
	IU

	Big Data Technologies – Unit 1	Comment by Sarica, Oezlem: Please do not edit cover page

	DLBDSBDT01

Learning Objectives	Comment by Sarica, Oezlem: Boilerplate - please do not change
We live in times of the Ddata Rrevolution, and big data systems have become a part of our societies and way of life to the extent that it is hard to imagine how the world would look without these technologies. In this course, you will start to understand the concepts that enable the storage, processing, and analysis of vast and fast datasets, being which are the backbone of modern data-intensive applications.
To begin this course, we start with an introduction to data types and data sources. Here, you will learn about the 4V's that define big data, being which are data with large volume, high velocity, variety, and veracity. Next, you will learn about different data sources to that feed modern data-intensive systems. As these data can be diverse, you will also learn about different common data types and data formats. Here, we will distinguish between text-based formats, like CSV, YAML, XML, and JSON, and binary data formats, such as HDF5, Apache Parquet, and Arrow, which were explicitly developed for big data applications.	Comment by GMP: Note that the most common usage is "4 Vs", followed by "four Vs". "4Vs" is used, but is less common. I would recommend against the apostrophe plural. In any case, we should choose the usage we prefer and be consistent throughout the document.
Following this, you will learn about modern data storage and will compute solutions designed for big data use cases. You will learn about NoSQL data stores, how they are different from relational databases, and how we categorize them into four basic types: key-value-, document-, column-, and graph-oriented databases.
Next, you will learn about distributed systems, such as the technologies subsumed under the heading of the Hadoop ecosystem. As one of the fundamental cornerstones of big data technologies, the Hadoop ecosystem provides technical solutions for big data storage and computing. You will learn how the Hadoop distributed file system (HDFS) constitutes the distributed storage layer, and the MapReduce engine can serve as the distributed computational layer of a big data system.
Being Spark is a widespread, flexible, and easy-to-use big data processing technology;, you will also learn about Spark, how it works, and how to use it with a scripting language like Python. In addition, you will learn about Dask for processing big data in Python. Dask is not an entire big data environment like Hadoop but a Python package that is straightforward to install and use,. you will learn about Dask to process big data in Python
In the last unit of this course,, you will get become familiar with two prevalent frameworks for processing data streams, i.e.,: Spark Streaming and Apache Kafka.
At the end of this course, you will feel comfortable working with the digital gold of our time: big data.	Comment by GMP: I might suggest a more precisely defined objective at summing up, such as: "...you will be able to design and implement computing solutions using the digital gold of our time: big data."

Basic Reading
John, T. & Misra, P. (2017). Data Lake for Enterprises (1st ed.). Packt Publishing.
Kleppmann, M. (2017). Designing data-intensive applications: the big ideas behind reliable, scalable, and maintainable systems. O'REILLY.
Further Reading
Unit 1
Luntovskyy, A. & Globa, L. (2019). Big Data: Sources and Best Practices for Analytics. International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), 2019, pp. 1-6, doi: 10.1109/UkrMiCo47782.2019.9165334.
Unit 2
Unit 3
Hainaut, J.-L. (2009). Encyclopedia of Database Systems. Retrieved from Springer, Boston: https://doi.org/10.1007/978-0-387-39940-9_246
Stonebraker, M. (2010, April). SQL Databases v. NoSQL Databases. Communications of the ACM, 53(4), 10-11. doi:10.1145/1721654.1721659
Unit 5
Patil, N.V., Krishna, C.R. & Kumar, K. SSK-DDoS: distributed stream processing framework based classification system for DDoS attacks. Cluster Comput (17.01.2022). https://doi-org.pxz.iubh.de:8443/10.1007/s10586-022-03538-x

Unit 1 – Data Types and Data Sources	Comment by Sarica, Oezlem: Please do not edit main Unit titles

Study Goals	Comment by Sarica, Oezlem: Example boilerplate language. Please do not edit and do not remove ellipses.

On completion of this unit, you will be able to …

… describe the characteristics of Bbig Ddata
… identify data flows that may overload a non-distributed system
… decide how to efficiently store data of different origins
… apply the acquired skills in creating data collections

1. Data Types and Data Sources
Case Study
Hot&Cold Corp. is a multinational company that collects and processes weather data all over the world. They own and operate many small weather stations, sometimes in remote areas where internet service can be limited. To circumvent this issue, the weather stations use an Internet of Things (IoT) messaging protocol to deliver the data. Some of the larger weather stations come withuse a dDoppler radar system that creates image data every few seconds. In addition, the company has just launched their its first satellite into space. This satellite gathers image data from space, which it and constantly sends the data back to earth. When the satellite enters an area without a radio communication connection, the data is queued and transmitted when the satellite establishes a new connection. The data is then sold to weather services, which use it to create local weather forecasts and reports.
Hot&Cold Corp. is now trying to grow their its services and would like to connect 3rd third-party weather stations and satellites to their its platform. They have hired you to get their data systems ready for 3rd third-party data entry. The project lead has asked you to create an overview over of data volume, velocity, variety, and veracity. Which data is are structured, semi-structured, or unstructured? Which are sensible data types to assign to temperature values, wind speed, precipitation information, and comments entered by local staff at large stations? How would you store image information from doppler Doppler radar systems? Can you identify any possible threats that may lead to data corruption?
The data needs to be stored in an appropriate database. In this unit, ask yourself whether the data will conform to a predefined dataset, then pick a relational or a document-based database.
1.1 The 4Vs of dData: vVolume, vVelocity, vVariety, and vVeracity	Comment by Sarica, Oezlem: Please do not edit subunit numberings (e.g., 1.1, 1.2 ...). You can edit subheadings if there are typos or minor issues. You can also edit capitalization. Please do not make any content-related changes.	Comment by GMP: Note that the most common usage is "4 Vs" followed by "Four Vs". "4Vs" is seen but is less common.
The 4Vs of data can be described as the characteristics of B”big Ddata”. They describe how much data is stored, how fast it can be accessed, what kind of data is stored, and the quality and accuracy of big the data (Kitchin & McArdle, 2016).
The following figure visualizes these characteristics, which are then discussed in detail in the followingremainder of this section.
Figure 1: Characteristics of Big Data (Robert Horrion, 2022), based on (John & Misra, 2017)	Comment by Sarica, Oezlem: Graphics titles (or texts in graphics) do not need to be edited (our in-house editors take care of those).	Comment by Sarica, Oezlem: Please edit tables that are Word tables
[image:]

Volume
The volume represents the size of the data that is stored and available for access and processing. Data-intensive applications have found their way into all of our everyday lives and the data volume available on servers worldwide grows with breath-takingbreathtaking speed. Units commonly used to measure the volume are gigabytes, terabytes, and petabytes. In some cases, such large amounts of data can be stored that the required measurement surpasses petabytes. We truly live in the ‘Data Age’ or ‘Data Revolution’ (Kitchin, 2021). Since a single server can currently handle a data volume of up to around one Petabyte, any dataset larger than that needs to be stored on a distributed system. There are other reasons why a dataset would need to be stored on a distributed system before reaching a critical volume size. 	Comment by Sarica, Oezlem: Words/phrases that are in the margin textboxes are bolded in the text. In the textboxes themselves, the words/phrases are bolded (sentence-style capitalization), followed by a non-bold definition. 	Comment by Sarica, Oezlem: The definition in the textbox must be written as a complete sentence. The definition cannot begin with the term itself (although using “A …” or “The …” before the term is acceptable).

Example: If the bold title words are "Independent variables," then the definition can start with “These are variables that…” but cannot start with “Independent variables are….”	Comment by GMP: If you are going to discuss these other reasons later, it might be a good idea to say so at the end of this sentence. If you aren't going to discuss them later, I would at least list a few here so the expectation built by the sentence is satisfied.Volume vs velocity in units
When measuring data volume, GB or Gb is used as a unit. Velocity is measured in GBps or Gbps. Be careful not to mix up the different units.

When dealing with a database, the following units are commonly used to describe the volume:
Table 1: vVolume uUnits (Robert Horrion, 2022)	Comment by GMP: Perhaps consider using 1000 as the multiple rather than 1024 with a caveat explaining why some use one or the other. Using 1000 will aid future arithmetic, e.g., in the Transfer Speed section where it is stated 1 Gigabit/s = 125 Megabyte/s.
	Unit
	Abbreviation
	Storage space

	Byte
	B
	8 bits

	Kilobyte
	KB
	1024 bytes

	Megabyte
	MB
	1024 KB

	Gigabyte
	GB
	1024 MB

	Terabyte
	TB
	1024 GB

	Petabyte
	PB
	1024 TB

	Exabyte
	EB
	1024 PB

	Zettabyte
	ZB
	1024 EB

	Yottabyte
	YB
	1024 ZB

Data volume can both be described in both bytes and bits. As shown in Table 1: vVolume uUnits (Robert Horrion, 2022), one byte contains 8 eight bits. Note the following expression for the giga- variant of bits and bytes:
· GB = Gigabyte
· Gb = Gigabit
When comparing the giga- variant of bits and bytes, the differences in storage size for the two units are easy to see:
[Formel]	Comment by GMP: Missing formula/table/graphic
Velocity
Velocity describes how fast data can be stored and accessed in a database. Modern big data systems are designed to handle high volumes of data quickly. There are a number ofSeveral different factors that need to be considered to describewhen describing velocity:
· Ttransfer speed
· Rresponse time
· Bbatch Pprocessing (concept)
· Mmessages (concept)
· Ddata stream (concept)
· Eeventual consistency (concept)
Transfer speed
Transfer speed provides a measure of how much data is transferred for each time unit, usually measured in seconds. Seconds are most commonly used as time units. The resulting unit is bits per second, . dDetails can be found in the table below.
Table 2: tTransfer sSpeed uUnits (Robert Horrion, 2022)
	Unit
	Abbreviation

	Bits per second
	b/s or Bps

	Kilobits per second
	Kb/s or Kbps

	Megabits per second
	Mb/s or Mbps

	Gigabits per second
	Gb/s or Gbps

When enough data is are transferred to or from a server, the slowest component of the server, usually the disk that the data is stored on, will reach its transfer speed limit. When this happens, the workload can be accelerated by implementing a distributed system. In this case, data isare written to many servers across a server pool. Therefore, the load is split, which results in an elevated data throughput capacity. Hence, distributed systems are a necessity in high throughput environments. 	Comment by GMP: Is it not so much when enough data is transferred (which is a Volume limitation), but a sufficiently high data transfer rate that we are concerned about here (as we are in the Velocity section)? I might suggest "When a sufficiently high data transfer rate is achieved, the slowest component of the server, …".
As with volume, transfer speeds can be measured in Gigabyte gigabytes per second (GBps) or Gigabits gigabits per second (Gbps). The following equation is valid when transferring data: 	Comment by GMP: Isn't time equal to volume divided by the speed? Regardless, the box is titled Transfer speed and references "transfer speed" in the text, but we seem to be defining "transfer time". I might suggest we don't need a definition box since the section itself is defining transfer speed.Transfer speed
Volume multiplied by velocity results in the time needed to store or access data.

[bookmark: _Hlk106957745]

Response time
In addition to transfer rate, response time represents is an important factor inmetric when considering velocity. Response time describes the time it takes for a database to respond to an access or storage request. This is typically measured in milliseconds (ms). System load, the hardware used, and the number of nodes in a distributed system, etc. are all factors affecting response time.
Batch processing
Batch processing represents the concept of collecting a certain amount of data, then processing it in batches. Batches can be of a predefined or fixed size. Batch processing can improve performance by processing many smaller data sets all at once, but it also bears the potential of overloading even a large distributed system, if many simultaneous batch processing requests lead to a peak in database access. This is usually data of low velocity since systems arbitrarily wait to process data until a batch is present, e.g.for example when scheduling over-nightovernight or weekly processing, or once a week etc. (Kleppmann, 2017). 	Comment by GMP: "Predefined" implies "fixed", so perhaps it might be clearer to say that batches can be of variable (algorithmically determined) or fixed (predefined) size.	Comment by GMP: It may be unclear initially that you are characterising data as low or high velocity for each type of processing, so the first time around maybe instead of saying "This…" it might be helpful to say something like "Batch processing is usually associated with data of low velocity…" .

Messages
Messages are a useful means of transmitting data in Internet of Things (IoT) applications before the data is are ingested into database systems. Messaging systems come withhave a queue to offer support for scenarios where an internet connection cannot be assumed to be stable. If an IoT device sending data to a backend through a messaging system goes offline, newly accumulated data is added to the queue, where it is stored until the device comes back online. The queue is then sent to the backend based on the first-in, first-out (FIFO) methodology. This may result in a large number ofmany messages reaching the backend at the same time, in case of the resolution ofas, for example, when a widespread internet outages is resolved. This can be data of low velocity if the message remains in the queue for a while due to connection issues. In other scenarios where a stable connection is provided, this can be data of high velocity (Kleppmann, 2017). 	Comment by GMP: Should there be a definition box for "backend"?
Data streaming
Data streaming is used when a constant stream of data is delivered by an application or a device. A data stream can be thought of as data that is are continuously delivered through a pipe or a conveyor belt and that needs to be processed and stored accordingly. This kind of data is therefore usually processed in real -time. Examples include monitoring systems, such as industrial applications and health systems, where biodata is are streamed and processed in real -time. Since this is a real -time scenario, this data can be classified as high velocity (Kleppmann, 2017).
Eventual consistency
For large, distributed database systems, eventual consistency provides is an important concept part of improving database read and write performance. It also ensures better availability of distributed systems. When eventual consistency is applied, the data is are initially written to just one node, then replicated across others. Due to this conceptAs a result, data can’t be assumed to be present or up -to -date in a distributed database system where eventual consistency is applied. The opposite of eventual consistency is known as strong consistency. Better read and write performance in systems with eventual consistency stems from the fact that when strong consistency is applied, the data needs not having to be written or read from all nodes at the same time to ensure the data is are present on all nodes. Better availability in systems with eventual consistency stems from the fact that when strong consistency is applied, the data can’t being able to replicate to every node when a technical failure occurs (Kleppmann, 2017). The tradeoff between decision to use either eventual and or strong consistency needs to be made for each application of distributed database systems and depends on individual factors.
Variety
Data variety describes the different types of data present in big data. Structured, semi-structured, and unstructured data all make up the field of Bbig Ddata. Structured data conforms to a schema (e.g., defined columns and datatype) and can be stored in a relational database. Examples include just a snippeda small sample of text or a single numeric value. A large set of characters or numeric values can also be structured data. Semi-structured data is are data that doesn’t conform to a schema but contains some structure. HTML is an example of semi-structured data; it contains structure, but the structure doesn’t conform to a schema. Each HTML page contains different tags. Unstructured data doesn’t contain any structure and isare therefore stored as a binary file. Examples include images, videos, and audio (John & Misra, 2017).
Examples of different types of data that can all be categorized into structured, semi-structured, and unstructured data include:
· Ssingle numeric values
· Llarge arrays of numeric values
· Ddata streams
· Mmessages (IoT)
· Ttext
· Mmetadata
· Pphotos
· Vvideos
· Aaudio
· 3D models
· Ddocuments (HTML, JSON, XML, etc.)
· etc.

Some of these examples are stored as raw data inside of database systems, others are of a semi-structured or unstructured nature and have a certain file type, thus can be saved in a file system as an individual file. Each individual file contains a filename extension that points outindicates how the computer system should to handle the file contexts by a computer system. Some examples include .html files for webpages, .mp4 files for video, and .wav files for audio.
Veracity
Veracity is a more recent addition to the 3Vs. The term describes the quality and accuracy of data. It can also be described as the certainty of data. (Kitchin & McArdle, 2016) Data may be inconsistent if a failing sensor is providing data with missing sections. Without any checks, this might go unnoticed and can could have severe consequences. In other scenarios, such as when dealing with parsed data originating from a social network, data might be biased or even misleading through the spread of false information, also referred to as ‘fake news’.
Veracity provides a characteristic to classify data into as being reliable or not. Not all cases of unreliable or incomplete data can be fixed after the data has have been collected.
A list of potential veracity issues includes data that isare…
· Iinconsistent
· Uuntrusted
· Rraw/ or uncleansed
· Bbiased
· Iincomplete
· etc.
Data of good veracity is are required as a decision-making basis and is are therefore very important to the data science field.
In addition to this concept of Bbig Ddata being composed of the 4 Vs, there are numerous other definitions, including the 7 Vs or 10 Vs, where also variability, exhaustivity, fine-grained, and relationality are also considered aspects amongst others (Kitchin & McArdle, 2016)

Self-Check Questions	Comment by Sarica, Oezlem: Self-Check Questions are found at the end of every section. Please do not change the underlining/italics in Self-Check Questions (these indicate the correct answer(s)).
1. Please list three example data types to point out variety.
Single numeric values
Large arrays of numeric values
Data streams
Messages (IoT)
Text
Metadata
Photos
Videos
Audio
3D models
Documents (HTML, JSON, XML, etc.)

2. Please mark the correct statement(s).
· GB represents the unit used to measure transfer speed.
· Gb represents the unit used to measure transfer speed.
· Gbps represents the unit used to measure transfer speed.

3. Please complete the following sentence.
Volume multiplied by velocity results in the time needed to store or access data. 	Comment by GMP: My apologies if I've misunderstood this, but please check this. I mentioned it above, but I believe that time is actually volume divided by velocity (or speed). GB * GB/s does not yield a time-based unit, it yields another rate ((GB^2)/s); however, GB / (GB/s) = s.

1.2 Data Sources
Data comes in many forms as described in the previous section. Each form of data can have one or multiple sources. It is either generated by humans or by machines and can therefore come in different formats. The extract, transform, load (ETL) process was introduced in the 1970s and represents the process of loading data into a database system. Therefore, the ETL process describes how data is are stored in a database and is the first step when dealing with data that is are to be processed by a Bbig Ddata system (Zhang, Porwal, & Eaton, 2020). During the extract step, data is are retrieved from the source. The transform step represents the act of cleansing data to establish consistency. During the load step, data is are written to the target database system.
This section will cover the different sources of data and will guide you through an example of how data can be mined. A selection of primary Bbig Ddata sources includes social media data, machine data, transactional data, CT Imaging data, and geospatial data in Geographic Information Systems (GIS) (Luntovskyy & Globa, 2019). These primary Bbig Ddata sources will be further discussed in this section. Data Mining
Data Mining is defined asThis is the process of finding, extracting, and processing data. The process is vital when dealing with Bbig Ddata sources since it provides insights into the patterns present in the datae, and hence thus provides the motivation to store large amounts of data.

Social Media Data
The internet was founded on the principle of communication. Early applications required users to be skilled in certain technologies, such as writing HTML pages. The advent of social media allowed users to share data with other users, often termed “friends” or “connections” by the commercial platforms. Shareable data commonly includes multimedia files, such as photos and videos, as well as text data and often polls. In addition to just storing and displaying the data in question, these platforms also often enable users to restrict access to posts to smaller groups of users, such as their friends. Data present on these platforms is are usually generated and submitted for storage by humans, although bots have provided a growing source of data on these platforms in recent years. You will be introduced in-depth to the concepts of structured, semi-structured, and unstructured data in section 1.3, but note that social media data can be structured or unstructured. Since platforms follow a data schema when creating new posts, and the addition of image and video data is possible, this data usually conforms to a schema.
In the context of social media, data velocity is not only important not only since because many users may try to access the same piece of information at once, but also the business model ofbecause these platforms since use time-critical online advertisement is time critical. For example, a news report with an attached video of a ‘breaking news’ situation may be accessed by many users as the situation unfolds. This is achieved through the application of distributed systems.
Currently, the following platforms are amongst the most popular ones:
· Twitter
· Facebook
· Instagram (part of the Facebook company)	Comment by GMP: Do you wish to change this to Meta?
· Snapchat
· TikTok ("Most popular social networks worldwide as of January 2022, ranked by number of monthly active users," 2022)
Twitter provides a popular and valuable data source, since their its network is used by so many people, . aAlmost all of the posts – so so-called tweets – are publicly available and can be searched through the powerful hashtag system. In addition, they provide a developer API that can be polled for information with an API access key.
A note about these social media platforms: Tthe platforms have been used many times for unethical purposes. When using data from these platforms, we should keep in mind to distrust the data as well as to reflect upon the context in which the data was were generated since the primary purpose of these platforms is advertisement.
Tweepy is a Python library that enables easy Twitter API access. Psycopg is a Python library that provides PostgreSQL API access. The two libraries will be used here to retrieve ten tweets created since January 1st, 2020 with a #BigData hashtag created since January 1st 2020 to then store them in a PostgreSQL database. In a real wordreal-world scenario, this process could be used to create an archive of tweets, which could then be processed for further information extraction later on.
First, a database connection to the PostgreSQL database must be established. You should install PostgreSQL beforehand or use an online deployment of the database. To connect to the database the following code can be used (please fill in the parameters for your database).
Connection = psycopg2.connect("“dbname='’database_name'’ \
user='’username'’ host='’hostname'’, \
 password='’password'’"”)

Next, a cursor object needs to be created.
Cursor = connection.cursor()

Now, we create a query to insert data into PostgreSQL.
Insert_query = "“"”"” INSERT INTO bigdata
 (ID, TEXT) VALUES (%s,%s)"”"”"”

The tweets with a relevant hashtag are retrieved from the Twitter API. First, the library needs to authenticate against Twitter’s Oauth service to gain access permission. This is done using the following three lines of code. You can find your user credentials in the Twitter developer'’s dashboard after creating an account there.
Auth = tweepy.OauthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)

The resulting api object can now be used to authenticate any search requests against the API. The message text for each retrieved tweet is queued for storage to in the PostgreSQL database upon retrieval.:
iterate over each Tweet with the specified hashtag
and date
for tweet in tweepy.Cursor(api.search, q="”#BigData"”, \
count=10, lang="”en"”, since "“2020-01-01"”).items():

create a new record with two elements: the tweet
ID and the Tweet text with UTF-8 encoding
new_record = (tweet.id, tweet.text.encode("“utf-8"”))

insert the new record into the PostgreSQL DB
cursor.execute(insert_query, new_record)

After all of the tweets have been loaded and written using the cursor, the new data is committed to the database by executing the following command.
Connection.commit()

Machine Data
In connected industry applications, also referred to as ‘Industry 4.0’, lots ofmuch data is generated. This is often real real-time machine monitoring data reported by sensors represented as numerical values conforming to a schema. The connected industry setting also includes image data that is often captured on conveyor belts when checking products for quality. Therefore, this application includes both structured and unstructured data.
Modern, internet-connected industry machines are categorized as Internet of Things (IoT) devices. As IoT edge devices, they implement a messaging protocol such as MQTT to submit the captured data to a Mmessage Bbroker, that is sometimes referred to as an IoT Hub. Popular options for Message Brokers include RabbitMQ and HiveMQ. The broker then makes the data available to clients, referred to as “subscribers”. The IoT edge devices are also termed ‘publishers’. Therefore, this methodology is referred to as the pub/sub pattern. The publisher and subscriber are never in contact with each other directly and therefore do not need to know be aware of each other. They also do not need to be online at the same time since the Mmessage Bbroker handles the delivery of messages after periods of downtime on the subscriber’s end (Team, 2015). In a Bbig Ddata scenario where machinery data is stored in a database, the subscriber would be a database connector, feeding delivered data into the database.
Refer to the following architecture diagram to understand how the Industry 4.0 with a Mmessaging Bbroker works:
Figure 3: The Pub/Sub pattern (Robert Horrion, 2022)
[image:]
Transactional DataSWIFT
The abbreviation SWIFT stands for Society of Worldwide Interbvank Financial Telecommunications S.S.. It is a payment processing system acting as a messaging service between banks to support inter-bank transactions. Therefore, the payee (the sending party) does not have to use the same bank as the receiving endpayee. SWIFT also provides SWIFT codes as routing information in transactions.

The global financial markets produce a very large amount of mostly numeric data every day. This includes stock market prices at various exchanges around the globe, as well as transaction systems such as SWIFT. With markets being closed for hours each day, there are peaks and valleys in system load. A more recent appearance have been cCrypto currencies that rely on blockchain technologies where each transaction is stored as part of the blockchain are a more recent appearance (Luntovskyy & Globa, 2019). Due to the fact thatSince generated numerical data usually conforms very well to schemas, transactional data can be classified as structured data. There are many open sources for us to use transactional data in our analyses. For example, in Python, we can use the yfinance package that, which allows for straightforward access to stock prices as time series.	Comment by GMP: I believe that "payee" usually designates the person receiving payment, not the person sending it.

CT Imaging Data in Health Care
CT imaging led to a revolution in health care treatment in the early 1980s. It consists of the capture of many X-Ray slices of a patient’s body in rapid succession to generate a 3D model of the body part that is to be imaged (Pai-Dhungat, 2020). Each X-Ray slice contains 2D image data and is saved as a file, therefore this is unstructured data.
Raw data of a CT scan results in about 22MB per uncompressed image file. Assuming 1000 slices are captured, this results in about 22GB of data. For high -resolution scans, the volume may increase to up to 350GB for a single CT scan ("Department of Earth and Environmental Sciences - Frequently Asked Questions,").
Considering that many CT scans may be performed in a single hospital or lab in a single day, this can quickly adds up to many terabytes or even petabytes of data. The calculation of 3D models based on these images requires fast access to the generated files, so Bbig Ddata systems play an important role. The same aspects considerations hold for air-borneairborne or satellite imagery, which that has has basically the same traits as CT imagery, but in addition usually often usess time slices and geospatial references.
Geographic Information Systems dData
Geospatial data in Geographic Information Systems (GIS) presents unique challenges. For example, to determine the closest point in space to a given geospatial object in a database, GIS -specific database extensions are usually needed. PostGIS is available as a PostgreSQL extension to cover such scenarios for PostgreSQL databases ("PostGIS - Spatial and Geographic objects for PostgreSQL,"). Data can either be structured, semi-structured, or unstructured. An example for of structured geospatial data is a simple numerical value for longitude or latitude. Semi-structured data could be present in the form of CSV files containing multiple geo-points and associated attributes, usually stored in so-called attribute tables. Unstructured data is are typically generated in the form of satellite images.
There are many open sources for geospatial data for us to us use in our analyses. In the European Union, for instance, the Infrastructure for Spatial Information in Europe (INSPIRE) is a directive that ensuresensuring that official geospatial data has tomust be public and open for everybody to use (INSPIRE, 2022). The data comes in geospatial data formats, such as Shapefiles, GeoPackages, or GeoTIFFs, or directly as data services in the form of data APIs, such as Web Feature Services (WFS) or Web Map Services (WMS). Also, as an overview of many open data sources for us to use (not only geospatial data), the curated GitHub repository, Our World in Data, is a good starting point (Our World in Data, n. d.).
Self-Check Questions
1. Please complete the following sentence.
Location data is commonly stored in databases using GIS database extensions.
2. Geospatial data in Geographical Information Systems (GIS) data can be…
· Structured
· Semi-Structured
· Unstructured
· None of the above
3. What resource is frequently used as a gateway when sending machine sensor data to a distributed database system?
A Mmessage broker / An IoT Hhub

1.3 Data Types
Big Ddata can be divided into three main data types: structured, semi-structured, and unstructured data. Structured data can be mapped to a schema and can be further given further data types to store it more efficiently and prepare it for machine processing. Unstructured data can’t be mapped to a scheme, instead, it isthey are represented by a single document or file. Semi-structured data doesn’t conform to a predefined schema but do contains some structure. 	Comment by GMP: We should be consistent with our spelling: either data types or datatypes.
When it comes to storing data, the concepts of flat and hierarchical data are very important, too. The flat model is also called the table model and represents the most basic way of storing data in a two-dimensional waytwo dimensions, as in, for example, in a spreadsheet. When data is are stored in a hierarchical model, it they can be presented in a tree-like structure, meaning there are relationships between records.
As earlier discussed, data can be of high or low velocity. When data is are streamed, a constant flow of data is provided. Therefore, the data is are of high velocity. This may be the case in automotive applications when working with sensors, but the weather station scenario provided in the case study at the beginning of this unit provides a good example for streaming data, as well. In contrast, batch processed data is are classified as being of low velocity. The data is are accumulated by a system, then a large amount of data is processed at once. An example for of batch -processed data could be a grocery store supply chain system that checks the current inventory every day after the store closes. It then batch processes the current inventory in an ordering system to order more stock, if the store is running low on certain products.
Also earlier presented, data that originates from geospatial sources is are called geospatial data and needs to be stored in databases with GIS extensions. This These data comes with its their own unique set of challenges, such as determining the closest point of coordinates stored in a database in relationrelative to a provided coordinate. When spatial data is are present in a database, spatial joins can be performed to determine the relationship between datasets. For example, when trying to determine whether a tracked cell phone is within the reception area of a given cell tower, the latitude and longitude of the cell phone’s location are joined with the polygon that represents the cell tower’s coverage area. This will determine whether the phone lies within the coverage area. Since joins are used, this can be performed on relational databases.
 In the following, we look at each of these types in more detail.
Structured Data
Structured Ddata is are typically stored in a Rrelational Ddatabase Mmanagement Ssystem (RDBMS), but can also be stored in NoSQL databases (John & Misra, 2017). Relational databases are made up of tables containing a predefined schema, meaning the structure of the table must be defined before any data is are added to the table. This definition includes data types and a variable name. Data needs to be normalized before being entered into the database. This process is also called data cleansing, i.e., to turning raw data into cleansed data. Both commercial and free solutions exist, with some being open -source, others proprietary. Data in an RDBMS is are typically accessed and manipulated using the query language SQL. Different dialects of SQL exist, these which are custom implementations for different RDBMS. Popular solutions include PostgreSQL, MySQL, and Microsoft SQL Server, amongst many others available on the market. Data Normalization
Data normalizationThis is the process of conforming data to a predefined standard. Normalized data appears similar to other records normalized using the same standard and is are stored in a format that can be processed by machines.

Examples for of structured data include:
· Nnumeric sensor data
· Bbirthdates in a customer database
· Aaddresses
· Nnames
· E-Memail Aaddresses
· Sspatial coordinates
· Pphone numbers
· etc.
In order toTo understand how structured data can be efficiently stored in RDBMS, it is important to understand how data is encoded to be stored in computer systems in general. Strings are usually encoded in UTF-8 or ASCII, with the former offering full support for Unicode characters. These characters are encoded into sequences of 8-bit bytes (Kilbourne & Williams, 2003).
To understand how this works, let us see how integer values are encoded in binary to store themso they can be stored in a computer system, including databases. When encoding a decimal integer in binary, each position in the bitstring holds a defined value:
Table 1: Binary eEncoding vValues for an 8-bit iInteger (Robert Horrion, 2022)
	Index
	Value

	1
	128

	2
	64

	3
	32

	4
	16

	5
	8

	6
	4

	7
	2

	8
	1

For example, the decimal value 11 is encoded as an 8-bit integer as follows:
11=00001011

This encoding schema results in a maximum supported value of 255 for 8-bit integers.
Floating -point values are by definition susceptible to floating -point error when processed by a machine. Since computer systems are only able to store and process a finite length of bits that represent a fractional numeric value, some values may need to be rounded. When rounding occurs, the numeric value is necessarily modified. Performing arithmetic on such rounded numbers can then escalate the rounding error into a considerable and noticeable error (Goldberg, 1991). This is a potential problem when dealing with mission -critical systems, for examplesuch as in the financial industry or early alert systems for hazards.
Programming languages commonly assign data types to variables. For some languages such as Python, this happens automatically. Starting with version 3.5, Python offers type hints when defining variables to point out the data type to a programmer ("typing — Support for type hints," 2022). Data types can be added to Python variables as follows:
temperature: float = 26.8

Other programming languages, such as Java, require data types to be set when a new variable is defined.
Each RDBMS comes with its own set of available data types. For this course, PostgreSQL is picked chosen as a popular RDBMS and looked atexamined on a more detailed level. You will find other systems in the field; it is important to familiarize yourself with each system and its available data types before you start working with the system in a development or production scenario.

PostgreSQL stores strings of different lengths with variable storage consumption, depending on the string in a text data type.
Integer values are stored in a 4-byte length format. Multiple formats to store floating -point numbers are available with double taking uprequiring 8 eight bytes to store a single value. The decimal data type offers variable lengths, allowing us, for example, to minimize the risk of floating -point error if we chose an appropriate length.
Bool values, in theory, take up one bit of storage, however, in the PostgreSQL implementation one byte is consumed required to store a single Boolean value. Bool values can only contain true or false information. Under the hood, this These isare stored as zeros (false) and ones (true).
Date values are stored in YYYY-MM-DD format, are ISO 8601 syntax compliant, and consume 4 four bytes for each date stored. To prevent the floating-point errors from becoming a problem in critical financial applications such as ones of financial nature, PostgreSQL offers a money data type that ensures a the correct storage of monetary values.
PostgreSQL offers special data types for some specific scenarios, as well.
The following table provides an overview over of a selection of important and frequently used data types available in PostgreSQL ("Chapter 8. Data Types,", n.d.).
Table 2: A sSelection of iImportant dData tTypes bBased on the PostgreSQL dDocumentation (Robert Horrion, 2022), based on (“Chapter 8. Data Types”)
	A sSelection of iImportant dData tTypes bBased on the PostgreSQL dDocumentation

	Data Type
	Stored Data
	Example
	Storage Size

	integer
	An integer
	1500
	4 bytes

	double precision
	Floating-point numeric value with up to 15 decimal points precision (small floating-point values)
	1.456
	8 bytes

	decimal
	Floating-point numeric value with user -specified precision (large floating-point values)
	5.74656637373736465675
88271629725465786
	variable

	char
	A single character
	b
	1 byte

	bool
	True or false
	true
	1 byte

	text
	Unlimited length string
	“Hello, how are you?”
	Up to 1GB

	date
	Date in YYYY-MM-DD format (ISO 8601 syntax)
	2006-06-09
	4 bytes

Special data types
PostgreSQL offers some very specific data types to storefor storing information such as geodata (coordinates), IP Addresses, UUIDs, CIDR notation for IPv4 and IPv6 network specification and MAC addresses.

Data type classification and normalization is are not only important to efficiently store and find values in a database, but also for many automated processing tasks such as data science applications, that train on or evaluate large numeric datasets.

Semi-structured Data
Semi-structured data represents are data that doesn’t don’t conform to a data schema but do contains some structure (John & Misra, 2017). Classic examples include JSON, where each JSON document can have a different structure when compared withfrom other JSON documents. The same is true for HTML files and other examples listed below (note that each of these examples can be structured or semi-structured depending on how the data are stored in the respective files):
· HTML files
· CSV files
· E-Mailsemails
· Zzip files
· Extensible Markup Language (XML) files	Comment by GMP: As you used HTML and CSV without expansion, I would argue you could do the same with XML and JSON.
· JavaScript Object Notation (JSON) files
· Ffiles written in mMarkdown language	Comment by GMP: I assume you meant specifically "Markdown", which is a proper noun so should be capitalized. If you wanted to generalize, I would suggest something like "files written in a markup language", but then that would include XML, JSON, and HTML, so would be redundant and unecessary.
·
· etc.
Storing scraped HTML data in databases comes with its own set of challenges. Such data can be stored in a NoSQL database, as well as a SQL database. However, SQL databases are prone to SQL injection attacks, where a hacker is able tocan manipulate, access, or delete data in a database that they shouldn’t have access to by attempting to store a SQL request. Due to the fact thatBecause such requests can be embedded in HTML data, storing scraped HTML data in a SQL database can expose the system to SQL injection attacks ("SQL Injection", n.d.). Security measures need to be implemented to prevent such attacks. Optionally, a NoSQL database can be used to store HTML data as semi-structured data. 	Comment by GMP: Should you have a definition box for data scraping?

Unstructured Data
Data that is neither structured nor semi-structured is are called unstructured data. This type of data does not conform to a schema and contains no structure that is recognizable across files (John & Misra, 2017).
Examples of unstructured data include:
· Iimage data
· Vvideo
· Aaudio
· Bbinaries
· etc.
In these cases, relational databases will not do the jobwork. This is one of the reasons why so-called NoSQL databases were developed. For example, the NoSQL databases 	Comment by GMP: I might use this opportunity to explain why a relational db won't work for unstructured data. I'm also not sure we've actually defined a NoSQL database yet.
MongoDB or Cassandra are popular database choices when it comes tofor storing semi-structured and unstructured data. MongoDB represents is a document-oriented DBdatabase, in which each entry in the database is stored as a document, such as a JSON file ("How is Unstructured Data Used in a Database?," 2021). Documents are grouped in collections.; cCollectionscollections, which can be searched for individual attributes in the documents they hold. MongoDB, for instance, specifically adopts uses BSON, a form of JSON, to structure the stored documents ("JSON and BSON," 2021). It is beyond the scope of this section to go into details about NoSQL, but this should give you an idea of what these exciting technologies can be used for.	Comment by GMP: Did you mean exciting? I'm not convinced this last sentence is needed, actually. I would recommend deleting it.

Concepts of sStoring sSemi-structured or uUnstructured dData in a dDatabase
Unstructured data can be stored as a Bbinary Llarge Oobject (BLOB) or as a file in a file system. If the file is stored in a file system, a reference to the file and its path needs to be created and updated every time changes to the file or its location are made. BLOBs can be stored in relational databases like PostgreSQL and in NoSQL databases such as MongoDB. The concept is depicted in Figure 1: Storing binary data in a database 1: Storing binary data in a database. BLOBs are defined by the SQL standard and represent a way to store binary files in an RDBMS. However, PostgreSQL doesn’t implement BLOBs. Instead, bytea it isthey are implemented as a similar file binary storage solution. MongoDB offers GridFS as a specification to store files larger than 16MB ("GridFS," 2021).

Figure 1: Storing binary data in a database (Robert Horrion, 2022)
[image:]
The figure shows how a reference to a file in a file system needs to be created and updated when the storage location changes. The left hand side shows how data is stored as a BLOB – without an external reference. The reference as shown in the file system storage implementation provides a breeding ground for problems since it can be difficult to keep up with location changes in the file system. Therefore, a benefit to using BLOBs to store files in a database is that only one datapoint – the actual database record – needs to be updated when the file is changed. This keeps the storage solution simpler and is less prone to errors. GridFS offers support for an unlimited number of files. In addition, it is also able to speed up access to a file by only reading part of it.

Access and mManipulate dData in a MongoDB uUsing PythonPython
Some scenarios require a large number ofmany emails to be stored in a database for quick access. This might be a database for a Ddata Sscience experiment that uses emails as a training set (for instance to learn the distinction between spam mails and legitimate ones). In a later step of the project, the Ddata Sscience team will also use the E-Memail attachments, so, so they are to be retained. As such, the E-Memail messages are to be classified as semi-structured data. Therefore, MongoDB represents a useful storage solution. The following PythonpPython code connects to and adds a single E-Memail and adds it to a MongoDB in the form of a document. This process can be turned into a script and repeated indefinitely to accumulate a large dataset of E-Memails in the collection. The PpythonPython library pymongo is used to access and manipulate data in a MongoDB (Walters, 2017).

First, the MongoClient instance is created, which tells the library where the MongoDB installation can be reached.: .
from pymongo import MongoClient
client = MongoClient('<<MongoDB URL>>’)

Then a database object has tomust be created to reference the database.: .
database = client.emails

Next, we create the document. This is achieved by creating as a JSON document in code. Note that the attachments are inserted as subdocuments.
Figure 2: Figure 2: JSON representation of an email message to be stored in MongoDB (Robert Horrion, 2022)
[image:]

The created email_message document can then be saved to the database.: .
saved = database.emaildata.insert_one(email_message)

Locating all records where a document attribute matches a searched term is now straightforward. The following line of code will return all emails sent to the address “example@iu.org”.: ”.
example_author = database.emaildata.find({'to_line': 'example@iu.org'})

Just as all locating all documents where a given parameter matches is easy, it is trivial to delete such records, as well. The following line of code will delete all E-Memails sent to “example@iu.org” from the database.:.
deleted = database.emaildata.delete_many({'to_line': 'example@iu.org'})

Self-Check Questions
1. You need to store 1000 messages of up to 500 words each in a database. Which would you choose to store the data most efficiently if you would like to join the data with other tables in your everyday usage of it?
· PostgreSQL
· MongoDB
· Cassandra
2. Please complete the following sentence.
RDBMS are prone to SQL injection attacks.
3. What’s What is the best data type to store the age of a person most efficiently in a PostgreSQL database? For example, for an eight-year-old person, the value is provided as follows: 8
· double precision
· integer
· text

Summary
Big Ddata is defined by the creation, storage, and computation of huge amounts of data. This data frequently needs to be stored in distributed systems that are capable of handlingcan handle a very large number of parallel read and write requests. Data is are stored either in Rrelational Ddatabase Mmanagement Ssystems (RDBMS) or NoSQL databases. Document-based databases represent one of the available NoSQL databases and are more closely described in this unit.
The 4Vs represent the characteristics of big data: volume, velocity, variety, and veracity. Volume describes how much data is present. The units most commonly used to measure volume is are bytes, kilobytes, megabytes, and so on. Velocity describes the speed at which data is stored in or read from a database system. This includes transfer speed, which is most commonly measured in bits per second (b/s), kilobits per second (kb/s), megabits per second (mb/s), and so on. Another important descriptor for velocity is response time, which specifies the time until a response is provided upon querying the database. Batch processing, messages, data streaming, and eventual consistency are all represent important concepts in relation torelated to velocity. Variety characterizes the different types of data present in Bbig Ddata systems. Data may be structured, semi-structured, or unstructured. Structured data conforms to a schema and can be saved without a file format. This kind ofThese data typically includes numerical values and raw text. Semi-structured data contains some structure; unstructured data does not contain any structure and can be saved in a file format as an individual file. Examples for of unstructured data include photos, videos, and audio. Veracity describes the quality and accuracy of data and may also be described as the certainty of data. It provides a measure for of how inconsistent, untrusted, raw/uncleansed, biased, and incomplete data may be.
Data is are either generated by humans or by machines and can be mined. Important sources of Bbig Ddata are social networks, with Twitter being an excellent data source due to its very open and public nature. Other important sources include machine data, transactional data, CT imaging data in Hhealth Ccare, and Gglobal Iinformation Ssystems (GIS). Some data sources, such as CT imaging, are limited to unstructured data by nature, others can include multiple data types, and yet others require database extensions, such as GIS data.
PostgreSQL is a popular RDBMS for storing structured data. Some kinds of data come with a special set of challenges and require their own data types. PostgreSQL offers special data types for financial values of financial nature, IP Addresses, MAC Adressesaddresses, UUIDs, and CIDR notifications. The document-based database MongoDB can handle the storage ofstore semi-structured and unstructured data very well. Unstructured data may also be saved as files in a file system. Data needs tomust be normalized when it is stored in a database; . tThis involves conforming it requires ensuring the data conform to a standard.	Comment by GMP: Will your audience benefit from having any of these acronyms expanded? They previously only appear in a definition box, where they are also unexpanded.

Unit 3 – NoSQL dData sStores 	Comment by GMP: I don't think there is a Unit 2?	Comment by GMP: Note that there are multiple instances of both "data store" and "datastore" throughout. I would recommend choosing one and being consistent across the entire document. Both are acceptable, with "data store" being slightly more frequently used.

Study Goals

On completion of this unit, you will be able to

… describe the relational and non-relational data models
… explain how and why the NoSQL databases emerged
… classify the different storage solutions used in NoSQL databases
… practically use several NoSQL databases

3. NoSQL dData sStores
Case Study
Imagine that you have been assigned with the task to of designing and implementing a data- system for a travel agency. Amongst other requirements, this system should include a database for storing and printing the information of associated with purchased ticketsand printing them out. The tickets contain passenger's information and the flight itinerary (flights) a the simple in the format as shown below.
Sample ticket printout (Source: Wannous, 2022)
[image:]
The database handles the following entities ‘ticket’, ‘airline’, and ‘flight’, as shown in the following figure. We will name this database TicketDB. We will consider that a ticket is for one passenger, and it may involve several flights. On the other hand, a flight serves several passengers and is operated by one airline company. 	Comment by GMP: Editing instructions are to use quotes vs. italics.
The relational data model for TicketDB (Source: Wannous, 2022)
[image:]

During the course of In this unit, we will learn that this is a use case for which a NoSQL database might be a good choice.

 The term 'NoSQL' (Non-SQL or Not-only-SQL) is commonly used when referring to a collection of database- engines/data- stores that do not use the relational model for organizing data.Database engine
The This is the software that a database management system (DBMS) uses to manage data (create, read, update, and delete).

Several factors have contributed to the spread of NoSQL, like its dynamic schema, greater scalability, cost-effectiveness, and speed. NoSQL database engines have been increasingly used since their introduction during the transition period between the 20th and the 21st centuries; nevertheless, NoSQL has not succeeded in changing the dominance of the relational database engines in the market.
NoSQL engines manage data in one of four primary models that we will see laterslater. The selection of a suitable data model and, consequently, the NoSQL database engine for a specific project depends on the scenario and data dynamics.
3.1 Introduction and mMotivation
Three basic data models appeared during the last 30 years of the 20th century: 1) the hierarchical model, 2) the network model, and 3) the relational model. The relational model gained attraction traction and has dominated the database market until this writing. In the following, we will briefly discuss all three basic data models.
The hHierarchical mModel
The hierarchical model organizes data in a tree of records nested within records; , so that under each record (parent) come are its children records. IBM's The popular 1970s database engine in the 1970s IBM's Information Management System (IMS), adopted this model (IBM, 2021).
The hierarchy for TicketDB can be as seen in the following figure for TicketDB.
The hierarchical data model (Wannous, 2022, based on IBM, 2021)
[image:]
In this example, the root record 'Ticket' has two children, 'Passenger' and 'Itinerary,' and the record 'Itinerary' is the parent of 'Flight’. One 'Ticket' may contain several 'Flights’,' representing a one-to-many relationship.
The ‘hierarchical’ data model performed well with one-to-many relationships. Still, it wasn't easy to adopt many-to-many relationships (for example, a flight can accommodate several passengers, and a passenger may reserve a multi-flight ticket). Software developers had to handle account for this type of relationship in the application code, making the development process more difficult.
The nNetwork mModel
The network model appeared as a generalization of the hierarchical model (Hainaut, 2009). A node may have multiple parent nodes in the network model, which addresses the many-to-many relationship issue of the hierarchical model.
The network data model can be as seen in the following figure for TicketDB.
The network data model (Wannous, 2022)
[image:]

The figure shows one configuration where a single ticket can incorporate flights from different companies, and a single airline company may serve tickets to multiple passengers.
The way to access a node in a network model was to follow a path (called the access path) from a root node through a series of other nodes while checking the matching condition. Imagine a case where a developer wants to find the tickets purchased from airline co.1. It was would have been necessary to scan all nodes while keeping the path information for a possible matching until finding the specific airline company and then adding the path to the results before seeing the rest of the parents.
The network data model is simple to understand and design as it involves only nodes and the links between them (although this can become complex for a large number of nodes, edges, and relationships between them). In the following section, we will come to knowlearn about graphs, which are the building block for a type of NoSQL database. Graphs are also composed of nodes and the links between them, but with additional attributes that can be assigned to both.
The rRelational mModel
The relational model places all data in tables, which are simple structures comprising rows, with each row having a set of attributes (columns) (IBM Cloud Education, 2019). It negates the need for nested structures and simplifies the various data manipulation operations via the SQL interface.
The relational model can be as seen in the figure below for our simple database, TicketDB. The figure shows an additional table, 'Flight_Ticket,' added to realize the many-to-many relationship between the Ticket and the Flight tables. One-to-many relationships are implemented by inserting foreign keys in the child tables to point to the primary keys in their parent tables.Primary key
A This is a column (or a set of columns) in a table that uniquely identifies a row in a table.

Relational Ddatabase Mmanagement Ssystems (RDMS) impose several rules on the values stored in the database and strictly apply these rules to ensure data consistency. Every table has a schema against which data values are validated and constraints are checked before writing them in it.Foreign key
This is aA column (or a set of columns) in a table that links (refers) to a column in another table in a relational database.

Altering the schema after data has been inserted into the table could be tedious and time-consuming and might fail in some cases. Still, altering the schema is necessary for many situations as new rules/policies exist are created all the time. For example, authorities might require adding an emergency contact to every passenger's record, which requires would require changing the schema of the table 'Passenger' to accommodate a new attribute, 'emergency_contact.'. While it is acceptable to have the attribute for the new records, existing rows in the table don't have it, and this might be an issue if the feature can't be allowed to be empty (NULL).Table schema
The This is the definition of a table that, which includes its name and its attributes' names, data types, and constraints.

The Rise of NoSQL
Several driving forces led to the birth of NoSQL in the early 2000s. Many appeared in the software development process, while others came from the database field (Stonebraker, 2010).
The tight and inflexible schema in the relational model, issues with the mapping between an object in Oobject-Ooriented Pprogramming (OOP) and the column values in a table, limited scalability options, and the expensive operations to join tables are some of these factors.
Consider the case where a developer needs to fetch retrieve the information of a specific ticket and display it on the user's screen from the TicketDB. A query involving several joins is required to collect all the information.
SELECT …
FROM `Flight_Ticket` LEFT JOIN `Ticket` ON …
LEFT JOIN `Flight` ON …
LEFT JOIN `Airline` ON …
WHERE `ticket_no`=…;

As the database size increases, handling the information stored in it becomes heavier, and scalability comes into focus. Consider a small airline company that operates tens of flights a per day. It is manageable to add new flights, and add their related tickets go into the database. But for a large airline company serving hundreds of flights per day, adding new unique records constantly appear in large volumes to the other tables for a large airline company serving hundreds of flights a day is a severe issue. Individual records should go into indexes, and they will appear as foreign keys in other tables. You might argue that we can could break the 'Flight' table to make part of it constant (flight_no, from, etc.), but this would means that a new table would appears in the query involving the join procedure.Index
This is a lookup table for quickly finding rows that users frequently search.

NoSQL emerged with a promise to address the weaknesses of the relational model, especially its inflexibility and scalability (especially most notably horizontal scalability). AlsoAdditionally, as since large volumes of data are required tomust be analyzed with high speed in data analysis applications, NoSQL was also aimed at addressessing this issue.
A document representing a ticket inside our ticketing example might look something as belowlike this:
{
 "ticket_no": 1234,
 "passenger_name": "John SMITH",
 "passenger_age": 46,
 "passenger_gender": "Male",
 "Flights": [
 {
 "flight_no": "JL12345",
 "from": "Osaka",
 "to": "Dubai",
 "airline": "JAL",
 "date_time": "25.3.2022 16:00"
 },
 {
 "flight_no": "FD123",
 "from": "Dubai",
 "to": "Frankfurt",
 "airline": "FlyDubai",
 "date_time": "26.3.2022 16:00"
 }
]
 }
It is clear that theThe record, formatted in JSON, contains all the information needed formatted in JSON. This record can be fetched in one read operation and converted to an OOP object or even transmitted as a string directly. The record structure is not static (flexible schema); it can be determined upon reading it from the database. Records of different components are allowed (a ticket with the departure and arrival date/time, for example), unlike in the case of relational databases.
Horizontal scaling
Adding This refes to adding more machines to the infrastructure to cope with the increased demand.

NoSQL stores data similarly to the hierarchical data model, i.e., records are enclosed inside records rather than in tables. One of its essential differences from the relational data model is that a NoSQL record is self-contained, which makes it possible to split the database among a number ofseveral servers, if necessary, to balance the load and scale vertically and/or horizontally.
NoSQL can handle data workloads that require rapid processing and analysis of huge amounts of varied and unstructured data because of its schema flexibility.Vertical scaling
Adding This refers to adding resources to a single machine or server to cope with the increased demand.

Self-Check Questions
1. What is true about the network data model?
· The network data model simplifies many-to-many relationships implementation.
· The network data model stores data in tables linked via keys.
· In the network data model, a record/node has one parent at most.
· It is possible to access a child record/node without going through its parent.

2. What is true about NoSQL?
· NoSQL database engines use tables to store data.
· NoSQL has wholly replaced the relational data model.
· NoSQL servers scale very well horizontally.
· NoSQL engines implement strict checking of the schema before writing data.

3.2 Approaches and tTechnical cConcepts
NoSQL databases hold the capability to handle a massive volume of quickly changing data (Microsoft, 2022). They also support developers working in agile environments where unplanned situations are frequent.
Based on their storage and data models, the research community, as well as database developers and provideers, subsume the many different flavors of NoSQL databases under four main categories (Gourav Bathla, 2018) (Microsoft, 2022):
· Kkey-value datastore
· Ddocument datastore
· Ccolumnar datastore
· Ggraph datastore
The categories are different in many arespects, and each one addresses different aspects and requirements of certain use cases. But, as different as the many NoSQL databases might be, they share the common characteristic that they areof being fundamentally different from relational databases in one of more aspects.
Key-value dDatastore
Key-value datastores associate values (of primitive and complex types) to keys, similar to a dictionary/hashmap implementation in several programming languages (Microsoft, 2022) (Gourav Bathla, 2018). The keys in the datastore are unique and don't repeat, while the data values do can repeat, (if necessary). Key-value databases are compact and have efficient index structures to locate a value quickly and reliably locate a value using its key. They are ideal for systems that do simple lookups, like the modules that handle application preferences and user profiles. They are not a good choice if a schema is necessary.Hashmap
This is a structure that stores several entries in which a value is mapped to a key.

Key-value dData mModel (Wannous, based on Microsoft, 2022)
[image:]
Key-value datastores perform simple operations on their entries, including
· reading
· deleting
· updating
a value addressable by a given key.
A new entry in the datastore creates a new key-value pair, and the subsequent operations on the entry involve passing the key to access it. A new entry with a key already in the datastore results in the old value being replaced with the new one, and the key remains unchanged.
Redis (Redis, Inc, 2022) is an example of a key-value data store that uses a distributed architecture to process large amounts of data in parallel and in- memory. Redis is an open -source database, but there is also a company that provides an enterprise version of it. Redis is available through the official downloads page for direct download, as a dDocker image, and ready for usage in the cloud on provided and managed infrastructure by the Redis company. At writing, Redis offers an online console to interact with a sample datastore, and it offers a free trial on its cloud platform.
Connect to a Redis in Python
The following steps show how to connect to a Redis database and manipulate data in a Python application.
1. Download and install Redis on your computer, or start a free trial in the cloud.
2. Create a database inside Redis.
3. Install the redis-py-cluster Python package by running the following command in the terminal.:
 pip install redis-py-cluster
4. Open any IDE that supports Python, and write the following code in a file and name it (Redis-Example.py). Replace the text between < and > with the respective values of your installation. The code has been tested with a Redis database installed in the cloud.

# import the redis module	Comment by GMP: As we were asked not to edit code I will simply comment that this code probably shouldn't be underlined. There are large sections of this document underlined, which I assume to be a remnant of a previous edit. I am removing the underlines in general text.
import redis

if connecting to a cloud database,
import the dns module, too

import dns
·
connect to the database
replace <…> with the respective values of your DB
r = redis.Redis(host='<Server's IP / cloud endpoint>', \
port=<port>, password='<password>')

add two new key-value entries
r.set('key-1', "value-1")
r.set('key-2', "value-2")
·
change the value of the first entry
r.set("key-1", "new value")
·
retrive the entries from the database and print them
value1 = r.get("key-1")
value2 = r.get("key-2")
·
print("The retrieved values are:")
print(value1)
print("=============")
print(value2)

The code will produce the below output.

The retrieved values are:
b'new value'
=============
b'value-2'

Note that the "key-1" entry was updated after the second writing operation (r.set("key-1", "new value")) and the old value was replaced.

Document dDatastoreJSON
This is an open standard format for storing data objects as text.

A set of fields and objects arranged in a specific format like JSON or XML is the building block in ‘document’ datastores (Gourav Bathla, 2018). Documents can be organized in collections similar to tables in relational databases.
Document data model (Wannous, 2022)
[image:]

In the example below, we see a sample collection of documents, with each representing a ticket in the NoSQL version of TicketDB, discussed earlier in this unit, stored as a JSON string.
{
 "ticket_no": 1234,
 "passenger_name": "John SMITH",
 "passenger_age": 46,
 "passenger_gender": "Male",
 "Flights": [
 {
 "flight_no": "JL12345",
 "from": "Osaka",
 "to": "Dubai",
 "airline": "JAL",
 "date_time": "25.3.2022 16:00"
 },
 {
 "flight_no": "FD123",
 "from": "Dubai",
 "to": "Frankfurt",
 "airline": "FlyDubai",
 "date_time": "26.3.2022 16:00"
 }
]
 }
{
 "ticket_no": 1235,
 "passenger_name": "Sara SMITH",
 "passenger_age": 41,
 "passenger_gender": "Female",
 "Flights": [
 {
 "flight_no": "FD123",
 "from": "Dubai",
 "to": "Frankfurt",
 "airline": "FlyDubai",
 "date_time": "26.3.2022 16:00"
 }
]
 }
The collection contains two documents, and each one has with each containing several simple fields, like the passenger_name and passenger_age , and a more sophisticated field, Flights (an array of objects).
A document can be self-contained, i.e.,which means that it has all the fields embedded in it. The application code needs one read operation to acquire all the fields necessary to construct an object representing the document. The previous documents are self-contained, but they have repeated fields that take uneccesarilyunnecessarily larger space. A better approach to save saving storage is to use document references. The example below shows that the flight information is stored in a separate collection, and the ticket document references these flights.
{
 "“flight_no"”: "“JL12345"”,
 "“from"”: "“Osaka"”,
 "“to"”: "“Dubai"”,
 "“airline"”: "“JAL"”
}
{
 "“flight_no"”: "“FD123"”,
 "“from"”: "“Dubai"”,
 "“to"”: "“Frankfurt"”,
 "“airline"”: "“FlyDubai"”
}
{
 "“ticket_no"”: 1234,
 "“passenger_name"”: "“John SMITH"”,
 "„passenger_age"“: 46,
 "„passenger_gender"“: "„Male"“,
 "“Flights"”: [
 {
 "“flight_no"”: "“JL12345"”,
 "“date_time"”: "“25.3.2022 16:00"”
 },
 {
 "“flight_no"”: "“FD123"”,
 "“date_time"”: "“26.3.2022 16:00"”
 }
]
 }
{
 "“ticket_no"”: 1235,
 "“passenger_name"”: "“Sara SMITH"”,
 "„passenger_age"“: 41,
 "„passenger_gender"“: "„Female"“,
 "“Flights"”: [
 {
 "“flight_no"”: "“FD123"”,
 "“date_time"”: "“26.3.2022 16:00"”
 }
]
 }

In the ‘document’ data model, the schema is flexible and is determined when reading the document in the application. For example, one document of our sample collection might have the field passenger_gender and another might not have that information. On the other hand, a drawback of this model is that even small changes in the document require writing the whole document to the database. For that reason, it is recommended to keep the size of the document small.
MongoDB (n.d.), (the name stems from “humongous”), meaning “gigantic”, is an example of a document data store written in C++. Until 2018, MongoDB was an open -source database; today it is proprietary software distributed by the MongoDB company. iItIt is available through the official downloads page for direct download and as a cloud service. In addition, there are Docker images available for MongoDB as well. At As of this writing, MongoDB offers an online console to interact with a sample datastore, and it offers a free trial on its cloud platform.
Connect to a MongoDB in Python
The following steps show how to connect to a MongoDB database and manipulate data in a Python application.
1. Download and install MongoDB on your computer, or start a free trial in the cloud.
2. Create a database inside MongoDB.
3. Install the Python package pymongo by running the following command in the terminal.
· pip install pymongo	Comment by GMP: The bullet is probably not needed.
4. Open any IDE that supports Python, write the following code in a file, and name it Mongo-Example.py. The code has been tested with a MongoDB database installed in the cloud. Replace the text between < and > with the respective values of your installation. The centerpiece code in this example to connect to a Mongo database from Python makes use of the pymongo.MongoClient() function.
· In this example, we connect to a mongodb on a server (srv) using a <user name>, <password>, and the <Server's IP endpoint>. We also specify that writes to the database should be retried if they fail, for example,e.g. due to network problems (retryWrites). Writes will be applied to several data replications in the cluster. Accordingly, we specify a strategy for writing errors during the write process to these data replicas. By setting this strategy to majority, writes will only be rolled back if the error occurred before writes took place to less fewer than half of the data replications, otherwise, they will endure, allowing eventual consistency in the database.	Comment by GMP: This paragraph probably doesn't need the bullet.

import the pymongo module
import pymongo

if connecting to a cloud database,
import the dns module
import dns

connect to the database
client = pymongo.MongoClient(\
"mongodb+srv://<user name>:<password>@< Server's IP / cloud endpoint >?retryWrites=true&w=majority")

add a database
mydb = client["TicketDB"]

add two collections for the flights and tickets
flightCollection = mydb["flights"]
ticketCollection = mydb["tickets"]

add two flights documents to the collection
flight1 = { \
'flight_no': 'JL12345', \
'from': 'Osaka', \
'to': 'Dubai', \
'airline': 'JAL'}
flightCollection.insert_one(flight1)

flight2 = { \
'flight_no': 'FD123', \
'from': 'Dubai', \
'to': 'Frankfurt', \
'airline': 'FlyDubai'}
flightCollection.insert_one(flight2)

add two tickets documents to the collection
ticket1 = { \
'ticket_no': 1234, \
'passenger_name': 'John SMITH', \
'passenger_age': 46, \

'passenger_gender': 'Male', \
'Flights': [{ \
'flight_no': 'JL12345', \
'date_time': '25.3.2022 16:00'}, \
 {'flight_no': 'FD123', \
'date_time': '26.3.2022 16:00'} \
] \
}

ticketCollection.insert_one(ticket1)

ticket2 = { \
'ticket_no': 1234, \
'passenger_name': 'Sara SMITH', \
'passenger_age': 41, \

'passenger_gender': 'Female', \
'Flights': [{ \
'flight_no': 'FD123', \
'date_time': '26.3.2022 16:00'} \
] \
}

ticketCollection.insert_one(ticket2)

create a query to find Sara's ticket
query = { 'passenger_name': 'Sara SMITH' }

execute the query
results = ticketCollection.find(query)

print the results to the console
for result in results:
 print(result)

The code will produce the output below.

{'_id': ObjectId('xxxxxxxxxxxxxxxxxx'), 'ticket_no': 1234, 'passenger_name': 'Sara SMITH', 'passenger_age': 41, 'passenger_gender': 'Female', 'Flights': [{'flight_no': 'FD123', 'date_time': '26.3.2022 16:00'}]}

Columnar dDatastore
A columnar datastore organizes data into columns and rows as in a relational database (Microsoft, 2022) (Gourav Bathla, 2018). Twith the difference is that relational databases are optimized for row operations while columnar databases are optimized for column operations.
The figure below shows a simple example of a table in a relational database (left) and how it appears in a columnar database (right).
Columnar data model (Wannous, 2022, based on Gourav et al., 2018)
[image:]

Tables in a columnar database are named ‘column-families’, and each column-family may contain one column or more. Alt the storage level, all columns in a column-family are stored on one file, making it easy to aggregate the values of a column and reducing the amount of data that is necessary to fetch required for retrieval from the database in analytics applications. Analytics Applications
These are applications used to quantitively measure and improve business processes.

Consider a case when in which a query in a relational database is executed queried to obtain retrieve only the 'Age' attribute from the table shown in the figure above (left). The relational database engine will run over all rows while scanning different fields of different data types and filtering the results as per the query. A similar query in a columnar datastore will run on the table (or table-family) containing the required attribute(s) of one data type. The data processed in the two cases are very different in size and type variety. When the data is are written to the columns, replicas are allowed.
Apache Cassandra (Apache Cassandra, n.d.) is an example of a columnar data store. It is managed and licensed under the Apache Foundation umbrella, but it originated at Facebook. Like other Apache projects, Cassandra is an open-source project., iIt is written in the Java programming language, and it is identified as a largely distributed NoSQL datastore. It uses a query language (Cassandra Query Language -CQL) similar to SQL but has its a distinct flavor. Cassandra is available for download as a stand-alone package and a dDocker image.
Connect to Apache Cassandra in Python
The following steps show how to connect to a Cassandra database and manipulate data in a Python application.
1. Download and install Cassandra on your local machine.
2. Create a database called '‘people'’. A database in Cassandra is named KEYSTORE, and the query used to create it requires one argument “replication” to identify the replication strategy and options for the keyspace (Cassandra places several data replicas on different nodes to ensure reliability. The number of replicas is known as the ‘replication factor’).
3. Install the Cassandra-driver package for Python by running the following command in the terminal.
· pip install Cassandra-driver	Comment by GMP: I would recommend removing the bullet.
4. Open any IDE that supports Python, write the following code in a file and name it Cassandra-Example.py. The code has been tested with an Apache Cassandra database installed on a local computer.
import the cassandra cluster module
from cassandra.cluster import Cluster

import a statement object to run queries
from cassandra.query import SimpleStatement
import the consistency level module
from cassandra import ConsistencyLevel

create a clster and connect to the database
cluster = Cluster()
session = cluster.connect()

create a keyspace (a database in Cassandra)
and set it as the default
session.execute("""CREATE KEYSPACE people
WITH replication={'class':'SimpleStrategy', 'replication_factor': '2'}""")
session.set_keyspace('people')

create a table called 'person'
set the primary key and specify
the datatypes of the columns
session.execute("""CREATE TABLE person (person_key text,
name text, gender text, age text,

PRIMARY KEY (person_key))""")

make a query to insert one person into the table.
The consistency level indicates how many data
replicas should reply to the
query before reporting success to the client
query = SimpleStatement("""INSERT INTO person
(person_key, name, gender, age)
VALUES ('001', 'John SMITH', 'Male', '46')""", consistency_level=ConsistencyLevel.ONE)

execute the query
session.execute(query)

insert another person
query = SimpleStatement("""INSERT INTO person
 (person_key, name, gender, age)
VALUES ('002', 'Sara SMITH', 'Female', '41')""", consistency_level=ConsistencyLevel.ONE)

execute the query
session.execute(query)

report progress to the console
print("Inserted two persons into the database\n")

read the information from the database and display it
print("Trying to read the info of one of them\n")
future = session.execute_async("""SELECT * FROM person
WHERE person_key='002'""")
 rows = future.result()

for row in rows:
 print('\t'.join(row))

clear the DB (because this is for testing only)
print("Clearing the database")
session.execute("DROP KEYSPACE people")

The code will produce the console output below.

Inserted two persons into the database
Trying to read the info of one of them

002 41 Female Sara SMITH
Clearing the database

Graph dDatastore
Imagine that you would like to store data that is heavily characterized by relations. For example, for you use case, you would might like to use a database to quickly find out which bus stop is best connected with other bus stops within a city. Or imagine that you try want to find the most frequently used airports by certain airlines on long flight connections. These are examples of data for which connections between entities are the foremost most relevant pieces of information. Two types of information exist in graph datastores: nodes and edges/links. Nodes represent entities, and links specify the relationships between these entities (Microsoft, 2022). The concept is similar to the network data model discussed earlier in this unit and the class diagram in system analysis.
Nodes and edges can be attributed in such a way that we can specify additional features to them. For example, the "’Boarding"’ edges in the figure below might have the attributes "’priority boarding"’ or "’wheel chairwheelchair appropriate"’. These attributes are usually stored in a table-like data structure where the columns are the attributes.
The edges in the graph are typically directed so that they have a starting and an end point. In the figure below, the "’Boarding" ‘ edges origins are persons and they are directed towards the flights.
Graph data model (Wannous, 2022)
[image:]

The structure in the figure above represents one implementation of TicketDB with two passengers boarding two flights. It Such a structure makes it easy to execute queries like "Find all people who will board flight JL1234". It is possible to perform complex analyses quickly on large structures involving many entities and links.
Neo4j (neo4j, n.d.) is an example of a graph data store. It is licensed in a hybrid model and two versions exist: open-source (community edition) and enterprise. Node4j Neo4j is written in the Java programming language and it is a popular graph/OLTP DBs. Docker images of neo4j are available, in addition to cloud deployment (the model used in the example below). Neo4j uses query languages such as Cypher or ApachaApache Tinkerpop.	Comment by GMP: Did you mean DB or DBS?
It Neo4j is managed and licensed under the Apache Foundation umbrella, but it originated at Facebook. Like other Apache projects, Cassandra is an open-source project written in the Java programming language, and it is identified as a 'largely distributed' NoSQL datastore. It uses a query language (Cassandra Query Language -CQL) similar to SQL but has its flavor. Cassandra is available for download as a stand-alone package and a dDocker image.	Comment by GMP: Note that this text is identical to the above text for Apache Cassandra. Seems to be a copy/paste mistake, so I will leave it unedited assuming you'll be changing it.
Connect to neo4j in Python
· The following steps show how to connect to a neo4j database and manipulate data in a Python application. The code implements the TicketDB comprising two tickets boarding two flights by instantiating two flights and two passengers and linking them with three links.	Comment by GMP: You can probably remove the bullet.
1. Setup a neo4j database in the cloud or install it on your local machine.
2. Create a test database in it and obtain the parameters to access it from a pPython application.
3. Install the neo4j package by running the following command in the terminal:
· pip install neo4j. 	Comment by GMP: Please ensure this line is written as intended. It probably doesn't need to be bulleted, either.
4. Open any IDE that supports Python, write the following code in a file and name it (Neo4j-Example.py). The code has been tested with a neo4j database installed in the cloud. Replace the text between < and > with the respective values of your installation.
#import the neo4j module
from neo4j import GraphDatabase

import dns (necessary for the cloud instance)
import dns
·
establish a connection to the database
driver = GraphDatabase.driver(\
"neo4j+s://<Ip address/cloud end-point>", \ auth=("neo4j", "<password/token>"))
·
connect to the database
session = driver.session()
·
#insert two new nodes for the tickets
session.run("CREATE (n:Ticket {ticket_no: 1234,
passenger_name: 'John SMITH', passenger_age: 46, passenger_gender: 'Male'})")
session.run("CREATE (n:Ticket {ticket_no: 1235,
passenger_name: 'Sara SMITH', passenger_age: 41, passenger_gender: 'Female'})")
·
insert two flights
session.run("CREATE (n:Flight {flight_no: 'JL12345',
from: 'Osaka', to: 'Dubai', airline: 'JAL'})")
session.run("CREATE (n:Flight {flight_no: 'FD123',
from: 'Dubai', to: 'Frankfurt',
airline: 'FlyDubai'})")

insert three relationships
session.run("""MATCH
·
(a:Ticket),
(b:Flight)
WHERE a.ticket_no = 1234 AND b.flight_no = 'JL12345'
CREATE (a)-[r:Boarding
{date_time: '25.3.2022 16:00'}]->(b)
RETURN type(r)""")

session.run("""MATCH
(a:Ticket),
(b:Flight)
WHERE a.ticket_no = 1234 AND b.flight_no = 'FD123'
CREATE (a)-[r:Boarding
{date_time: '26.3.2022 16:00'}]->(b)
RETURN type(r)""")

session.run("""MATCH
(a:Ticket),
(b:Flight)
WHERE a.ticket_no = 1235 AND b.flight_no = 'FD123'
CREATE (a)-[r:Boarding
{date_time: '26.3.2022 16:00'}]->(b)
RETURN type(r)""")

The following query is used to insert a new relationship between two nodes and it worth explaning due to its importance.
MATCH(a:Ticket),(b:Flight)WHERE a.ticket_no = 1234 AND b.flight_no = 'JL12345' CREATE (a)-[r:Boarding{date_time: '25.3.2022 16:00'}]->(b)
This is an important query and is worth explaining.
The part MATCH(a:Ticket),(b:Flight) WHERE a.ticket_no = 1234 AND b.flight_no = 'JL12345' simply says 'in the flowing part match a to a node of the type Ticket and b to a node of the type Flight. The part CREATE (a)-[r:Boarding{date_time: '25.3.2022 16:00'}]->(b) instructs is an instruction to create a relation names Boarding ([r:Boarding{date_time: '25.3.2022 16:00'}]) originating from node a to node b. The relation has an additional attribute date_time.	Comment by GMP: following?	Comment by GMP: named?
Showing the database as a graph is beyond the scope of the code;, but this part will be executed in the cloud console as follows (or alternatively in the Desktop GUI) as follows.
Run the following query to view the graph of the whole database.:
MATCH p=(n:Ticket)-[]-() RETURN p

Graph database representation in the neo4j console – example 1 (Wannous, 2022)
[image:]

Run the following query to show only the tickets of the passengers boarding the flight with flight_no='FD123'.
MATCH p=()-[r:Boarding]->(n:Flight{flight_no:'FD123'}) RETURN p

Graph database representation in the neo4j console – example 2 (Wannous, 2022)
[image:]

Selecting NoSQL database	
NoSQL engines take fundamentally different approaches to data storage than relational databases, and they have distinct features that make each of them suitable for a range of applications.
The table below summariszes the characteristics of the four NoSQL data models we have come to studystudied and the type of application that each of them fitssuited to each.
Comparison of NoSQL dDatabase cCategories (Müller-Kett, 2022, based on Gourav et al., 2018)
	

	Parameter
	Key-value
	Document
	Columnar
	Graph

	Storage
	Unique key with value
	JSON, XML, BSON
	Columns
	Nodes and edges

	Example Applications
	Indexing, IoT sensor data
	Programming objects storage, semi-structured collections of data, IoT sensor data
	Sparse Data, structured data with frequent column access
	Modelling relationships

	Example Databases
	Redis
DynamoDB
Ignite
Oracle NoSQL
	MongoDB
CouchDB
OrientDB
	Cassandra
BigTable
HBase
CosmosDB (multi -model)
	Neo4j
InfoGrid

Self-Check Questions	Comment by GMP: The correct answer is obscured by the global underlining error, but I assume the correct answer is the one in italics. I therefore won't correct the italicized words to quoted words as instructed in the editing guidelines.
1. Which NoSQL data model best suites so-called social networks?
· The key-value data model
· The graph data model
· The document data model
· The columnar data model

2. What is true about the columnar data model?
· It is similar to the hierarchical data model.
· It is similar to the network data model.
· It is suitable for analytical applications requiring column aggregation.
· It is suitable for storing pairs of data pieces such as user preferences.

3. What is true about self-contained documents?
· They use references to other documents in the datastore.
· Each document contains all the information needed to construct an object in the application handling the datastore.
· A document contains only primitive fields.
· A document has a fixed schema.

Summary
NoSQL database engines have emerged to address several issues with the relational model, such as its schema inflexibility and scalability. They have been around since the beginning of the 21st century and have proven NoSQL is a tough competitor to relational databases for some modern use cases. Nevertheless, NoSQL engines have not so far succeeded in shifting the relational database engines from dominating the database market.
NoSQL databases follow several approaches to storing data, and each of these approaches is suitable for a specific range of applications. The only characteristic common to them is that they don't follow the relational model. According to the different approaches they persue take in modeling the data, NoSQL databases can be categorized into key-value, document, columnar, or graph databases. They support developers working in environments where requirements change frequently. This comes from the fact thatis because these databases do usually not usually follow a strict schema, are distributed across multiple machines, and come with strategies for efficiently storing and querying the data. This makes them applicable for many modern applications that use data with high volume, velocity, variety, and veracity, aka Bbig Ddata applications.

Unit 4 – Distributed Systems

Study Goals

On completion of this unit, you will be able to…
... explain the difference between types of distributed systems
... describe the goals of a distributed system.
... describe the components of a distributed system.
... discuss the benefits and challenges of distributed systems.
... use distributed systems in big data applications.

4. Distributed Systems
Case Study
Let's imagine a fictional social network that abides by general data protection ethics and rules that we call CivilConnect. This network brings people and opinions together by providing reflective views and insightful dialectics on complex issues. CivilConnect constantly aims at improving its sincere intrinsic motivation to engage people to cooperate and solve problems in a civilized manner. Every day, users of CivilConnect share billions of pieces of content, including photos, videos, and thoughts. All this data needs to be processed so users can see what their friends are up to. To do this processing, CivilConnect uses a distributed system called Hadoop. Hadoop is a framework that allows for distributed processing of large data sets across many servers. It does this by splitting the data into smaller chunks, which are then processed independently. The advantage of using a distributed system is that it can handle large amounts of data more efficiently than a single server can. This makes the overall process faster and more efficient. In addition to Hadoop, CivilConnect, in addition to Hadoop, uses a distributed system called Spark for processing the data. Spark is similar to Hadoop, but it can be faster for some use cases and is easier to handle. This makes it a good choice for applications that require either fast processing speeds or the ability to experiment with large amounts of data, such as in near real-time analytics or machine learning.
Big data technologies are used to process large amounts of data. In this unit, we will learn how Hadoop and Spark can work together to process big data. Hadoop is a family of technologies that use distributed systems to handle large amounts of data. MapReduce is part of the Hadoop ecosystem. It is a programming model that splits up big data sets into smaller pieces that can be processed by multiple nodes in a distributed system. Spark is a fast and efficient processing engine that can run on top of Hadoop or stand-alone.

4.1 Hadoop
Hadoop is a distributed system for managing big data collections that can grow up to thousands of nodes. As one part of the so-called Hadoop ecosystem, the MapReduce algorithm is used to process the data in a Hadoop cluster. MapReduce splits a data set into smaller pieces, which are then processed by individual nodes. The results are then recombined and returned. Hadoop is scalable and fault-tolerant, making it ideal for processing huge data sets. It is also open -source, making it free to use and further develop. The fundamental features of Hadoop can be summarized in the following (White, 2015; Azarm, 2016):
· As oOne part of the Hadoop, the ecosystem has is a very easily expandable Hadoop Ddistributed Ffile Ssystem (HDFS) (HDFS). HDFS manages the distribution and storage of data on its various nodes. In order toTo increase the storage capacity, it suffices to add data nodes to the system.
· The processing codes are routed to the data, as opposed to the traditional approach where the data is loaded into the environment in which the code is executed. This strategy is most effective for large volumes of data stored on standard machines connected by standard networks. The data nodes are therefore transformed into computing nodes during the processing time. Consequently, increasing the number of data nodes to increases both, the storage capacity and the processing capacity.
· The platform integrates fault tolerance mechanisms. Since Hadoop was designed to run on standard hardware, frequent outages are assumed to be unavoidable. Data is replicated across multiple nodes in order to ensure better availability and reliability of the system. When a replica disappears (following a failure), its copies are replicated again to maintain a good replication rate. Similarly, the processing tasks that are executed on the data nodes are monitored and restarted on the node of another replica if a failure occurs. This is implemented "under the hood", so that the user does not have to worry too much about fault tolerance.
· Hadoop uses the MapReduce algorithm to process data. This paradigm is suitable for retrieving and filtering data stored across data nodes, as well as performing other processing tasks on the data. Its integration into the Hadoop ecosystem makes it very easy to use with other Hadoop components.
The figure below shows the Hadoop software stack that, which is also known as the Hadoop ecosystem. In the following, we will present the main components of the Hadoop ecosystem.	Comment by GMP: I might recommend moving this paragraph along with the graphic and definition box up to the first mention of the Hadoop ecosystem above. At a minimum, I would move the definition box there.Hadoop ecosystem
The Hadoop ecosystem is a collection of technologies that allow for distributed processing of large data sets.

Simplified software stack of the Hadoop ecosystem (Ayman Khalil, 2022)
[image:]

The Hadoop Distributed File System (HDFS)
HDFS is the fundamental component. It is a Java-based distributed file system for storing and analyzing large amounts of data in a distributed environment. Running on commodity hardware, HDFS is part of the Hadoop ecosystem, and is used by many big data applications. HDFS is a Java-based file system that runs on commodity hardware. It is made up of several slave nodes and one master node. The master node is in charge ofoversees the file system management, while the slave nodes are in charge ofmanage data storage and processing. HDFS stores data in blocks, and each block is replicated on multiple slave nodes. This allows HDFS to react in case of any failure (fault tolerance). This set of components and functionalities forms a middleware layer that is almost invisible to the user and which has evolved a lotextensively between versions 1 and 2 of Hadoop. HDFS also supports data streaming, so applications can process data as it is being written to the file system. HDFS is used by many big data applications, including MapReduce, Apache Spark, and Apache Hive.	Comment by GMP: It was unclear to me what you were implying HDFS is the fundamental component of. The ecosystem? Our big data solution? There should probably be an object here (e.g., "HDFS is the fundamental component of the Hadoop ecosystem".)Commodity hardware
It is aThis is mass-produced hardware that is mass-produced and is not intended for a specific purpose

MapReduce
In a higher layer, an API allows an for easy implementation of applications in the Map-Reduce paradigm. MapReduce is a programming methodology meant to process and analyze huge data sets. It is based on the map and reduce functions used in functional programming. The map function accepts a key/value pair as input and outputs a list of key/value pairs. The reduce function takes all values associated to with a key and aggregates these valuesthem to a single value as the output. MapReduce was developed at Google in 2004 (Dean & Ghemawat, 2004), and the open-source MapReduce implementation was released by Google in 2006 (Lammel R., 2008). MapReduce has since been adopted by a number ofseveral other companies, including Yahoo!, Facebook, and Amazon. To better understand the Map-Reduce process, an example is given below. In this Python example, we execute a series of three functions calls, getPrice(), map(), and reduce(), on a data set containing the description of four cars. 	Comment by GMP: I don't believe you need to hyphenate these as the single word MapReduce now represents the idea of map and reduce, or map-reduce.	Comment by GMP: Meta?
importing functools for reduce()
import functools

create the sample data
data = [\

{'id':1,'brand':'Mercedes','model':'CLA', 'price’:15000},
{'id':2,'brand':'Fiat','model':'500', 'price’:8000},
{'id':3,'brand':'Mercedes','model':'C300','price’:10000},
{'id':4,'brand':'Jeep','model':'Laredo','price’:16000},
{'id':1,'brand':'Mercedes','model':'CLA', 'price’:12000},
{'id':2,'brand':'Fiat','model':'500', 'price’:8000},
{'id':3,'brand':'Fiat','model':'C300','price’:75000},
{'id':4,'brand':'Jeep','model':'Laredo','price’:13000},
{'id':1,'brand':'Mercedes','model’:’C350','price’:18000},
{'id':2,'brand':'Fiat','model':'500', 'price’:12000},
{'id':3,'brand’:'Jeep','model’:’Limited','price’:21000},
{'id':4,'brand':'Jeep','model':'Laredo','price’:18000}]
{'id':1,'brand':'Mercedes','model':'CLA', 'price':10000},
{'id':2,'brand':'Fiat','model':'500', 'price':4200},
{'id':3,'brand':'Mercedes','model':'C300','price':7000},
{'id':4,'brand':'Jeep','model':'Laredo','price':9000}]

define a function to return a car's price
def getPrice(car):
 return car['price']

create key-value pairs, where the cars are the keys
and the car's prices are the values
kv = map(getPrice, data)

aggregate values (car prices) for each key (cars)
use the maximum as the aggregation function
max_price = functools.reduce(max, kv)
print max_price

Distributed Execution of a MapReduce Treatment (Ayman Khalil, 2022)
[image:]

The map and reduce functions constitute a MapReduce couple. The key point is the possibility of parallelizing these functions in order toto calculate them much faster on a machine with several cores or on a set of machines linked together. To make things clearer, let’s consider that a functionM creates key-value pairs where the cars are the keyskeys, and the car prices are the values; this is the mapping part. A functionR takes these key-value pairs and aggregates the values (car prices) for each key (cars), for example, either by taking the average of the values per key, or summing the value, or finding the maximum value; this is the reducing part.
The map function is parallelizable by nature, because the calculations are independent for each data entry, cars in our case. For instance, to map four elements…
• value1 = functionM(element1)
• value2 = functionM(element2)
• value3 = functionM(element3)
• value4 = functionM(element4)

These calculations can be performed concurrently, across distinct machines, provided that the data is copied there.
It is important to note that the mapped function must be a pure function of its function arguments, with no side effects such as changing a global variable or memorizing its former values. The system will create the a set of related values for every distinct key, then the reduce function will be invoked so the key/value pairs having the same key will be treated as one single group.
Note: As shown in the figure above, the application of the function reduce function has generated three results (Maximum price for each distinct car brand).
• interMercedes = functionR(value1, value2, value3, \
 value4)
• interFiat = functionR(value1, value2, value3, value4)
• interJeep = functionR(value1, value2, value3, value4)
The Hadoop ecosystem is very rich, and there are in particular higher-level applications allowing for example to that process data in a formalism close to SQL (as in a relational database), such as Hive and Pig, and tools making is it very easy to import external data into HDFS or export Hadoop data to external sinks (Akil, Zhou & Rohm, 2018). In the following we will present a brief description of some important applications..
YARN
YARN is an abbreviation for "Yet Another Resource Manager". To manage resources for big data applications, YARN allocates resources to different big data applications, manages the data flow between applicationsthem, and monitors the overall health of the system. While HDFS is the storage layer in an Hadoop system, YARN is the compute layer that is closely integrated with HDFS. Architecturally, YARN is built on top of HDFS, and it is used by the MapReduce programming model. If a MapReduce job is triggered to run on some nodes of the cluster, YARN makes sure that the job is running as close to the data as possible by giving the right jobs to the nodes holding the respective data blocks and also, it will allocatinge the appropriate resources, such as CPU and RAM, to these nodes like CPU and RAM. YARN is a key component of the Hadoop ecosystem and is essential for running big data applications in the Hadoop ecosystem that use resources across multiple machines in a cluster.
Tez

Apache Tez is another Hadoop component that runs "under the hood" without us even noticing in most cases. It is an alternative to the MapReduce engine and, like the MapReduce engine, is built on top of YARN. It is much faster than the MapReduce engine, because it uses so-called Directed Acyclic Graphs (DAGs). These simplify the MapReduce engine’s sequence of mapping and reducing of the MapReduce engine to avoid unnecessary intermediate steps, and unnecessary data access, and removing to remove dependencies within the sequence. Using DAGs, Tez does not go through the MapReduce sequence step-by-step, but first evaluates the overall process. Ultimately, after an initial mapping phase, there are only reducers that follow to complete the task of concatenatinged MapReduce jobs. This happens for us without any configuration, as Tez is the default compute engine by default from Hadoop version 2. It can be used to run Hive, Pig, and even MapReduce jobs instead of using the MapReduce engine.Directed Acyclic Graph (DAG)
In the Big Data processing context, this is a workflow paradigm where each task (represented as a node of the workflow) is connected to the following task via an edge that points in one direction only. This paradigm dictates that there cannot not be closed loops in the workflow but only processes moving forward.

Sqoop
Scoop is a tool for efficiently transferring data between HDFS and external data sources like text files or relational database management systems (RDBMS), such as MySQL, Oracle, PostgreSQL, and Microsoft SQL Server. It can, for instance, be used to import data from an RDBMS into HDFS, or to export data from HDFS into an RDBMS. Sqoop uses so-called connectors to connect to RDBMS.
Oozie
Literally, "oozie" means "elephant keeper" in Burmese. It is a Java-based system that can be used for scheduling and managing jobs. This technology is a Hadoop component that allows us to orchestrate a sequence of actions in a cluster, such as a Sqoop import, followed by a Hive job, followed by a couple of MapReduce jobs, followed by a Pig job. These workflows constitute Directed Acyclic Graphs (DAGs) that, as we already know, are quite efficient, and we can be specifiedy them in XML format.
Pig
Pig is a data processing platform that runs on top of YARN using the MapReduce or Tez engine (the latter being much faster). MapReduce jobs are very powerful, but writing a sequence of MapReduce jobs to execute a complex task is in many cases simply too hard difficult to program. Consequently, we can use Pig to simplify the programming of complex big data operations. To do that, we can use Pig Latin, the language used to write Pig scripts. It is designed to be easy to learn and use. This, which is achieved by an additional layer of abstraction that hides the complexity of MapReduce from us, so that we can focus on the program logic instead.
Hive
As we know by now, Hadoop is very powerful when it comes to storing and processing big data by distributing the storage and compute… across multiple nodes in a cluster. The downside to this is its complexity. Hive, like Pig, is a technology, just like Pig, to for simplifying this complexity by adding a layer of abstraction. Hive sits next to Pig and on top of MapReduce and YARN in the Hadoop ecosystem stack. It is designed so that we can write well-known SQL statements to query our data. Using Hive presents the data in HDFS as if they were stored in a relational database. Under the hood, these SQL statements are then translated into MapReduce jobs that are executed using the MapReduce or Tez engine on HDFS managed by YARN. The beauty of Hive is its simplicity coupled with the powerful data processing capabilities of Hadoop.	Comment by GMP: Something is needed here; layers?
Spark
Until this point, you might get the idea that the Hadoop ecosystem is very powerful and extensive. But would you program an anomaly detection algorithm, a Ssupport Vvector Mmachine, or a graph analysis using Pig, Hive, or even MapReduce? Spark can be seen as a more modern alternative to this classic Hadoop stack. Using Spark we can use Java, Scala, Python, R, and more languages that might be more "natural" for data analysis than Pig, Hive, and MapReduce to program more complex tasks like machine learning, graph analysis, and complex data processing tasks. In the Hadoop ecosystem, Spark runs on top of YARN (or alternatives like Mesos) which, in turn, runs on HDFS. It is much faster than MapReduce, Hive, Pig, or Tez by usingbecause it uses in-memory data processing and also Directed Acyclic Graphs (DAGs). It is designed for speed and efficiency, making it an ideal choice for big data applications and also all kinds of data analysis. Spark can be used for a variety of tasks, including data processing, machine learning, streaming, and graph analysis. More details about Spark will be explained later.	Comment by GMP: The answer may not be obvious to the student. I might suggest making this a declarative statement telling the student why they wouldn't do this rather than a question asking if they would.
HBase
HBase is a column-oriented NoSQL database, which means that it does not use fixed schemas, row-oriented design, or traditional SQL query language. Instead, it uses a language called HQL. Another particularity of HBase are the so-called uses column-families that to group several columns in the database, which is very effective for sparse data. HBase is a Java-based system, so it can run on any platform that supports Java. It also supports a variety of programming languages, including C++, Python, and Ruby. HBase is built on HDFS and thereby therefore is highly scalable and reliable. Historically, it was built as an open -source project on top of Google's BigTable. It allows for CRUD operations (Create, Read, Update, Delete) and auto-sharding, which means that data is are partitioned on-the-fly in a way so that the data is optimally distributed across nodes.
Kafka
Apache Kafka is a popular message broker that helps to manage large volumes of streaming data. It is a Ppub/Ssub system that decouples the producers of messages from data consumers, for example, e.g., decoupling sensors, from data consumers, e.g. from applications, using the data that is organized in topics. In between the producers and consumers is the Kafka cluster with various brokers. Kafka uses a so-called immutable commit log to ensure that messages are not lost in the transaction. It can be used to manage data in a variety of ways, including streaming data, managing logs, and managing data pipelines in general.

Storm
Storm is designed for real-time data processing, meaning that it can handle large volumes of data quickly and reliably. It is also fault-tolerant, meaning that it can continue to operate even if individual machines in the system fail. Storm is used by a number ofseveral large companies, including Twitter, Netflix, and The Guardian. It is a powerful tool, but it can be difficult to learn and use. For this reason, it may not be suitable for all applications. Since it was acquired by Twitter, it is under an open -source license. Architecturally, it is similar to MapReduce with the Tez engine. It also uses DAGs, but being since it is designed for processing continuous streams of data instead of batch jobs, Storm DAGs run until they are actively ended. The nodes in a Storm DAG are called spouts and bolts and the edges represent the streams of data from one node to another.
ZooKeeper
As we learned, much of Hadoop's power and efficiency comes from its distributed nature of storage and compute. This is built around a master/slave architecture. But what happens if a machine goes down? Hadoop is designed to run on commodity hardware that will occasionally fail at a given time. This is where ZooKeeper comes into play. Let's say a worker node goes down. ZooKeeper recognizes this and restarts the node. ZooKeeper keeps also keeps track of what tasks are being performed on which node. This helps in case of failure to continue an interrupted task on a new or restarted node. More severely, imagine the master node going down. In this case, a worker takes over and becomes the new master. But what happens if two or three workers decide to be the new master. ZooKeeper prevents this, making sure that there is only one master in a cluster avoiding civil war in the cluster and thereby contributing to data consistency and reliability of the system reliability.
Ambari
Ambari is a management platform for Hadoop developed by Hortonworks. It provides a graphical interface for managing Hadoop clusters, including an easy way to install Hadoop components. Ambari allows administrators to monitor the health of the system, such as by enabling examination of individual nodes, the storage capacities of HDFS, the compute resource usage by YARN, and the ZooKeeper status. It also provides the ability to provision new nodes and configure the cluster's settings in a graphical user interface.

Self-Check Questions
1. Which of the following criteria doesn’t properly define Hadoop?:
· A collection of open -source components
· Real-TimeA managed cloud
· Using a master/slave architecture
· Following a distributed computing paradigm.

2. Please mark the correct statement(s).
· MapReduce tries to place the compute as close to the data and the compute as close as possible.	Comment by GMP: Please ensure this is worded correctly. It seems a bit jumbled. Also, (I assume this is the correct answer as it's in italics) I can't find a reference to this in the course, only a reference to YARN ensuring MapReduce jobs run close to the data.
· MapReduce runs on top of Hive.
· MapReduce cannot use the Tez engine.

4.2 Hadoop Distributed File System (HDFS)
4.2.1 Presentation

HDFS (Hadoop Distributed File System) allows users to access distributed data in Hadoop clusters in a very performant effective way. HDFS has become an important tool for large data sets management and analytical applications.
Once HDFS collects data, the system splits it the data into many bricks, replicates them n times, and distributes them across several cluster nodes for parallel processing. Each piece of data is copied many times and distributed to each one of the nodes, with at least one copy stored on a separate server in the cluster. As a result, the data that has been stored on failing nodes can be accessed from other nodes in the cluster. Processing can continue despite the failure (White, 2015).
4.2.2 HDFS organization
HDFS is was developed to support applications with large volumes of data, such as individual files that can amount tocomprising terabytes of data. It is based on a master/slave architecture. Each HDFS cluster is made up of machines playing different roles. We distinguish three types of nodes: the active NameNode or HDFS Master, the Ssecondary NameNode, and the DataNode (White, 2015).

A node called the active NameNode establishes and maintains a distribution map of all files stored in HDFS. This map is updated frequently. Meanwhile, the insertions of new files and deletions of old ones give rise to some changes in the mapping which are stored in the form of logs both in the active NameNode and in the secondary NameNode. An up-to-date map is therefore obtained by applying the evolutions described in the logs to the metadata of the NameNode.Metadata
It This is data that describes other data. It can include information such as the name of the author of a document, the date it was created, or the size of a file.

The Ssecondary NameNode, despite its name, is not a backup of the active NameNode, but rather its helper. It is responsible for periodically recalculating from time to time an up-to-date map of the distributed file system by applying all the logs, and then updating that the map of the active NameNode without influencing the latterit (having been slowed down by the calculations made). It can be used to restore the active NameNode in case of failover to a certain extent. But this would cause data loss in most cases because of state differences between the two.	Comment by GMP: Please check I have retained your intended meaning. "the latter" doesn't really have a clear reference, but I assume you are referring to the active NameNode. If so, using "it" instead of the latter is simpler and clearer, I think.
Each file is split into blocks, typically 64MB or 128MB, and each block is replicated n times, usually three times by default. The replicas of the same block are stored on different machines, sometimes two, in order to avoid data loss when nodes fail, or even two!. In the case of the disappearance of a node and its blocks, each disappeared missing block is reconstituted on a new node from one of its still accessible replicas. HDFS thus quickly reconstitutes a set of n replicates for each block.
In the figure below, the blue file is large enough to be stored as two blocks, each replicated in three copies, while the orange and green are each composed of a single block replicated three times.

HDFS Master/Slave Architecture (Ayman Khalil, 2022)
[image:]

A single DataNode can very well store several different blocks, coming from the same file or from different files, but it cannot store the same block several times. In a large Hadoop cluster, the replicas of the same block must be stored on nodes located in different racks (therefore electrically independent).Rack
It A rack is a metal frame that supports computer equipment.

During the creation of a new file, the active NameNode will distribute the replicas of its blocks on the different DataNodes available (blue arrows in the figure above), and each DataNode will keep the active NameNode informed of its state, and the success or the failure of its block creations (orange dashed arrows in the figure above). The active NameNode will thus maintain an up-to-date knowledge of the HDFS file system.
4.2.2 HDFS Fault Tolerance and High Availability
Data stored on HDFS is replicated but the active NameNode constitutes a Ssingle Ppoint Oof Ffailure (SPOF) of the system. Without it, the data is are still stored and replicated on the DataNodes, but are inaccessible due to a lack of mapping. A failure of the active NameNode could therefore render the HDFS file system completely unusable.Single Point of Failure
A system is said to have a single point of failure if the failure of a single component of the system results in the failure of the entire system.

To overcome this weakness, two complementary fault tolerance mechanisms then high availability were introduced (Azarmi, 2016; Kleppmann, 2017):
Fault tolerance: The metadata of the active NameNode are regularly saved on a local file system (fast access) but also on a remote system. In the case of an incident on the active NameNode, it will thus be possible to reconstitute the Hadoop file system from a remote copy of its metadata and continue to operate its data nodes. You might ask if the Ssecondary NameNode cannot be used for this. This is not entirely the caseusually possible. The Ssecondary NameNode periodically copies and processes the logs and metadata from the active NameNode,. B but as the state of the active NameNode changes continuously, data loss is highly likely in the case of recovery from the Ssecondary NameNode.

High availability: It is possible to duplicate the active NameNode, and create a standby NameNode which permanently receives and stores the same metadata and logs as the active NameNode (see figure below). The standby NameNode is therefore also awake but does not act on the data nodes.
High availability solution for HDFS in the case of a failure on the NameNode (Ayman Khalil, 2022)
[image:]

On the other handInstead, it is ready to replace and become the active NameNode at any time and almost without delay, making the failure almost imperceptible. Obviously, this strategy requires an additional machine.
4.2.3 HDFS Access Mechanisms
Hadoop offers a full Java API for accessing HDFS ﬁles. It is based on two main classes:
a. FileSystem represents the ﬁle tree (file system). This class allows copying local ﬁles to HDFS (and vice versa), renaming, creating, and deleting ﬁles and folders
b. FileStatus manages the information of a ﬁle or folder, using the methods:
· Its size with getLen()getLen() to return the size of a file or folder,
· Its nature with isDirectory() and isFile()isDirectory() and isFile() to determine whether an object is a folder or file respectively.,
These two classes need to know about the configuration of the HDFS cluster, and they do this using the class Configuration. On the other hand, fFull file names are represented by the Path class.
HDFS reading mechanism
Reading a file in HDFS is quite simple, and can be summed up in the figure below.
HDFS Reading mechanism (Ayman Khalil, 2022)
[image:]

The client code starts by creating a local object of the DistributedFileSystem class, which will act as a stub or proxy with the HDFS file system. The client code, therefore, addresses this local object and asks to open a file (step 1, open command). Stub
A stub is an object or short piece of substitute code that holds predefined data or functionality and uses it to answer calls during tests instead of using the more complex system it represents.

The stub then talks to the NameNode of HDFS to find out the location of the replicas of all the blocks in the file (step 2a). Then the stub creates another local object, of the FSDataInputStream class (step 2b), which that will act as a reader specialized in reading the target file, knowing the which nodes to contact.
The client will then perform read operations on this specialized reader (step 3), which will interrogate one of the nodes storing the first block of the file (step 4). Once the first block has been read, if the read operations continue on the part of the client, the specialized reader will interrogate a node containing the second block (step 5) and so on.
Finally, the client will ask to close the file opened for reading with the specialized reader (step 6, close operation). Note that the specialized reader verifies the integrity of the data read (checksum calculations) and signals any anomaly to the stub, which retransmits them to the NameNode.
HDFS writing mechanism
Writing a file in HDFS is more complex than reading it. At first, the client creates a local DistributedFileSystem object that acts as a stub or proxy to the HDFS filesystem, as was already the case for a read operation.
The client can asks the stub to create a new HDFS file (see figure below step 1, create operation). The stub then addresses the NameNode of HDFS to obtain the rightfor permission to create such a file (step 2a), and to be able to locally create an FSDataOutputStream object (step 2b), which will play the role of a writer specialized in writing of to the target file. Subsequently, the client speaks locally to this specialized writer to ask it to write data to this file (step 3, write operation).
The writer then dialogues with the NameNode of HDFS to know where to create a first block and its replicas (step 4a), then begins to write the first replica of the first block to a data node (step 4b). A pipeline mechanism is then set up: the node of the first replica retransmits its data to the node chosen to host the second replica (step 4c, ack = acknowledges), which itself retransmits it the data to the node chosen to host the third replica (step 4d), and the process continues if more than three replicates per block are specified.
Writing new data in HDFS (Ayman Khalil, 2022)
[image:]

When the writing on the last replica is finished, an acknowledgment message goes up to the node of each of the previous replicas in turn (step 5a), and so on until reaching the node of the first replica (steps 5b). This node then returns an acknowledge acknowledgment to the specialized writer (step 5c), and, if everything went well, the writer will proceeds by processing the next request to write data. When the first block is full, the writer again asks the HDFS NameNode for a set of nodes to write a second block and its replicates to (step 6a), and the pipelined write process repeats itself (steps 6b to 6d, then 7a to 7c, ack = acknowledges).
[bookmark: _Hlk106357152]After all data writes are complete, the client asks the writer to close the new file and then informs the stub, which, in turn, informs the HDFS NameNode, which updates its metadata with a new file in its mapping.
HDFS hands-on with Python
Luckily, in everyday practical work,, we seldomly have need to worry too much about this complexity. In the following example, we see how easy it can be to work with the powerful HDFS. In this example, we use Python to work with HDFS as the file store.
import modules and connect to HDFS
(twitter in this case)
from hdfs.hfile import Hfile
hostname = 'hadoop.twitter.com'
port = 8020
hdfs_path = '/user/travis/example'
local_path = '/etc/motd'

First, we open both the local and the HDFS files.
hfile = Hfile(hostname, port, hdfs_path, mode='w')
fh = open(local_path)

We then copying the content of a the local file into HDFS, 	Comment by GMP: Should this be "...into the HDFS file"?
line by line.

for line in fh:
 hfile.write(line)

Finally, we close the local file and the HDFS file.

fh.close()
hfile.close()

Our data now resides in distributed HDFS and is ready to be processed in parallel. 	Comment by GMP: HDFS is distributed by definition.
Now, we can read the file from HDFS.
specifying the file that we want to read

hfile = Hfile(hostname, port, hdfs_path)

reading the file
data_read_from_hdfs = hfile.read()
print data_read_from_hdfs
closing the file
hfile.close()

Self-Check Questions
1. Please mark the correct statement(s).
The need for data replication can arise in various scenarios:	Comment by GMP: The correct answer is not obviously indicated here since everything is underlined.
· Replication Factor is changed.
· DataNode goes down.
· Data Blocks get corrupted.
2. Complete the following sentences:
Data stored on HDFS is replicated but the active NameNode constitutes a Ssingle Ppoint Oof Ffailure (SPOF) of the system. Its failure could therefore render the HDFS file system completely unusable.

3. Complete the following sentence:
Hadoop has two main features that make it a successful and powerful tool: Fault Tolerance and High availability.

4.3 Spark
4.3.1 Conceptual Background

Distributed systems are a key part of big data technologies. In a distributed system, data is spread across multiple nodes, allowing for faster processing and improved scalability. Spark is a distributed system for processing big data. It is designed to be fast and efficient, and to handle a large number ofmany tasks simultaneously. Spark can be used for a variety of purposes, including data analysis, machine learning, and streaming data (Chambers & Zaharia, 2018).Scalability
It This is the ability of a system, network, or process to handle a growing amount of work, or its potential to be enlarged to accommodate that growth.

In Spark, we can write complex processes that consist of several MapReduce phases. This can be done also with YarnYARN. H, however, there are a few key differences between Spark and Yarn YARN that are worth mentioning. First, Spark is a stand-alone program that does not require YarnYARN, while Yarn YARN is a cluster management tool that works with Spark. Second, Spark is much faster than Yarn YARN when starting up, because it does not need to initialize the entire cluster. Moreover, Spark has a more user-friendly interface than YarnYARN. The Spark processes can be written in different languages namelyeither Scala, Java, and or Python. We will take an example based on Python for its pedagogical simplicity.	Comment by GMP: All previous instances of YARN have used all capitalized letters, so I have changed these instances accordingly for consistency.	Comment by GMP: R as well, right?
In this section, we will discuss the basics of Spark, including its architecture, features, and benefits. We will also see how we get started with Spark and how to use it for data analysis and machine learning.
4.3.2 How Spark wWorks
Spark is designed to provide high -performance for data processing tasks. It also includes a number ofseveral built-in libraries that can be used for data analysis. Spark is considered a parallel data programming API. It is based on the concept of Rresilient Ddistributed Ddatasets (RDDs). An RDD is a fault-tolerant collection of elements that can be operated on in parallel. RDDs are created by splitting a dataset into partitions, which are then distributed across the nodes in the a cluster. RDDs can be transformed and manipulated in various ways, and with the results are being also distributed across the nodes. This allows Spark to scale up to large data sets while still providing a high level of performance (Chambers & Zaharia, 2018).
RDDs can be cached in memory to improve performance. When an RDD is cached, Spark caches the data in memory, so that it the data can be accessed quickly without having to go through the network, every time the data is accessed. RDDs can be transformed and manipulated in many ways, including filtering, mapping, and reducing. RDDs are immutable, which means that once they are created, they cannot be changed. This ensures that the data is always consistent
 and eliminates the need for locks.
The Spark API provides two ways to operate on RDDs: Transformations that, which are operations that create a new RDD from an existing RDD; and Actions that, which are operations that return a result to the caller.
The following Python example shows how to use the Spark API to calculate the sum of the elements in an RDD (the values between <> are placeholders; more details about the Spark API will be presented later).
from pyspark import SparkContext
SparkContext().parallelize(<data>).\
map(<mapping_function>).\
reduce(<reducing_function>).\
collect()

4.3.3 Architecture of Spark
Spark is a distributed system that runs on a cluster of machines. The Spark cluster manager distributes the workload across the machines in the cluster. The Spark driver program is responsible for launching the Spark cluster, and for submitting jobs to the Spark cluster (Karau, Konwinski, Wendell & Zaharia, 2015). The driver program also manages the interaction between the Spark cluster and the user. The Spark executor program is responsible for running the tasks that are submitted to the Spark cluster. The Spark worker program is responsible for processing the data that are assigned to it by the Spark executor program. Spark uses a master/slave architecture. The master node is responsible for managing the Spark cluster, and for distributing the workload across the slave nodes. The slave nodes are responsible for running the Spark executor programs, and for processing the data that are assigned to them by the master node.
Spark Architecture (Ayman Khalil, 2022)
[image:]

4.3.4 Components of Spark
The key Spark components are: Spark cCore, Spark SQL, Spark Streaming, MLLib, and GraphX (Damji, et. al, 2020).
Spark Core
Spark Core provides the basic functionality of Spark, including data parallelism, scheduling, and memory management. There are APIs for Scala, SQL, Python, Java, and R. These APIs provide a comprehensive interface to Spark. They control Spark, controlling it from the respective runtime, e.g., Python or R, including starting and stopping Spark, and loading and manipulating data.
SQLParquet format
It This is a columnar storage format that is used by many big data systems. It offers several advantages over other formats, including the efficiency for reading and writing data.

Spark SQL enables users to interact with data stored in Spark using standard SQL commands. It includes support for reading and writing data in Parquet format and alsoor as DataFrames and Datasets.
Streaming
Spark Streaming enables users to process continuous data streams in near real-time. It includes support for processing data in mini-batches and processing data as it arrives. Spark streaming also includes support for processing data with multiple processors.
MLlib:
MLlib is a library of machine learning algorithms for use with Spark. It includes support for linear regression, logistic regression, clustering, and much more.
GraphX
GraphX is a library for manipulating graphs and performing graph analytics in Spark. It supports traversing graphs, finding shortest paths, and more.
Spark Components (Damji, et. al, 2020)
[image:]

4.3.5 Advantages oOver oOther bBig dData pProcessing sSystems
Spark is a distributed system that has a number ofseveral features and advantages over other systems.
· Spark can be run on a single machine or on a cluster of machines, and it can process data in memory or on disk.
· Spark also has a number ofseveral built-in libraries for data processing, including libraries for machine learning, graph processing, and streaming data.
· Spark was created by the team at UC Berkeley that also created Hadoop, and it iswas designed to be compatible with Hadoop.
· Spark can read and write data in HDFS, and it can run on the same clusters as Hadoop.
· Spark is also designed for performance. It can process data faster than Hadoop MapReduce, and it can use more memory than Hadoop.
4.3.6 How Spark can be used in Python
Spark can be used in Python for data analysis, machine learning, and streaming applications. It can run on clusters of computers or on a single computer. In Python, Spark can be used with the PySpark module. PySpark provides a Python interface to Spark and allows you to runfor running Spark jobs on a cluster of computers. PySpark also includes the Spark SQL and the MLlib modules.
Steps to install Spark
1. Download Spark from the Spark website and install it on your local machine (the following steps only apply for to this option). Alternatively, use a preconfigured image for a virtual machine or a Docker container. Another straightforward way to install Spark locally is to use the sparklyr package for R which has a convenience function, spark_install().
2. Extract the files to a location on your computer.Spark shell
It This is an interactive tool that allows you to run Spark jobs. It can be used to submit jobs, inspect the results, and explore the data. The Spark shell is started by running the following command:
 $ spark-shell

3. Run the Spark executable file to start the Spark shell.
4. Use the Spark shell to create a new Spark application.
5. Add the required libraries to your application.
6. Run your application on a cluster.

Using Python to interact with Spark
A pySpark program should start with this:
from pyspark import SparkConf, SparkContext
name = "test1"
config = SparkConf().setAppName(name)
sc = SparkContext(conf=config)

sc represents the Spark context. It is an object that haswith several methods including those that create RDDs.
An RDD is an abstract collection of data, resulting from the transformation of another RDD or creation from existing data. An RDD is distributed, i.e.that is, it is distributed over several machines in order to parallelize the processing.
You can create an RDD in two ways:
1- Parallelize a collection.
If your program contains iterable data (array, list. . .), it can become an RDD.
data = ['one', 'two', 'three', 'four']
RDD = sc.parallelize(data)
SequenceFile
SequenceFile This is a binary file format that stores key-value pairs. The key is a byte array and the value is a byte array, string, or integer.

It This is called a “parallelized collection”.
2- Spark can use manyRead existing data sources.
For example, data can be read from HDFS, or Hbase, etc. and in many file formats, e.g., like text and or Hadoop formats such as SequenceFile.
Here's how to read a simple text or CSV file into an RDD (in this case, the file is stored in HDFS, but for testing purposes,, you can also load a text file from your local disk).
RDD = sc.textFile("hdfs:/share/data.txt")

As with MapReduce, each line of the file constitutes a record. The transformations applied on the RDD will process each row separately. The lines of the file are distributed to different machines for parallel processing.
Some Spark processing uses the concept of pairs (key, value). The keys allow for example to classifying values in a certain order. To efficiently store this kind of RDD, we can use a so-called SequenceFile.
The following function reads the pairs from a SequenceFile stored in HDFS and creates an RDD.
RDD = sc.sequenceFile("hdfs:/share/data1.seq")

The following method saves the (key, value) pairs of the RDD to a file system (HDFS in this case).
RDD.saveAsSequenceFile("hdfs:/share/data2.seq")

Actions
Actions are methods that are applied to an RDD to return a value or a collection.
return the number of elements in an RDD
count = RDD.count()

return the RDD as a Python list
list = RDD.collect()

return the first element of the RDD
first = RDD.first()

return the first n elements of the RDD
first =RDD.take(n)

apply an aggregation function of the type fn(a,b)-> c
result = RDD.reduce(<function>)

where <function> is the aggregation function. It can be passed as an argument, or it can be the lambda function that defines the aggregation.

Note that the functions that return a Python list instead of an RDD are to be used with care. Imagine that you work with massive amounts of distributed data. The command RDD.collect() will probably crash your session as all distributed data will be imported into the memory of the current session as a Python list.

Transformations
RDDs have several methods that resemble Python functions, e.g.for example, map, and filter, etc. In plain Python, map is a function whose first parameter is a lambda or the name of a function, the second parameter is the collection to process. For example, to multiply each element of a list by 2, we can execute the following map function.
list = [1,2,3,4]
double= map(lambda n: n*2, list)

In pySpark, map is a method of the RDD class, its whose only parameter is a lambda or the name of a function:
list = sc.parallelize([1,2,3,4])
double = list.map(lambda n: n*2)

In the latter case, double is an RDD.
The following transformations handle RDDs whose elements are pairs (key, value).
return an RDD whose elements are pairs
(key, list of values having this key)

RDD.groupByKey()

return an RDD whose keys are sorted (set True or False)
RDD.sortByKey(ascending=True)

group the values having the same key and
apply the function (a,b) -> c (string concatenation
in this case using hyphens as separators)
RDD = sc.parallelize ([\
(1, "Tom"), \
(2, "Claude"), \
(1, "Chris"), \
(2, "mary"), \
(1, "Victor") \
])
print RDD.reduceByKey(lambda a,b: a+"-"+b).collect()

console output:
[(1, "Tom-Chris-Victor"), (2, "Claude-mary")]

To launch the entire Python script in a Spark context, execute the following command on a command line.
spark-submit test1.py

Self-Check Questions
1. What is not considered as an advantage of Spark over the other systems
· It allows for faster processing and better scalability.
· The efficient use of the central memory
· In Spark, Processes can be written in Python only.
· It is more concise, due to its functional programming style.
· It is easier to use, due to its concise API.

2. Please mark the correct statement(s).
· Spark allows complex processes composed of several map-reduce phases.	Comment by GMP: To be consistent, we should probably use "MapReduce" instead of map-reduce.
· Spark allows only simple processes composed of one or two map-reduce phases.
· Spark can be used for data analysis and streaming data but not for machine learning.

3. Please complete the following sentences.
RDD is a collection of elements partitioned across a cluster of machines.
Spark Core contains components for job scheduling and memory management.
Spark Mlib provides additional machine learning capabilities in big data analysis.

4.4 DASK
4.4.1 Conceptual bBackground

Pandas and Scikit-learn are popular data science libraries for Python. They are both designed to work with data stored in memory. This can be a limitation when working with large datasets that do not fit in memory. Dask is a Python library for working with large datasets. It is a distributed system that can scale to hundreds of processors. Dask can work with data stored in memory or on disk. It is a powerful tool for data science. Pandas and Scikit-learn
The Python library Pandas is a robust data analysis tool that makes working with enormous datasets simple. Scikit-learn is a machine learning library that includes a variety of data mining and predictive modeling algorithms.

Dask is a distributed computing system that helps you to analyze and process large data sets. It is composed of a number ofseveral individual "workers" that can be spread across many machines, allowing you to scalefor scaling out your processing power.

How Does It Work? Dask works by connectsing to a number ofseveral different back-end systems, such as Hadoop, Spark, or Pandas. This allows it to work with a wide variety of data formats and storage solutions. Dask then uses a task-based programming model to allow you to easily create parallelized processing pipelines. Back-end system
It This is a computer system that is used to store and manage data. Back-end systems are typically used to support front-end systems, which are used to that interact with users.

Why Use Dask? Dask offers several advantages over traditional distributed systems. First, it is very easy to use, even for non-experts. Second, it provides an intuitive "dataframe"-style API that makes working with data much easier. Finally, it scales out very well, allowing you to for processing large data sets on many machines simultaneously.

4.4.2 Parallel cComputing

Dask is a library for parallel computing in Python. It enables you to breaking up a problem into smaller chunks that can be computed in parallel. Dask can be used to parallelize both CPU- and GPU-based computations. One of the key benefits of using Dask is that it provides a uniform interface for parallelizing a variety of computations, regardless of the underlying hardware. This makes it easy to switch between different types of hardware, or to move a computation from one machine to another. Dask also provides several features for managing distributed systems, including automatic load balancing, fault tolerance, and job scheduling (Daniel, 2019).GPU-based computation
GPUs are well-suited for the types of computations required for big data applications, such as matrix operations, convolutions, and sorting. In addition, GPUs can exploit the parallelism of many-core processors to accelerate big data applications.

Dask is built on top of two libraries: NumPy
It This is a library for scientific computing that provides efficient, high-performance operations on arrays of data. NumPy arrays are similar to Python lists.

· Dask.distributed: This library provides the basic infrastructure for distributed computing. It handles communication between nodes, scheduling of tasks, and fault tolerance.
· Dask.array: This library provides an API for parallel computing that is similar to NumPy. It allows you to create arrays that can be divided into chunks and processed in parallel. Dask can be used to parallelize any code that can be run in NumPy.
For example, the following code can be run in parallel using Dask.
import Dask.array as da
a = da.ones((10, 10))
print(a)

This code will create an array of 10x10 zeros. You can run it on a single machine by using the Dask command line tool.
Dask array --nthreads 4 ./zeros.py
This will use four cores on your machine to create the array. You can also run it on a cluster of machines by using the Dask-cluster command line tool.
Dask-cluster --nthreads 4 ./zeros.py

4.4.3 Dask cCluster
 A Dask cluster is a collection of machines, usually connected through a network, that can be used to run Dask applications. Dask can be installed on any machine and can use any number of cores. However, to get the best performance, it is recommended to install Dask on a machine with many cores and large amounts of memory. When creating a Dask cluster, the number of workers and the number of cores per worker should be specified (Daniel, 2019). For example, a Dask cluster with 4 four workers and 8 eight cores per worker would have 32 cores in total.
How to create a Dask cluster
Dask clusters can be created in several ways:
· Manually create a Dask cluster using the Dask-cluster command line tool.
· Use the Cloud Manager to create and manage Dask clusters on Google Cloud Platform, Amazon Web Services, or Microsoft Azure.
· Use the Batch Scheduler to create and manage Dask clusters on Kubernetes.
How to execute ttasks in a paralyzed parallelized mmanner
In a distributed system, tasks can be executed in a paralyzed parallelized manner. It enables you to execute tasks in a paralyzed manner, meaning that you work can continue to work on your the local machine while the task is executed on a remote machine.
Python example on how to paralyze parallelize data
import dask from dask.distributed
import Client clients = [Client("127.0.0.1:8786")
for i in range(3)] data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
parallel_map(lambda x: x + 1, data) # map function across all workers
results = [x + 1 for x in data] # results will be a list on the workers

4.4.4 Example –pParallel pProcessing of a lLarge dDataset

The following example shows how to use Dask to process a large dataset in parallel. The example uses the Titanic dataset, which is available on Kaggle. The tTitanic dataset is a large collection of data points about passengers on the tTitanic. We will use a random forest model to predict whether or not a passenger survived. The first step is to import the necessary libraries. Kaggle
Kaggle This is a platform for data scientists to share their work, learn from others, and compete in predictive modeling competitions

import dask
import pandas as pd
import numpy as np import sklearn

Next, we will read in the data.
train = pd.read_csv("titanic/train.csv")
test = pd.read_csv("titanic/test.csv")

We will then split the data into training and testing sets.
X_train, y_train = train[:,:], train[:,1]
X_test, y_test = test[:,:], test[:,1]

Now we can create our model.
model = sklearn.random_forest(criterion='gini', n_estimators=100)

We can then parallelize the computation of the model using Dask.
dask_model = dask.distributed.Client()
dask_model.parallel(n_workers=4)
dask_model.compute(X_train, y_train)
dask_model.compute(X_test, y_test)

Self-Check Questions
· What is true about Dask?
· Dask is a library for parallel computing in Python.
· Dask can run on a single machine or on a cluster of machines.
· Dask can process data in parallel on multiple cores or multiple machines.
· Dask is not easy to use, and you can start using it with just a few lines of code.
1. List three benefits of using Dask?
Increased performance: It can often achieve a higher performance than traditional parallel computing frameworks such as MPI or Spark. 	Comment by GMP: The correct answers are not indicated.
Easy to use: It provides a simple API that is similar to the standard Python library.
Lightweight and efficient: It uses only a small amount of memory and runs quickly on modern hardware.
Increased flexibility: Dask allows you to use the Python programming language for parallel computing, which is more flexible than many other languages.
Reduced complexity: Dask hides much of the complexity of parallel computing, making it easier to use.
Scalability: It can run on large clusters of machines or on a single machine with many cores.
2. Please complete the following sentence.
A Dask cluster is a collection of connected machines, that can be used to run Dask applications.

Unit 5 – Streaming Frameworks

Study Goals

On completion of this unit, you will be able to …

… explain setups of streaming frameworks.	Comment by GMP: I think this goal may be a bit ambiguous. The statement says the student will be able to explain setups, but I'm not sure if that means they'll be able to explain the framework configuration, or explain how to setup the framework. So should it be: "...explain various ways to setup streaming…", "...explain how to setup streaming…"...explain the composition and configuration of…", or "...explain various streaming framework configurations…"?
… distinguish relevant factors for use cases of each.
… identify which streaming framework suits which use case.
… apply code to for a stream processing system that is up and running.

5. Streaming Frameworks
Case Study
Imagine that, GuiltyPleasure, a company producing ice cream, uses sensors to monitor the temperature of its machines. This temperature must remain permanently within a certain target range. The temperature is measured every second and short -term fluctuations in the temperature are common. But fFor the production cycle, however,, these fluctuations are not that particularly relevant, but rather the average temperature in the last two minutes, which is calculated for every second. If the temperature in this sliding window falls outside the defined range, the complete production will be affected. So, before this happens, an employee or even an automated process must intervene to regulate the temperature. These temperature changes may occur within a very short time and require direct processing of sensor data to capture this time-critical process. It must therefore be possible to analyze the data and output a signal in near real-time if possible. Streaming frameworks are designed to be able to intercept exactly such time-critical data, so GuiltyPleasure assigns you with the task to of finding out if a streaming framework is appropriate for their use case.
Streaming frameworks refer to the processing of data streams. These are characterized by the fact that there is a continuous flow of incoming data in a specific temporal sequence. Data streams can also be described as a theoretically infinite process of incoming data elements.
Many companies produce vast amounts of data, be it sensor data from production machines, transaction data, or data from user activities within a system. There is an almost infinite list of examples involving of the processing of such a volume of datadata processing of this type. But what how do they streaming frameworks work and what makes them special in contrast to other data processing frameworks?
There are different possibilities in the processing of data: One is processingOne way of processing data is in batches, which means that data are collected within a certain time window or upon reaching a certain file size is given in which the data are collected before they are and then processed. This bears the risk, as seen in the GuiltyPleasure example above, that they may already be outdated at the time of processing.
Furthermore, reality experience has shown, that, often, the time or file size boundaries that define which data entry should be processed, and in which batch, are artificial, in many cases. OftenFrequently, the data to be processed data are not bound, as they are not limited to a certain time frame or amount, but, in most processes, data isare produced continuously. Therefore, it came to mind that the batches need to be sliced into smaller and smaller time frames, until eventually processing the input rightthe data are processed essentially when as soon as it they arrives,. thereforeThus, a continuous stream of data is processed. (Kleppmann, 2017, S. 14)
This near real-time analysis requires certain processing abilities which that are presented in many different available stream processing frameworks, each with its own strengths and weaknesses. Some of the more popular frameworks include Apache Spark Streaming, and Apache Kafka, which will be introduced further in the next sections.
5.1 Spark Streaming
Before looking at Apache Streaming, it's worth looking at the Spark Environment in general.
Apache Spark
Apache Spark describes itself as a "multi-language engine for executing data engineering, data science, and machine learning on single-node machines or clusters" (Apache Software Foundation, 2022a, S. 1). It contains functions that let youallow the user to import data from various sources, with important file formats and systems being supported, and provides mechanisms for processing the data, such as in-memory computing and the generation of key-value pairs. It can do this on a cluster with a single machine, such as a desktop environment for development purposes, as well as on clusters that can scale as large as it is needed with hundreds of machines running in the cloud. These factorscapabilities, namely the in-memory processing and distributing of the data on clusters, is are what makes it possible to process big data and what makes Apache Spark incredibly fast.
Regardless of the cluster size, the same code can be used, making it straightforward to scale an application in Spark. For this reason, the Spark Framework is ideally suited for horizontal scaling with ease. If more data needs to be processed, only more hardware is required,; no new code needs to be written.
Since Spark Streaming can be seamlessly integrated with Spark, these same benefits can be leveraged for a continuous stream of data. This enables both, high throughput and scalability. Unlike Spark, Spark Streaming is designed for near-real -time analysis. Instead of large batch jobs, micro-batches are processed mimicking the continuous stream of data. In the following section, we will focus on the Spark Streaming mModule and its main aspects.
Features of Spark Streaming
Spark Streaming is a library, which that is used for processing data in near real-time. Spark Streaming was the first stream- processing framework based on the distributed processing capabilities of the Spark Core Engine. The idea behind Spark Streaming can be simplified to this: Uuse the capabilities of Spark Core to process streaming data by transforming it into discrete collections of data that Spark can process. You can use the same Spark tools for both, stream processing with Spark Streaming and batch processing with Spark Core. Spark Streaming allows for multiple data sources to be connected, and then continuously processes the incoming data before storing the datathem, e.g.for example, in a Hadoop Ddistributed Ffile Ssystem (HDFS). Spark Streaming basically uses the same functions as the Spark Core, but adds another abstraction, the Ddiscretized Sstream, or DStream, which is a programming model to operate on the data present in the stream (Garillot, van Maasakkers, & Maas, 2019, S. 14).
Resilient Distributed Datasets (RDDs) and DStreamsIn-memory
An in-memory database stores data directly in RAM, rather thannot on regular hard disk storage, but directly in RAM.

In order toTo address the Spark Streaming Module, it is first necessary to review the underlying programming abstraction in Spark itself: Tthe Rresilient Ddistributed Ddataset, or RDD. All operations in Spark are performed on these in-memory objects. RDDs are collections, where individual entities in the collection, called rows or records of the collection, can be anything. These individual entities are called Rows or Records of the collection. The fundamental characteristic of an RDD is that Aall of these, as said, are held in- memory, which makes processing much faster than first having to read the data from the disk.
This is the fundamental characteristic of an RDD.
 But what does this term RDD mean specifically?
· Resilient: fFault -tolerant. mMissing or defective partitions can be recovered as because they are redundant in the cluster.
· Distributed: Data is are distributed in partitions across different nodes in a cluster enabling easy parallelization of jobs.
· Dataset: This is a set of partitioned data.
Furthermore, the following characteristics should be noted in connection with RDDs:
· Partitioned: RDDs are Ssplit across data nodes in a cluster.
· Immutable: RDDs, once created, cannot be changed.
An RDD in Spark can be considered analogous to a collection object in Java. Such a collection object can be assigned to a variable so that methods can be called upon it. The methods that can be called for an RDD either retrieve a result or retrieve a subset of the entities in an RDD and output them to a screen, or assign them to another RDD. Individual entities in an RDD can also be transformed by mutating them and then obtaining a resulting RDD with the mutated entities.
To make this more tangible, let us take a look at how this works practically using Python as an example. The PySpark module can be used to work with Spark in Python at ease. In the following PySpark example, Spark code is shown in Python to create an RDD from data that exists in a text file.PySpark
This refers to an interface in Python that enables you to writewriting Spark applications with Python APIs. PySpark supports many Spark functions like Spark Core, DataFrame, Spark SQL, Streaming, and MLLib. (Apache Software Foundation, 2022d)

sc = SparkContext('local', 'MyFirstSparklingExample')
trains = sc.textFile(trainData)
SC stands for Spark--Ccontext, which is basically the connection from inside a program to the external Spark world. The trains RDD will be a collection of train data and can be visualized in an array form like in the graphic below. As we can see, the inner workings of an RDD are abstracted and hidden from us to make it very easy to work with distributed data in Spark: Wwe simply load the data into an RDD, and that’s it. Should one be interested in only a subset of the train data, filters can be applied to the RDD.:
trainsFiltered = trains.filter(lambda x: ‘ICE’ not in x)
This filter takes a lambda expression that returns true or false. If the return value of the method is true when applied to an entity of this collection, this entity is present in the resulting RDD. In the opposite case, this entity is omitted from the resulting RDD. In our example, we filter for trains that are not Intercity Express (ICEs).
Filter Function for an RDD (von Bargen, 2022)
[image:]
To print the data from an RDD the method collect can be used.
trains.collect()
This function should be used with care, though, because it will translate the data in the RDD to a regular Python object. Accordingly, if we want to harvest the distributed compute computing power of Spark, we should not continue working with collected data. Depending on the size and number of elements within the RDD, it might be reasonable to use the take method instead, which will print the first 3 three entities within the RDD.
 trains.take(3
The Spark module makes it possible to work with streaming data by providing a high --level abstraction for these data, called discretized streams or DStreams. They are somewhat similar to the RDDs, but add another level of abstraction making it even easier for us to work with streaming data. Let us explain the concept of DStreams with a concrete example. Namely,Consider the streaming of log messages from an important website that is to be monitored. These messages can be available on a socket that a monitoring tool is retrieving the data from or stored in a directory where new files are constantly being added to this directory. We fetch the log messages from this directory. Log files usually consist of a large number of text logs containing , the time the log arrived and the information about what happened in the application. These files can be reorganized and displayed as a stream where each message represents an RDD entity.
This stream of entities is called a discretized stream and is represented by a particular class called DStreams. Therefore, a DStream equals a sequence of RDDs. The advantage that comes with the abstraction of the stream of RDDs to a DStream is that we are able tocan perform operations on an entire stream of data at once instead of executing the same command over and over againrepeatedly on each individual RDD entry. For example, imagine that in the website logging the time was not set right correctly in the website logging so that there is a three-hour time shift between the correct time and the logging time in the file of three hours. Using DStreams, we can simply add three hours to the logging time and this operation will be executed for all incoming RDDs for us under the hood. DStreams exists regardless of the used programming language used, be it Java, Scala, or Python. All ofAll the data is organized into RDDs and sequences of these form the DStream. So now when operations are performed on DStreams, they are actually being performed on all individual RDDs within the DStream. Every DStream has a batch interval associated to with it, because remember that actually, Spark Streaming performs batch processing. B, but to handle streams of data, the batches are very small so that they seem continuous. (Apache Software Foundation, 2022c). Now, for example, we can use the filter function on a DStream as well.
sc = SparkContext('local', 'MyFirstSparklingExample')
ssc = StreamingContext(sc, '1')
myDStream = ssc.textFileStream('./data_directory/')
myTrains = myDStream.filter(lambda x: 'ICE’ not in x)
[image:]

Data Sources and Sinks
Spark Streaming provides built-in support for a range of streaming data sources and sinks (such as files and Kafka), as well as programmatic interfaces that let you specify any data writer.
In Spark Streaming, a basic distinction can be made between two categories of sources:
· Basic Sources: This These types of sources isare available first handfirsthand in the StreamingContext API. These can be file systems or socket connections.
· Advanced Sources: This These types of sources relates to systems like Apache Kafka or Kinesis, which must be actively linked.
Because Spark Streaming is a widely used application, a variety of open sources and proprietary sources can be connected. The most common data sources, besides the basic sources, are the socket source and Kafka source.
A socket source behaves like a TCP client and is implemented as a receiver-based source. It connects to a TCP server on a network location that can be identified by its host-ip:port combination. The method available in SparkContext can be represented with the parameters hostname, port, converter, and storageLevel. This source is often used as a test source because it is comparatively easy to create and is often used as an example in Spark Streaming. For simple test cases, both client and host can run on the same machine, so the host specification localhost is used. There is also a simplified version for text streams, which only queries host and port and is often used as an example due to its simplicity (Maas & Garillot, 2019, S. sec. 19).
newStream = ssc.socketNewStream("localhost", 9092)

[image:]
[image:]
In the context of streaming applications, Apache Kafka is often used as a data source which will be explained in detail later in this unit. The Kafka source is available as a separate library, which can be imported into the streaming project's dependencies. The method to create a Kafka direct stream is createDirectStream in KafkaUtils. This could be done as in like like the following:
Code for creating Kafka direct stream
[image:]Apache Bahir
This repository provides extensions such as streaming connectors as well as SQL data sources.

Apache Kafka will be explained more fully later in this unit.
Besides Kafka, there is also the possibility to include of including a variety of other data sources, many of which can be found under Apache Bahir. Among them are Apache Spark and Flink extensions such as the following (Maas & Garillot, 2019, S. sec. 19):
· Apache CouchDB/Cloudant
· Akka
· MQTT
· Twitter
· ZeroMQ
· PubNub
· Google Cloud Pub/Sub
After the data has been processed in SparkStreaming using DStreams, it is they need to be externalized using so-called output operations. The component for this is called sink.
The core library of Spark Streaming provides some built-in output operations (Apache Software Foundation, 2022b):
· DStream.pprint (num = 10) will print the first 10 ten elements of the DStreaming at every streaming interval.
· DStream.saveAsXYZ (prefix, suffix) allows output to a file-based sink. Using pre-prefix and suffix, , the name can be located in the target file system. The syntax for this is prefix-<timestamp_in_ms>[.suffix]. For example, the operators saveAsObjectFiles, saveAsTextFiles, or saveAsHadoopFiles can be used.
· DStream.foreachRDD(func) provides access to the underlying RDD and is a general-purpose output operation. All other output operations are fundamentally based on it; it can be called the native output operator. This operator will perform the function provided as an argument on every RDD in the stream. Accordingly, it can also be used to transform the data.
Spark within the Hadoop Ecosystem
Apache Spark, just like most Hadoop components components, works on multiple machines in a cluster and can be a replacement for Hadoop in several situations, such as replacing the map-reduce function of Hadoop with batch- processing of Spark, or even extending its functions with micro-batching in Spark Streaming. Spark can also work with YARN. 	Comment by GMP: Should this be MapReduce to be consistent with the rest of the document?YARN
The This abbreviation acronym stands for Yet 'yet another resource negotiator’, which and splits up functionalitiesperforms the dual functions of resource management and job scheduling.

Since Spark is feasible as a replacement for some Hadoop functions, it is possible to fully integrate it into the Hadoop ecosystem. This allows you to take advantage of both worlds.
For example, a setup like the one shown in the following graphic can be used for this purpose.

Big Data Architecture: Spark in the Hadoop Framework (von Bargen, 2022)
[image:]
As shown in the graphic above, the setup initially consists of the data sources, a messaging layer, the Hadoop framework, and various export functions such as a dashboard, a data warehouse, or even the transfer of the data to ERP, CRM, or SCM systems.Data Warehouse
The Ddata Wwarehouse is a central database, which that is optimized for analytical operations, in which data from heterogenous sources can be stored.

Here, depending on the needs of the companyorganization, an individual structure of components can be selected.
 For example, to build a data lake, an organization needs to decide the following points (Damji, Wenig, Das, & Lee, 2020, S. sec. 9):
· Storage system - Either HDFS can be used or a cloud object store for example those of like Microsoft Azure (Data Lake Storage), Amazon Web Services (S3), or Google Cloud can be used.
· File Format - Depending on the downstream workload, the organization needs to know what file format the data is in,: either structured such as Parquet or ORC, semi-structured, such as JSON, or even unstructured as in image, audio, or video files.
· Processing engine(s) - Depending on the analyses to be performed, a processing engine is needs to be selected. This can be either a batch processing engine, such as Spark, Presto, or Hive, or a stream processing engine, such as Spark Streaming. Machine learning libraries could also be integrated, such as Spark MLlib.
Spark is often a good choice here, as it includes various key necessary features that are needed. On the one hand,It supports a variety of different workloads are supported, but also variousand file formats. In addition,, and it Spark allows data to be accessed from any storage system that supports the Hadoop APIs. These are reasons why Spark has thus become a de facto standard in the Bbig Ddata environment, with and most cloud or on-premise storage systems already offering implementations for this. However, it must be considered that, especially for some cloud environments, a special configuration may be necessary to access the data in a secure mannersecurely (Damji, Wenig, Das, & Lee, 2020, S. sec. 9).	Comment by GMP: I'm not sure what is intended by 'already'. I might suggest removing this word.On-premise
The term on-premise, or on-prem, refers to a licensing model for local use of server-based computer programs. The alternative to this would be cloud use.

Self-Check Questions
1. Which types of sources can be categorized in Spark Streaming?
Basic Sources
Advanced Sources
2. Please mark the correct statement(s).
· Spark Streaming uses DStreams to process data
· Spark Core uses DStreams to process data
· Spark Core uses RDDs to process data

5.2 Kafka
Amongst the most popular streaming frameworks are Spark Streaming and Apache Kafka. In this section, we discuss the streaming framework Kafka. First, the origin and main concepts are introduced, in order to regard afterwardsthen we will discuss the components and function in more detail.
Kafka: Origin and Main Concepts
OriginKafka
This isA a writer’s name for a writing system: The name actually derives from Franz Kafka.

Kafka has been originallywas created by LinkedIn, who which needed to solve their its data pipeline problem. LinkedIn had two systems in use: Oone for internal uses, such as application monitoring, and one for tracking user activity. The requirements of both use cases could not be met using the same backend service: T because the monitoring service had a data format which that was not suited for activity tracking, and the polling model was not compatible with the tracking service push-model, in which frontend servers would periodically connect and publish a batch of messages to the HTTP service. The tracking service used batch-oriented processing, so it was not a good fit for real-time monitoring. On the other hand, due to the similarity of the collected data, it was reasonable to find a solution that would be able to combine both systemic approaches. After confirming there was no scalable solution for providing real-time access to the data available yet, LinkedIn developed a message queue system themselves.: Key goals were to use a push-pull- model to decouple producers and consumers of information, as well as providing to provide persistence for messaging data within the system., Therefore, the system should allow for multiple consumers while keeping high throughput by horizontal scaling. Their Its publish/subscribe messaging system, Kafka, was released on GitHub as an open-source project in 2010 (Narkhede, Shapira, & Palino, 2017, S. 14f). Today, it is an open-source project mainly primarily maintained by Confluent, a company with its origin at LinkedIn, under the Apache stewardship.
Main Concepts
In today’s view, Kafka can be used in different ways:
1. It’s original use case of moving all occurring event data to a central data warehouse
2. Kafka also persist data making it able to be read hours or even months after it has been written. This opens another use case opportunity. Kafka can also be used as a central system for not simply exchanging data from one system to another but making it the central hub for working with data in general.
3. Every event is saved in Kafka and every other service can act upon the stored data. Thus, it can also be an interface for numerous software services to communicate with one another. Thus, Kafka can, therefore, also be seen as a data pipeline. (Zelenin & Kropp, 2022, S. 3)
The main aspectskey feature of Apache Kafka are is it’s distributed, resilient architecture, which makes it fault -tolerant, highly available, and horizontally scalable. A Kafka Ccluster can scale to a thousand brokers that processprocessing trillions of messages per day or petabytes of data. It is built for high throughput and has a latency of less than 10ms –, which makes near real- -time processing possible. It offers built-in stream processing and has various client libraries allowing for processing the data in various a variety of programming languages. This shows helps to explainin Kafka’s popularity: Iit is reportedly used by over 80% of the Fortune 100 companies as of early 2022 (Apache Kafka, 2022).Latency
This describes a time delay between request and response from a system.

The following table provides a short comparison of Kafka and another popular stream processing system, Spark Streaming.
Comparison of Key Features of Streaming Frameworks
	Comparison of Key Features of Streaming Frameworks

	Spark Streaming
	Kafka

	Based on Spark clusters, so HDFS or a similar system is needed
	Offers a Java library called Kafka Streams, no additional data store is needed

	Micro-Bbatch Pprocessing
	Event-at-a-time Pprocessing

	Higher latency
	Low latency thanks to continuous processing

	Multiple programming languages supported (Python, Scala, Java, R)
	Kafka Streams library is limited to Java and Scala as programming languages, but through a REST Proxy connection to a large number of clients it is possible to use different programming languages

Components
Now, how does Kafka work? We learned that it Kafka combines various components in a distributed system. B, but what are these components and how do they interact with each other? Before looking at the components in more detail, we should familiarize ourselves with the terminology within the Kafka framework should first be known.

Terminology
In a Kafka Aarchitecture we will usually be working with the following components:
· Producer
· Kafka Ccluster holding multiple brokers and possibly the ZooKeeper
· Consumer
There are also two components that describe how the data is organized in Kafka:
· Topic
· Partition
Messages are sorted by so-called Topics in Kafka. To distribute the data across the cluster for better parallelization and system reliability, it is also partitioned. Each Bbroker can hold multiple topics, which then are split between multiple partitions.
[image:]
[image:]

Apart from this,In addition, the following terms are also relevant in the Kafka context and need to be understood.
· Offset
· Lead
· Follower
· Controller
We will start with at the point, where the data is collected, this which is called a producer. A producer is usually a data -producing application or sensor.
The data are sent by the producers to the brokers in a Kafka Ccluster. Data in the Kafka Ccluster are appended to their respective log within their topic. In previous versions of Kafka, ZooKeeper was needed in order to have a possibility of communication between the brokers. Since version 3.0 the broker can fulfill this task self-efficient, but there are cases in which it would still be recommended to have ZooKeeper in place (Karantasis, 2021). There are different roles, a broker can take: Ccontroller, Llead, and or Ffollower. In one cluster, there is always one controller broker. The task of the controller is to manage the states of the partitions and their replications as well as to manage administrative tasks. The process of selecting a broker to be the controller is called Kafka Ccontroller Eelection. After the data are stored within the brokers in their respective topics and partitions, this data isthey are getting replicated. This is done in a way so that each part of the data is stored on a lead broker and, in addition, at least one follower broker.ZooKeeper
This is a centralized service for atomic synchronization of requests in a distributed network.

From here the data can be retrieved by any number of consumers by subscribed to a certain topic. Consumers are instances that are reading the data for further action. This step is asynchronous to the write process. (Kleppmann, 2017, S. 447).
But lLet’s take a closer look at how the data is are stored in topics and partitions. The process of partitioning is the division of a topic into smaller units. The number of partitions can be chosen upon the creation of a topic. Partitions are used for easy replication of the data and parallelization capabilities. The so-called replication factor describes to how many brokers a partition of a topic is replicated to. In the graphic above, a factor 2 two replication is shown, where for each lead partition there is one replica. A partition with factor x exists x- times in the cluster. For each of these existing identical partitions there exists one lead partition,; the replicas are called followers. Within the cluster, each broker is the leader for some partitions and the follower for other partitions.
One key characteristic of Kafka is its so-called structured immutable commit log. This means that the order of messages is preserved (immutable). One of the many advantages of this is that old messages remain readable even after updates to the way data is structured in the system. Also, tThis allows for central updates on topics to all parts of the systems. Thise logfile has a default segment size of 1GB and a new segment will automatically be created after either a certain time, log.retention.ms, with a default time of 168hr hours or 7 days, or when the size of one individual file reaches the log.segment.bytes. Depending on the set retention policy, these log files can be persisted or cleaned up. This is either defined on a global scale or specifically per topic. Kafka can only delete full segments, though, and not specific data entries, which is desired preferred for most use cases with respectrelating to data quality (Apache Software Foundation, 2022).	Comment by GMP: I assume we're saying that deleting specific data entries is preferred, which is the way it is written.
This brings us to another term that must be known in the context of Kafka: Ooffset. New messages are appended to the end of each topic and assigned a number. This number, called the offset, is incremented according to the log sequence and it is called the offset. This number is relevant both for writing and for reading the messages, as this provides the only consumer -specific metadata. The asynchronous setup allows the current offset number of each consumer to be stored, so that the consumer can always continue working with the last message it read. No data is are lost for any application and information is not skipped even if the network connection is temporarily interrupted. This is illustrated in the following graphic.
[image:][image:]

Kafka Ecosystem
The Apache Kafka ecosystem includes Apache Kafka Connect and Apache Kafka Streams, as well as the Confluent Schema Registry and the Confluent REST Proxy (Apache Software Foundation, 2022). Let’s discuss each of these components and their respective roles in the Kafka ecosystem.
· Apache Kafka Connect is a framework for connecting, importing, and exporting third-party data.
· Apache Kafka Streams, in contrast to Apache Kafka Connect, is not an entire framework, but solely a Java library that is used to stream data in near real-time in a fully automated manner. It is used to enable stream processing chains of aggregations and transformations of the data. Kafka Streams fetches the messages as soon as they are created by the producer and can already perform operations and analyses on these messages on-the-fly. The consumers can then read the already processed data in near real-time.
· The Confluent Schema Registry is a service for decoupling producers and consumers at the data level. A consumer can use this to retrieve the schema before the data is processed in order to validate the data. The schema itself is a JSON file (Confluent, 2022b).
· The Confluent REST Proxy provides a service for producers or consumers who cannot connect natively to Apache Kafka, for example, due to a firewall that prevents such a connection. Another use case would be that if producers or consumers are written in a programming language that Apache Kafka does not support. In this case, communication can take place over the HTTP protocol by producers or consumers sending REST commands to the proxy, which in turn converts them into Apache Kafka commands and sends them to Kafka (Confluent, 2022a).
Example
Now that we know how Apache Kafka works in principle, how can we put this framework to use? In the following section, we will learn how to create a topic and how to send and receive messages in Kafka.
Apache Kafka should be installed first. Detailed instructions on how to install Kafkado this can be found in the documentation for the latest version of Kafka (Apache Software Foundation, 2022).
[image:]

Once Kafka is installed on your our local machine, we will want to create our topic, which we will call “’bigdata”’. The following code example shows the necessary parameters:. You We can create this command in a shell script. We will go through each command step-by-step.Shell script
A shell script is a program that is interpreted and executed by the Unix shell. Ultimately it is an executable text file containing instructions that can also be used in the command line of the shell.

[image:][image:]

First, with --create --topic we specify that we want to create a new topic and give it a name. Optional are tThe parameters replication-factor and partitions are optional. In this case, both parameters are set to one, as because in this example we assume, that only one broker is started. If we had not used these parameters the number of partitions and the replication factor would have nevertheless defaulted to one, Hhowever, it is generally good practice to get used to includinguse these parameters with every command. Default values should never be relied upon. Later, when we run Kafka on a larger cluster with hundreds of brokers, for example, in the cloud, we simply increase these numbers for better reliability and availability of our data system. The last parameter this script needs is the bootstrap-server. This refers to the information location where this script can find Apache Kafka. For local installations, Apache Kafka is started on the localhost and listens to port 9092 by default.	Comment by GMP: Please check I have retained the intended meaning. I modified the previous sentence to make it explicit what you are referring to when talking about default values.
As an optional step, we can look at the created topic (which does not contain any data yet). The command for describing a topic looks very similar to the create command. The difference is that instead of --create, we use --describe. Executing this command gives us the internal TopicId, as well as the number of partitions and the replication factor. Furthermore, additional configurations are shown., such as, Iin this case, the default size of a segment, which is specified as one gigabyte. Although topics can also be created via graphical user interfaces, the command line is still the best waypreferred method, because this way the command can additionally be documented. Also, for automations the command line is not to be underestimatedThe command line is also the preferred method for automations.	Comment by GMP: I wonder if this sentence is necessary?
To send the first messages to Kafka, we need the command line tool kafka-console-producer.sh. Using this tool, the producer can use the command line to write data into a topic in Kafka.
Remember that in order to send data to Kafka, we must select an appropriate topic. In this example, we want to write the message "Hello student" to our “’bigdata”’ topic.
[image:]
[image:]

Finally, we want to start a consumer and read the message we just sent.
Code for reading messages (von Bargen, 2022)
[image:]
In this case, we have added the --from-beginning argument to output all messages for this topic. In addition, we have created a timeout so that the consumer automatically ends the search after 10 seconds.
It is also possible to display these messages in a continues continuouslyway. To do this, the consumer is started by starting the consumer without the timeout command. As soon as new messages arrive, they are displayed in on the command line. Also, using a specific offset, we can read data from a particular point in time instead of all the data in the topic.
Self-Check Questions
1. How many follower brokers exist for a partition when the replica- factor is 10?
· 5
· 9
· 10
· 11
2. Which command line tool is used by producers to send messages to Kafka?
kafka-console-producer.sh
Summary
Spark Streaming and Kafka are two concepts within the streaming context that can only be compared to a limited extentare only partly comparable. Spark Streaming is initially a single tool for processing streaming data, while Kafka is a complete system for message queues.
Spark Streaming is optimized for a wide range ofa variety of applications, and can be integrated within different frameworks and seamlessly connected to Spark itself. This allows incredibly fast processing through distributed systems. Spark Streaming works with DStreams, which consist of a sequence of RDDs on which basically the samesimilar operations can be performed. Spark Streaming's DStreams enable micro-batch processing and can be used in parallel to batch processing with Apache Spark batch processing, for example, in a Hadoop environment.
Kafka offers individual microservices through the integration of different clients, such as Kafka Streams, which is initially just essentially a Java library and as such is more difficult to compare. With Kafka Streams, near real-time processing is possible and can be used for time -critical operations with latencies of <10ms. Kafka's diverse use casesroles as either a messaging layer or for both message queuing and stream processing offer a flexibility in use: .
It Kafka can be integrated with other streaming platforms, including Spark Streaming, making it a good way to combine the benefits of the distributed system with the needs of the individual use case.
Here, itHow to employ Kafka largely depends on what the latency and scalability requirements are. A pure Kafka architecture makes sense for real-time analyses, but if certain latencies are not a critical point for the specific use case, a Kafka-Spark Streaming combination can also appear useful, since micro-batching can still be used for comparatively fast analysis.
Appendix 1 – References	Comment by Sarica, Oezlem: Please do not edit this entire section and do not format references.
Akil, B., Zhou, Y. & Rohm, U. (2018), On the usability of Hadoop MapReduce, Apache Spark & Apache Flink for Data Science.
Apache Software Foundation. (2022a). Apache Spark. Retrieved from https://spark.apache.org/
Apache Software Foundation. (2022b). PySpark Streaming. Retrieved from https://spark.apache.org/docs/latest/api/python/reference/pyspark.streaming.html
Apache Software Foundation. (2022c). Streaming Programming Guide. Retrieved from https://spark.apache.org/docs/latest/streaming-programming-guide.html#discretized-streams-dstreams
Azarmi, B. (2016), Scalable Big Data Architecture. Apress.
Chambers, B., Zaharia, M. (2018): Spark. The definitive guide: Big data processing made simple. 1st Edition. Sebastapol, CA: O'Reilly.
Chapter 8. Data Types. Retrieved from https://www.postgresql.org/docs/current/datatype.html
Damji, J. S., Wenig, B., Das, T., & Lee, D. (2020). Learning Spark, Lightning-Fast Data Analytics. 2nd Ed. Sebastopol: O'Reilly Media.
Daniel, J.C. (2019): Data Science at scale with Python and Dask. Sebastopol, CA: O'Reilly.
Dean, J. & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clusters (USENIX Association, Publ.). https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf
Department of Earth and Environmental Sciences - Frequently Asked Questions. Retrieved from https://xraylab.esci.umn.edu/frequently-asked-questions
Garillot, F., van Maasakkers, G., & Maas, G. (2019). Learning Spark Streaming. Mastering structured streaming and Spark Streaming. Sebastopol: O'Reilly Media.
Goldberg, D. (1991). What Every Computer Scientist Should Know About Floating-Point Arithmetic. Computing Surveys(March 1991).
GridFS. (2021). Retrieved from https://docs.mongodb.com/manual/core/gridfs/
How is Unstructured Data Used in a Database? (2021). Retrieved from https://www.mongodb.com/unstructured-data/database
INSPIRE. (2022). INSPIRE. https://inspire.ec.europa.eu/
John, T., & Misra, P. (2017). Data Lake for Enterprises [electronic resource] (1st ed ed.): Packt Publishing.
JSON and BSON. (2021). Retrieved from https://www.mongodb.com/json-and-bson
Karau, H., Konwinski, A., Wendell, P. & Zaharia, P. (2015), Learning Spark. 1st Edition. O’Reilly.
Kilbourne, J., & Williams, T. (2003). Unicode, UTF-8, ASCII, and SNOMED CT. AMIA ... Annual Symposium proceedings. AMIA Symposium, 2003, 892-892.
Kitchin, R. (2021). The Data Revolution: A Critical Analysis of Big Data, Open Data and Data Infrastructures (2. Aufl.). SAGE Publications Ltd.
Kitchin, R. & McArdle, G. (2016). What makes Big Data, Big Data? Exploring the ontological characteristics of 26 datasets. Big Data & Society, 3(1). https://doi.org/10.1177/2053951716631130
Kleppmann, M. (2017): Designing data-intensive applications. The big ideas behind reliable, scalable, and maintainable systems. 1st Edition. Sebastopol, CA: O'Reilly.
Lammel, R. (2008), Google’s MapReduce programming model. Science of Computer Programming Volume 70, Issue 1, 1
Luntovskyy, A., & Globa, L. (2019, 9-13 Sept. 2019). Big Data: Sources and Best Practices for Analytics. Paper presented at the 2019 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo).
Maas, G., & Garillot, F. (2019). Stream Processing with Apache Spark. Sebastopol: O'Reilly Media.
Most popular social networks worldwide as of January 2022, ranked by number of monthly active users. (2022). Retrieved from https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
n.a. (n.d.) Dask Project Webpage (URL: https://Dask.org/ [last accessed: 08.03.2021])
Our World in Data. (o. D.). GitHub. https://github.com/owid
Pai-Dhungat, J. (2020). Invention of CT-Scan. J Assoc Physicians India, 68(5), 53.
PostGIS - Spatial and Geographic objects for PostgreSQL. Retrieved from https://postgis.net
SQL Injection. Retrieved from https://www.w3schools.com/sql/sql_injection.asp
Team, T. H. (2015). Publish & Subscribe - MQTT Essentials: Part 2. MQTT Essentials. Retrieved from https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/
typing — Support for type hints. (2022, 2022-03-16). Retrieved from https://docs.python.org/3/library/typing.html
Walters, R. (2017, 2021-06-23). Getting Started with Python and MongoDB. Retrieved from https://www.mongodb.com/blog/post/getting-started-with-python-and-mongodb
White, T. (2015), Hadoop. The Definitive Guide. 4th Edition. Sebastopol, CA: O'Reilly.
Zhang, J., Porwal, S., & Eaton, T. V. (2020). Data preparation for CPAs: Extract, transform, and load; ETL processes unearth the fuel needed to power the analytics and visualizations that unlock business insights(6), 50. Retrieved from http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edsgsb&AN=edsgsb.A644557535&site=eds-live&scope=site

Appendix 2 – List of Tables and Figures	Comment by Sarica, Oezlem: Please do not edit/format this entire section (Appendix 2). It will be formatted internally.

Table 1: volume units (Robert Horrion, 2022)
Source: [Robert Horrion](2022).
--
Table 2: transfer speed units (Robert Horrion, 2022)
Source: [Robert Horrion](2022).
--
Table 3: Binary encoding values for an 8-bit integer (Robert Horrion, 2022)
Source: [Robert Horrion](2022).
--
Table 4: A selection of important data types based on the PostgreSQL documentation (Robert Horrion, 2022)
Source: [Robert Horrion](2022) based on (“Chapter 8. Data Types.”).
--
Figure 1: Characteristics of Big Data (Robert Horrion, 2022), based on (John & Misra, 2017)
Source: [Robert Horrion](2022), based on [John & Misra](2017).
--
Figure 3: The Pub/Sub pattern (Robert Horrion, 2022)
Source: [Robert Horrion](2022).
--
Figure 4: Storing binary data in a database (Robert Horrion, 2022)
Source: [Robert Horrion](2022).
--
Figure 5: JSON representation of an email message to be stored in MongoDB (Robert Horrion, 2022)
Source: [Robert Horrion](2022).
--
The hierarchical data model
Source: [The Author] (2022), based on (IBM, 2021).

--
The network data model
Source: [The Author] (2022).

--
The relational data model for TicketDB
Source: [The Author] (2022).

--
Key-value data model
Source: [The Author] (2022), based on (Microsoft).

--
Document data model
Source: [The Author] (2022).

--
Columnar data model
Source: [The Author] (2022), based on (Gourav Bathla, 2018).

--
Graph data model
Source: [The Author] (2022).

--
Showing the graph database in neo4j console
Source: [The Author] (2022).

--
Showing the query result graph in neo4j console
Source: [The Author] (2022).

--
Comparison of NoSQL database categories
Source: (Gourav Bathla, 2018)

--
Simplified software stack of the Hadoop ecosystem
Source: [Ayman Khalil] (2022), based on [Loris Belcastro, Fabrizio Marozzo & Domenico Talia (2019)]
--
Distributed Execution of a MapReduce Treatment

Source: [Ayman Khalil] (2022), based on [W. Adoni, T Nahhal, B. Aghezzaf & A. Elbyed (2017)]

--
HDFS Master/Slave Architecture
Source: [Ayman Khalil] (2022), based on [Nikhil Ranjan] (2016).
--
High availability solution for HDFS in the case of a failure on the NameNode
Source: [Ayman Khalil] (2022), based on [Nikhil Ranjan] (2016).
--
HDFS Reading mechanism
Source: [Ayman Khalil] (2022), based on [Stéphane Vialle] (2017).
--
Writing new data in HDFS
Source: [Ayman Khalil] (2022), based on [Stéphane Vialle] (2017).
--
Spark Architecture
Source: [Ayman Khalil] (2022) based on [Saadna Yasmina] (2019)
--

Spark Components
Source: [Damji, et. al] (2020)
--
Filter Function for an RDD
Source: Inka von Bargen (2022)
--
Code for creating Kafka direct stream
Source: Inka von Bargen (2022)
--
Big Data Architecture: Spark in the Hadoop Framework
Source: Inka von Bargen (2022)

image1.png
Big Data

Volume Velocity Variety Veracity

Amount of data Storage and access Diversity of data Quality and accuracy
speed
* Gigabyte ¢ Structured * Inconsistent
* Terabyte * GBps ¢ Semi-structured * Untrusted
* Petabyte * Gbps ¢ Unstructured * Raw/uncleansed
* Response time * Photos
* Videos
¢ Text
* Single numbers
* Arrays
¢ Documents (HTML,
JSON, ...)

image2.png
Message

Broker

Database

loT Machinery

image3.png
0101001
1100

BLOB implementation in a
database - raw data is stored
in an encoded string

/data/.,,/

File system storage
implementation with a
reference to the file in the
database

image4.png
© 00N UAWN R

B R R R R R R R R
©O®NOOU A WNRS

email message = ({|

'to_line': 'example@iu.org',

‘cc_line': '',

'from': 'example2@iu.org'

'subject': 'Important photos',

'body': 'Aren't our two furry friends cute?',
‘attachments': [

{
‘filename': 'catphoto’,
‘extension': 'jpg',
‘data': '...'

b

{
‘filename': 'dogphoto’,
‘extension': 'jpg',
‘data': '...'

}

image5.png
Ticket
Ticket #: 123456789
[Passenger]
e Name: John SMITH
o Age: 46
« Gender: Male

[ltinerary]

¢ Osaka -- Dubai (JAL)
(Departure date: 25.3.2022)

« Dubai -- Frankfurt (FlyDubai)
(Departure date: 26.3.2022)

image6.png
Ticket Flight_Ticket Flight
PK | ticket_no PK | flight_ticket_id PK | flight_no
passenger_name fk | flight_no 91—/7 from
passenger_age fk | ticket_no to
passenger_gender fk | company
Airline date_time
PK | al_id

name

image7.png
passenge

Ticket
Ticket#: 123456789
[Passenger]
« Name: John SMITH
« Age: 46
+ Gender: Male

[tinerary]

« Osaka -- Dubai (JAL)
(Departure date: 25.3.2022)
« Dubai - Frankfurt (FlyDubai)

(Departure date: 26.3.2022)

image8.png
Flight.1

airline
co.1

airline

Flight.1

image9.png
key-1 y —> < value-1

key-2 ——> < value-2

key-n j ——> < value-n

image10.png
"ticket no": 1235,

"passenger name": “"SaraSMITH",
"passenger age": 41,
"passenger_gender": "Female",
"Flights": [

{

"flight_no":"FD123",

Dubai”,

: "Frankfurt”,
"airline":"FlyDubai",
"26.3.202216:00"

Tickets (Collection)

image11.png
Name Age Gender
[John SMITH 46 Male
Sara SMITH 41 Female

—>

"John SMITH", "Sara SIMTH}

{
{

46,41 }
"Male", "Female" }

image12.png
Boarding

Boarding

Boarding

image13.png
neo4j$ MATCH p=(n:Ticket)-[1-() RETURN p

%

Grapn

rding

Boarding®

image14.png
neo4j$ MATCH p=()-[r:Boarding]—(n:Flight{flight_no:'FD123'}) RETURN p »

Table Boarding

8°arm,,g

image15.png
Apache Ambari

System Deployment

Sqoop [Pig, Hive, Spark [Oozie

Storm Distributed Programming Scheduling

] i]

MapReduce - YARN ’ [HBASE ’

DB@“

Linux/
Windows
file system

([

Zookeeper

image16.png
GiNode 1

<ercedes, 15000>
<t 8000>
<ercedes, 10000>
‘deep, 16000>

e

120000
<t 8000>
<t 7500>

eep, 13000>

T Y I ey .a
T R ey .a

G5 Node 3

<Mercedes, 18000>
<Fiat, 12000

deep, 21000>

eep, 18000>

Map Phase:Local reatment
T

L Shuffing

M Reduce Phase: LocalTreatment.)
T

image17.png
Remote File System -
(used for Fault tolerance) .

Local File System

Data Node

AT .

Data Node

AT .

Data Node

|-

Data Node

L LI

Data Node

L

[ABHE 2 blocks
B 1biock
[T 1 block

image18.png
Data Node

Data Node

Data Node

Data Node

L LI

Data Node

[L

2 blocks

B :biock
[1 block

image19.png
Client Node

6.
Client JVM

1- open

% reag

Clogg

4-read
block 1

2a-get block

ocations

[Nametiode |

name node

* 2b- create

object

5- read

W‘

data node

data node

data node

data node

image20.png
Client Node

2a - create
3 ate
Wrige 2b- cre name node
object
) 4a — get node list
Client JVM 7 6a — get node list
4b- write
block 1 / dcpack 6b - wri 7c-ack
block 2
e IR oo BIR R oeeroce
.data node data node . data node data node
ac 5b 6c 7b
- DataNode //_ DataNode
P
.data node N .data node data node
[
ad 5a
P

data node

image21.png
Driver

SparkContext

Cluster Manager

Worker

Executor

Worker Worker

Executor

image22.png
MLlib
(Machine
Learning)

Spark

Spark sQL
park SQ Streaming

Apache Spark

image23.png
RDD trains lCIE|EC|ICE|EC| ICIICE|NV|ICE| D l

{rl‘!i‘iﬁgffwt‘gﬂlambdax ‘ICE’ not in x) m EC EC IC m NV D

4 4

RDD trains.Filtered EC EC [NV »]

image24.png
sc = SparkContext("local’, "MyFirstSparklingExample')
TrainsDStream = streamingContext.textFileStream(trainData))
FilteredTrains - TrainsDStream. filter(lambda x: ‘ICE’ not in x)

image25.png
newStream = ssc.socketNewStream("localhost”, 9692)

image26.png
val newStream - ssc.socketNewStream("localhost”, 9092)

image27.png
def stream(ssc):

host = "localhost:9992"

topic = "testTopic”
KafkalUtils.createStream(ssc, host, "spark-streaming-consumer”, {testTopic})

KafkaStream = KafkaUtils.createDirectStream(ssc, topics = [“testTopic'], kafkaParams)

return newStream

image28.png
Data
Sources

Presto

Spark
Streaming

Job
Scheduler

Data

Warehouse ‘

image29.png
Kafka Components (von Bargen, 2022)

image30.png
Producer 1

Producer 2

Producer 3

Controller

Topic A
Partition 0

Lead

Topic A
Partition 1

Follower

Replicate Replicate
A/0 A/

Topic A
Partition 0

Follower

Topic A
Partition 1

Lead

Consumer 1

Consumer 2

Consumer 3

image31.png
Offset Writing and Reading (von Bargen based on Kleppmann,
2017, P. 448)

image32.png
Producers

write

Vlo|(N|lo|lu|lsrlw|N]|-

=
o

B

image33.png
Kafka-topics.sh \
--create \

~topic bigdata \

-partitions 1 \
-replication-factor 1 \
-bootstrap server localhost:9092
-> Created topic bigdata

image34.png
Code for creating topics in Kafka (von Bargen, 2022)

image35.png
Code for writing messages to topics (von Bargen, 2022)

image36.png
echo “Hello student” | kafka-console-producer.sh \
--topic bigdata \
--bootstrap server localhost:9892

image37.png
timeout 10 kafka-console-producer.sh \
~topic bigdata \

~from-beginning \

--bootstrap server localhost:9892
Hello student

Processed a total of 1 messages

