those are joint by a bar BF joining node B from the first simple truss ABCD to node F from the second simple truss DEFG, a bar DE joining node D from the first simple truss ABCD to node E from the second simple truss DEFG and a bar CH joining node C from the first simple truss ABCD to node H from the second simple truss DEFG. Those three bars are neither parallel between themselves nor intersecting at a single point.
Now, a general relationship will be established between the number of nodes denoted by n and number of bars denoted by b in a simple truss. The idea is to count the number of nodes n1 and n2 and bars b1 and b2 involved in each of the two simple trusses (ST1) and (ST2) respectively and add to them the number of items used for joining. 
Applying equation (3.1) to (ST1) and (ST2): b1 = 2n1-3 and b2 = 2n2-3
Method 1: n = n1 + n2 – 1 (since a node from each is brought in common) and 
b = b1 + b2 + 1 = (2n1-3)+(2n2-3)+1 = 2(n1+n2-1)-3 = 2n-3
Method 2: n = n1 + n2 
b = b1 + b2 + 3 = (2n1-3)+(2n2-3)+3 = 2(n1+n2)-3 = 2n-3
In conclusion, for a compound truss, and regardless the method of construction:
                                                                                                             (3.2)
It is a similar condition as a simple truss, which also a necessary but not sufficient condition to get a compound truss.
Two-force and zero-force members
A truss can be loaded at any of the nodes in the plane, the reactions of the supports would keep the truss in static equilibrium; at this stage one is dealing with external forces. The forces applied on the nodes will be transmitted to the bars of the truss which are all components of the same structure and therefore the forces developed in the bars are internal forces. Those would not appear in any free-body diagram FBD unless a virtual section is applied and a portion of the truss is isolated and its relevant FBD is plotted.
The coming lines are devoted to prove that the internal forces developed in a bar act undoubtedly along the line of the bar meaning that the internal forces is an axial force (directed along the longitudinal axis of the bar). Since the whole truss is in static equilibrium, each component or portion from this truss is obviously in equilibrium, namely any selected and isolated bar.
Consider a bar AB picked up from a truss in equilibrium hence AB itself is in static equilibrium. Since a truss is loaded at its joining pins, the FBD of the rigid bar AB consists of forces applied at the nodes A and B that are pins. It is known that pins develop a force in the plane having an arbitrary direction. The forces applied by the pins A and B at the bar AB are denoted respectively by   and  having each its own direction in the plane. This is illustrated in figure 3.5.
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Figure 3.5 FBD of an isolated bar from a truss
Applying equations of equilibrium (2.38), (2.39) and (2.43) on the bar AB:



This means that also FB = 0 which leads to zero forces meaning that the truss is unloaded which is absurd since the problem has started with a loaded truss. To satisfy the latter equation for an existing force FA (and thus FB), the line of this force must pass through B and hence FA  must act along the bar’s line AB. To satisfy the two other equations of equilibrium, FB must also act along the line of AB, and also being opposite in sense and equal in magnitude to FA.
One can then conclude that any bar of a truss is subjected to two axial forces, acting along the direction of the bar, opposite in sense and equal in magnitude. Hence, each member of a truss in named two-force member. The unified notation of a force along a bar consists of an index denoting the name of the bar:   this could either pull on the bar applying a tensile effort or push on the bar applying a compressive effort. This is schematized in figure 3.6.
[image: ]
Figure 3.6 Two-force member under either tension or compression
It is worth to notice the following:
· An internal force acting within a bar is an algebraic quantity: a tensile force counted positive while a compressive force is counted negative.
· Since the force acts along the bar and since the lengths and inclinations of all bars are known, this implies that the directions of all forces in all bars are known. Only their magnitudes are unknown. In other words, each bar generates one unknown that must satisfy the static equilibrium condition.
· By default each force within a bar is considered as tensile (outward from the member) in the FBD. Once calculated from the equations of equilibrium, the signs of the values indicate the true sense: when positive the force is tensile (as drawn by default in the FBD) while it is compressive in the case of negative sign.
In some special cases, couple of members might be free from any load, in that case they are known as zero-force members. However, those members are helpful in increasing the stability of the structure.
Case 1: When exclusively two bars intersect at one node and in addition this node is free from any external force (neither active nor reactive), those two bars are zero-force members.
Case 2: When exclusively three bars intersect at one node, two among them are collinear and in addition this node is free from any external force (neither active nor reactive), those non collinear bar is a zero-force member.
Those two cases are illustrated in the example of figure 3.7. Figure 3.7a shows a simple truss ABCDEFG supported by a pin at A and a roller at E and subjected to external loading  and  at joints F and D respectively. One can notice that node G satisfies conditions of case 1 for zero-force member while node C satisfies conditions of case 2. Their respective FBD are depicted in figure 3.7b and 3.7c. It should be noticed that the forces shown represent the action of each relevant bar on the node, trying to ‘’pull’’ on the node hence as per Newton’s third axiom, the node is pulling in its turn on the bar. All forces are thus considered tensile by default.
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Figure 3.7 Simple truss under external loading (a), FBD of joint G (b), FBD of joint C (c)
It is obvious that a joint is considered as a particle and thus two equations of equilibrium preventing translation along x and y are to be satisfied.
Joint G:


The latter results show that the forces in the bars GF and GE are zero, i.e. those bars are zero-force members.
Joint C:


The latter results show that the force in the bar BC is zero, i.e. this bar is zero-force member.
Designing a truss denotes determining the forces developed within the bars that compose this truss. However, those forces are internal acting between the joining pins and the different bars. To let those internal forces appear one should isolate each component apart and draw the relevant FBD, then apply the equations of static equilibrium in order to determine the forces developed in the members.
There are two methods followed to determine the unknowns in the members: the method of joints and the method of sections. Those will be developed in the coming sections.
Self-Check Questions
1. Specify if the following statement is True or False and justify your answer
A truss consisting of 11 nodes and 19 bars is certainly a triangular truss. False; despite the relation b = 2n – 3 is satisfied, those bars may be arranged in another way than that generating an either simple or compound truss.
2. Choose the correct answer
A triangular truss ABC is pinned at A, supported by a roller at B and subjected to an external concentrated force at C.
       AB is a zero-force member   

       BC is a zero-force member
       AC is a zero-force member
       No zero-force members
3.2 Analysis using method of joints
This method consists in isolating each joint of the entire truss in static equilibrium and drawing its FBD which includes obviously the active forces, reactive forces and forces applied by the bars on this node which are no other than the forces developed in the bars (applied by the pin joints on the members according to the principle of action and reaction). A joint is modeled as a particle. In the plane, two equations of equilibrium are to be applied on a particle, i.e. on a joint:
                                                          		                      (3.3)
                                                          		                      (3.4)
For a truss having n joints, this set of equations will be applied n times in order to determine all the unknowns whose number is equal to the number of bars b. However, the scope of trusses types in the actual document is limited to simple and compound triangular trusses where a determined relationship between b and n exists according to equations (3.1) and (3.2). In fact, the equations (3.3) and (3.4) applied for n joints generate 2n equations helping to solve b+3 unknowns as per equations (3.1) and (3.2) and knowing that the number of unknowns exhibited by the bars is b, the three remaining unknowns will be indeed the external reactions of the supports holding the whole truss in static equilibrium. It is worth to remind that in a planar case, and to satisfy a globally statically determinate structure, the total number of reaction components must be three, and those should be neither parallel between themselves nor intersecting at a single point in order to avoid instability. In other words, those 2n equations involve indirectly the three equations of equilibrium of the whole truss counted as a rigid body. Those would be used to check the values of the reactions that have been already delivered by the 2n equations of equilibrium of the joints. Generally, trusses are supported by pins, rollers and rockers.
To simplify the calculations as possible and since each set of equations (3.3) and (3.4) allows calculating two unknowns, it is advised to start by selecting joints exhibiting two unknown forces in two bars to avoid dealing with unknown quantities from a joint to another.
Application 3.1. For the truss ABCDEFG of figure 3.7a, consider P1 = 20 kN and P2 = 10 kN inclined by 30° with the vertical, AC = BC = CD = DE = EG = EF = 1 m. Determine the forces developed in the bars of the truss.
Solution 3.1. From figures 3.7b and 3.7c, bars BC, GE and GF are zero-force members. Since all the joints A,B,D,E and F exhibit more than two unknowns (including the reactions at A and E) it is worth in that case to determine the reactions at the supports A and E from the equilibrium of the whole truss (figure 3.8), then move to the method of joints. In that case the equations that remain from the last joint will be used for check.
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Figure 3.8 FBD of the whole truss ABCDEFG
Equilibrium of the entire truss:




The next step consists of isolating each joint and then drawing the relevant FBD starting with joints exhibiting only two unknowns. Joint A is a good option to start with since Ax and Ay are now known, the only two unknowns that remain are the forces in members AB and AC. Then moving to joint C one can calculate the force in CD. At this stage, joint B seems a suitable choice since the remaining unknown forces in bars passing through B are those in BD and BF. Joint E will be the next one to be tackled to find forces in members EF and ED. The last remaining member is DF; any joint between D and F is suitable; the remaining equations will be used to check the problem’s answers. It should be noticed that the inclined members are hypotenuses in isosceles right-angle triangles meaning that they are inclined by 45°. Tensile forces will be denoted by (T) while compressive ones by (C).
Joint A:
[image: ]
Figure 3.8a: FBD of joint A
 (C)
 (T)
Joint C has been treated in figure 3.7c which gives: (T)
Joint B:
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Figure 3.8b: FBD of joint B
 (T)
 (C)
Joint E:
[image: ]
Figure 3.8c: FBD of joint E
 
 (C)
Joint F:
[image: ]
Figure 3.8d: FBD of joint F
 (T)
Now all forces are determined; three equations remain for checking: the second equation of equilibrium for joint F and two equations for joint D. As stated earlier, one could have applied the equilibrium to all seven joints to calculate the forces in all members and also the three reactions at the supports and then used the three equations of equilibrium of the entire truss for checking, however this choice in the present application would have complicated the calculations.
The second equation of equilibrium applied at joint F gives:
 (Checked)
Joint D:
[image: ]
Figure 3.8e: FBD of joint D
 (Checked)
 (Checked)
Application 3.2. Determine, using the method of joints, the forces in all the members of the truss ABCDEF shown in figure 3.9 supported by a pin at A and a roller at B.
Solution 3.2. The truss ABCDEF consists of two simple trusses ABF and CDE joint together by three distinct bars AD, EF and BC joining three distinct nodes from ABF to three distinct nodes from CDE and those bars are neither parallel between themselves nor intersecting at a single point hence the entire truss is a compound truss. Resting on supports exhibiting three reaction components that are neither parallel nor intersecting at a common point, the structure is globally stable determinate.
[image: ]
Figure 3.9 Planar compound triangular truss supported by a pin and a roller
Noticing that joint E is free from any external loading and being a node of intersection of only three bars where two among them are collinear (CE and EF); the member DE is thus a zero force member:  and . In the light of this result, joint D is now showing only two unknowns that are the forces in AD and CD.
Joint D:
[image: ]
Figure 3.9a: FBD of joint D
 
 (C)
Since AD = CF = 6 m and are parallel this means that AFCD is a parallelogram and thus AF = CD = 5 m. In addition, the height FF’ of the triangle AFB is equal to AD – EF = 3 m and having AF = 5 m, this gives according to the Pythagorean formula in the triangle AFF’, AF’ = 4 m hence F’ is the midpoint of AB. One concludes that F’B = 4 m. In addition CF’ = 9 m this means that the angle  between (CF’) and (BC) is calculated from the trigonometric relationship in the right angle triangle BCF’:

Joint C:
[image: ]
Figure 3.9b: FBD of joint C
 (C)
 (T)
 (T)
Joint F:
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Figure 3.9c: FBD of joint F
 
 (T)
Joint B:
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Figure 3.9d: FBD of joint B
 (C)
 
Joint A:
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Figure 3.9e: FBD of joint A
 
 
Now that all forces in all members as well as the reactions of the supports are determined, the three equations of equilibrium of the entire truss will be used to check the answers found for Ax, Ay and By:
 (Checked)
 (Checked)
 (Checked)
Self-Check Questions
1. Choose the correct answer
For a simple triangular truss ABCDEFGH loaded at a couple of its nodes supported by one pin and one roller, the number of equations needed to determine and check all the unknowns is: 
       11                   13                        16                      19 
    
 
 


2. Complete the following sentence
Consider an equilateral triangular truss ABC, supported by pin and roller respectively at A and B and subjected at node C to a vertical downward force of 22.5 kN. The forces developed in members AB, BC and AC are respectively: +6.5 kN (T); -13 kN (C) and -13 kN (C).
3.3  Analysis using method of sections
This method consists in ‘’splitting’’ the truss into two portions by applying a virtual cut at a region involving purpose members needed to be designed. Figure 3.10a illustrates a section m-m passing through a couple of members of a loaded truss. 
[image: ]
Figure 3.10 Section m-m through truss in equilibrium (a), Isolated portions (either left or right) (b)
By keeping one of the two portions (either left or right) with the external forces applied (i.e. active and reactive) and removing the other portion, the forces developed in the sectioned bars will appear in the FBD of the isolated portion as shown in figure 3.10b; those represent the action of the removed portion on the isolated kept portion and thus the forces in those bars are responsible of balancing the remaining external forces applied on the isolated kept portion. In other words, those forces in the members are calculated by applying the equations of equilibrium on the isolated portion. It is obvious that a portion of a truss is modeled as a rigid body and consequently three equations of equilibrium will be applied:
                                                          		                      (3.5)
                                                          		                      (3.6)
                                                          		                      (3.7)
In equation (3.7), A could be any point in the plane, either a physical point belonging to the isolated portion or any other arbitrary point. This original set of equations (3.5) – (3.7) could be replaced by any other alternative set of equations like replacing one of equations (3.5) or (3.6) by a sum of moments about another point B such that line AB is not perpendicular to the direction x if equation (3.5) is kept or to direction y if equation (3.6) is kept. In addition, both equations (3.5) and (3.6) could be replaced by two sums of moments about two distinct points B and C in the plane such that A, B and C do not belong to the same straight line. All in all, this method allows solving three equations per section hence it is advised to select appropriate section passing through three unknown bars to avoid keeping unknown values for the coming sections.
It should be noticed that in FBD of the isolated portion, the senses of the forces in the members are drawn by default as tensile (out of the member). After calculations are done, a positive value means that the force acts in reality in the sense drawn on the FBD, i.e. a tensile force while a negative value means that the force acts opposite to the drawn sense on the FBD, i.e. a compressive force.
Finally, upon the geometry of the truss and the loading case, it might be found reasonable to mix between method of joints and sections to determine in the easiest and shortest way the forces in the members.
Application 3.3. The truss ABCDEFG pinned at A and supported by a rocker at G is loaded at its nodes C, D and F as shown in figure 3.11. Determine the forces in members BD, BF and DF using the method of sections.
Solution 3.3. It is obvious that the truss in question is a simple triangular truss noticed by following up its way of construction. Moreover it is supported by three reaction components that are neither parallel nor concurrent at one point hence the structure is globally stable determinate. The FBD of the entire truss is depicted in figure 3.12. First, the reactions at the pin and rocker are calculated by the three equations of equilibrium in the plane:
[image: ]
Figure 3.11 Simple truss ABCDEFG supported by a pin and rocker
[image: ]
Figure 3.12 FBD of the entire truss with two sections a-a and b-b




Since a unique section cannot pass by the three desired members, one finds reasonable to perform two sections a-a passing through members BF, BD and CD and b-b passing through BF, DF and DE.
Section a-a: The left portion is chosen to be isolated. The relevant FBD is illustrated in figure 3.13 a showing three unknown forces. However, it is requested to determine the forces in two members among those three (the force in CD is not requested) meaning that it is not necessary to apply the whole three equations of equilibrium of the isolated left portion.
[image: ]
Figure 3.13 Isolated left portion from cut a-a (a), Isolated right portion from cut b-b (b)
Since the lines of action of  and  pass through point D, it would be suitable to sum the moments of the forces about point D which helps at determining   automatically. Moreover, since  and  are horizontal (parallel to x-axis), by summing forces along y-axis, one calculates directly FBD.
 (C)
 (T)
Section b-b: The right portion is chosen to be isolated. The relevant FBD is illustrated in figure 3.13 b showing three unknown forces. However, it is requested to determine the forces in one member among those three (the forces in DE is not requested, the force in BF already found) meaning that it is not necessary to apply the whole three equations of equilibrium of the isolated right portion. Since  and  are horizontal (parallel to x-axis), by summing forces along y-axis, one calculates directly FDF.
 (T)
Self-Check Questions
1. Specify if the following statement is True or False and justify your answer
A section passing through three parallel bars within a truss means that this truss is unstable by construction. True since the FBD of an isolated portion gives three unknowns that are all parallel. In case the external loading on the isolated portion contains one non parallel force to those three unknowns, this external force could not be balanced by none of those three internal parallel forces.
2. Specify if the following statement is True or False and justify your answer
The method of joints is a particular case of the method of sections. True; instead of cutting within the entire structure and isolating rigid body portions, the method of joints means practically that the cut is around a node, the isolated part in that case is a node which is at the end a part of the entire truss.
3.4 The Principle of Virtual Work
Fundamental Concept
The Theorem of Virtual Works has been established initially in order to determine the displacements and the slopes developed at any point of a deformable body under any external loading (Hibbeler, 2011). A particular application of this principle to trusses consists in evaluating the displacements developed any selected node once the truss is subjected to a certain external load.
First, the principle of Virtual Works will be established for a general deformable solid then it will be applied to trusses.
It is worth to remind that in Mechanics, any force that performs a displacement develops a work denoted by U equal to the product of the force by the displacement (i.e. . The unit of the work in SI is Joules (J) for a force in Newtons (N) and displacement in meters (m). 
Consider a deformable solid of an arbitrary shape in static equilibrium supported by any type of bearings and subjected to a series of forces  ,  , , … ,  as shown in figure 3.14a. An arbitrary point A is selected and one is interested to determine the displacement  of the point a in a desired direction caused by the application of this series of forces. This displacement will appear in the calculations through the work developed at A. However a work involves both force and displacement (which is the unknown of the problem). Since no real force is applied at A, the idea is to remove virtually the series of real applied forces then apply at A a virtual external force  having the same desired direction of the displacement  and a magnitude equal to 1; its sense could be either inward or outward. The right sense will be determined at upon the sign of  once calculated. Since the magnitude of the virtual force  is 1, it is called also a unit force; the unit of this force is the same as the real forces  ,  , , … , (N; kN; MN; …). After applying , the series of real forces will be applied again inducing this time the displacement  at A but also at  applied at A. The displacement  of  will develop a virtual external work Ue = P’⋅   = 1⋅ 
[image: ]
Figure 3.14 Deformable body in equilibrium under n external forces (a), Virtual unit force applied at a point of the body (b)
Consider an internal fiber of initial length L0 before application of the real loading. Once the series of forces is applied, like any point of the solid, this fiber will displace (either elongation or shortening) by an mount denoted by  . Once the real loading is removed and the external virtual unit force is applied at A, an internal virtual force  will be developed at the internal fiber of the body as shown in figure 3.14b. To sum up, figure 3.14a is showing real displacements, either external  or internal  created by the external real loading  ,  , , … ,   while figure 3.14b shows virtual forces either the external unit force  or the internal virtual force .  After application of , the real loading  ,  , , … , is now applied which develops the external virtual work Ue as stated earlier. Internally, the virtual force  is displaced by  due to the application of the real loading which will develop an internal virtual work denoted by ui = p⋅ . The total internal work Ui is the sum of all internal works developed on all internal fibers forming the solid and hence .elastic solid: solid body that absorbs energy under a certain loading and then releases it back in totality without losses once the loading is removed.

Finally, for an ideal elastic solid where no loss of work occurs, once may apply the conservation of energy between internal and external work. By equating Ue and Ui one obtains the principle of virtual works as follows:
                                                          		                      (3.8)
In some references, the principle of Virtual Works is named also the principle of Virtual Forces, since in practice, those virtual works involve virtual forces while the displacements are real.
A positive sign of the calculated real displacement  indicates that it acts in the same sense as the applied unit virtual force while the negative sign indicates that the point displaces opposite to the sense of the unit virtual force.
Axial Displacement of a Rod
The internal fibers in the deformable solid, represent indeed multitude of parts that form the entire solid. For a truss those are identified as the members or the bars connected together. In consequence, the terms pi in equation (3.8) are no other than the virtual axial forces developed in all the members of the truss under a unit force applied at the node in question; those are determined by either the method of joints or method of sections. Since  is the final unknown, the remaining step resides in determining the real internal displacements j , i.e. the axial displacements developed in the members under the real loading applied on the truss. According to the theories Elastostatics, a uniform rod subjected to an axial force (either tensile or compressive) could be simulated as a linear spring of stiffness k subjected to the same force as illustrated in figure 3.15. According to Hooke’s law, the axial deflection L of the extremity of a linear spring subjected to an axial force F is determined by: stiffness: physical property designating the amount of force needed to cause a unit of displacement along the line of action of the force.

. 
[image: ]
Figure 3.15 Uniform rod under axial force modeled by a linear spring
The stiffness k of a uniform rod depends on the type of material from which the rod is made and also on the geometry of this rod. It is given by the equation (3.9) however, the proof of this equation is a topic of Elastostatic field which goes beyond the scope of the actual textbook.
                                                                       		                      (3.9)
where:
k: stiffness of a theoretical linear spring simulating the physical rod (N/m)
E: modulus of elasticity characteristic of the material representing physically the amount of axial pressure needed to be applied until reaching (theoretically) a unit of relative displacement of the rod (i.e. to reach L=L0). E is also known as Young’s modulus (named after the British scientist Thomas Young) and is expressed in Pascals (Pa). For example, the Young’s modulus of steel material is 200⋅ 109 Pa; Aluminum has a Young’s modulus of 70⋅ 109 Pa.
A: area of the cross section of the uniform rod (m2). The cross section is the 2D shape obtained when cutting virtually the rod perpendicularly to its longitudinal axis. For example, the cross section of a cylindrical rod is a circle; the cross section of a prismatic rod is a rectangle.
L0: initial length of the rod before applying the axial force (m).
Application to trusses
Identifying each member of a truss as a uniform rod, L is no other than a displacement j in the equation (3.8) while F is the axial force developed in the bar due to the real load applied on the truss. Combining Hooke’s law with equation (3.9) the axial displacement j for each bar (j) is calculated by:
                                                                       		                      (3.10)
Finally, replacing equation (3.10) in equation (3.8) one gets the principle of Virtual Works applied to a truss allowing at finding the displacement of any node along a desired direction:
                                                          		                      (3.11)
Where:
: Real displacement of the node in question along the desired direction under the real external load applied on the truss (m).
b: total number of bars in the truss.
fj: virtual axial force developed in the bar (j) due the virtual unit load applied on the node in question along the desired direction. (N)
Fj: real axial force developed in the bar (j) due the real external load applied on the truss (N).
L0j:  length of the bar (j) (m).
Ej: Young’s modulus of the material forming the bar (j) (Pa).
Aj: Area of the cross section of the bar (j) (m2).
Application 3.4. Determine the vertical displacement of the node D of the truss shown in figure 3.11. All bars have circular cross section of 12 mm diameter and made from steel of Young’s modulus 200 GPa.
Solution 3.4. For the truss of figure 3.11, many values are already calculated in application 3.3 due to the real loading applied on the truss, namely: 
Ax = -25 kN; Ay = 33.75 kN; Gy = 26.25 kN; 
FBF = -27.5 kN; FBD = 8.84 kN; FDF = 37.123 kN.
From figure 3.13a, one can calculate the remaining unknown FCD:
 (T)
From figure 3.13b, one can calculate the remaining unknown FDE:
 (T)
Joint E is the intersection of just three bars DE; EF and EG where DE and EG are collinear; moreover E is free from any external force; this implies that FEF = 0 and FEG = FDE = 26.25 kN.
Joint C:
 (T)
 (T)
[image: ]
Figure 3.11a: FBD of joint C
Joint A:
[image: ]
Figure 3.11b: FBD of joint A
 (C)
 (checked)
Joint G:
[image: ]
Figure 3.11c: FBD of joint G
 (C)
 (checked)
Virtual unit force:
This step consists in removing the external real loading from the truss and applying a virtual unit force at the point D in the requested direction (vertical in that problem). The equations of equilibrium of the whole truss allow calculating the reactions at the supports, then applying the method of joints one can find the virtual forces developed in the members. Figure 3.16 illustrates the virtual case of loading.
[image: ]
Figure 3.16 Virtual unit force applied on simple truss



One can remark that the truss is geometrically and mechanically (external forces applied) is symmetric about the vertical axis passing through D. This allows calculating forces in the half of the truss; the rest is deduced by symmetry.
At joint C, it is obvious that BC is a zero-force member thus: fBC = 0 and fAC = fCD.
Joint A:
 (C)
 (T)
[image: ]
Figure 3.16a: FBD of joint A
Joint B:
[image: ]
Figure 3.16b: FBD of joint B
 (T)
 (C)
By symmetry: fFD = 0.707 kN ; fDE = fEG = fAC = fCD =0.5 kN; fGF = -0.707 kN 
The cross sectional area of the bars is 
It is advised to summarize all the data in table 3.1 to simplify the application of equation (3.11).
	Table 3.1 Data summary of truss fig.3.11

	Bar
	fj(kN)
	Fj(kN)
	L0j(mm)
	Ej.Aj(kN)
	fi.Fj.L0j/ Ej.Aj

	AB
	-0.707
	-47.73
	1414.2
	22620
	2.109741

	AC
	0.5
	58.75
	1000
	22620
	1.29863

	BC
	0
	40
	1000
	22620
	0

	BD
	0.707
	8.84
	1414.2
	22620
	0.390742

	BF
	-1
	-27.5
	2000
	22620
	2.431477

	CD
	0.5
	58.75
	1000
	22620
	1.29863

	DF
	0.707
	37.123
	1414.2
	22620
	1.640895

	DE
	0.5
	26.25
	1000
	22620
	0.580239

	EF
	0
	0
	1000
	22620
	0

	EG
	0.5
	26.25
	1000
	22620
	0.580239

	FG
	-0.707
	-37.123
	1414.2
	22620
	1.640895

	
	
	D=11.97 mm



Application 3.5. Determine the horizontal displacement at node D of the truss ABCD pinned at A and supported by a roller at B as shown in figure 3.17. The members AB, BC, CD and AD have each a cross sectional area of 200 mm2 while the area of cross section of AC is 250 mm2. All members are made from Titanium of 110 GPa modulus of elasticity. Lengths of members are in mm.
[image: ]
Figure 3.17 Simple truss ABCD supported by pin and roller
Solution 3.5. Forces in all members should be determined under the real loading case and then under a horizontal virtual unit force applied at D. The FBD of both cases are illustrated in figures 3.18a and 3.18b respectively.
Real case: One is able to find the forces in all members without passing through the reactions of the supports. A mixture between both methods of joints and of sections will be adopted.
[image: ]
Figure 3.18 FBD of entire truss under real load (a), virtual force (b), section with upper portion kept (c)
Noticing that at joint D, the external force in figure 3.18a is collinear with bar CD meaning that bar AD is a zero-force member, as consequence: FAD = 0 and FDC = 15 kN (T).
Considering the FBD and equilibrium of joint C:
[image: ]
Figure 3.18a: FDB of joint C
 (C)
 (T)
To find the force in AB one uses the FBD of the isolated section in figure 3.18c and summing the moments about C:
 
Virtual case: One is able to find the forces in all members without passing through the reactions of the supports. A mixture between both methods of joints and of sections will be adopted.
Noticing that at joint D, the unit force in figure 3.18b is collinear with bar AD meaning that bar CD is a zero-force member, as consequence: fCD = 0 and fAD = 1 kN (T).
In this case by removing the effect of CD, node C will be the intersection of only two effective members, AB and AC. Since no external force is applied at C, both members are zero-force members: fAC = fBC = 0. 
Moreover, by sectioning the truss in figure 3.18b through AB, AC and CD, the FBD would be the same as the real case shown in figure 3.18c except that the force of 20 kN at C does not exist. However, this would not affect the sum of moments about C which remains the same as the real case meaning that fAB = 0.
As conclusion, the virtual case has only delivered one non-zero-force member which is AD. Since in the real loading case the force in AD is zero, equation (3.11) gives simply Dhorizontal = 0.
Self-Check Questions
1. Specify if the following statement is True or False and justify your answer
A node of a truss supported by a rocker has automatically a zero displacement without needing to apply the principle of virtual works. False since a rocker blocks only 1 DOF perpendicularly to its plane of support. In a direction parallel to the plane of support of the roller the joint is free to move.
2. Choose the correct answer
A zero-force member has necessarily:
      Both nodes with zero-displacement 

      Only one node with zero-displacement   

      Both nodes may generally displace 


Summary 
A truss is a solid structure composed of many slender members known as bars connected together at their extremities by frictionless pins known as joints or nodes. Particularly, a simple truss is a triangular truss constructed by joining in a repetitive manner two bars issued from one node to an already stable triangle while a compound truss is formed by many simple trusses joint together either by one common node and one bar or by three non-concurrent bars. The number of bars and nodes in a triangular truss are related together by: b = 2n-3. This is a necessary but not a sufficient condition to have a simple or compound truss.
Each member of a truss sustains exclusively forces acting along the line of the bar, either in tension or in compression: those are known as two-force members.
To calculate the forces developed in a truss members one may apply: (i) The method of joints consisting in applying the equilibrium of a particle on each isolated node, (ii) The method of sections consisting in cutting virtually a certain desired region throughout the truss and applying the three planar equations of equilibrium of a rigid body on one of the generated portions. 
The principle of Virtual Works allows calculating in a truss composed of b bars the displacement  of any node along any desired direction by determining the forces Fj in the bars under the real external loading, then removing the real loading and applying a unit virtual load on the node in question acting along the same desired direction and finding the virtual forces fj in the bars:

L0j, Aj and Ej represent respectively for the bar (j): the length, the area of the cross section and the modulus of elasticity of the material.















Unit 4 –Internal Forces

Study Goals

On completion of this unit, you will be able to …

… locate the centroid of any geometrical shape.
… calculate the moment of inertia of a surface about any system of axes.
… establish the expressions of internal forces in beams
… plot the diagrams of internal forces in beams.



4. Internal Forces
Introduction 
After locating the center of gravity of a body and in extension its center of mass, it will be interesting to expand this aspect to locate the geometrical center of a body exhibiting either a volumetric, areal or linear shape, this geometrical center is known as centroid. For a homogeneous uniform body located in a constant gravity field, the center of gravity, center of mass and centroid become coincident. Furthermore, another important geometrical aspect related particularly to surfaces will be developed: this quantity is known as the moment of inertia. It represents practically a geometric resistance of a planar shape to bend about a given axis. This parameter depends on the shape, size and position of the axis about which inertia is calculated.
On another side, a considerable part of this unit will be devoted to internal forces study. A special type of body will be under spot: the beam element. Since those are developed within internal faces of a loaded body or within different composing parts of a structure, virtual cuts will be performed at locations of interest where internal forces would appear. Those internal forces are of four types: axial force, shear force, bending moment and torque. Those are algebraic quantities with determined sign convention. By changing the location of the section, the amounts of internal forces change. Consequently, a series of expressions of those internal forces along the beam will be established and then plot in terms of the beams length to observe their evolution. This evolution will be useful in future courses to design a loaded member. 



4.1 Center of areas, Moment of Inertia
Centroid of a volume
Inspired from coordinates of center of mass expressed in equations (2.29) – (2.31) and for a homogenous volume body, i.e. density  constant, one may write for a differential volumetric element dV shown in figure 4.1a, dm = ⋅ dV thus the coordinates of the centroid C of the volume become:
                                                                         		                             (4.1)
                                                                        		                             (4.2)
                                                                         		                             (4.3)
It is worth to remind that the centroid is a geometrical point while the center of gravity is a point of application of the weight. If the body is homogeneous, i.e. having a constant density, both centers are coincident.
Centroid of an area
An area represents practically a geometrical shape within a plane meaning that its centroid C lies within the same plane. Two coordinates are then needed to locate the centroid of an area as illustrated in figure 4.1b. Those have expressions similar to equations (4.1) and (4.2) as follows:
                                                                         		                             (4.4)
                                                                        		                             (4.5)
Centroid of a line
A line is a thin curve belonging also to a plane as shown in figure 4.1c. Similarly to the area case, two coordinates are then needed to locate the centroid C of a line and those are determined by the following equations:
                                                                         		                             (4.6)
                                                                        		                             (4.7)
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Figure 4.1 Centroid of a volume (a), area (b), line (c)
From figure 4.1c one can deduce the expression of dL by applying the Pythagorean theorem as follows:

One may reformulate this latter equation by either taking dx or dy out from the radical hence one gets two options to determine dL: 
                                                          		                      (4.8)
or:
                                                          		                      (4.9)
where y’ represents the derivative with respect to x of the line’s equation y = f(x) and x’ represents the derivative with respect to y of the line’s equation x = g(y).
First Moment of an area
Similarly to the moment of a force about an axis that represents the product of this force by the distance separating it from that axis, one may define a moment of an area about a specific axis as the product of this area times the distance separating the centroid of this area from this specific axis; this quantity is known as the first moment of an area about an axis. Physically this quantity is useful in calculating transverse shear stresses developed in a beam, however this topic belongs to the Mechanics of Materials field.shear stress: force per unit area tending to deform a material by slippage of cross-sections one with respect to the other

Since an area is located in a planar Cartesian reference (xOy), the first moment could be defined about x- and y-axis; it is denoted respectively by symbols Qx and Qy. They are calculated, as per definition, by the following equations:
                                                          		                      (4.10)
                                                          		                      (4.11)
Identifying equations (4.10) and (4.11) with equations (4.4) and (4.5) respectively, and knowing that the total surface of an area is , one may write other expressions of the first moment as follows:
                                                          		                      (4.12)
                                                          		                      (4.13)
In SI system, the unit of the first moment is cubic meter (m3). The first moment about an axis passing through the centroid of an area is zero.
Centroid of composite shapes
Following the same rationale adopted for center of gravity (i.e. center of mass) of composite bodies, a composite volume, area or line may be sectioned into many regular shapes with well-known centroids locations. An example is illustrated in figure 4.2 showing a composite area consisting of a semi-circle, rectangle and triangle. Another example of a metallic vessel composed of a cylindrical and truncated volumes is shown in figure 4.3. In the case of a composite shape, the integral expressions established in equations (4.1) – (4.7) will be converted into discrete sum involving the finite number n of regular shapes composing the final body.vessel: container for fluids storage

[image: ]
Figure 4.2 Example of a composite area
For a composite volume, the coordinates of the centroid C are determined by:
                                                                    		                             (4.14)
                                                                    		                             (4.15)
                                                                    		                             (4.16)
[image: ]
Figure 4.3 Metallic vessel as example of composite volume
For a composite area, the coordinates of the centroid C are determined by:
                                                                   		                             (4.17)
                                                                    		                             (4.18)
For a composite line, the coordinates of the centroid C are determined by:
                                                                   		                             (4.19)
                                                                    		                             (4.20)

Application 4.1. Locate by integration the centroid of the solid homogeneous hemisphere of radius R shown in the figure 4.4.
[image: ]
Figure 4.4 Solid hemisphere
Solution 4.1. Since both planes (Oxy) and (Oyz) are planes of symmetry of the hemisphere, it could be deduced that the centroid belongs to y-axis hence 
[image: ]
Figure 4.5 Differential volumetric element from a hemisphere
The ordinate  is calculated from equation (4.2) but the challenge is to find the differential volume dV of a differential element of the hemisphere which is a disk at a height y, of thickness dy and a radius r variable with y. The extremity of this disk is located, angular wise, at an angle  measured from x-axis. This is illustrated in figure 4.5. It should be noticed that the hemisphere is homogeneous meaning that the center of gravity and the centroid are coincident.
From trigonometric relationships in a right-angle triangle:


The volume of a disk of radius r and thickness dy is given by:


The denominator in equation (4.2) represents physically the total volume of the hemisphere:


Calculating the numerator N of equation (4.2):

Finally:   
Application 4.2. Determine by integration the position of the centroid of the shaded area under the curve shown in figure 4.6 then deduce the values of the first moments about x- and y-axes.
[image: ]
Figure 4.6 Non uniform area delimited by a curve
Solution 4.2. For an area the set of equations (4.4) and (4.5) should be applied. However, two options of differential element dA might be chosen. This is illustrated in figures 4.7a and 4.7b. Calculations for both choices will come.
[image: ]
Figure 4.7 Differential thin element parallel to y-axis (a), to x-axis (b)
Option 1:
The differential element in figure 4.7a is a thin rectangle of thickness dx parallel to y-axis of height delimited between x-axis and the curve. The coordinates of its local centroid are:
  and  
The area of this element is: 
The total area under the curve is found by integrating dA as follows:

The coordinates of the centroid are found from equations (4.4) and (4.5):


Option 2:
The differential element in figure 4.7b is a thin rectangle of thickness dy parallel to x-axis of width delimited between the curve and the vertical line x = 1. The coordinates of its local centroid are:
  and  
The area of this element is: 
The total area under the curve is found by integrating dA as follows:

The coordinates of the centroid are found from equations (4.4) and (4.5):


Calculation of the first moments from equations (4.10) and (4.11):


Application 4.3. A metallic rod have a curved shape of cubic polynomial equation as shown in figure 4.8. Locate the centroid of this rod.
[image: ]
Figure 4.8 Bent metallic rod
Solution 4.3. The differential element of length dL of the rod is shown in figure 4.9.
[image: ]
Figure 4.9 Differential linear element from a rod
Since the given equation of the rod is in the form x = g(y), one finds the derivative x’:
 
Applying equation (4.9):

The total length of the rod is:

The coordinates of the centroid are found by equations (4.6) and (4.7):


Note: The integrals in this application are calculated by numerical methods; the primitives of such functions would be given as appendix.
Application 4.4. A homogeneous rod is bent in the shape shown in the figure 4.10. Locate the coordinates of its centroid.
[image: ]
Figure 4.10 Compound bent rod
Solution 4.4. It is straightforward to locate the centroid of each of the uniform straight lines at the midpoint of each. However, one should locate the centroid of the semi-circle by integration then go back to the composite line case to locate the entire centroid using equations (4.19) and (4.20).
Since (Oy) is an axis of symmetry of the semicircle, the centroid of this shape is located on that axis and thus its abscissa is zero. The differential element of a semi-circular line is shown in figure 4.11.
[image: ]
Figure 4.11 Differential linear element from a semi-circular rod
 ;    ;  

[image: ]
Figure 4.12 Centroids of different parts of a composite line
Now, all quantities of the three portions of the whole line shown in figure 4.12 are summarized in the table 4.1 below. 
	Table 4.1 Data summary of composite line fig.4.10

	Part
	Li
	xi
	yi
	Li⋅ xi
	Li⋅ yi

	1
	4
	-4
	0
	-16
	0

	2
	2
	0
	-4/
	0
	-8

	3
	5
	4
	1.5
	20
	7.5

	Whole
	15.2832
	
	
	4
	-0.5





Application 4.5. A homogeneous solid consists of a cylinder that is blindly hollowed with a cone at its top as shown in figure 4.13. Calculate the position of the centroid.
Solution 4.5. Since both planes (Oxy) and (Oyz) are planes of symmetry of the body, it could be deduced that the centroid belongs to y-axis hence 
The composite body consist of three shapes:
Cone: ; 
Hole cylinder:; 
Main cylinder:; 
The centroids of each of the three shapes are shown in figure 4.14 while all data are summarized in the table 4.2 below.

[image: ]
Figure 4.13 Compound volumetric homogeneous solid
	Table 4.2 Data summary of composite body fig.4.13

	Part
	Vi
	yi
	Vi⋅ yi

	1
	0.1131
	1.9
	0.21489

	2
	-0.01885
	1.3
	-0.024505

	3
	0.4524
	0.8
	0.36192

	Whole
	0.54665
	
	0.552305




[image: ]
Figure 4.14 Centroids of parts forming the composite volume
Application 4.6. A structure formed by three rigid bars each having a weight of 300 N, is supported by a pin at A and a roller in a smooth slot at B as shown in figure 4.15. Determine the values of the bearings reactions.
Solution 4.6. Since the whole weight in vertical downward wherever the whole center of gravity is located, and since all shapes are uniform rods, thus the centroid of each bar is located at its midpoint. In consequence the weight of each bar is applied at the center of the relevant bar vertical downward as illustrated in the FBD of the structure in figure 4.16.

[image: ]
Figure 4.15 Three-rigid-bars structure supported by a pin and slotted roller
The inclined bar forms geometrically the hypotenuse of an isosceles right angle triangle hence it forms an angle of 45° with each of the horizontal and vertical directions. In addition, the reaction of the roller is normal to the plane of the slot which means that its line of action forms and angle of 15° with the vertical line.
Applying equations of equilibrium of a rigid body:




[image: ]
Figure 4.16 FBD of the three-bars structure subjected to its own weight
Moment of inertia of an area
Preliminary examples
The concept of moment of inertia of an area, known also as second moment will be introduced through two physical example where a distribution of forces  acting on the area have their magnitude proportional to the area A of the elements forming the entire area and simultaneously this magnitude varies linearly with the distance separating the elements from an axis of interest.
The first example, inspired from mechanics of materials field, is illustrated in figure 4.17a where the cross section of a straight member (i.e. beam) is subjected to a distributed loading  is compressive above the x-axis and tensile below the same axis. The magnitude of  is given by: . This distribution constitutes a couple trying to bend the cross section about the x-axis passing through the centroid C. 
The magnitude of the resultant  of the force distribution  is given by:
[image: ]
Figure 4.17 Cross section of a beam under bending (a), Wall under hydrostatic pressure (b)

This latter integral is no other than the first moment Qx of the cross section about x-axis. Since this latter axis passes through the centroid C of the cross section, the first moment is zero and thus the resultant F = 0. This is an expected result since the distribution of forces is forming a couple: equal and opposite forces.
Moreover, the magnitude of the couple M is given by:

This latter integral represents the moment of inertia of the area or the second moment of the area about the x-axis denoted by the symbol Ix. Physically it represents a kind of ‘’geometric resistance’’ of the cross section against bending. As more as this quantity increases, as more as difficult becomes the rotation of the cross section. Mathematically it consists of the summation of the products of area elements by the square of the distance separating each element from the axis of bending. Concsequently, a moment of inertia is always a positive quantity, expressed in m4 in SI units.
The second example, inspired from fluid mechanics field, is illustrated in figure 4.17b where the wall of a concrete structure, submerged under a column of fluid, is subjected to a hydrostatic pressure Ph. Since the pressure of fluid increases linearly with the height and also related to the developed force through the area as a coefficient of proportionality, this fluid will develop a distributed hydrostatic force  applied on the area elements A of the wall with the following magnitude:

where  is the density of the fluid and g the acceleration of the gravity.
The magnitude of the resultant  of the force distribution  is given by:

This latter integral is no other than the first moment Qx of the wall’s area about x-axis. 
Moreover, the magnitude of the couple M is given by:

This latter integral represents the moment of inertia of the area or the second moment of the wall about the x-axis. It contributes to the resistance of the wall against bending due to hydrostatic pressure.
Mathematical expressions
In the light of the previous examples and calculations, one can calculate the moments of inertia about x- and y-axes respectively from the following equations:
                                                          		                      (4.21)
                                                          		                      (4.22)
The differential element dA and the distances separating it from both axes as well as the direct distance r with the origin O is shown in figure 4.18.
[image: ]
Figure 4.18 Differential element in an arbitrary area
The differential element dA is in practice chosen as rectangular strip of thin differential thickness either dx or dy while the width depends on the curves delimiting the area of interest. This is depicted in figures 4.19a and 4.19b.
[image: ]
Figure 4.19 Differential rectangular strip element parallel to x-axis (a), to y-axis (b)
Polar moment of inertia
In figure 4.18, considering the straight distance r separating the origin O from the element dA, one defines the polar moment of inertia of an area with respect to the pole O the amount JO given by:

                                                          		                      (4.23)
This is ‘‘an integral of great importance in problems concerning the torsion of cylindrical shafts and in problems dealing with the rotations of slabs‘‘ (Beer at al.,2012, p.475).
Replacing in equation (4.23) the Pythagorean Theorem  one gets:

Replacing equations (4.21) and (4.22) in this latter expression one finds the relationship between the polar and second moments as follows:
                                                          		                      (4.24)
Radius of gyration of an area
Imagine that a physical area having a total surface A like the one shown in figure 4.18 is converted into a very thin but very long rectangular strip parallel either to the x-axis or the y-axis conserving always the same value A of the surface as depicted in figures 4.20a and 4.20b. The distance denoted by kx at which this strip should be held parallel and away from x-axis in order to reach the same value of the moment of inertia Ix of the original real area in known as radius of gyration of the area about the x-axis. The same concept applies for the radius of gyration ky about y-axis when the strip is held parallel and away from y-axis to reach the same value of the moment of inertia Iy of the original real area.
Applying equation (4.21) to the strip in figure 4.20a:

                                                          		                      (4.25)
Applying equation (4.22) to the strip in figure 4.20b:

                                                          		                      (4.26)
[image: ]
Figure 4.20 Radius of gyration about x-axis (a), y-axis (b), pole O (c)
Additionally, this physical area having a total surface A could be is converted into a very thin annular strip centered at the pole O conserving always the same value A of the surface as depicted in figure 4.20c. The radial distance denoted by kO at which this strip should be held parallel and away from pole O in order to reach the same value of the polar moment of inertia JO of the original real area in known as polar radius of gyration of the area about the pole O.
Applying equation (4.23) to the strip in figure 4.20c:

                                                          		                      (4.27)
Finally, raising both equations (4.25) and (4.26) to power 2, adding together member by member then identifying with equations (4.24) and (4.27) one finds a relationship between the three radii of gyration as follows:
                                                           		                      (4.28)
Product of inertia
Referring again to figure 4.18, the product of inertia of an area denoted by Ixy with respect to x- and y-axes is defined by the following integral:
                                                          		                      (4.29)
This property ‘’is required in order to determine the maximum and minimum moments of inertia for the area. These maximum and minimum values are important properties needed for designing structural and mechanical members such as beams, columns and shafts.’’ (Hibbeler, 2010, p.530).
Unlike moments of inertia, a product of inertia could be either positive in case both coordinates of the element dA have same sign or negative when those coordinates have opposite signs. Consequently, when one or both axes are axes of symmetry of the area, the product of inertia is zero. This is illustrated in an example in figure 4.21 where a T-shape section exhibits y-axis as axis of symmetry. To any differential element dA of coordinates x and y corresponds a symmetric element dA’ of coordinates –x and y. By summing all pairs of such elements in equation (4.29) with equal and opposite abscissas, the product of inertia will vanish,
[image: ]
Figure 4.21 T-shape area with an axis of symmetry

Moments of inertia of standard shapes
Rectangle. Consider a rectangular area of height h and width b located in a centroidal Cartesian reference (xy) as shown in figure 4.22a. Two rectangular strips will be considered as differential element dA: one parallel to x-axis and another parallel to y-axis as shown in figures 4.22b and 4.22c respectively.
[image: ]
Figure 4.22 Rectangular area with central axes (a), differential element parallel to x-axis (b), to y-axis (c)
From figure 4.22b, dA = b.dy ; applying equation (4.21):

From figure 4.22c, dA = h⋅ dx ; applying equation (4.22):

Circle. Consider a circular area of radius R located in a centroidal Cartesian reference (xy) as shown in figure 4.23a. The differential element dA is a rectangular strip parallel to x-axis as shown in figure 4.23b.
From the trigonometry:   ;  
The area of the rectangular differential strip: 
Applying equation (4.21):

[image: ]
Figure 4.23 Circular area with central axes (a), Differential element parallel to x-axis (b)
To determine Iy, one might consider a differential strip parallel to x-axis, however one may also use Iy established previously for a rectangle and apply it on the differential rectangle of dimensions 2x and dy which gives a differential moment of inertia dIy. By integrating along , the total moment of inertia of the circle will be then established.


The polar moment of inertia is determined using equation (4.24):

Table 4.3 summarizes the expressions of moments of inertia of some standard shapes about their centroidal axes. Those would be useful in many future applications.
	Table 4.3 Moment of inertia of standard shapes

	Name
	Shape
	Ix
	Iy
	JO

	Rectangle
	

	
	
	

	Circle
	

	
	
	

	Isosceles triangle
	

	
	
	

	Right-angle triangle
	

	
	
	

	Ellipse
	

	
	
	



The Parallel-Axis Theorem
This theorem establishes a relationship between the moment of inertia of an area about an axis passing through the centroid of this area and the moment of inertia about an axis parallel to the centroidal axis and separated from this centroidal axis by a known distance.
Figure 4.24 illustrates a shaded area with centroidal axes (CX) and (CY) with a differential element dA with coordinates X and Y measured in the centroidal reference. Another reference (xOy) having (Ox) parallel to (CX) and (Oy) parallel to (CY), is located such that a distance dx separates (Ox) and (CX) and a distance dy separates (Oy) and (CY).
[image: ]
Figure 4.24 Area located in two parallel references
The moment of inertial about (Ox) is determined by:

The first integral represents the moment of inertia about the centroidal axis (CX) such as:  while the last integral is no other that the total surface .
The integral in the middle represents the first moment of the area about the centroidal axis (CX) which is zero: .
The final expression of Ix becomes:
                                                          		                      (4.30)
Similarly, one finds for Iy:
                                                          		                      (4.31)
Expressing the polar moment of inertia JO:

and since   and   the final expression of JO writes:
                                                          		                      (4.32)
In conclusion, the Parallel-Axis Theorem (known also as Steiner’s theorem) for any moment of inertia (either about an axis or polar) states that ‘‘the moment of inertia for an area about an axis is equal to its moment of inertia about a parallel axis passing through the area‘s centroid plus the product of the area and the square of the perpendicular distance between the axes‘‘ (Hibbeler, 2010, p.513).
Establishing the expression of the product of inertia is as follows:

The first integral represents the product of inertia about the centroidal axes (CX) and (CY) such as:  while the last integral is no other that the total surface 
The two integrals in the middle represent the first moments of the area about the centroidal axes (CY) and (CX) respectively which are zero: and .
The final expression of Ixy becomes:
                                                          		                      (4.33)
Moments of inertia of composite areas
A composite area is a planar shape composed of many regular shapes connected together such as triangles, rectangles and circles. Knowing the moment of inertia of each shape about a centroidal axis, one can use the Parallel-Axis Theorem to calculate the moment of inertia of each shape about another specific axis. The total moment of inertia of the entire composite area will be the algebraic sum of the moments of inertia of the composing shapes.
Figure 4.25 shows a composite area sectioned into many regular ‘’sub-areas’’ with their ‘’local’’ centroidal axes (x1y1), (x2y2) and (x3y3). The moments of inertia and also the product of inertia are determined by adding the moments of inertia (i.e. product of inertia) of each part established from the parallel-axis theorem.
[image: ]
Figure 4.25 Composite area sectioned into regular parts



Moments of inertia about inclined axes
Upon the loading case and the geometry of the structure, a mechanical designer would need sometimes the inertia properties of the cross section about inclined axes.
Figure 4.26 shows an arbitrary area of total surface A located in an original reference (Oxy) and another reference (OXY) obtained by rotating (Oxy) about O by an algebraic angle  counted positive for a counterclockwise rotation. 
[image: ]
Figure 4.26 Arbitrary area in an inclined reference
The coordinates (X,Y) in the new reference (XY) of a differential element dA are deduced from its original coordinates (x,y) by applying the formulas of rotation of references as follows:


The target is to express the new inertias IX, IY and IXY in terms of the original inertias Ix, Iy, Ixy and .


By noticing that ,  and  this latter expression becomes:
                        		                      (4.34)
By performing similar calculations for IY and IXY the following equations are found:
                        		                      (4.35)
              		                      (4.36)
This latter set of equations (4.34) – (4.36) is called transformation equations.
Another formulation of this set can be established by applying two trigonometric identities to the original set and simplifying the calculations:
    and    
                        		        (4.36)
                        		          (4.37)
                        		                        (4.38)
By adding equations (4.36) to equation (4.37) one can deduce that the polar moment of inertia JO is independent of :

The angle of rotation of the axes  at which the moment of inertia is optimum corresponds to the value that vanishes the derivative of IX with respect to :optimum: either maximum or minimum


                                                                                                     (4.39)
This latter equation shows that there are two angles ’ and ’’ that satisfy the condition of optimum inertia IX, this optimum being either a maximum or a minimum. Those two angle values correspond to k = 0 and k = 1 in equation (4.39), higher values of k will respectively lead again to either ’ or ’’ since tan function has a period of .  In addition, ’ and ’’  are shifted by 90° as per equation (4.39) meaning that the two directions that optimize the moments of inertia are perpendicular between them. Those directions are named Principal Directions of Inertia and denoted by (Ox0) and (Oy0); one of them represents the axis about which the moment of inertia is maximum and the other the axis about which the moment of inertia is minimum. Since the sum IX + IY is constant and independent of , one can deduce that when IX is maximum, IY is minimum and vice versa they are denoted in that special case by Ix0  and Iy0 respectively. 
To determine the expressions of the optimum moments of inertia, equation (4.39) is replaced in equations (4.36) and (4.37) to find the following:
                                		            (4.40)
                                		                         (4.41)
By replacing equation (4.39) in equation (4.38) to express the product of inertia in the principal reference of inertia, it is found that Ix0y0 = 0. This means that in a reference where the product of inertia is zero, the moments of inertia are optima. Consequently, any axis of symmetry of an area is a principal axis of inertia since the product of inertia about such axis is zero. 
When the principal axes of inertia have the centroid of the area as origin, they will be named central principal axes of inertia.
Application 4.7. Determine the moments of inertia of the area of figure 2.38 about the centroidal axes parallel to the original axes (Ox) and (Oy).
Solution 4.7. Figure 4.27 shows the center of gravity G (coincident with the centroid) located as found in application 2.13. Moreover, local axes at each center of gravity of each part are shown.
[image: ]
Figure 4.27 Composite area sectioned in three parts
To calculate the moments of inertia about the central axes (GX) and (GY). First, it is important to find the coordinates of each center in the reference (GXY), those will be the distances separating (GX) and (GY) from the parallel axes passing through G1, G2 and G3.
G1(X1 = 0.25-0.337 = -0.087 m, Y1 = 0.3-0.283 = 0.017 m)
G2(X2 = 0.225-0.337 = -0.112 m, Y2 = 0.175-0.283 = -0.108 m)
G3(X3 = 0.6-0.337 = 0.263 m, Y3 = 0.2-0.283 = -0.0183 m)
The coming step consists in calculating the moments of inertia of each shape about the ‘‘local central axes‘‘ passing through G1, G2 and G3 respectively and parallel to (GX) and (GY).





Applying the parallel-axis theorem to each of the three parts:






The total moments of inertia about (GX) and (GY) are:


Application 4.8. Calculate the moments of inertia, the product of inertia and the radii of gyration with respect to x- and y-axes of the shaded area shown in figure 4.28.
[image: ]
Figure 4.28 Non regular area delimited by a cubic polynomial curve
Solution 4.8. There are two options for the choice of a differential rectangular strip dA either parallel to x-axis or y-axis as shown in figures 4.29a and 4.29b respectively.
[image: ]
Figure 4.29 Differential rectangular strip parallel to x-axis (a), to y-axis (b)
Adopting both options will lead at the end to the same result. For both options, a local central reference (XY) passing through the centroid of the strip is shown.
Option 1:
The differential element in figure 4.29a is a thin rectangle of thickness dy parallel to x-axis of width delimited between y-axis and the curve. The coordinates of its local centroid are:
  and  
The area of this element is: 
The total surface of the shaded area is found by integrating dA as follows:

To find Ix, apply the definition: 
To find Iy, consider the differential inertia of the rectangular strip along the centroidal axis Y (from table 4.1) and then apply the parallel axis theorem to reach y-axis:


A similar approach will be applied to find the product of inertia Ixy with the only difference that    since X- and Y-axes are axes of symmetry of the differential rectangle.


Option 2:
The differential element in figure 4.29b is a thin rectangle of thickness dy parallel to y-axis of width delimited between the curve and the horizontal line y = 1. The coordinates of its local centroid are:
  and  
The area of this element is: 
The total surface of the shaded area is found by integrating dA as follows:

To find Iy, apply the definition: 
To find Ix, consider the differential inertia of the rectangular strip along the centroidal axis X (from table 4.1) and then apply the parallel axis theorem to reach x-axis:


A similar approach will be applied to find the product of inertia Ixy with the only difference that    since X- and Y-axes are axes of symmetry of the differential rectangle.


The polar moment of inertia: 
The three radii of gyrations:



One can check that 
Application 4.9. Consider in figure 4.30 the right-angle triangle area located in its centroidal Cartesian reference. Calculate and draw the centroidal principal directions of inertia as well as the maximum and the minimum moments of inertia. Dimensions are in mm.
[image: ]
Figure 4.30 Right-angle triangle located in Cartesian central reference
Solution 4.9. According to table 4.1, both moments of inertia about centroidal axes (Cx) and (Cy) could be directly calculated as follows:


However, the product of inertia should be determined by integration. For sake of simplicity, a general right-angle triangle of any dimensions h and b will be considered in a Cartesian reference (OXY) coincident with the right-angle sides as shown in figure 4.31a. A differential rectangular strip parallel to X-axis is considered. A differential product of inertia dIXY will be established using the parallel-axis theorem. The parallelism is between (OXY) and a local central reference for the differential rectangle where obviously the differential product of inertia is zero since this local reference consists of axes of symmetry for the differential rectangle. The hypotenuse is an inclined straight line whose equation is simple to be found as written in figure 4.31a.
[image: ]
Figure 4.31 Differential strip element in a right-angle triangle (a), Principal direction of inertia (b)


The local centroid of the differential strip has the following coordinates:
  ,   
The area of the strip is: 
The parallel-axis theorem writes:



To find the product of inertia about the centroidal axes (Cx) and (Cy), apply the parallel-axis theorem as follows:


Apply equation (4.39) to determine the principal directions of inertia:


The central principal directions (Cx0) and (Cy0) are drawn in figure 4.31b.
Calculate Imax and Imin from equations (4.40) and (4.41):




Finally, one should associate each value of the optima to the corresponding direction, i.e. if Imax is about (Cx0) or (Cy0). For this purpose, one can replace ’0 in equation (4.36):

Thus, Ix0 = Imax this implies obviously that Iy0 = Imin.
Self-Check Questions
1. Choose the correct answer
A cone of radius R and height h is welded at the top of a cylinder made from same material and having same radius as the cone but a height h’. In order to get the center of gravity of the whole body located at the interface cone-cylinder (i.e. at the base of the cone; i.e. at the top of the cylinder) the ratio h’/h must be:
                                             1                       
2. Complete the following sentence
For a square of side length d located within its central principal reference of inertia, the three radii of gyration measure    about x-axis,   about y-axis and    about the pole C.
3. Specify if the following statement is True or False and justify your answer
Any two perpendicular radial directions of a circle are centroidal principal directions of inertia. True, since any radial line is an axis of symmetry and consequently the product of inertia in that reference is zero.
4.2 Beam Internal Loading
External and Internal Forces
 A solid body is in equilibrium when the system of applied forces on the body balance each other; this results in an equivalent zero force. The applied forces on the body are divided in two categories: the active forces that ‘’refer to the physically prescribed forces in a mechanical system’’ (Gross et al., 2013, p.11) such as own weight, pressure of water, traction of a motor; and the reaction forces that refer to constraints applied by the surrounding on the main body to prevent its motion; one may cite as examples the normal reaction of a planar support, the tension in a holding cable or chain, the reactive force applied by a hinge. On a FBD, the main body is isolated from its surrounding supports and then the active and reaction forces are drawn. 
By definition, an external force is a force that acts from outside on the main body (Gross et al., 2013) and this involves both active and reaction forces. Internal forces are forces acting between the different components of the main body; when the FBD of the entire body is drawn, those internal forces do not appear due to the principle of action and reaction (Newton’s third axiom). Internal forces appear when the different components constituting the main system are ‘’separated’’ and isolated from each other; this separation to visualize internal forces is named in Mechanics cutting or sectioning or method of sections. It consists of passing an imaginary line or plane of section to cut at location where the internal forces need to be visualized and calculated. When separated, the internal forces that appear in a component represent the action of the other component(s) that has(ve) been stuck to it; on this isolated component the internal forces become external while they ‘’disappear’’ when the component is ‘’re-joint’’ with its neighbor components.
This fully detailed described concept is illustrated in figure 4.32.
[image: ]
Figure 4.32 Visualization of external and internal forces
The original case consists of a body in static equilibrium subjected to an external loading involving active load (in black color) and reactive forces (in blue). Since the body is show as one ‘’package’’ or as entire body, the internal forces do not appear. At a location of interest within the body, an imaginary cut a-a in applied to split the main body into two virtual portions: one at the left of the cut and another at its right. Since the entire body has been in equilibrium, it is obvious that each portion of this body satisfies also the condition of equilibrium. However, after the cut only a part of the external loading remain applied on each portion; to keep the equilibrium, the only solution that this part of the external loading would be compensated by internal efforts that appear at the location of the cut. Due to the principle of action and reaction, those efforts applied at the two portions are equal in magnitude and opposite in sense. When re-assembling the left and the right portion together, the internal forces will balance each other and the main body from which the study has started is regained with its static equilibrium. 
It should be noticed that equations of equilibrium are applicable to any portion produced from a sectioning operation in order to evaluate the internal forces that keep the equilibrium established.
Beam
By definition, a rectilinear beam is a straight member whose length is much larger than its lateral dimensions (cross section) conceived to support mainly transverse loading and this for any practical application, such as concrete slabs in buildings, or metallic standard profiles for frames and chassis (Hibbeler, 2010). This loading could be either concentrated or distributed forces and/or moments or any combination of them. The whole beam remains in static equilibrium thanks to the reactions of the bearings that are supporting this beam, such as pins, rollers and fixed supports. Figures 4.33a, 4.33b, 4.33c and 4.33d show different standard configurations of supported beams with the relevant name of each configuration. Both applied loads and reactions of the supports constitute an external loading system under which the beam is subjected. Furthermore, it is known that when any system satisfies conditions of static equilibrium, any sub-system, part of the entire initial system must keep an equilibrium status. This leads that, any portion of this beam must remain in equilibrium. This portion is obtained by a virtual transverse cross section at any point within the length of the beam; one may keep either the portion at the left or at the right of the cut. At any of those portions (either left or right), only a part of the total external load remains and hence In order to establish the equilibrium of the considered portion, a system of forces must be applied at the location of the cut in order to balance the effect of this part of the applied external load; this balancing loading is known as internal loading since it appears within the material of the cross-section of the beam only once this latter is “cut”; by considering the entire beam in equilibrium, internal loading does not appear since in that case the whole external loading is compensated by the reactions of supports. One may conclude that internal loadings applied on cuts of two adjacent portions are equal in magnitudes and opposite in senses; one may also deduce this aspect from the classical principle of action and reaction, known as Newton’s first law; indeed the internal loading applied at the cut of the left portion, represents practically the action applied by the right portion on the left one and inversely the internal loading applied at the cut of the right portion of the beam represents the reaction of the left portion.
[image: ]
Figure 4.33 Simply supported beam (a), Overhang beam (b), Fixed-Free or cantilever beam, (d) Fixed-Fixed or double cantilever beam
It should be noticed that internal loadings develop stresses within the cross-sections of a beam in equilibrium; upon the levels of stresses reached with respect to the strength of the beam’s material, the beam might be able to support the applied external loading, the beam is said to be safe or unable to support and then one talks about failure of the beam.
The coming lines will deal with all aspects of internal loading developed within a rectilinear beam: free body diagram, types, sign convention, calculation equations, variation and relationships. 
Internal Forces and Moments
Free Body Diagram
It is worth to begin with the most general case of loaded beam, which is the three-dimensional case (3D) or spatial case and then the analysis will be reduced to the two-dimensional case (2D) or planar case.
Consider a simply supported beam in equilibrium located in a 3D Cartesian direct reference (Oxyz) such that the origin O is coincident with the center of gravity of the cross-section at the left end of the beam, x is oriented to the right along the length of the beam, known as the longitudinal axis while y and z, the transverse axes, are coplanar to the cross section of the left end; y belongs to the plane of the screen while z is outward. This is illustrated in figure 4.34.
[image: ]
Figure 4.34 3D external loading case on a beam in equilibrium
As stated earlier, the internal loading appears within the beam after a virtual transverse cut at any cross-section of abscissa x. This cut denoted by a-a, generates a left portion and a right portion, each subjected to a part of the external load. At the center of gravity of cross sectional cut G, the internal loading must appear in the free body diagram shown in figure 4.35 and compensate the part of the external loading applied on the relevant portion.
[image: ]
Figure 4.35 3D internal loading case on a portion of a beam in equilibrium
Types
To ensure the equilibrium of any of the portions, the internal loading system must balance the resultant forces and moments acting along each of the three axes x, y and z. This means that one may distinguish in 3D six types of internal loadings (Hibbeler, 2011):
· The axial force N: internal force acting along the longitudinal axis (x-axis) of the beam’s portion and compensating the resultant component of the external forces acting along the x-axis of the same portion.
· The shear force Vy: internal force acting along the transverse axis (y-axis) of the beam’s portion and compensating the resultant component of the external forces acting along the y-axis of the same portion.
· The shear force Vz: internal force acting along the transverse axis (z-axis) of the beam’s portion and compensating the resultant component of the external forces acting along the z-axis of the same portion.
· The torsional moment Mx: internal moment acting about the longitudinal axis (x-axis) of the beam’s portion and compensating the resultant component of the external moments acting along the x-axis of the same portion.
· The bending moment My: internal moment acting about the transverse axis (y-axis) of the beam’s portion and compensating the resultant component of the external moments acting along the y-axis of the same portion.
· The bending moment Mz: internal moment acting about the transverse axis (z-axis) of the beam’s portion and compensating the resultant component of the external moments acting along the z-axis of the same portion.
Sign convention
The six types of internal loading described in the previous section are in fact algebraic quantities that could be either positive or negative. The assignment of algebraic signs follows the following convention (Hibbeler, 2011):
· The axial force N: it is counted positive when it acts outward from the cross-section or physically when the portion is under tension. This means that, at the left portion N is positive when it has the same sense as the x-axis while at the right portion N is positive when it is oriented opposite to the x-axis. 
· The shear force Vy: it is counted positive when it acts downward (opposite sense to y-axis) at the left portion and thus it is positive also when it acts upward (same sense as y-axis) at the right portion. 
· The shear force Vz: it is counted positive when it acts inward (opposite sense to z-axis) at the left portion and thus it is positive also when it acts outward (same sense as z-axis) at the right portion. 
· The torsional moment Mx: it is counted positive when it acts outward from the cross-section. This means that, at the left portion Mx is positive when it rotates following the right-hand rule around the x-axis while at the right portion Mx is positive when it rotates opposite to the right-hand rule around the x-axis. 
· The bending moment My: it is counted positive when it rotates following the right-hand rule around the y-axis while at the right portion it is positive when it rotates opposite to the right-hand rule around the y-axis. 
· The bending moment Mz: it is counted positive when it rotates following the right-hand rule (trigonometric or counterclockwise) around the z-axis while at the right portion it is positive when it rotates opposite to the right-hand rule (clockwise) around the z-axis. 
Calculation of internal forces
Since a system of internal loading ensures the equilibrium of any portion of beam, it is obvious that the six components of the internal loading system are calculated by the forces and moments equilibrium equations along the three axes x, y and z.
Axial force:  
                                                                   		                        (4.42)
Shear force along y:  
                                                                   		                        (4.43)
Shear force along z:  
                                                                   		                        (4.44)
Torsional moment:  
                                                                   		                        (4.45)
Bending moment about y-axis:  
                                                                   		                        (4.46)
Bending moment about z-axis:  
                                                                   		                        (4.47)
The switch to the planar beam case, means that the external loading belongs either to (xOy) plane or to (xOz) plane, in that case only three components of internal loading remain acting: N; Vy; Mx and Mz in (xOy) plane  or N; Vz; Mx and My in (xOz) plane. In each of those two cases, the beam is said to be subjected to simple bending if N = 0 or to compound bending if N  0. 
Variation of Internal Forces and Moments
The scope of the current analysis focusses on a very basic standard case of beam: it consists of a 2D loaded beam in simple bending under static equilibrium located in the direct Cartesian reference (Oxy) as illustrated in figure 4.36. The FBD of both left and right portions is depicted in figure 4.37. The purpose is to analyze the evolution of the shear force Vy and bending moment Mz along the beam’s length. Mathematically speaking, one aims determining the expressions of Vy(x) and Mz(x) upon the type of external loading. The plotted graphs of those two latter functions are known respectively as diagrams of shear force and bending moment.
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Figure 4.36 2D external loading case on a beam in equilibrium
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Figure 4.37 2D internal loading case in a beam in equilibrium
Distributed loading
Consider a differential element of length dx located at an abscissa x picked up from a beam under distributed loading of magnitude q and draw it free body diagram under equilibrium following the sign convention of internal loadings; this is illustrated in figure 4.38. 
[image: ]
Figure 4.38 Differential element of a beam under distributed loading
On this free body diagram, the resulting intensity of the portion of the distributed loading on dx is a concentrated force measuring q.dx and located at a distance h from the right section, denoting the position of the center of gravity of this partial distributed loading. This distance h is obviously located within dx and thus it represents mathematically a proportion of this dx, denoted by . 
Applying the equations of equilibrium of the differential element dx, and neglecting higher power orders of dx (i.e. dx2 << dx) one obtains:


                                                                   		                        (4.48)


                                                                   		                        (4.49)
Equation (4.48) shows that the shear force developed in a distributed-loaded beam represents the integral of the expression of the magnitude of the distributed loading while equation (4.49) shows that the expression of the bending moment is the mathematical integral of the expression of the shear force. In other words, if the beam is subjected to a uniformly distributed loading (q = constant), the shear force varies linearly along the length of the beam while the bending moment exhibits a parabolic expression function of x. If the beam is subjected to a linearly distributed loading (q = a⋅ x + b), the shear force varies in a parabolic evolution along the length of the beam while the bending moment exhibits a cubic polynomial expression function of x. Obviously, if q = 0 (i.e. no distributed loading), the shear force becomes constant along the beam while the bending moment varies linearly.

Concentrated loading
Figure 4.39 shows the free body diagram of two differential elements dx picked up around a concentrated force and a concentrated couple respectively. 
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Figure 4.39 Differential elements of a beam under concentrated force and couple
Applying the equations of equilibrium for each case, one gets:


                                                                   		                        (4.50)


                                                                   		                        (4.51)

Equation (4.50) shows that the shear force just after the concentrated force drops when the external concentrated force is downward and jumps when the concentrated force is upward. Each time the value of change (i.e. drop or jump) is equal to the magnitude of the concentrated force.
Equation (4.51) shows that the bending moment just after the concentrated couple drops when the external concentrated couple acts counterclockwise and jumps when the concentrated couple acts clockwise. Each time the value of change (i.e. drop or jump) is equal to the magnitude of the concentrated couple.
Application 4.10. A 90° arm cantilevered at O and free at A is subjected at its free end to a force  as shown in figure 4.40. Determine the internal efforts developed at cross section B distant from O by 1 m.
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Figure 4.40 Fixed-Free 90° arm loaded in the space


Solution 4.10. The external loading (i.e. active) should be completed by the reactions at the fixed support O. However, one may ‘’shorten’’ the solution by cutting at B and keeping the right portion which does not involve any support. The FBD of this portion is depicted in figure 4.41.
[image: ]
Figure 4.41 FBD of the right sectioned portion of a 90° arm
The six components of internal efforts are calculated using equations (4.42) – (4.47). Before using this latter set, it is convenient to find the components of the external moment developed by the external force  about point B. For this purpose, the components of the position vector   are needed:
B(1,0,0) and A(4,0,4) give 

The internal efforts at B could be calculated as follows:






Application 4.11. Plot the diagrams of the shear force and bending moment of the beam cantilevered at A and free at B shown in figure 4.42.
[image: ]
Figure 4.42 Fixed-Free beam in planar equilibrium
Solution 4.11. Three components of reactions (Ax, Ay and MA) exhibits the fixed support at A determined by applying the equations of equilibrium in the plane of the entire beam.



Since the external loading is changing twice along the beam, first time at the reactions at A and the second time at the active concentrated force of 10 kN, two sections should be performed to take in account the change of external forces and hence of internal forces. The loading case implies that keeping the right portion lead to easier calculations. FBDs of the whole beam as well as the two kept portions are illustrated in figure 4.43. The origin of x-axis is always coincident with point A.
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Figure 4.43 FBD of entire and sectioned portions of a fixed-free beam
The next step consists in calculating the expressions of Vy(x) and Mz(x) using equilibrium equations (4.43) and (4.47) for the two intervals of cuts.
Cut 1: 0<x<1


Cut 2: 1<x<1.5


One can remark that for both cuts the shear force is equal to the derivative of the bending moment which emphasizes the validity of equation (4.49). Moreover, calculating the difference of shear forces just after and before the concentrated force one can find  which verifies equation (4.50).
Finally, figure 4.44 depicts the diagrams of shear force and bending moment.
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Figure 4.44 Diagrams of shear force and bending moment of a fixed-free beam under concentrated force
Self-Check Questions
1. Specify if the following statement is True or False and justify your answer
In a planar truss, two types of internal loading are developed. False, since all bars in a truss sustain exclusively forces along the bars, i.e. axial force.
2. Choose the correct answer
A simply supported beam of length L is subjected to a downward distributed load  where P is a known force. The bending moment at the middle of the beam is equal to:
       P.L/2                -P.L/2              P.L/ 2              -P.L/ 2                       
4.3 Beams with different support conditions
Simply supported beam under uniformly distributed load
Figure 4.45 illustrates a simply supported beam subjected along its entire length L to a uniformly distributed load of intensity q and the relevant diagrams of the shear force and bending moment. The resultant force of this uniform distribution is equal to the area of the rectangle q.L and is applied at the center of the rectangle which coincides with the midpoint of the beam, i.e. x = L/2. Due to the symmetry of the case, the vertical reactions of the supports are upward with equal magnitudes q.L/2. 
Since the load does not change along the entire beam, this means that there is only one cut to be performed at any abscissa x generating only one expression for Vy and one expression for Mz. Those are normally established by isolating either left or right portion of the cut, drawing its FBD and apply equations of equilibrium. However due to the particularity of the case, one can integrate equations (4.48) and (4.49) as follows:boundary conditions: specific ‘‘already-known‘‘ values of some quantities at the ends of an interval, helping in establishing general expressions of those quantities within the interval.



The constants C1 and C2 are determined from boundary conditions of Vy and Mz at the pin (i.e. x = 0) respectively by writing the equilibrium equations of the cut portion at x=0 illustrated in figure 4.45 which give  and . The final expressions of the shear force and bending moments become:


[image: ]
Figure 4.45 Diagrams of shear force and bending moment of a simply supported beam under uniformly distributed load
From the diagrams and since Vy is the derivative of Mz, it is clear that when Vy is zero at the middle of the beam, Mz passes by a maximum. Moreover, at the supports (i.e. x = 0 and x = L) since the reactions are only concentrated forces, shear force Vy exhibits respectively a jump and a drop each time equal to the magnitudes of the reactions. In addition since those supports do not exert couple reaction the bending moment Mz is zero.
Simply supported beam under concentrated force
Figure 4.46 illustrates a simply supported beam subjected to a concentrated force located at a distance a from the pin, i.e. origin of x-axis. Applying  and  one gets the vertical reactions while the horizontal component is zero since no horizontal external forces.
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Figure 4.46 Diagrams of shear force and bending moment of a simply supported beam under concentrated force
Since the external loading is changing twice, two cuts have been performed. For sake of simplicity, left portion has been kept for the first cut while the right one has been the isolated portion corresponding to the second cut. The relevant FBD are shown in figure 4.46. Applying the equations of equilibrium at each cut, one establishes the expressions of Vy1(x), Vy2(x), Mz1(x) and Mz2(x).
Cut 1: 0<x<a


Cut 2: a<x<L


From the diagrams and since Vy is the derivative of Mz, it is clear that when Vy is positive and constant, Mz is linearly increasing while the opposite occurs when Vy is negative and constant. The amount of drop in shear force at x = a is clearly equal to the magnitude P of the concentrated force. At that point, the slope of the bending moment changes indicating that it passes by a maximum. Moreover, at the supports (i.e. x = 0 and x = L) since the reactions are only concentrated forces, shear force Vy exhibits respectively a jump and a drop each time equal to the magnitudes of the reactions. In addition since those supports do not exert couple reaction the bending moment Mz is zero.
Fixed-Free beam under uniformly distributed load
Figure 4.47 illustrates a fixed-free beam subjected along its entire length L to a uniformly distributed load of intensity q and the relevant diagrams of the shear force and bending moment. The resultant force of this uniform distribution is equal to the area of the rectangle q.L and is applied at the center of the rectangle which coincides with the midpoint of the beam, i.e. x = L/2. Applying  and  one gets the vertical and couple reactions while the horizontal component is zero since no horizontal external forces.
Since the load does not change along the entire beam, this means that there is only one cut to be performed at any abscissa x generating only one expression for Vy and one expression for Mz. One could have integrated equations (4.48) and (4.49) but for sake of diversity in methods, the equilibrium of the isolated right portion shown in figure 4.47 will be written.
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Figure 4.47 Diagrams of shear force and bending moment of fixed-free beam under uniformly distributed load


From the diagrams and since Vy is the derivative of Mz, it is clear that since Vy is positive but linearly decreasing, the slope of the parabolic bending moment is upward but decreases continuously along x. Both quantities reach zero at the free end (i.e. x =L) where neither a concentrated force/couple nor a support exist while at the fixed support (i.e. x =0) both quantities reach values equal in magnitude to the relevant components of the reaction.
Fixed-Free beam under concentrated force
Figure 4.48 illustrates a fixed-free beam subjected to a concentrated force located at a distance a from the cantilever, i.e. origin of x-axis. Applying  and  one gets the vertical and the couple reactions while the horizontal component is zero since no horizontal external forces.
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Figure 4.48 Diagrams of shear force and bending moment of fixed-free beam under concentrated force
Since the external loading is changing twice, two cuts have been performed. For sake of diversity in methods, equations (4.48) and (4.49) will be integrated in each interval of cut and boundary and continuity conditions will be used to evaluate the constants of integration.
Cut 1: 0<x<a


The constants C1 and C2 are determined from boundary conditions of Vy1 and Mz1 at the cantilever (i.e. x = 0) respectively by writing the equilibrium equations of the cut portion at x=0 illustrated in figure 4.48 which give  and . The final expressions of the shear force and bending moments become:


Cut 2: a<x<L


The constants C3 and C4 are determined from boundary conditions of Vy2 and Mz2 at the free (i.e. x = L) which is free from any concentrated force/moment and also not supported by any bearing meaning that  and .
The final expressions of the shear force and bending moments become:


From the diagrams and since Vy is the derivative of Mz, it is clear that when Vy is positive and constant, Mz is linear increasing while when Vy is zero, Mz is constant and in the absence of any external couple applied, this constant is zero. On another side, the amount of drop in shear force at x = a is clearly equal to the magnitude P of the concentrated force. Both quantities reach zero at the free end (i.e. x = L) where neither a concentrated force/couple nor a support exist while at the fixed support (i.e. x = 0) both quantities reach values equal in magnitude to the relevant components of the reaction.
Self-Check Questions
1. Specify if the following statement is True or False and justify your answer
In an overhang beam, the bending moment at the intermediate support is zero. False, since if a cut is made just before and just after of this support which is isolated, a bending moment will appear from the part of the beam before the cut and thus another bending moment must appear at the cut just after the support to keep equilibrium.
2. Choose the correct answer
Consider two identical beams of length L each, the first is fixed-free while the second is simply supported. Uniformly distributed loads of intensities q and q‘ are applied respectively on the first and second beam. What should be the ratio q‘/q that develops the same maximum bending moment (in absolute value) in both beams?
      1/4                       1/2                      2                       4
Summary
To locate by integration the centroid of a shape of size S, that could be either a volume, an area or a length, one should consider a differential element of size dS, measue the coordinates x, y and z of its local centroid, then apply the following equations:

To locate the centroid of a composite body, one divides it into a finite number n of regular shapes each of size Si, measure the coordinates xi, yi and zi of its local centroid then apply the following equations:

The moment of inertia of an area about an axis or a pole is the integral of the product of a differential element dA and the square of the distance D (i.e. abscissa, ordinate or polar distance) separating the element from the axis or the pole:  
The parallel-axis theorem establishes a relationship between the moment of inertia of an area about an axis passing through the centroid  and the moment of inertia I about an axis parallel and separated by a distance d from the centroidal one such that: .
The principal directions of inertia represent a particular rotation of the original reference at which the moments of inertia are optima.
Internal forces appear on the FBD of a portion of a sectioned beam is isolated along with the remaining external loading applied at this portion. Internal forces are calculated from equations of equilibrium applied to the isolated cut portion.
On a beam, internal forces change with the length, i.e. abscissa x each time the external load changes and hence the number of cuts is the same as the number of external loading variations.  Diagrams of those internal efforts could be plot as function of x.









Unit 5 –Solid State Friction

Study Goals

On completion of this unit, you will be able to …

… analyze the aspect of dry friction and its influence on equilibrium of bodies.
… investigate the effect of dry friction on bodies at rest, in sliding or rolling motion.
… explore the practical side of friction through pulley and belt application



5. Solid State Friction
Introduction 
Throughout this textbook, all contacts between different surfaces have been considered as smooth, i.e. ideal. This assumption has led to further simplifications in the different governing laws applied on a solid. However, in reality all surface exhibit a certain level of roughness meaning that different faces forming the solid are not perfectly flat despite their flat appearance at macroscopic scale. A miscroscopic analysis of surfaces reveals some substructures in their profiles; as more deviations from the ideal shape get accentuated, the surface is qualified featuring roughness and waviness. In consequence, a planar contact between faces of solids is in fact reduce to contact at points levels, those points being the peaks of the wavy and rough profiles of the faces. Mechanically speaking this results in non-perpendicular reaction force exerted from the planar support on the solid; instead a tangential component of this reaction appears. This tangential component is known as the friction force. It acts as a reaction force when the solid is at rest and as an action force against the motion when the solid moves.
The scope of the present unit is limited to the dry friction or Coulomb friction (after the name of the French engineer Charles-Augustin de Coulomb) (Gross et al.,2013) where friction force acts directly between two main surfaces of contact in absence of any intermediate ‘‘softer‘‘ material such as fluid or lubricant. Three different statuses of the friction force and their influence will be analyzed and calculated: friction force on a body at rest or static friction, friction force on a translating body or sliding friction and friction force on a rotating body with a forward motion or rolling friction.



5.1 Static Friction
Fundamental Concept of Coulomb Friction
Consider a rigid block of weight  resting on a rough deformable horizontal plane. This block is subjected to a horizontal force  trying to move this block horizontally along the horizontal plane as illustrated in figure 5.1a. Due to the irregular profile of both surfaces of contact, the support exerts along its whole surface non-uniform distribution of both normal forces  and tangential or frictional forces  as shown in figure 5.1b. 
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Figure 5.1 Block resting on a rough surface (a), Non uniform distribution of normal and friction forces (b), Zoom-in on contacting surfaces, (d) resultant reaction forces of the rough planar support
A microscopic analysis on the contacting surfaces in figure 5.1c reveals in fact the existence of points of contact instead of a whole area of contact, at each point a ‘’part’’ of this normal and tangential distribution of forces is acting. Applying the law of parallelogram (here it is a rectangle) the resultant of the reaction at each contact point (i) is an inclined force  .
Applying the equation of equilibrium along x-direction, the distribution of friction forces, i.e. their resultant ,  must be opposite to the horizontal pulling force  while their magnitudes must be equal Hs = P. The equation of equilibrium along y-direction , the distribution of normal forces, i.e. their resultant ,  must be opposite to the vertical downward weight  while their magnitudes must be equal N = W. If the block is modeled as a particle, all of the four forces‘ lines of action pass through the center of gravity G and the entire equilibrium is satisfied. However, for a rigid body model, the resultant of the reaction force is applied at a certain point O distant from G by an amount d as illustrated in figure 5.1d. By applying the third equation of equilibrium,  , one determines d = (P/W)⋅ h.
Static Equilibrium
By progressively increasing the intensity of the pulling force  , the magnitude of the dry friction or Coulomb friction  increases similarly to keep the block in static equilibrium playing the role of a tangential support reaction.  is known as static friction force.
[image: ]
Figure 5.2 Normal and friction force components at static equilibrium (a), impending motion (b), motion (c)
As Hs increases along with increment of P and since N remains constant, the static resultant reaction  increases obviously in magnitude but also its direction angle  increases. This status is depicted in figure 5.2a. ‘‘The orientation of the friction force always opposes the direction of the motion that would occur in the absence of friction‘‘. (Gross et al., 2013, p.264). However upon the complexity of the loading case the sense of the friction force is not straightforward: it is to be assumed and then upon the algebraic sign at the end of calculations one can judge about the real effect of friction force on the system in question.
Impending Motion
The magnitude of the static friction force Hs cannot increase indefinitely to keep the balance with P. In fact Hs has an upper limit value denoted by H0 known as limiting static friction force beyond which the static equilibrium cannot be conserved and the block enters in motion status. H0 represents the maximum value of Hs that keeps the static equilibrium; in other terms at Hs = H0 the body is in impending motion status meaning that it is on the verge to translate horizontally, i.e. to slide on the support. According to the experiments of Charles-Augustine de Coulomb, H0 is proportional to the magnitude of the normal reaction N such as:
                                                                   		                                  (5.1)
where 0 is denoted by the coefficient of static friction. This coefficient depends mainly on the roughness of the contacting surfaces. For instance, for a contact metal- ice, 0 ranges between 0.03 – 0.05 while for a contact wood-wood the range of 0 is 0.3 – 0.7 (Hibbeler, 2010). Contact steel-steel exhibits a range of 0 of 0.15 – 0.5; this range measures 0.7 – 0.9 for a contact of tires on snow (Gross et al., 2013).
Figure 5.2b shows the angle of static friction denoted by . Since   and using equation (5.1) one gets:
                                                                   		                        (5.2)
The condition of static equilibrium imposes , i.e. 
For a 2D case, the limiting zone in which  may lie keeping static equilibrium under any external load is a static friction wedge constructed by two lines shifted each by  from the normal line to the supporting plane as illustrated in figure 5.3a. 
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Figure 5.3 Limit regions for the support reaction for static equilibrium: static friction wedge in 2D (a), static friction cone in 3D (b)
For a 3D case, the limiting zone in which  may lie keeping static equilibrium under any external load is a static friction cone constructed from the revolution of an inclined line by  with respect to the normal intersecting together at the supporting surface. This case is depicted in figure 5.3b.
It is worth to cite couple of practical examples reflecting the influence of the static friction force. Figure 5.4a illustrated an athlete trying to push the cart full of heavy weight plates. If the floor and the bottom of the cart were perfectly smooth, a slight effort from the man could have been sufficient to produce the motion. Besides the roughness of the contact surfaces that influence on the coefficient of static friction, the value of the weight plays a huge role since the normal reaction is equal to the weight, meaning that the limiting static friction force H0 increases when the weight increases. This explains why on rough floors one finds lot of difficulties to move a certain piece of furniture! 
[image: ]
Figure 5.4 Example of static friction force: contact steel cart-floor (a), contact loaded wooden palette-rotating metallic platform (b)
The second example is illustrated in figure 5.4b where a heavy package consisting of a wooden palette carrying many rows of boxes is resting on a rotating metallic platform. In absence of friction force, the whole package might slip on the platform and tip on the floor.
Static friction force  plays a key role in keeping stability of solid bodies. It is responsible of the adherence between the body and its supporting surface. As long as Hs has not reached H0, contacting surfaces adhere permanently to each other. One may cite the adherence between cars tires and road where desired accelerations and decelerations are possible while on icy roads an undesired sliding motion may occur.
Sliding Motion
Once P exceeds slightly the limiting static friction force H0, the friction force drops from H0 to a lower value Hk known as kinetic friction force or sliding friction force which tries to oppose the motion of the block that has been launched. In that case, the kinetic resultant reaction  forms an angle  with the normal line known as angle of kinetic friction determined by . This is illustrated in figure 5.2c. Further details about kinetic friction force will be developed in the coming section.kinetic: term belonging to the ‘‘kinetics field‘‘ where the relationship between motion and its causes is analyzed

Finally, it is worth to summarize the theory of dry friction or Coulomb friction Hs by the graph of figure 5.5, showing the evolution of the friction force as the external pulling force P increases.
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Figure 5.5 Evolution of the friction force along with the applied pulling force
Self-Check Questions
1. Specify if the following statement is True or False and justify your answer
It is easier to move a package of 60 kg on a horizontal floor of coefficient of static friction of 0.1 rather than a package of 30 kg on a horizontal floor of coefficient of static friction of 0.3. True, since in both cases N = W (equilibrium along y-direction) however in the first case  while in the second case  hence .
2. Complete the following sentence
The resultant reaction at the impending motion of a crate of weight 800 N resting on a support of coefficient of static friction of 0.4 is inclined from the horizontal by 68.2°   and has a magnitude of 861.63 N.
5.2 Sliding Friction
Characteristics of Kinetic Friction Force
Referring to graph of figure 5.5, the kinetic friction force  appears after the impending motion point, i.e. when P goes slightly beyond the limit static friction force H0. In that case, the static resultant reaction goes out of the static friction wedge in the plane of the static friction cone in the space. The static equilibrium is broken, the sliding motion is launched and this latter reaction becomes a kinetic one .
Unlike static friction force, the kinetic friction force acts as an active force on the solid trying to slow down the sliding motion of the body; this latter tending to overcome the surface contact asperities to keep its motion on. In consequence, the sense of the kinetic friction force is opposite to the sense of the velocity vector . Denoting by  the unit vector indicating the direction of , one may write:asperities: group of discrete spots distributed along a surface due to a pronounced unevenness in flatness

                                                                   		                                  (5.3)
Contrarily to the static friction force, one may not assume randomly the sense of action in the case of kinetic friction force. This aspect is emphasized in a couple of cases depicted in figures 5.6a-d.
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Figure 5.6 Sense of kinetic friction force upon relative velocity of the contact surfaces: support unmovable (a), support moving opposite to the body (b), support moving slower and in same sense as the body( c), support moving faster and in same sense as the body (d)
If the case of figure 5.6a is straightforward, the sense of  in the remaining cases depends on the relative velocity between the support and the body, all time the kinetic friction force trying to slow down the body.
Concerning the magnitude Hk, it is independent of the velocity of the motion. The law of friction established by Coulomb states similarly to the static friction force, a proportionality between the kinetic friction Hk and the normal N of the support such as:
                                                                   		                                  (5.4)
where k is denoted by the coefficient of kinetic friction. Values of this coefficient are globally about 15% lower than those of the coefficient of static friction. (Hibbeler, 2010).  Similarly to equation (5.2), the kinetic direction  is determined by:
                                                                   		                        (5.5)
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Figure 5.7 Heat generation in absence of lubricant due to dry kinetic friction force
If the static friction can be beneficial in most of the cases, ‘‘kinetic friction is often undesirable due to the resulting loss in energy. In the contact areas, mechanical energy is converted to thermal energy resulting in a temperature increase‘‘. (Gross et al., 2013, p.263). For this reason, lubricating fluids are often used between contact surfaces to decrease as possible the effect of kinetic friction. Figure 5.7 shows the enormous amount of heat generated due to dry contact where lubricant is completely absent between the polishing disk and the metallic shaft. In contrast, figure 5.8 shows the positive effect of the lubricant in metal cutting process.
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Figure 5.8 Reduction of heat generation due to kinetic friction using lubricant
Application to friction: contact pulley-belt
In the mechanical and industrial field, one may encounter enormous cases where components are in contact in order to generate motion of any desired mechanism. One of the methods to transmit power from a motor to an inertial body (such as fan or wheel or turbine…) is the system of pulley and flat V-belt shown in figure 5.9.
[image: ]
Figure 5.9 Pulley-flat belt system
[image: ]
Figure 5.10 Tensile forces acting on a flat belt around a pulley (a), FBD of a differential belt element (b)
A mathematical friction analysis is to be carried out starting from figures 5.10a and 5.10b which depict respectively a flat belt acting around a pulley with tension forces  and  then a FBD of a differential element of length ds picked up from the flat belt since the reaction distribution along the whole region of contact is not known.  denotes the differential normal force applied by the pulley on the differential element of the flat belt while  denoted the friction force applied by the pulley on the belt element trying to oppose either the impending motion for the static case or the sliding motion for the kinetic case hence:  where dH is either H0 or Hs depending respectively on the status of impending motion or sliding; same applies for , being either 0 or k. Applying the two equations of equilibrium of a particle on the differential element of the flat belt and considering also for very small angles that  and  and neglecting the product of two differential quantities i.e. , one writes:


Equatind dN from both previous expressions:

This latter equation shows that the tension in the flat belt is independent of the pulley’s diameter, it depends solely on the angular contact surface. To integrate this latter equation, the integrals boundaries are needed. referring to figure 5.10a, the contact surface is bounded between  = 0 and  = . At those boundaries, the tension force T is respectively equal to T1 and T2  thus:

Applying at both members the base e of the natural logarithm, one finds:
                                                                   		                                  (5.6)
where:
T2 : tension force in Newtons (N) developed in the flat belt under impending motion or sliding motion relative to the surface of the pulley and acting in same sense as the relative motion
T1 : tension force in Newtons (N) developed in the flat belt under impending motion or sliding motion relative to the surface of the pulley and acting against the relative motion: T1<T2.
: coefficient of static friction for impending motion or kinetic friction for sliding motion between the contact surfaces pulley-flat belt.
: angular portion of belt in contact with the pulley expressed in radians (rad)
Note. Considering equation (5.5) under the particular case of impending motion, one can deduce that static equilibrium is maintained for  while slipping occurs either when  or 
Application 5.1. A wooden crate weighting 300 N rests on a horizontal rough floor of coefficient of static friction 0.2. If a pulling force of 65 N is applied through an inclined attached rope as shown in figure 5.11, check its equilibrium status.
[image: ]
Figure 5.11 Crate on a rough floor to be pulled by a rope
Solution 5.1. The FBD of the crate is illustrated in figure 5.12 including the friction force  acting against the pulling effort.
[image: ]
Figure 5.12 FBD of the crate resting on the rough floor under pulling force
Applying the three equations of equilibrium of a rigid body in the plane:



Since the sign of d was found positive, this means that the reaction of the floor acts indeed at the right of the central vertical line. Moreover since d < 40 cm, the reaction acts on a ‘‘physical‘‘ region of the crate and not outside. This result indicates that no tipping will occur.
On another side, the limit static friction force . Since H was found to be greater than H0, the crate will not then remain in static equilibrium, it is indeed sliding along the floor.
Application 5.2. A block of mass 20.4 kg rests on a rough incline of coefficient of static friction 0 = 0.6 and held by a cable parallel to the incline connected to a counterweight of 10.2 kg through a pulley as shown in figure 5.13. Determine the interval of variation of the angle  of the incline that holds the static equilibrium of the block.
[image: ]
Figure 5.13 Block resting on a rough incline and held by a cable and counterweight
Solution 5.2. Two possible scenarios may govern the present system. Either the tension in the cable is large and overcomes the effect of the weight such that the static friction force  will act downward along the incline, or the tension is small and cannot overcome the effect of the weight leading the particle to slip along the incline which implies the development of a static friction force  acting upward along the incline to oppose slipping. The FBD of the block upon both scenarios is depicted in figures 5.14a and 5.14b.
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Figure 5.14 FBD of the block on the rough incline when T is large (a), T is small (b)
For both cases, the equilibrium along y-axis remains the same:

For the case of figure 5.14a, the equilibrium along x-axis leads to:

In order to keep , the angle must satisfy:  
The static equilibrium persists when 
Replacing Hs function of , the inequation becomes:



This inequation is satisfied for   and   
Those latter result show that the relevant inequation is satisfied for 
For the case of figure 5.b the equilibrium along x-axis leads to:

In order to keep , the angle must satisfy:  
Replacing Hs function of , the inequation becomes:


This inequation is satisfied for   and   which gives  and . And counting for the condition , the second part of the solution is to be kept.
Finally since the interval in which a may vary keeping the static equilibrium is between 0° and 56.35°
Application 5.3. A disk of diameter 200 mm pivoted at its center C rotates under a couple of 40 N⋅ m. A brake consisting of a 90° arm pinned at O requires a minimum force P = 300 N at its handle to stop the rotating motion of the disk as shown in figure 5.15. Calculate the coefficient of static friction between the disk and the arm. Evaluate also the reactions at the pin O of the brake’s arm.
[image: ]
Figure 5.15 Braking system of a rotating disk
Solution 5.3. Since the couple is moving the disk in a counterclockwise sense of rotation, the arm must apply a braking force creating a clockwise moment about the center of the disk C with same magnitude as the applied couple this leads to a friction force oriented leftwards applied by the arm on the disk while the normal reaction is vertical upwards. Due to the principle of action and reaction, the disk exerts on the arm equal and opposite forces. By separating the disk from the arm and drawing the FBD of each of them according to this analysis, one gets the schemes illustrated in figure 5.16.

[image: ]
Figure 5.16 FBD of the isolated disk and arm
Applying the equilibrium of the disk towards rotation about C:

The law of friction allows writing: 
Using the FBD of the arm and applying equation of equilibrium of moments about O:



Application 5.4. A block is to be lift at constant speed by sliding along a rough incline through a force  applied on a belt attached to the block and enrolled around two rough drums A and B as shown in figure 5.17. Knowing that the maximum tension sustained by the belt is 400 N and the coefficient of kinetic friction between all contacting surfaces is k = 0.1, calculate the maximum mass of the block that could be risen along the incline.
[image: ]
Figure 5.17 System of two drums and a belt to lift a block by sliding
Solution 5.4. Since the motion is oriented upward, the kinetic friction forces at contact surfaces act downward meaning that the tension in the belt is increasing from point to point starting from the block, passing by contact points at drum A and finally at drum B. One may then deduce that the highest tension developed in the belt is no other than the lifting force P = 400 N. 
On another hand, figure 5.18 illustrated the FBD of the isolated block, drum A and drum B.
At drum B, the contact angle is B = 180° =  (rad) thus:

At drum A, the contact angle is A = 45° =  (rad) thus:


[image: ]
Figure 5.18 FBD of isolated block and drums
Writing the equilibrium of the block with x-axis parallel to the incline and y-axis perpendicular to it:


Finally using the Coulomb law of friction (equation (5.4)) and replacing N and Hk by their expressions in terms of W:


The maximum mass is: 
Self-Check Questions
1. Choose the correct answer
The minimum horizontal tension force in a rope necessary to lift a vertical weight of 250 N around a drum for a coefficient of static friction 0.25 is about:
      141 N                  169 N                 183 N               212 N      
2. Specify if the following statement is True or False and justify your answer
A cubic crate of weight W resting on a rough horizontal floor and pulled at the middle of its vertical side by a horizontal force of magnitude P will tip if P > W. True because the weight passes by the middle of the horizontal faces. Since both forces are far from each corner of the cube by same distance (equal half of cube’s side length) the sum of moments about this corner vanishes when P = W. If P exceeds W its moment becomes greater than the moment of the weight and thus the cube will tip.
3. Complete the following sentence
A particle of weight 120 N moves on a rough incline of 60°. Once the kinetic friction force measures one-third of the weight, the coefficient of kinetic friction between contact surfaces reaches a value of 2/3  while the pulling force being parallel to the incline has a magnitude of 144 N.
5.3 Rolling Friction
When an object such as cylinder, disk or drum rolls on a flat surface, the zone of contact is a point whose position changes instantaneously through the duration of the motion. When materials of both object and support are very rigid, the planar support exerts a perpendicular reaction on the rolling solid. However, in practice there are no indefinitely rigid materials. In case the supporting plane is made from a material relatively softer than the rolling object, this plane will deform under the action of the weight of the rolling object meaning that this latter is ‘‘pushed‘‘ slightly within the instantaneously deformed shape of the supporting plane. This will lead to an inclined reaction  exerted on the rolling object tending to slow down its motion and in consequence this implies the necessity of a driving force to act on the rolling object in order to overcome the effect of and maintain the motion. This phenomenon is depicted in figure 5.19.
[image: ]
Figure 5.19 Resistance to rolling motion
The main effect then to the apparition of the rolling resistance force is the deformability of surfaces. The surface roughness and adherence level play a secondary role in that case, contrarily to the sliding motion phenomenon. The condition ensuring the dynamic equilibrium of the rolling object (motion at constant velocity) consists in intersection of , and  denoted by the center G in figure 5.19. Summing the moments of those forces about the point of intersection between and the horizontal supporting plane one gets:  at equilibrium. Since the amounts of deformations are small, one can approximate  hence:
                                                                   		                                  (5.7)
The distance a (in mm) denotes the coefficient of rolling resistance. This coefficient decreases as the rigidity of contacting materials increases. However, it depends also on the speed of rotation and surface status. Equation (5.7) interprets why heavy objects exhibit higher resistance to rolling than lighter objects under same conditions, needing higher levels of driving force. ‘‘Furthermore, since W⋅ a/r is generally small compared to k⋅ W, the force needed to roll a cylinder over the surface will be much less than that needed to slide it across the surface.‘‘ (Hibbeler, 2010, p.435)
Figure 5.20 illustrates an example of rolling resistance between the floor and relatively soft rubbery wheels of a pallet truck, however, it remains easier to move the package through the truck rather than rolling it directly on the floor (without the wooden pallet) or sliding it with the wooden pallet.
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Figure 5.20 Rolling resistance between the pallet truck wheels and the floor
Figures 5.21a and 5.21b illustrate a comparative example between a rigid bowling ball rolling on a relatively rigid floor which explains the high speed of the ball and the ‘‘easy‘‘ rolling motion along its path while the deformable nature of the football stadium ground increases the resistance to roll of a football ball which may stop after travelling ‘‘limited distances‘‘ along the pitch.
[image: ]
Figure 5.21 Rolling resistance force: low on a bowling floor (a), high on a football ground (b)
Finally, it is worth to summarize the differences between sliding and rolling friction in table 5.1.
	Table 5.1 Sliding Friction vs Rolling Friction

	Sliding Friction
	Rolling Friction

	Two planar contact surfaces between the body and the support
	Contact point between a curved rolling body and a flat supporting plane

	Occurs due to roughness of contacting surfaces
	Occurs due to the deformation of contacting surfaces

	The coefficient of kinetic friction depends on (texture) of the surface
	The coefficient of rolling friction depends on the toughness of the surface

	Formula: 
	Formula: 



Application 5.5. The lawn grass is rectified by a cylinder of mass 65 kg rolling at constant velocity under a force P = 90 N acting along the arm AC as shown in figure 5.22. Calculate the value of the coefficient of rolling friction.
[image: ]
Figure 5.22 Lawn roller overcoming the resistance of the grass
Solution 5.5. Indeed, the horizontal component of  is contributing to overcome the rolling resistance while its vertical component  is added to the effect of the roller’s weight. The FBD of the cylinder showing the resistance to rolling  is depicted in figure 5.23.
[image: ]
Figure 5.23 FBD of the lawn rolling cylinder





Self-Check Questions
1. Choose the correct answer
A rolling cylinder having the coefficient of rolling resistance a/r = 0.12, may have a coefficient of kinetic friction of:
      0.09                     0.12                   0.21                  none of the previous answers      
2. Complete the following sentence
A steel cylinder of 100 N weight begins to roll on a wooden incline once the inclination angle reaches 3°. The driving force P is equal to 5.233 N  while the ratio a/r measures 0.0523.
Summary
When a body rests on a rough surface, the reaction force exerted on the body is rather inclined having a normal and a tangential component. This latter component is termed dry friction force or Coulomb friction force. Moreover, the static friction force has a sufficient magnitude to resist against a driving force. The static friction force increases to maintain the static equilibrium of the body but not indefinitely: the limit static friction force is the maximum value before the sliding motion starts; a status known as impending motion. The magnitude of the limit static friction force is proportional to the normal component of the reaction through the coefficient of static friction, this latter depends on the roughness of the contacting surfaces. Once the limit static friction is overcome, the level of friction drops slightly and reaches a value known as kinetic friction force. It tends to oppose the sliding motion generated by the driving active force. This force is also proportional to the normal component of the normal reaction through the coefficient of kinetic friction.
A flat belt about a rough pulley develops a tension force on one belt‘s side overcoming the friction greater than the tension force on the other side by an exponential amount depending of the coefficient of friction and the angular contact between the pulley and the flat belt.
When a rolling solid rolls on a relatively softer surface, the deformation of this latter develops an inclined reaction force known as rolling resistance force. This requires a driving force to overcome the rolling resistance and maintain the motion. This latter force is proportional to the weight of the roller and the horizontal distance separating the line of action of the weight from the tip of the resistant force. This distance is termed coefficient of rolling resistance.
















[bookmark: _Toc348014754]Appendix 1 – References
Alphabetical order
Ammodramus. (2011). Keya Paha river lowest bridge in Boyd Country, Nebraska [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Keya_Paha_River_lowest_bridge_upper_truss_1.JPG
Ardho, L. (2018). Man pushing cart with weight plates [Illustration]. Pexels. https://www.pexels.com/photo/man-pushing-cart-with-weight-plates-1552104/
Beer, F.P., Johnston, E.R.Jr., & Eisenberg, E.R. (2012). Vector Mechanics for Engineers. Statics. McGraw Hill.
Bidgee. (2010). Dead end riser poles [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Dead_end_riser_poles.jpg
Caronna Heinz, S. (2008). Kreuzschlüssel [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Kreuzschl%C3%BCssel.jpg
Cjp24. (2009). Three-point flexural test on a composite beam using Instron conventional machine [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Three_point_flexural_test.jpg
Collard, L. (2010). Rover V8 engine [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Rover_V8_engine.jpg
Does E. (2015). Steering wheel [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Steering_wheel.svg
Feola. (2008). Example of torque [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Aula_torcao.JPG
Fmiser. (2012). Diagram of a Parker truss as used in bridge construction [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Parker-truss.svg
Foresman, P.S. (2007).  Block and tackle system [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Block_and_tackle_(PSF).png
Ganguly, B. (2012). Grinding sparks – Kolkata [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Grinding_Sparks_-_Kolkata_2011-11-26_7427.JPG
GreenMeansGo. (2018). Bow-string-truss [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Bow-string-truss.jpg
Griffen-Commons-Wiki. (2006). Scania front loader [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Scaniafrontloader.JPG
Gross, D., Hauger, W., Schröder, J., Wall, W.A., & Rajapakse, N. (2013). Engineering Mechanics I. Statics. Springer.
Halliday, D., Resnick, R., & Walker, J. (2021). Fundamentals of Physics. Wiley.
Heb. (2011). Pallet wrapper [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Pallet_wrapper.jpg
Henderson, J. (2010). Swedish cottage after snow [Illustration]. Wikimedia Commons. https://en.wikipedia.org/wiki/File:Swedish_cottage_CP_snow_jeh.JPG
Hibbeler, R.C. (2010). Engineering Mechanics. Statics. Prentice Hall.
Hibbeler, R.C. (2011). Mechanics of Materials. Prentice Hall.
Jelson 25. (2006). A car being loaded onto a flatbed tow truck [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Flat_Bed_Tow_Truck.jpg
Jmk7. (2012). Oxygen-Process Steel Making Vessel McLouth Steel Products Corporation [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Oxygen-Process_Steel-Making_Vessel.jpg
KdYpUvMgT. (2008). Illustration of the right-hand rule for the cross product [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Right_hand_rule_cross_product.svg
Lindecke, C. (2008). Pillow block bearing UCP [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Stehlager.png
Lokilech. (2007). Kran in Dillingen/Saar [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Dillingen_Kran.jpg
Mack, B. (2020). Girl opening door of wooden house near tree [Ilustration].Pexels. https://www.pexels.com/photo/girl-opening-door-of-wooden-house-near-tree-5707671/
Mckechnie, G. (2005). Milling Machine [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Makino-S33-MachiningCenter-example.jpg
Monstera. (2020). Book with white hard cover on table [Illustration]. Pexels. https://www.pexels.com/photo/book-with-white-hard-cover-on-table-6373305/
Mormegil. (2007). Ten-pin Bowler releasing the ball [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Bowlerbowling.JPG
MoSchle. (2013). Kleines Mädchen auf Gartenschaukel [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:MoSchaukel.jpg
OgreBot. (2016). A ball joint and a cross-section of one [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Ball_joint_cross_section_(from_English_Wikipedia_to_be_used_in_other_languages).jpg
PeeJay2K3. (2012). Diagram demonstrating the ball in and out of play in football association [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Ball_in_and_out_of_play_2.svg
Perhelion. (2017). Thumb-up icon [Illustration]. Wikimedia Commons. https://fr.m.wikipedia.org/wiki/Fichier:Thumbs_up_icon.svg#
Ponderevo, G. (2012). Simplified schematic of a typical timber roof structure [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Roof_parts_simplified.svg
Pratheeps. (2006).Symbol thumbs down [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Symbol_thumbs_down.svg
Ross, J. (2007). "Red Barns Spectacular" car show at the Gilmore Car Museum, Hickory Corners, Michigan [Illustration]. Wikimedia Commons. https://commons.m.wikimedia.org/wiki/File:Mid_50%27s_GMC_pickup_pulling_1930%27s_house_trailer_(1144507758).jpg
Sonarpulse. (2009). Silhouette of a car [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Car.svg
Soramimi. (2020). Overhead line tensioner near Kyusandai-mae station [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Overhead_line_tensioner_near_Kyusandai-mae_Station.jpg
Thirdman. (2018). Two Globes and Book on Wooden Table [Illustration]. Pexels. https://www.pexels.com/photo/two-globes-and-book-on-wooden-table-8926540/
Ukexpat. (2009). Belt drive power delivery mechanism, machine shop, Hagley Museum [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:HagleyBeltDrive01.jpg
Viinamäki, S. (2017). Door closer [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Door_closer_20170214.jpg
Wilfredor. (2011). Crossing the bridge over Maracaibo lake [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Crossing_the_bridge_over_Maracaibo_Lake.jpg
Wikiaanvullen. (2009). Wegende palletwagen of pallettruck bron [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Wegende_pallettruck.jpg







Appendix 2 – List of Tables and Figures
Table 1.1 SI Units Prefixes
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 7.1 Cars crossing bridge over Maracaibo lake (Venezuela)
Source: Wilfredor (2011). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 1.2 Pick-up automobile pulling on a house trailer
Source: Ross (2007). CC BY-SA 2.0.
-------------------------------------------------------------------------------------- 
Figure 1.3 Particle under balanced force system
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.4 Accelerated particle under a resultant force
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.5 Car pulled forward on a winch (a), Accelerated car before reaching the winch (b), Moving forward with a constant velocity at the back of the winch (c)
Source: Jelson25 (2006).Public Domain; Sonarpulse (2009). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 1.6 Action and Reaction principle
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.7 Book resting on a table reflecting the principle of action and reaction
Source: Monstera (2020). CC0.
-------------------------------------------------------------------------------------- 
Figure 1.8 Representation of a vector
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.9 Representation of a position vector
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.10 Labor pulling-up a crate through pulley and cable (a), Representation of his force action (b)
Source: Foresman (2007).Public Domain; Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.11 Tension of a cable as example of concentrated force
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.12 Weight of a body as example of distributed load per unit volume
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.13 Table holding a book and resting on the floor showing: external forces (a), internal forces (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.14 Representation of multiplication and division of a vector by a scalar
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.15 Right-hand rule applied to cross product of vectors
Source: KdYpUvMgT (2008). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 1.16 Graphical vectors addition
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.17 Graphical vectors subtraction
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.18 Resultant of two concurrent forces
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.19 Triangle ABC
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.20 Resultant force cables tensions of a crane system
Source: Lokilech (2007). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 1.21 Resultant of multiple concurrent forces
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.22 2D decomposition of a force in an arbitrary reference (a), orthonormal reference (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.23 3D decomposition of a force using the cosine directions (a), Intermediate directions (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.24 Parallelogram law solution 1.4
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.25 Two concurrent forces and their resultant in a Cartesian reference
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 1.26 Resultant of two concurrent forces in a 3D Cartesian reference
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.1 Engine hung by chains (a), FBD of the engine (b), Vector diagram of equilibrium (c)
Source: Collard (2010).Public Domain; Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.2 Girl sitting on a swing in equilibrium (a), FBD of the girl as isolated body (b), vector force diagram of equilibrium of the girl (c), FBD of the girl and her seat as isolated system (d), vector force diagram of equilibrium of the girl and seat as single system
Source: MoSchle (2013).Public Domain; Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.3 Particle under three forces in the space
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.4 Block resting on an incline by a rope
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.5 FBD of the block (a), the pulley (b), the counterweight (c)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.6 Particle held by two ropes in the plane
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.7 FBD of a particle held by two ropes in the plane
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 8.8 Particle held by cables and spring in the space
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.9 FBD of a particle held by cables and a spring in the space
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.10 Application to a couple: unscrewing tire nuts
Source: Caronna (2008). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 2.11 Tightening a screw (a), Torque developed on screw driver (b), Scheme of couple, sense of rotation and vector moment (c)
Source: Feola (2008).CC BY-SA 4.0 (Intl), 3.0 (Unp), 2.5, 2.0, 1.0 (Gen); Perhelion (2017). CC BY-SA 4.0; Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.12 Rotation of a steering wheel by a couple
Source: Does (2015). CC0 1.0.
-------------------------------------------------------------------------------------- 
Figure 2.13 Determination of the vector moment at the steering wheel
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.14 Body subjected to many couples
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.15 Original and equivalent couple applied on a solid
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.16 Illustration of the moment of a force about a point (a), Right-hand rule to find the sense of the moment (b)
Source: Challita (2021); Pratheeps (2006). Public Domain; KdYpUvMgT (2008). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 2.17 Principle of transmissibility keeping an unchanged moment about a point
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.18 Equivalent schemes for a moment of a force about a point
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.19 Opening a wooden door (a), Mechanical scheme of the door opening (b)
Source: Mack (2020).CC0; Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.20 Application of a force turning about an axis
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.21 Scheme solution of application 1.3
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.22 Bar prevented from rotation
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.23 Visualization of the three components of the moment vector
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.24 Resultant of parallel forces: concentrated (a), Distributed (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.25 Table subjected to a system of parallel concentrated forces
Source: Thirdman (2018). CC0.
-------------------------------------------------------------------------------------- 
Figure 2.26 Roof subjected to distributed parallel load
Source: Henderson (2010). CC0 1.0.
-------------------------------------------------------------------------------------- 
Figure 2.27 Application to components of moment vector
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.28 Vector representation of the moment about A
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.29 Application to parallel concentrated forces
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.30 Resultant of parallel concentrated forces
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.31 Linearly distributed parallel loading
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.32 Resultant of a linearly distributed parallel loading
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.33 Pen held by a rope at its center of gravity
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.34 Center of gravity of a body: in a direct reference (a), in a rotated reference (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.35 Center of mass of a body
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.36 Cone with a variable density
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.37 Differential element from a cone
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.38 Composite plate of unknown center of gravity
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.39 Partitioned composite plate
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Table 2.1 Data summary of composite plate fig.2.38
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.40 Cube to be kept in equilibrium
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.41 Frame in equilibrium under parallel forces
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.42 Planar equilibrium of a rigid body
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.43 Moment of a force about three points lying on same straight line
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.44 Cable support in the plane (a), Cable reaction force (b) 
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.45 Rigid link support in the plane (a), Rigid link reaction force (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.46 Roller support in the plane (a), Roller reaction force (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.47 Rocker support in the plane (a), Rocker reaction force (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.48 Smooth surface support in the plane (a), Smooth surface reaction force (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.49 Slotted roller support in the plane (a), Slotted roller reaction force (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.50 Sliding pinned collar support in the plane (a), Sliding pinned collar reaction force (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.51 Sliding fixed collar support in the plane (a), Sliding fixed collar reaction components (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.52 Pin support in the plane (a), Pin reaction components (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.53 Fixed support in the plane (a), Fixed support reaction components (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Table 2.2 Supports types and reactions for 2D rigid bodies
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.54 Cable support in the space (a), cable reaction force (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.55 Smooth plane support in the space (a), Smooth plane reaction force (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.56 Roller support in the space (a), Roller reaction force (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.57 Ball and socket support in the space (a), Ball and socket reaction components (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.58 Single circular journal bearing in the space (a), Single circular journal bearing reaction components (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.59 Single square journal bearing in the space (a), Single square journal bearing reaction components (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.60 Single thrust bearing in the space (a), Single thrust bearing reaction components (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.61 Pin support in the space (a), Pin reaction components (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.62 Hinge support in the space (a), Hinge reaction components (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.63 Fixed support in the space (a), Fixed support reaction components (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Table 2.3 Supports types and reactions for 3D rigid bodies
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.64 Reaction force (tensile) of a chain
Source: Soramimi (2020). CC BY-SA 4.0.
-------------------------------------------------------------------------------------- 
Figure 2.65 Reaction force of a door link’s damper
Source: Viinamäki (2017). CC BY-SA 4.0.
-------------------------------------------------------------------------------------- 
Figure 2.66 Reactions of two rollers on a bar under bending test
Source: Cjp24 (2009).CC BY-SA 3.0 (Unp), 2.5, 2.0, 1.0 (Gen).
-------------------------------------------------------------------------------------- 
Figure 2.67 Metallic bars connected by pins
Source: GreenMeansGo (20189).CC BY-SA 3.0 (Unp), 2.5 (Gen).
-------------------------------------------------------------------------------------- 
Figure 2.68 Application of pins for lift arms articulations
Source: Griffen-Commons-Wiki (2006). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 2.69 Special thrust bearing
Source: Lindecke (2008). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 2.70 Ball and socket
Source: OgreBot (2016). Public Domain.
-------------------------------------------------------------------------------------- 
Figure 2.71 Poles cantilevered to the ground
Source: Bidgee (2010). CC BY-SA 2.5.
-------------------------------------------------------------------------------------- 
Figure 2.72 Fixed supported beam loaded in the plane
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.73 FBD of fixed supported beam under planar loading
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.74 2D loaded bar supported by a pin and a cable
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.75 FBD of bar AB
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.76 3D loaded plate supported by a hinge and a cable 
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.77 FBD of the square plate
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.78 Statically determinate structure
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.79 Statically indeterminate structure
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.80 Unstable structure supported by three rollers
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.81 Unstable structure supported by four rollers
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.82 Unstable structure supported by a pin and a roller
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.83 3D loaded arm supported by a ball and socket and a link
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.84 FBD of the 3D arm
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.85 2D loaded arm supported by a pin and fixed collar
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.86 FBD of the 2D arm
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.87 Loaded beam supported by a pin and a roller
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 2.88 FBD of a loaded bema in the plane supported by pin and roller
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.1 Triangular planar truss part of a whole spatial truss of a bridge
Source: Ammodramus (2010). CC0 1.0.
-------------------------------------------------------------------------------------- 
Figure 3.2 Triangular planar truss part of a whole spatial truss of a roof
Source: Pondereva (2012). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 3.3 Simple truss
Source: Fmiser (2012). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 3.4 Compound trusses constructed with method 1 (a), method 2 (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.5 FBD of an isolated bar from a truss
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.6 Two-force member under either tension or compression
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.7 Simple truss under external loading (a), FBD of joint G (b), FBD of joint C (c)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.8 FBD of the whole truss ABCDEFG
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.8a: FBD of joint A
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.8b: FBD of joint B
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.8c: FBD of joint E
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.8d: FBD of joint F
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.8e: FBD of joint D
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.9 Planar compound triangular truss supported by a pin and a roller
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.9a: FBD of joint D
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.9b: FBD of joint C
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.9c: FBD of joint F
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.9d: FBD of joint B
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.9e: FBD of joint A
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.10 Section m-m through truss in equilibrium (a), Isolated portions (either left or right) (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.11 Simple truss ABCDEFG supported by a pin and rocker
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.12 FBD of the entire truss with two sections a-a and b-b
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.13 Isolated left portion from cut a-a (a), Isolated right portion from cut b-b (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.14 Deformable body in equilibrium under n external forces (a), Virtual unit force applied at a point of the body (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.15 Uniform rod under axial force modeled by a linear spring
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.11a: FBD of joint C
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.11b: FBD of joint A
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.11c: FBD of joint G
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.16 Virtual unit force applied on simple truss
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.16a: FBD of joint A
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.16b: FBD of joint B
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Table 3.1 Data summary of truss fig.3.11
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.17 Simple truss ABCD supported by pin and roller
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.18 FBD of entire truss under real load (a), virtual force (b), section with upper portion kept (c)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 3.18a: FDB of joint C
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.1 Centroid of a volume (a), area (b), line (c)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.2 Example of a composite area
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.3 Metallic vessel as example of composite volume
Source: Jmk7 (2009). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 4.4 Solid hemisphere
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.5 Differential volumetric element from a hemisphere
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.6 Non uniform area delimited by a curve
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.7 Differential thin element parallel to y-axis (a), to x-axis (b)
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.8 Bent metallic rod
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.9 Differential linear element from a rod
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.10 Compound bent rod
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.11 Differential linear element from a semi-circular rod
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.12 Centroids of different parts of a composite line
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Table 4.1 Data summary of composite line fig.4.10
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.13 Compound volumetric homogeneous solid
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Table 4.2 Data summary of composite body fig.4.13
Source: Challita (2021).
-------------------------------------------------------------------------------------- 
Figure 4.14 Centroids of parts forming the composite volume
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.15 Three-rigid-bars structure supported by a pin and slotted roller
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.16 FBD of the three-bars structure subjected to its own weight
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.17 Cross section of a beam under bending (a), Wall under hydrostatic pressure (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.18 Differential element in an arbitrary area
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.19 Differential rectangular strip element parallel to x-axis (a), to y-axis (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.20 Radius of gyration about x-axis (a), y-axis (b), pole O (c)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.21 T-shape area with an axis of symmetry
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.22 Rectangular area with central axes (a), differential element parallel to x-axis (b), to y-axis (c)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.23 Circular area with central axes (a), Differential element parallel to x-axis (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Table 4.3 Moment of inertia of standard shapes
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.24 Area located in two parallel references
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.25 Composite area sectioned into regular parts
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.26 Arbitrary area in an inclined reference
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.27 Composite area sectioned in three parts
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.28 Non regular area delimited by a cubic polynomial curve
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.29 Differential rectangular strip parallel to x-axis (a), to y-axis (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.30 Right-angle triangle located in Cartesian central reference
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.31 Differential strip element in a right-angle triangle (a), Principal direction of inertia (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.32 Visualization of external and internal forces
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.33 Simply supported beam (a), Overhang beam (b), Fixed-Free or cantilever beam, (d) Fixed-Fixed or double cantilever beam
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.34 3D external loading case on a beam in equilibrium
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.35 3D internal loading case on a portion of a beam in equilibrium
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.36 2D external loading case on a beam in equilibrium
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.37 2D internal loading case in a beam in equilibrium
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.38 Differential element of a beam under distributed loading
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.39 Differential elements of a beam under concentrated force and couple
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.40 Fixed-Free 90° arm loaded in the space
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.41 FBD of the right sectioned portion of a 90° arm
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.42 Fixed-Free beam in planar equilibrium
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.43 FBD of entire and sectioned portions of a fixed-free beam
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.44 Diagrams of shear force and bending moment of a fixed-free beam under concentrated force
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.45 Diagrams of shear force and bending moment of a simply supported beam under uniformly distributed load
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.46 Diagrams of shear force and bending moment of a simply supported beam under concentrated force
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.47 Diagrams of shear force and bending moment of fixed-free beam under uniformly distributed load
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 4.48 Diagrams of shear force and bending moment of fixed-free beam under concentrated force
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.1 Block resting on a rough surface (a), Non uniform distribution of normal and friction forces (b), Zoom-in on contacting surfaces, (d) resultant reaction forces of the rough planar support
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.2 Normal and friction force components at static equilibrium (a), impending motion (b), motion (c)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.3 Limit regions for the support reaction for static equilibrium: static friction wedge in 2D (a), static friction cone in 3D (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.4 Example of static friction force: contact steel cart-floor (a), contact loaded wooden palette-rotating metallic platform (b)
Source: Ardha (2018). CC0; Heb (2011). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 5.5 Evolution of the friction force along with the applied pulling force
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.6 Sense of kinetic friction force upon relative velocity of the contact surfaces: support unmovable (a), support moving opposite to the body (b), support moving slower and in same sense as the body( c), support moving faster and in same sense as the body (d)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.7 Heat generation in absence of lubricant due to dry kinetic friction force
Source: Ganguly (2012). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 5.8 Reduction of heat generation due to kinetic friction using lubricant
Source: Mckechnie (2005). CC BY-SA 2.0.
-------------------------------------------------------------------------------------- 
Figure 5.9 Pulley-flat belt system
Source: Ukexpat (2009). CC BY-SA 3.0.
-------------------------------------------------------------------------------------- 
Figure 5.10 Tensile forces acting on a flat belt around a pulley (a), FBD of a differential belt element (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.11 Crate on a rough floor to be pulled by a rope
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.12 FBD of the crate resting on the rough floor under pulling force
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.13 Block resting on a rough incline and held by a cable and counterweight
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 


Figure 5.14 FBD of the block on the rough incline when T is large (a), T is small (b)
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.15 Braking system of a rotating disk
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.16 FBD of the isolated disk and arm
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.17 System of two drums and a belt to lift a block by sliding
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.18 FBD of isolated block and drums
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.19 Resistance to rolling motion
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.20 Rolling resistance between the pallet truck wheels and the floor
Source: Wikiaanvullen (2009).CC BY-SA 3.0 (Unp), 2.5, 2.0, 1.0 (Gen).
-------------------------------------------------------------------------------------- 
Figure 5.21 Rolling resistance force: low on a bowling floor (a), high on a football ground (b)
Source: Mormegil (2007).CC BY-SA 3.0 ; Jfd34 (2012). Public Domain
-------------------------------------------------------------------------------------- 
Table 5.1 Sliding Friction vs Rolling Friction
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.22 Lawn roller overcoming the resistance of the grass
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
Figure 5.23 FBD of the lawn rolling cylinder
Source: Challita (2021).	
-------------------------------------------------------------------------------------- 
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