Capitalization – The first word of a sentence is capitalized & punctuated as usual. Each bullet point answer begins with capitalization and ends with a period. Bullet point answers that complete a sentence with the question above are not capitalized, but end with a period (…).
Unit 1
1.1	Comment by Johnson, Lila: The correlating section of the script is given above each set of questions. Please keep this numbering in the translated document.
1. List the quality management activities.
 -Quality planning: preparation and documentation of quality requirements in collaboration with the client.	Comment by Johnson, Lila: The correct answers for each question are given using underline and italics. Please maintain this formatting so that the answers remain clear.
- Quality control: monitoring, management, and control of quality testing activities in the software development process.
- Quality assurance (QA): activities that ensure that defined quality requirements for products, processes and services are met.
- Quality improvement: evaluation of product and process data to improve the quality level.
2) How do specification and quality of software systems depend on each other?
The term “software quality” is defined in the DIN ISO Standard 9126 as follows: “Software quality is the set of characteristics and characteristic values of a software product that relate to its ability to meet specified needs.” According to DIN, the quality of software can only be determined on the basis of the speciﬁcation (“specified needs”). In practice, however, it is apparent that the perceived quality of software is primarily determined by whether the customer finds that the software meets their actual requirements.

3. Differentiate between the terms “constructive quality management” and “analytical quality management”.
In constructive quality management, all quality attributes for products or processes are deﬁned a priori (i.e., before creation) in order to prevent errors during software development and to ensure or improve the quality of the artifacts created. In analytical quality management, ex post (i.e., after creation) measures are carried out to examine and evaluate the current quality level of the test objects in order to systematically detect errors and determine their extent. For this purpose, both static and dynamic testing procedures are used.

1.2
1. Explain the principle of product-dependent and process-dependent quality objective determination.
The principle of product-dependent and process-dependent quality objective determination means that quality objectives should be newly defined for each specific software product or for the specific software process at hand. Since the potential set of approaches and techniques for quality assurance is extensive, the required attributes can only be implemented in a targeted fashion when quality objectives have been formulated.

2. Provide an example of how the principle of independent quality assurance can be implemented in practice.
Example 1:
In program code, particularly critical sections of the code are reviewed by a colleague of the author.
Example 2:
Another team, which was not involved in the development of the system, tests a created system to determine whether the business use cases in the interaction of all development artifacts were successfully implemented.

3. Explain the principle of early fault detection and correction.
The principle of early error detection and correction is intended to ensure that errors are detected before they manifest themselves in program code. The later an error is identified, the higher the costs of error correction. To prevent this, structured QA measures should not begin when the software is tested, but rather as early as the first artifacts are created in a software process. It is therefore much quicker and more cost-effective to eliminate errors in early phases than errors that run from the business requirements document through to the implementation.

1.3
1. Explain the principle of “repetition has no effectiveness”.
The repeated execution of the same test cases with the same input data in the same system state and on the basis of the same data set without modifying the program code will not achieve any other effect beyond a single execution of the test cases. The repeated execution of the same test under identical conditions will therefore not lead to additional knowledge regarding potential errors.

2. How can the principles of “complete testing is not possible” and “accumulation of errors” be used when selecting the system components to be tested?
The software tests actually conducted are always only random samples. Decisions must therefore be made consciously and very carefully as to which functions are tested with what effort and expense and which input parameters are used. Thus, if an error is detected at location X in the system through testing, it is highly probable that further errors are present in the environment of X. Testing must be conducted with particular care in the environment of errors that have already been identified and, if necessary, with more test cases than originally planned.

3. What is the relationship between the definition of “software quality” according to DIN ISO 9126 and the principle of “fallacy: no errors does not automatically mean a usable system”?
The quality of software, and thus also the formulation of test cases, is based on the speciﬁcation of the system. Aspects that may be important to users, but were not considered during the speciﬁcation, are usually not tested. Therefore, even an error-free system—which therefore has a very high quality according to DIN, since all “specified needs” have been implemented—can be unusable from the user’s point of view.

1.4
1. What is the relationship between the “principle of product-dependent and process-dependent quality objective definition” and the determination of the cost-optimized quality of a software system?
The quality objectives must be newly defined for each project or process. Only when there are documented quality objectives can they be specifically considered and addressed later by the architects and developers during implementation. The effort and expense required to prevent errors depends on the quality objectives that have been formulated: the higher the objectives, the higher the effort and expense. The effort and expense required for error prevention influences the determination of the optimal quality costs.

2. What costs make up the quality costs of software?
Quality costs include the effort and expense spent on error prevention, detection, localization, and correction.

3) What are the characteristics of “cost-optimized quality” of software systems?
With cost-optimized quality, the costs for error prevention and error correction are the same.

Unit 2
2.1
1. Provide examples of measures in process-oriented quality management.
Examples of measures for process-oriented quality management are the use of a standardized development process that specifies roles and activities to an appropriate degree, the mandatory use of tools for conﬁguration management, or the specification of escalation paths in the event of a project disaster.

2. What is tested in product-oriented quality management?
Product-oriented quality management reviews software products and intermediate results generated during the creation, maintenance, and further development of the software for defined quality characteristics and the fulfillment of quality conditions.

3. Explain the distinction between the terms “quality control” and “quality planning”.
Quality planning for a specific software process defines exactly which individuals are responsible for which QA activities, which QA activities are required at which point in time in the software process, and with which resources, methods, and tools quality assurance is conducted. Quality control is a collective term that includes all the necessary activities for monitoring and controlling QA activities. Here, the focus is not on the software system, but rather on the activities that are carried out for quality assurance. The objective of quality control is to achieve an appropriate level of quality assurance.

2.2
1. Why are quality objectives needed and how can quality models help in deriving quality objectives?
By defining and prioritizing quality objectives, project-wide guidelines are created to which all QA activities must be oriented. Quality models can help make the abstract concept of quality tangible. The basic idea of a quality model is to break down the abstract, broad term “quality” into sub-terms. These sub-terms are then broken down until a specific measurable quality attribute can be formulated.

2.3
1. Describe the objective of quality gates in quality assurance.
The objective of quality gates is to ensure that the artifacts created fulfill previously specified attributes at a certain point in the software process. Quality gates are also often used to ensure quality development is transparent and traceable. A quality gate can be passed if the criteria previously specified, e.g., in the form of a checklist, have been met. In addition to the quality of the artifacts created, quality gates are often used to check compliance with specifications and guidelines for the software process.

2.4
1. List the quality control activities.
- Continuously monitoring process and product quality.
- Responding to changes in the level of quality in the form of adjustments to QA specifications.
- Examining the actual QA quality.

2. What does total quality management (TQM) mean?
Total quality management (TQM) is a concept for a fundamental approach to quality control that explicitly involves all an organization’s employees in quality control. In TQM, the achievement of high product quality is the overarching objective pursued by all employees in an organization, with the customer deciding on the level of quality achieved. TQM is based on the assumption that a complete and continuous concentration on high quality will lead to long-term business success through customer satisfaction.

3. Explain the principle of “quality priority” from TQM.
The principle of “primacy of quality” means that all processes are carried out exactly as defined. Each person involved in the execution of the process performs their tasks correctly from the beginning and with each repetition. Reworking and wasting resources should be avoided. If errors are identified, their cause must be determined and eliminated. Improvements in quality are achieved by improving the defined software process.

Unit 3
3.1
1. List three organizational measures in constructive quality management.
Examples of methods include team estimation (for prioritization), functional equivalence partitioning (for test case generation), and object-oriented analysis (for requirements engineering).	Comment by Translator: Translator: team estimation does not appear to be covered in the Course Book or Graphics.

2. List three interpersonal measures in constructive quality management.
- Training or coaching sessions.
- Joint activities such as regular joint leisure activities or team events.
- Work environment design, for example, creating designated quiet zones.

3. List three technical measures in constructive quality management.
- Templates.
- Guidelines.
- Checklists.

3.2
1. What is the core idea of timeboxing and what is it used for?
The core idea of timeboxing is to allocate time to individual activities or agenda items and to consistently monitor and adhere to the allotted time. If an activity or agenda item cannot be completed in the allotted time, it is terminated at the stage reached and the next activity or agenda item is started. Timeboxing is used as a tool for efficiently conducting meetings. It helps to prevent lengthy and sprawling discussions and leads to high-quality meetings by setting a strict framework.

2. List and describe the six steps involved in root cause analysis.
1. Collection of all available information about the error and the erroneous behavior triggered by the error.
2. Application of the 5-Why method.
3. Identiﬁcation of the places in the program code that must be changed to eliminate the error.
4. Identiﬁcation of possible QA measures (constructive and analytical) to prevent the error in the future.
5. Introduction of the QA measures.
6. Evaluation of the QA measures to determine whether they reliably prevented the errors.

3. What aspects should be considered when formulating checklists?
- One item on the checklist corresponds to exactly one objective; compound objectives should be avoided and divided among several items.
- Clear and simple wording of the checkpoints increases readability and understandability.
- The criteria required to fulfill a checkpoint must be transparent; if necessary, sub-checkpoints or separate checklists are created for individual checkpoints.

Unit 4
4.1
1. What static procedures can be used to quality assure the test cases that have been created?
The test cases generated are reviewed using review techniques to determine whether they are suitable for ensuring the level of quality defined for the current project.

2. What static procedures can be conducted in the module and component test environment?
Although module and component tests are not static procedures, measures for static code analysis are carried out in the context of these tests. Here, the program code created is automatically reviewed for compliance with the required attributes and error probability analyses are carried out.

3. How do static quality assurance procedures differ from dynamic procedures?
In contrast to dynamic procedures, the test object is not executed in static procedures. In principle, all static quality assurance procedures can be conducted without the use of software, i.e., only “with paper and pen”, but the measurement and calculation of metrics is particularly well supported by tools for static code analysis.	Comment by Translator: Translator: The DE content in the Self-Check differs from that in the Course Book.
Self-Check: jedoch wird insbesondere das Messen und die Berechnung von Metriken durch Werkzeuge zur statischen Codeanalyse unterstützt.
Course Book: Jedoch werden insbesondere das Messen und die Berechnung von Metriken sowie die statische Codeanalyse durch Werkzeuge gut unterstützt. (EN: …. as well as static code analysis, are particularly well supported by tools.
The translation reflects the DE content in the Self-Check, but is quite different from the Course Book content.

4.2
1. What roles are needed for which review technique?
Inspection: moderator, reviewer, author (of the test object), recorder.
Walkthrough: moderator, reviewer, author (of the test object).
Opinion: reviewer, author (of the test object)

4.3
1. Contrast the advantages and disadvantages of software metrics.
Advantages: software metrics are relatively easy to determine. Furthermore, most metrics are independent of the specific programming language or a project organization and can therefore be easily used in most projects.
Disadvantages: assertions about the actual consequence of certain attributes or combinations of attributes are often not possible, particularly with software metrics. It is generally not possible to derive reliable conclusions about the actual quality of the system on the basis of software measurements.

2. List at least two metrics for the structural complexity of components and for object-oriented systems.
Metrics for structural complexity:
- Fan-in.
- Fan-out.
Metrics for object-oriented systems; examples of typical metrics for object-oriented systems include:
- Degree of inheritance trees.
- Depth of a class (DIT).
- Coupling between objects (CBO).
- Response for a class (RFC).

3. What are metrics and what are they used for?
Metrics are values of parameters that are determined and analyzed with the help of tools. Assertions regarding the current state of the product or process are derived from the measured values.

4.4
1. Provide two specific examples of error patterns that can be identified with static code analysis.
- Possible bugs due to empty try/catch or switch blocks.
- Variables, parameters, and private methods that were created, but not used.
- Excessive use of String and StringBuffer methods.
- Identification of unnecessary or too complicated if-assertions.
- Code sequences duplicated by copy & paste
- Implementing the equals() method without the hashCode() method, or a string comparison with == instead of with equals().
- Incorrect use of the increment function (i++) in return assertions or adding a collection object to itself.
- Storing a value in a local variable that is never read.

2. List three advantages of using tools for automatic style analysis.
- Automatic feedback to the developer on whether they have adhered to defined conventions. Examples include the correct use of annotations, adherence to naming conventions for classes, attributes, methods and variables, checking for the presence of Javadoc comments.
- For manual code reviews or team development where several developers are working on one component, automatic style analysis can be used to promote familiarization and code comprehension.
- In addition, uniformly formatted program code makes it easier to work with version control systems. With consistent formatting, fewer formatting changes, such as line indentations, are displayed in change tracking.

3. What does static code analysis mean and how does it differ from metrics?
Static code analysis methods are used for the qualitative evaluation of program code. In contrast to metrics, static code analysis does not measure any attributes of the program code, but rather analyzes and evaluates its content.

Unit 5
5.1
1. What is the difference between path testing and instruction coverage?
Instruction coverage: each relevant instruction/function is accessed at least once during the test. For this purpose, test data must be generated with which each instruction in the code (white box test) is executed at least once or with which each business function (black box test) of the supported business process is executed at least one. Any loops that may occur are explicitly not taken into account.
Path testing: generation of test data so that the entire control ﬂow path within a component in the program code (white box test) or a path through the business process (black box test) can be run through from start to finish. It must be ensured that multiple loops are also tested.

What is the difference between black box testing and white box testing and what are they used for?
In black box tests, no information is available about the internal structure of the test object. Only the externally visible behavior is relevant. The tester reads and interprets the specification, then, generates the test cases and executes them according to their interpretation of the specification White box tests are generated with knowledge of the program code, in contrast to black box tests . The objective of white box testing is to cover as many of the assertions and control structures (such as if, while, for, switch) implemented in the program code as possible in order to test as many of the implemented instructions as possible.

What is a test case and what elements does it consist of?
A test case serves as a guideline for the execution of software tests and consists of the following elements, as a minimum:
- Preconditions that must be ensured before the test step.
- Test data or test actions that are entered or carried out during the test step.
- Post-conditions, the fulfillment of which is examined after the test step.
- Descriptive data about the test case, such as name, ID, relevant component, function or attribute being examined, use case or name of the creator.

5.2
1. List and describe four possible coverage criteria for use cases.
- Instruction coverage: each function is accessed at least once.
- Branch coverage: each control flow is run through at least once.
- Condition coverage: each condition is evaluated at least once at TRUE and once at FALSE.
- Path test: each possible path through the use case is run through completely (“in one piece”), taking possible loops into account.

2. List and describe the criteria used to determine the level of detail of test cases for use cases.
- Value contribution: how much does this function contribute to the value chain?
- Usage frequency: how many users access the function and how often?
- Damage potential: what damage can result from unidentified errors in the function?
- Typical errors: which functions frequently contain errors in their implementation? Where are the typical weak points in comparable legacy or competitor systems?
- Required test coverage: what level of test coverage is actually required for the functional level?

5.3
X	Comment by Johnson, Lila: Note: SCQ for this section will have to be created post-translation as the question styles in the original version are not applicable to the translated standards.

5.4
1. List and briefly describe the steps for state-based test case generation.
Step 1: create a state transition table
To easily identify allowed and disallowed transitions, the state diagram is transformed into a state transition table. One column and one row are created for each deﬁned state in the diagram.
Step 2: fill in the table
Valid combinations of states and transitions in the diagram lead to a subsequent state. The name of a transition is noted exactly in the cell whose initial state is provided by the column and whose target state is provided by the row.
Step 3: enter error states in table
Depending on the size of the state transition table and the application of the system under testing, the disallowed transitions (marked with “-” in the table) can be categorized as an error situation or a disallowed, but trivial, transition.
Step 4: derive test cases from table
Test cases are derived from the state transition table with marked error states. The test case generation results in a set of sequences of transitions that can be used to test the functions to be implemented by the system, as well as the transitions that are not to be supported by the system.

5.5
1. List two scenarios for the use of random test data.
Simple random data: if the value ranges within input parameters are known, for example, as determined with equivalence partitioning, the selection of the specific input values can be defined using random test data.	Comment by Translator: Translator: EN translation somewhat paraphrased for a closer alignment with the Course Book text. The term simple random data is not specifically identified within the Course Book.
Complex random test data: a given, non-randomly generated set of test data is randomly combined according to a defined principle.

2. List two advantages and two disadvantages of random test data.
Advantages: in combination with equivalence partitioning, random test data generation is a technique where many different test data sets can be generated with comparably little effort.
- Once a suitable test data generator exists, any number of test data sets can usually be generated.
- This ensures that each test data set has the required attributes and that human errors caused by manual test data generation can be excluded.
Disadvantages: the random generation of test data creates a great deal of different data, but not truly realistic data, in every case.
- The requirements for the structure and content of the test data must be specified in detail for the creation of the test data generator.
- Specification and implementation of test data generators requires additional resources. Whether the effort and expense required for this is in reasonable proportion to the benefit must be decided individually for each project.

3. Briefly describe the basic principle of generating random test data.
The basic principle of test data generation is based on the fact that valid values are randomly generated within certain value ranges of input parameters.

Unit 6
6.1
1. List five typical sources for generating test data.
In addition to the specification and architecture description, the program code of the system, as well as existing production data or the existing test data set, are also suitable sources.

2. List the activities for methodical testing.
- Test requirement analysis.
- Test planning.
- Test case specification.
- Test data generation.
- Test execution.
- Test evaluation.

6.2
1. Briefly explain what a module test is.
The isolated testing of individual software components is called component testing. Each component is implemented separately and brought into the system after completion (also: integrated). Compliance with speciﬁed requirements can be reviewed during or after completion of a software component.

2. Briefly explain the test-driven development procedure.
The “generate test case” and “create program code” activities are carried out in the exact reverse order of “traditional” test case generation. Unit tests are generated before the actual program code for implementing the function is programmed. After the need for a new function in a class or component has been identified, unit tests are first generated to test the new function to be created. If these unit tests are executed, they must fail because the relevant system functions have not yet been implemented. Their implementation is not started until after the test case has been generated. The system functions are then implemented step by step and tested during implementation.

3. Briefly explain how the independence of unit tests is ensured when they are executed.
Each test must individually ensure that the preconditions it requires have been established. For example, the required data inventory is first imported into the database before tests are executed, with this database then used to execute the test. If another test is subsequently executed, all changes to the data model and the internal system state must be reverted so the original system state is restored for the execution of a new test.

6.3
1. Briefly explain what an integration test is.
Once two or more software components have been completed, they can be combined to form a system, i.e., integrated. During or after integration, integration tests are used to test the interaction of groups of components and to examine whether the components work together as described in the speciﬁcation.

2. Explain the disadvantages of the bottom-up strategy and describe how these can be avoided with the by-value strategy.
The disadvantage of the bottom-up strategy is that the system can only be presented to the users at the end of the integration, which means that a significant project risk cannot be addressed at an early stage. Furthermore, it is not possible to test targeted false return values of accessed components since no dummies are used with the bottom-up strategy.
The integration strategy referred to as by-value offers the project team the possibility of starting with the creation and integration of the components with which the greatest value contribution can be created, depending on the current need in the project. For example, the GUI and critical base components can be started at the same time if that is where the greatest project risk is suspected. If both drivers and dummies are needed to test the interaction of components, they can be created and deployed as needed.

3. Explain what is meant by the terms “dummy” and “driver” and how they are used in integration testing.
Particularly in complex software systems with a large number of components, not all components are ready at the same time. In these cases, missing components are simulated by drivers and dummies so that testing can begin. Software fragments that are referred to as drivers simulate the accessing of other components. In contrast, dummies simulate components that are accessed by other components. In particular, technical interfaces to external systems are simulated in the integration test using dummies and drivers. Only the finished software system can be connected to external systems, but the interaction of the interfaces must be tested beforehand.

6.4
1. Briefly describe what a system test is.
Once development work has been completed and all the software components have been integrated into a finished system, the system is tested as a whole with a system test. The objective of system tests is to review whether the system as a whole meets the speciﬁed requirements. In addition to functional tests, load tests and stress tests are also conducted.

Describe the purpose of a performance test and what is tested.
Performance tests are used to examine the behavior of the system under load and to determine whether it supports the specified quality attributes. The results of the performance test can be used to make specific assertions about the behavior of the created system in its future system environment.
The test results can also be used to review whether the IT infrastructure provided by IT operations, such as storage space, RAM, computing time, or network connectivity, is sufficient. Performance tests must therefore be prepared very carefully. Typical indicators of the performance of software systems include latency, throughput and transaction rates. Performance testing is also used to determine and examine the service levels that a system operator has promised as part of service contracts in what are known as service level agreements (SLAs).

3. Explain why regressability is an important attribute for system testing.
The “regressability of test cases” attribute refers to the ability to repeatedly carry out a test. The execution of regression tests ensures that modifications to the program code do not inadvertently affect existing functions. Even if development in the project is not evolutionary, the existing system test cases must also be run with each new release of the software, even if the release cycles last several months or years.

6.5
What is the difference between system testing and acceptance testing?
The client personally carries out the acceptance test or is involved in its execution. In terms of execution, the acceptance test is a special type of system test, but with a lower test coverage. However, the most important difference compared to system testing is that it is executed by an organization other than the one that developed the system. A successful acceptance test is often the contractually agreed prerequisite for billing.

2. Why is the result of the acceptance test often negotiated in practice?
Unlike the other test levels, a decision is made at the end of the acceptance test: acceptance or rejection. In practice, it is very unlikely that no more errors will be identiﬁed during an acceptance test. Therefore, after an acceptance test has been executed, the errors that still need to be corrected before final acceptance are usually negotiated. Acceptance is ofﬁcially granted only when these errors have been corrected.

3. Briefly describe what an acceptance test is.
The final test stage is the acceptance test in which the finished system is installed at the customer's site and tested under actual operating conditions. The acceptance test examines whether the system meets the contractually agreed performance characteristics from the customer’s point of view.

Unit 7
7.1
1. List the activities for quality assurance of requirements.
- Determine examination criteria.
- Select examination principles and examination techniques.
- Conduct examination and document results.
- Coordinate requirements/conflict management.

2. List three quality aspects of requirements.
- Content.
- Documentation.
- Coordination.

3. Explain the distinction between the terms “examination principles” and “examination techniques”.
Various examination principles can be identified within the scope of examination requirements that do not represent an examination technique in themselves, but rather help in the selection of examination techniques. In contrast, examination techniques are specific procedures or approaches that are used to conduct the examination. An examination technique can support one or more examination principles.

7.2
1. List and describe the activities of ATAM and assign them to the different phases of ATAM.
Phase 1: preparation and presentation
In Step 1, the ATAM approach is presented to all stakeholders and the activities it consists of are explained.
Step 2 presents the most important functional requirements, quality requirements, and boundary conditions.
In Step 3, the basic architecture created by the architects is presented.
Phase 2: investigation and analysis
In Step 4, different architecture variants are created based on the basic architecture, which can be used to fulfill the functions and attributes required by the system.
In Step 5, application scenarios are created and prioritized to describe the specifically required quality attributes.
In Step 6 of ATAM, the created architecture variants are roughly analyzed in terms of their fulfillment of the scenarios derived in step 5.
Phase 3: testing
In Step 7, the set of pre-created scenarios is refined, expanded, and prioritized.
In Step 8, a detailed analysis of the architecture variants is carried out.
Phase 4: reporting
In Step 9, reports are issued to the stakeholders involved.

2. What are the objectives of the QA of architectures after implementation?
The purpose of examining the architecture during implementation and/or after implementation has been completed is to ensure that the result of the development work adheres to the specifications established by the architectural deﬁnition. These activities can be compared to construction supervision on a building site: the individual trades must be coordinated and their intermediate and final results checked to ensure that they comply with the design plan in terms of type and quality. In the same way, the architect must also ensure that the decisions made by the architecture team have actually been implemented in the program code.

3. What are the goals of the QA of architectures before implementation?
On the one hand, the suitability of a designed architecture can be evaluated before implementation (ex ante) and on the basis of the architecture description. On the other, the suitability of a designed architecture can be examined during implementation and after the end of implementation (ex post) to determine whether the architecture that was actually created adheres to the specifications of the architecture description compiled prior to implementation. These two examination objectives are so divergent that different examination techniques are used for each of these examinations.

7.3
1. List five quality attributes for software processes.
- Understandability.
- Standardization.
- Recognizability.
- Measurability.
- Supportability.
- Acceptance.
- Reliability.
- Stability.
- Ease of maintenance.
- Speed.

2. What prerequisites must be ensured before changes in the software process can be actively implemented?
- The changes in the software process must be made known to all those affected.
- If necessary, new technical competencies must be acquired.
- All modified artifacts such as templates, documentation, tools, and procedures must be available.

3. Describe what the levels of the CMMI model are and what they are used for.
The CMMI is designed as a framework for process improvements. Among other things, it contains a staged model for assessing the maturity of software and management processes. The current capability level of a process is determined on a 5-level scale. The determination of the maturity level is based on the analysis of a company’s current ACTUAL processes. CMMI Level 1 is the lowest level and Level 5 corresponds to the highest capability level. The CMMI maturity levels are used to evaluate an organization or the process maturity of software processes within organizations.

