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[bookmark: _na4h0cjkznfr]Abstract
Microbial community responses to environmental change are mainly primarily studied with with respect to climate, although regard to climate although we know that substrate quality, which is also associated with global change, might be a, may represent a stronger selective force when acting on soil microbes. Here, we conducted substrate transplant simulations with a mathematical trait-based model of microbial litter decomposition (DEMENTpy) to assess the legacy effects of past substrate quality and the effects impact of selection by a new substrate quality on community decay decomposition activity.performance. Simulations were run with different dispersal treatments of dispersal ranging , from no dispersal to dispersal from communities long-a adapted to the new substrate. We found that the legacy effects are found  were evident with substrate change with for native communities differing in composition, ; and we found that protein content is was the only strong enough selective force to that was strong enough to affect community composition. Legacy effects disappeared with dispersal when dispersers came from substrates similar to the transplanted onesubstrate. Together, our simulations demonstrate that we can expect substrate quality changes associated with global change to lead to legacy effects on substrate degradation when it these shifts involve an increase in involves increase in protein content and limited or functionally redundant microbial dispersal. 	Comment by Editor: Please confirm your intent was preserved here.
[bookmark: _7x3yy0fis8jp]Introduction
Global change may cause important shifts in plant composition (Franklin et al. 2016), and we know that aboveground vegetation diversity strongly influences underground microbial community composition and decay functionfunctionality, largely through the effects of litter quality (Zak et al. 2003). However, it remainsis still elusive as to how microbial communities will respond to changes in litter quality induced by global change, and how that these responses will, in turn, will affect soil carbon and nutrient cycling. The lLocal and regional dispersal of microbes might may play a role in the resilience and adaptation of microbial communities to litter change (Shade et al. 2012).

Dispersal has been studied in ecological contexts, primarily with a focus on its ecology mostly for its role as a mediator of in microbiome assembly (Evans, Martiny, and Allison 2017; Walters and Martiny 2020). Dispersers can represent up to 60% of the biomass of a community and mix can consist of mixtures of individuals from nearby to thousands of kilometers away (Van der Gucht et al. 2007). What The effect of such dispersal on microbiome function, however, is less well understoodis less studied is its effect on microbiome function. Albright et al. (Albright et al. 2020) found that the identitiesy of the resident community members and the identity of the distant dispersers was were stronger determinants of a higher determinant of community function (respiration, degradation) than than was the intensity of dispersal (amount of dispersers, frequency). Regional dispersal can facilitate an influx is a potential flux of new taxa, introducing  bringing in functions that are absent in the resident community and that enhance carbon and nutrient cycling. 	Comment by Editor: Please check your style guide. Usually, the in-text citation won’t follow the textual author reference.  

What is even less studied is Even fewer studies have explored the role impact of dispersal on microbiome function in the context of environmental change. Empirical studies forcing employing transplant-based climate change simulations haveclimate change with transplants found that microbial communities and functions have exhibit both characteristics of associated with both the past climate, owing to l (legacy effects,) and of the new climate owing to (contemporary environmental selection by the environment) (Glassman et al. 2018). Wang et al. were able to reproduce these climate-driven legacy effects on community composition and soil organic carbon (SOC) decomposition (Wang and Allison 2021). They found that dispersal removed the legacy effects of drought on soil organic decay even in case cases of severe drought. Local dispersal allowed in their experiment allowed for extinct data to never be  fully go extinct, and therefore to recolonize after drought. Both of these studies were performed on a unique substrates, highlighting the need for further studies of . We need to study substrate legacies. 	Comment by Editor: I am not sure what you use the term “data” here – do you mean microbial species?

Many studies have shown how that substrate quality determines shapes its decomposition (Schnecker et al. 2019; ChapinIII, Matson, and Vitousek 2011). More recent studies have shownwork has demonstrated that past substrates can also strongly influence the  also has a strong influence on decomposition of the present substrate. Using By conducting a common garden experiment with using microbial communities taken collected from sites with different aboveground vegetation and tested that were on tested for their ability to decompose the same substrate, Strickland et al. decomposing same substrates, Strickland et al showeddemonstrated that past substrate makeup determines microbial community composition, which in turns determines microbial functionality when exposed to that samening on a same substrate (Strickland et al. 2009). As global models already integrate  dynamical aboveground vegetation functional dynamicss, we here propose here to increase our understanding of microbial functional dynamicss dynamics withas they relate to  litter substrate chemistry in preparation for connecting the connection of both of these dynamics in Earth system models.	Comment by Editor: Please confirm whether this is what you meant.

To investigate the effects  of microbial the dispersal of microbes of different substrate origins on transplanted communities, we used utilized a mechanistic numerical model of litter decomposition by microbes called the DEMENT (Decomposition Model of Enzymatic Traits) mechanistic numerical model of litter decomposition by microbes. We wanted a tool that representsThis tool was developed to model the our current understanding of the driving processes at play in the microbial decomposition of organic matter in order to reveal their limitations. Since As we now know thatthe composition of a microbial community composition has is an important role determinant of its function, on its function, DEMENT represents includes the representation of diverse ta diversity of taxa with distinct traits, enzymes with distinct production costs and activity kinetics, and 12 substrate components  (distinct by their traits), of enzymes (distinct by their production cost and activity kinetics) and of substrate components (12 such as that differ in the C, N, and P ratios, including hemicellulose, lignin, and  or nucleic acids. that differ by their C,N,P ratios).

Although not little is known regarding the impact much is known on the effect of dispersal on microbial functioning in the context of changes in litter quality change, we made formulated a few hypotheses based on transplant and drought experiments (Wang and Allison 2021; Albright et al. 2020). We hypothesized that substrate chemistry will would select for distinct community assemblies that have distinctdiscrete functioningfunctions. We further hypothesized that those differences in community composition in associated with different litter types arethe different litters will be responsible for legacy effects on substrate degradation in transplanted communities, and. We hypothesized that those legacy effects can would disappear in presence of dispersers coming originating from substrates of chemically similar to the new substratesimilar chemistry to the new one (Figure 1).
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FIGURE 1. Conceptual illustration of our the key hypotheses of the present study. on This study was developed to model the effect of substrate change and dispersal treatments on microbial (A) microbial community composition (phases 1 and 2), and (B) substrate degradation (phase 2), as illustrated with by a community native to forest litter transplanted onto desert litter. We hypothesized that forest litter will select for different taxa than desert litter. When transplanting forest native communities onto desert litter, the change in substrate will change the composition of the community composition leading to isuch that its substrate degradation to activity will ultimately be closer to the onethat of communities native to desert litter (contemporary selection by the environment). However, the loss or lack of taxa adapted to desert litter during the first phase on forest litter won’t will not allow for a full contemporary selection (legacy effect), unless we add incorporate dispersers coming derived from a substrate close similar to desert litter. Reversely Conversely, adding dispersers from a site with more dissimilar substrate chemistry will take adversely impact substrate degradation in the opposite direction (maladaptation). 
[bookmark: _hmnptgdn6gg0]Material and Methods
[bookmark: _8vsz7qnfw6ey]Model description
DEMENT is a spatially explicit individual- and trait-based microbial model that simulates leaf litter decomposition emerging from both cell-level physiology and community-level interactions (Allison 2012). We used the python more recent Python version of the code, DEMENTpy, with which incorporates explicit drought tolerance genes (Wang and Allison 2021). We initialized the simulation on a spatial grid of 100 x 100 grid boxes (, each 1-–10 μm on a side) representing, that represents the surface of a litter substrate. The 14 compounds that compose the leafleaves, such as cellulose or lignin, were initially homogeneously distributed on the grid. In our study, we randomly placed on the grid 100 taxa onto this grid that differed by in their trait values, such as their monomer maximal uptake rates or the nnumber and type of enzymes producedthey produce. Bacterial taxa had an initial biomass of 1 mg.cm-3 and a 1% probability of occupying each chance to be in each grid box. Fungal taxa had an initial biomass of 25 mg.cm-3 and a 0.04% probability of occupying each grid box. So As such, at the start of the simulation, there were an average of there was initially on average 0.52 taxa and 1 mg.cm-3 of biomass (bacteria or fungi) perin a grid box. 

Every Each day during the simulation, these day microbes produced enzymes, substrate compounds were decomposed into monomers, and these monomers diffused on the grid. Microbes then took up these , microbes took up monomers, grew, produced metabolites, reproduced, and/or died. One Each taxon was assigned the production of one or more types of enzyme types. One Each enzyme was assigned zero, one, or several substrate compounds to degrade. Each substrate compound was decomposed into one type of monomer. Taxa membrane transporters were monomer- specific. A taxon was assumed to possess the transporter type(s) of for the enzyme(s) it produces. Reproduction occurred every time the initial biomass of a taxon was doubled, with one daughter cell staying in the same grid box, and the other randomly sent moving to on one of the four adjacent grid boxes. Taxa also produced osmolytes that determined their probability of death depending on soil moisture. 

Temperature and moisture were held constant for this study. Enzyme kinetics depended depend on temperature as per on temperature according to an the Arrhenius equation. Eachrelation.  Every year, the assembled microbial community was placed on fresh litter substrate, with a reinitialized substrate distribution, no monomers, and no enzymes. There was no additional substrate input between day 0 and day 365. DEMENT simulates 6 years of an individual- based complex community on a grid of 1 mm2 in 20 hours. A more detailed description of the model is available in the study published by Wang and Allison (Wang and Allison 2021).	Comment by Editor: Once you know your style guide, consider reviewing the numerals: many style guides require spelling out numbers 1-10 (except data, units, etc). 
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SUPPLEMENTAL FIGURE 1. Conceptual Schematic structure overview of the DEMENT model. The The DEMENT model represents microbial growth implicitly as the difference between uptake and loss processes (respiration, metabolite production, stoichiometric rebalancing). (Reproduced from Wang and Allison 2021)	Comment by Editor: Consider titling A, B, and C in the legend as well as in the figure (as you did in supplementary figure 2).
[bookmark: _cidoxicskp8p]Litter substrate chemistry
To test whether litter substrate chemistry affects microbial community composition and functioning, we let allowed 10 communities to randomly assemble randomly on each of 5 different substrates (phase I in Figure 2). The chemistry is parameters for this simulation were derived fromtaken from Baker et al.  (Baker and Allison 2017) and correspond s to the leaf litter chemistry of 5 sites along a Californian elevation gradient (desert, scrubland, grassland, pine oak, subalpine) (Figure S2). These are the same sites as the ones used for the climate transplant experiment performed by Glassman et al.’s climate transplant experiment. We calculated yearly average annual averaged substrate decay rates and relative taxa abundance. taxa relative abundances. Preliminary runs showed revealed that both outputs stopped varying by year 3 of the simulation, and we thus  so we compared the average community composition and decay rates  averaged over year 3. 	Comment by Editor: Meaning “in year 3” or “for years 0-3”? Please clarify.
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SUPPLEMENTAL FIGURE 2. Leaf litter substrate chemistry. Both figures represent the sum of C, N,  and P density (mg.cm-3); (A) bbar plots, (B) individual vvalues. The 5 bars correspond to 5 sites of along an elevation gradient of in California. Colors correspond to the different substrate components. Data come are derived from Baker et al. (2017) and have been normalized for such that the sum of C, N, and P to density was equal between sites (be equal between sites to 300 mg.cm-3).. 	Comment by Editor: Under (A), consider detailing the initials used for the biomes: D - desert, Sc – scrubland, G - grassland, Po – pine oak, Sa - subalpine	Comment by Editor: Is it intentional that figure letters (A, B, etc) are capitalised for supplementary figures and lower case for other figures? If it is unintentional, consider being consistent with capitals/lower cases. I haven’t changed it in-text as I can’t edit the figure images. For your deliberation… 	Comment by Editor: Depending on your style guide, the year generally needs parenthases if used in the middle of a sentnce.

For example:

As Author (2017) argues... 

…sentence…(Author, 2017).
 
[bookmark: _wzi62co30pb9]Dispersal
To test the effect of dispersal following a change in litter substrate chemistry, we initialized a new set of simulations with using each of the 50 microbial communities assembled in phase I (phase II in Figure 2). To simulate changes in leaf substrate chemistry, we transplanted each community to 1 of the other 4 substrates. To simulate dispersal, we merged the community with a pool of dispersers equivalent to 40% of the size of one of the final communities from phase I. Dispersers could come from the same community (local dispersal), or from a different one (regional dispersal). We also ran a simulation using transplanted communities with no dispersers as a control experiment. As in phase I, assembly stabilized around years 2-–3, so we stopped the simulations at the end of year 3. We then compared substrate decay rates and relative taxa relative abundances averaged over year 3 between among substrate chemistry and dispersal treatments.
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FIGURE 2. Conceptual framework of the simulation experiment. The eExperimental setup to used to test the factors driving the relationship between dispersal and microbial community composition and functional outcomes of dispersal in the context of substrate change. In phase I, 50 microbial communities were created from 10 randomly assembled communities run on 5 different substrates for 3 years, by which time community composition had stabilized, under standardized  (by when community composition stops varying) in a common climatic conditions e (soil temperature = 15.7°C, soil moisture = -0.1 MPa). In phase II, we conducted performed disperser introductions at t0 baseline (t0) in each of the 50 communities of generated in phase I, and we ran them simulated the activities of these communities for for 3 years on substrates different from those on which they were run a different substrate as the one they were run on in phase I (n = 5 residents x 4 substrates x (5 dispersers + 1 control) x 10 seeds = 1200 simulations).  	Comment by Editor: Please check whether your intented meaning was preserved here.

[bookmark: _285qw9k7qh6d]Results
[bookmark: _9ljnxhlgi0lb]Dispersal removes eliminates legacy the legacy effects ofeffect of substrate change on protein decay 
Substrate quality has no significant effect impact on overall decay or total biomass (Figure S3), but it does on affect two the decay of two substrate components decay:: hemicellulose and protein. Hemicellulose decay is levels are lower in desert litter relative to other substrates, although the , where hemicellulose content is lower than in other substrates. The biomass of hemicellulose degraders in desert communities is not significantly different from the that in other substrate communities (Figure 3a-–b). On the In contrast, protein decay is decreased in other hand, protein decay is lower in pine oak and subalpine litters litter as these substrates contain lower protein levels, with this reduction being that have lower protein content, and this is accompanied by lower a reduction in the biomass of protein degraders in pine both of these communities relative to otheroak and subalpine communities than in other substrate communities (Figure 3c-–d). 	Comment by Editor: Is this what was meant?

When we proceeded to test substrate transplants between substrates that differ in hemicellulose and/or protein decay levels, two different patterns were revealed. , we observed two different patterns. In the case of a shift in hemicellulose content, hemicellulose decay after at the end of the 3-year simulation was the same as that for communities native to the final litter composition 3 years is the same as the one of communities native to the final litter (Figure 3a, example with transplant between desert-to- and scrubland substrate transplants). Consistently, tThe biomass of hemicellulose degraders is the same in native and transplanted communities (Figure 3b). When substrate shifts from low to high protein content, for however, example from pine oak to desert substrate, protein decay after 3 years remains the same as before it did prior to substrate change despite higher protein availability (Figure 3c, pine oak-to-desert substrate transplant). 

The biomass of protein degraders has exhibited the same response as did the protein degradation activity, with the biomass of p: protein degraders biomass in pine oak communities transplanted onto desert substrate remains remaining the same as in the native pine oak communities despite an increase in the same as in pine oak communities despite higher protein availability (Figure 3d). This substrate legacy effect on community composition and function was eliminated, however, when dispersers from protein-rich communities can disappear when we added dispersers from protein-rich communities (desert, scrubland, grassland) but were added, while it was unchanged by the addition of is unchanged when we added dispersers from protein-poor communities (pine oak, subalpine) (Figure 3e). In line with these results, dDisperser communities derived ffrroom protein-rich substrates contain significantly higher biomass of protein degrader biomass relative to s than disperser communities derived from protein-poor substrates (Figure 3f).

[bookmark: _nh53r342lgwn][image: ]
SUPPLEMENTAL FIGURE 3. Effect The effects of substrate on litter average decay rate (A) and total microbial biomass (B). Average litter decay rate is was calculated as the average decay rate of the 12 chemical substrates weighted by their average total (C+N+P) mass over the grid for year 3. 
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FIGURE 3. Effect The effects of substrate, substrate change,  and dispersal on decay and biomass. (a) Hemicellulose decay averaged over the grid and over year 3 on for the 5 substrates; - desert (D), scrubland (Sc), grassland (G), pine oak (Po), and subalpine (Sa); - and on for 2 substrate transplants:  - desert to scrubland (D>Sc: hemicellulose-poor to hemicellulose-rich) and scrubland to desert (Sc>D: hemicellulose-rich to hemicellulose-poor). (b) The bBiomass of hemicellulose degraders initially at baseline (day 0 of phase I), and averaged over the grid and over year 3 of phase I on for each substrate, and on over year 3 of phase II of for the 2 substrate transplants desert (D>Sc and Sc>D)to scrubland and reverse. (c) Protein decay averaged over the grid and over year 3 on for the 5 substrates, and on for 2 substrate transplants: , desert to pine oak (D>Po: protein-rich to protein-poor) and pine oak to desert (Po>D: protein-poor to protein-rich). (d) The bBiomass of protein degraders initially at baseline (day 0 of phase I), and averaged over the grid and over year 3 of phase I on for each substrate, and on over year 3 of phase II of for the 2 substrate transplants desert to pine oak and reverse(D>Po and Po>D). (e) Protein decay averaged over the grid and over year 3 of phase I on pine oak (Po) Po, and on over year 3 of phase II with all disperser treatments: - no disperser (NoDis), dispersers from desert communities (Dis-D), dispersers from scrubland communities (Dis-Sc), dispersers from grassland communities (Dis-G), dispersers from pine oak communities (Dis-Po), and dispersers from subalpine communities (Dis-Sa). (f) Biomass of protein degraders in initial disperser communities in for all disperser treatments. 

[bookmark: _iavaqodxfhjk]Strong facilitation between is evident among protein degraders
We found that the growth rate of protein degraders increases exponentially with their initial biomass (Figure 4a), with a threshold at ). We calculated that the threshold is at 140 mg.cm-3 such that i: if their initial biomass is under 140 mg.cm-3, their growth is negative or zero, whereas ; above 140 mg.cm-3, their growth is positive. This explains why we observed a legacy effect with for communities native to protein protein-poor substrates, but not if for dispersers arrive derived from protein- rich substrates that contain more protein degraders. We found observed no significant relationship between the total initial microbial biomass of non- protein degraders and the growth rate of protein degraders (Figure 4b). These results suggest that the interaction between protein degraders is positive, and that the effect of non- protein degraders on protein degraders at the community level is neutral.
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FIGURE 4. Effect of the initial biomass of (a) protein degraders, and (b) non- protein degraders on protein degrader s growth rates. Growth rates were  is calculated as log(final biomass/initial biomass)*1/T, where T is the time duration of the simulations (1095 days). Protein degraders’ growth rates is were an exponential function of their initial biomass (R2 = 0.86 versus vs. R2 of a linear fit = 0.63) (a), and whereas there wasthat there is no significant relationship with the total initial microbial biomass of non- protein degraders (b).
[bookmark: _w1nxqnwpqehz]Discussion
While we often focus on temperature and moisture in the attempt to predict future soil microbial decay with in the context of global change and dispersal (Wang and Allison 2021), increasing evidence indicates that changes in plant composition will happen on ecological timescales and will influence soil microbe-mediated carbon and nutrient cycling. Transplant experiments represent an ideal means of quantifying are great to quantify the effects of both legacy and contemporary selection by the environment (Chase, Weihe, and Martiny 2021; Albright and Martiny 2018). Here, we reproduced this approach with an individual trait-based model to quantify the effects impact of past and present selection by substrate chemistry on litter decay, and how the interaction between these effects and communityit interacted with dispersal. We found that there are legacy effects are only evident only when changes in community composition are involved. For example, while hHemicellulose content and decay differ rates differed among the 5 utilized litter types, the between the 5 litters but the composition in hemicellulose degraders does did not, and there are were no legacy effects after transplant. ReverselyConversely, protein content affects both protein decay rates and the composition in of protein degrading taxa, and there in this context there were are legacy effects that were evident after transplant. Consistent with our hypothesis, these Additionally and as we hypothesized, legacy effects disappeared when dispersal helps induced a shift in the shift in community composition. Unlike However, what we hypothesized, we did not find observe any instances of dispersal causing maladaptation, in contrast with our hypothesized model.. 

We found that the the amount of protein alone is not sufficient amount of proteins is not sufficient to predict the growth of protein degraders, as such growth was also dependent on both initial protein degrader biomass and . Protein degraders’ growth also depends on their initial biomass and on the total microbial initial biomass. All taxa are able to take up NH4, but that is the only source of nitrogen for taxa that do not degrade the nitrogen- containing substrate components that are common in this system where wherein microbes are specialists and c(can degrade at most 3 of the 12 substrate components). This makes mineralized nitrogen a public good such that , taxa that degrade nitrogen organic compounds serve as cooperators, whereas  and taxa that do not function as cheaters (with regardwith respect to inorganic nitrogen). This explains why we found observed the decreased growth of protein degraders with risinggrowth of protein degraders decreasing with higher initial total microbial biomass. 

Our results also showed demonstrated positive frequency-dependent selection (PFDS), as : the fitness of protein degraders increases when their initial abundance is higher. Frequency-dependent selection is expected in microbial communities because strong selection, structuring, and cooperation-dependent growth are common in microbial populations (Ross-Gillespie et al. 2007). Both negative and positive frequency-dependent selection have been found observed in cooperative microbial communities with potential cheating (Rendueles, Amherd, and Velicer 2015; Healey, Axelrod, and Gore 2016). Note that our tests were only spammingonly employed an initial protein degrader frequency of protein degraders between 0 and to 0.1. It is not impossible It is thus possible that we would observe negative frequency-dependent selection at higher frequencies. StillEven so, our results demonstrate that, where whereas Healey et al. simplified fitness as beingto be flat at low frequencies, we found that it isit to instead be exponential, meaning that cooperators’ the growth of cooperators will accelerate with high initial abundance when rare. 	Comment by Editor: Please check this is indeed what you meant.
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FIGURE 5. Conceptual illustration of our the results of the present study. This schematic overview represents the  on the effect of the initial biomass of protein degraders (purple) on their growth rate. Here Two representative grid boxes are shown. are represented 2 grid boxes. There is a spatial structure between grid boxes but not within a grid box, meaning substrate components and monomers are equally accessible for all taxa within a box. Exchanges between boxes are only of taxa (only between adjacent grid boxes and when biomass exceeds twice its initial size, not represented here) and monomers (excess monomers aare divided evenly on across the whole grid) and occur at the end of each day. The NH4 that protein degraders release is shared between taxa proportionally to their biomass, and excess will diffuse in throughout the whole entire grid. When the frequency of protein degraders (purple, cooperators) is low and the relative abundance of non- protein degraders (green, cheaters) is high (top), NH4 will mostly primarily benefit non- protein degraders such that the , therefore the benefit to -to-cost ratio of nitrogen mineralization for protein degraders is low, l leading to a zero or negative growth rate. On the other handIn contrast, when the frequency of protein degraders is high and the relative abundance of non- protein degraders is low (bottom), diffusing NH4 will mostly primarily benefit protein degraders, therefore  such that the benefit- to- cost ratio of for nitrogen mineralization is high and the growth rate of protein degraders is strongly positive.


Previous work on using soil carbon models already has already demonstrated thatshowed that microbial community trait eco-evolution in response to environmental change modified modifies carbon decay (Abs, Leman, and Ferrière 2020). However, these researchers did not observe any  they did not find the dependence on the initial trait value, i.e. akin to the legacy effect that we found observed here. This is because they worked at a higher organization level, with the microbial trait in question being the . Tahe microbial trait was the allocation to enzyme production and the function was being the decay rate of the one pool of soil organic pool. Our Our results and other studies working at a finer scale (Wang and Allison 2021), in contrast, show that  shows that with explicit representation of microbial taxa and soil organic compounds, we can reveal the legacy effect of initial community initial structure on decay responses activity in response to environmental change that has been observed empirically (Martiny et al. 2017).

For this study, we made some assumptions that should be explored more in future studies. For example, we made microbial functional groups specialists by allowing them to degrade at most 3 substrate components out of 14 possible components. If we parameterized the opposite, i.e.  such that microbes producing are able to produce all types of enzymes and having have access to all substrate components, we would expect no discriminatory selection of specific taxa, and therefore no more greater differences in community compositiondifference in community compositions between substrates than as compared to within one substrate. We would similarly not expect substate change or dispersal to have any impact expect no more effect of substrate change and dispersal on community composition, and specific substrate decay would rates would only be determined by the content of that substrate. only be determined by its content. We couldIn the future, we can potentially investigate whether  investigate if we can find determine the degree of specialism under which substrate protein content no longer selects for different differences in community composition.s. 

Understanding the effect of substrate and dispersal on soil microbial community functionalitys has numerous potential implications. Because microbial activity releases nutrients , such as mineralized nitrogen that , which plants need require for growth, to grow, there has been significant research n interest in performing microbial inoculation to increase as a means of increasing crop yields, but it is still although at present it remains unclear which microbes should be used for this purpose which microbes to add (O’Callaghan 2016). Our study results demonstrate shows that adding N-rich organic matter might may not be sufficient to stimulate the growth of already present N mineralizers without inoculating the inoculation of additional N mineralizers. Another Land managers and stakeholders can also potentially leverage microbial inoculation as a means of enhancing application of microbial inoculation could be stakeholders and land managers looking to increase soil carbon sequestration (Metting et al. 2001; Trivedi, Anderson, and Singh 2013), with the goal of this field of research being to establish the most cost-efficient means of modifying . This field of research looks for most cost efficient ways to modify microbiome cycling into activity to promote the storage of additional carbon in the soil while reducing storing more carbon in soil and releasing less CO2 or CH4 in release into the atmosphere. Our study results suggest that the suggests that management of abiotic conditions (water, temperature, nutrients) might may need to be coupled with the iinoculation of specific functional groups of microbes to achieve this goal. Finally,  another potential application for these results is the use of probiotics for to improve human health via improving human health such as facilitating digestion or protecting against pathogens (Zhou et al. 2020). For those working on determining tg to establish the criteria that make maximize the efficiency of probiotics, our results suggest that probiotics most efficient, our study shows that high quantities of the specific functional group of interest will improve colonization success, coupled with a controlled diet and a knowledge of the historical diet of the that patient.	Comment by Editor: This is a really powerful statement and is excellently written! Very nicely done 
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