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Abstract	Comment by Author: Please note, that “Abstract” and “Conclusion” are the only section titles in the manuscript. Depending on what you intend for this article, consider adding further section titles, if necessary.  
In the paperThis paper reports a study’s results of sound waves propagationg in a coastal wedge with as a function of sound- speed profile created by a (thermocline) is studied. Analysis ofThe mode composition and the corresponding spatial variability of the sound field is carried outare analyzed by using modal amplitude equations for modal amplitudes and the pParabolic eEquation with the following decomposition of the field decomposed over adiabatic modes. It isThe results shown, that there isreveal a significant change of in amplitudes of the propagating adiabatic modes, which is interpreted as manifestationattributed to of mode coupling. It is shown thatLocal m mode coupling is demonstratedhas local character, and manifesteds at the a characteristic distance from the source, where two range- dependent eigen values come close toapproach each other. This phenomenon is analogous to the so- called quasiavoided level  crossing of states in atomic physics and in the, theory of chemical reactions  etc  (see Landau–-Zener theory of nonadiabatic transitions in two-level systems). In the problem of the down-slope sound propagation from the a point source, this mechanism leads to sequential excitation of more and moreincreasingly higher modes and even excitation of higher propagating modes which that did do not exist at the position of the source. The rResults of modeling and analytical estimatesions are presented and; possible experimental observations results are discussed.	Comment by Author: Please ensure that the intended meaning is maintained.

The wedge is a widespread model for describing sound propagation in the oceanic coastal zone of the ocean. Generally speaking, theThe problem of sound propagationg from a point source in a wedge belongs tofalls into the class of the canonical problems of the wave diffraction, as of different nature, starting discussed by with Sommerfeld (Sommerfeld;, 1896), as toand ocean acoustics, (see e.g. for example,  (Jensen F. B. and, Kuperman;  W. A. 1980, Brekhovskikh and, Lysanov;, 2003), among and many others. For the most part,T this problem typically assumes that a constantthe sound speed in the wedge is constant. At the same time, the presence ofIn addition, a sound speed profile due to a (thermocline) is quite typical and , which providesdetermines the specific features in of sound the propagation of sound in such thea  medium. In underwater acoustics, downslope sound propagation was considered in particular in by (Chiu C-S., Miller J.H., and Lynch ( J.F. ,1996) and by, Dosso S.E. and, Chapman N.R., (1987)., 	Comment by Author: Please note, depending on your reference style guidelines, some style guides require that 3+ authors are denoted with “et al.”
Let’s now We cconsider sound propagation from a point source in a coastal wedge by using the typical model of bathymetry, ,  and a sound- speed profile, which is described by expression 
                                                           (1)
where r is the distance from the source.
Within In the framework of the ray approximation, we consider a ray, outgoing emanating from the source (see Figure. 1)  with at the grazing angle  . The ray propagates initiallyand, reflectsing consequently from the bottom and surface (bottom- surface rays or BS for brevity). The gGrazing angle may is decreaseing and atuntil it  some “critical” distanceis less than the ,  becomes less than total- reflection angle  from the upper (thermocline) layer, at which point  and in the following this ray becomes trapped in the will propagate in near- bottom regime (reflecting from the upper thermocline layer and the bottom surface. This is called the : bottom-bottom ray or BB for brevity). The pParameters of these rays and the corresponding critical distances can be found by using the ray invariant ([Katsnelson and , Zhongtao Hu;, 2018).]
[image: D:\ICUA_22\Ray traces.jpg]
Figure 1. Ray path in a wedge with the a sound- speed profile. P with parameters are:  1500 m/s,. m/s,,  m/s, .  
Next, we use theing wave equation and the corresponding boundary conditions to let’s find the sound field  . After eliminationg of the cylindrical spreading 
   ,                                                              (3)
for the function   we have equationobtain:
,                                                (4)
with the boundary conditions,
where        .
Modal decomposition of the function    from the a source placed at the the depth  in a wedge with the a sound- speed profile has the form:
  ,       .          (5)
The adiabatic waveguide modes (AM)   and eigen values  depending on r as on parameter, satisfy equation Equation (5) with the following boundary and normalization conditions, where :	Comment by Author: Please ensure that the intended meaning is maintained.
                                                         (6)


In the following, we will consider the normalization condition for modal amplitudes   for modal amplitudes.
As an example in the Figure .2 shows adiabatic waveguide modes AM 1–-4 are show, which n changingvary with the  distance (f = 500 Hz,   h = 20 m,  1500 m/s,. m/s,  m/s,   bottom slope 0.01, attenuation coefficient is supposed to be very small). The sSource is placed positioned where the depth is 10 m deep. F and we can see that foor given waveguide parameters, there are three waveguide modes existing in this cross--section.[image: ] [image: ]
[image: ]     [image: ]

Fig.2 Shapes of the first four waveguide modes
It can be seen that at some distance    from the edge of the wedge, depending on the mode 
Figure 2. The first four waveguide modes.	Comment by Author: The top-left graph seems to be slightly cut-off (bottom X and right Y axes). Please reposition the image if possible.

Depending on the mode number, waveguide parameters, and frequency, its the shape changes at a distance  from the edge of the wedge, so: the bottom-surface (BS) mode turns into the bottom-bottom (BB)  onemode. If we cConsidering the behavior of the eigenvalues (Figure. 3a), then we can see that, at the corresponding distance, the  eigenvalues are pairwise approaching to each other pairwise.	Comment by Author: To what does the distance correspond?[image: D:\Users\User\Desktop\wedge bottom\IWs_shelf_kran\Picture of withoutIws_s5m\q1-q5,F=500Hz.jpg][image: ]
                                                  a                                                                                          b


Figure 3. (a) Eigenvalues as a function of rrange. (dependence of eigen values b) Inverse distances between eigen values of adjacent modes.	Comment by Author: Please ensure that the intended meaning is maintained.
For example, at the distanceapproximately  ~1 km, the eigen values of the first and the second modes approach to each other, and at the distance  ~ approximately 1.5 km, the eigenvalues of modes modes 2 and 3 are close toapproach each other etc. In the Ffigureure  3b) shows the corresponding inverse distances  are shown. 
In a standard way forThe expansion coefficients  of the system of equations takes placeare obtained in the standard way: 
,                                       (7)
where      .
Generally speaking, different physical situations give rise to the equations describing the change of the amplitudes of the adiabatic waveguide modes—AM (aa system of the first-order ((7)) or second-order mode coupling equations similar to this system) are obtained in different physical situations (see e.g., [Brekh and& Lysanov, Godin, FSWA)] and many other papers). They can give remarkable changes in the mode The composition of the in a waveguide modes depends strongly with sufficiently sharp variations ofon the parameters along of the acoustic track (bathymetry and/or sound velocity profile and/or bottom parameters). Such changes take placeoccur, for example, in some localized areas such as (seamounts and or underwater canyons, where, among others,, temperature fronts, and internal wave fronts , etc.are found). We note thatI in this case, there is coupling occurs, to some extent between, of all propagating modes. A specific type of manifestation of the mode coupling occurs of betweenan individual pairs of modes during when the propagation of the sound signal in propagates in the presence of a packet of nonlinear internal waves, which creates a periodic spatial inhomogeneity, ais presented discussed inby *author name* (year[) ].  Strong interaction takes place here for Mthe pair of mode pairs interact strongly for whichwhen the spatial period of the waveguide mode beating is close toapproaches the spatial period of the perturbation. Mathematically, this type of mode coupling is similar toakin to the description of the rearrangement of the atomic spectrum in a resonant laser field (author, year)[ ]. Let’s also mentionT specific temporal fluctuations as are another manifestation of the mode coupling in the presence of moving nonlinear internal waves (single or packet sones), as demonstrated by in *author name*’s shallow-water experiments (Shallow Water 2006)  [   ] and ASIAEX  [ (year)].	Comment by Author: To which system are you referring?	Comment by Author: Please complete these references.	Comment by Author: Please ensure that the intended meaning is maintained.	Comment by Author: Please ensure that the intended meaning is maintained.	Comment by Author: Please ensure that the intended meaning is maintained.	Comment by Author: Please complete citation.	Comment by Author: Please complete citations and define or spell out "ASIAEX."
Let’s cConsider the coefficients   from Equation (7). It is possible to show inIn the general case [  ](author, year) and for specific variations of waveguide parameters, (for examplee.g., bathymetry  [[Godin; year ])], that    and the most significant mode coupling occurs takes place in area where the inverse distance between eigen values of pair of modes  between mode-pair eigenvalues has is minimal value (as usually  ). We see in the Figuress. 2 and 3 that, in this area, one of these modes is being transformedtransitioning from BS the bottom surface to BR one. So Thus, only two waveguide modes can need to be considered in by equation Equation (7), (i.e., a two-level- system approximation).	Comment by Author: Please complete citation.	Comment by Author: Please spell out "BR."[image: ]     [image: ]
                                                      a                                                                                         b 


Fig.4 Amplitude of the sound field in a waveguide in color gradations in adiabatic approximation (a) and using PE (b). Dashed lines denote places where the corresponding propagating modes appear (shown below). Solid lines denote positions of quasi cross-sections of modes (numbers are in parentheses) 

Figure 4. (a) Adiabatic approximation of amplitude of sound field in a waveguide and (b) with PE. Dashed lines indicate places where the corresponding propagating modes appear (see below). Solid lines indicate positions of quasi-cross-sections of modes (mode numbers are in parentheses).	Comment by Author: Please add a space after “depth” and “range” (before the units) in the left graph (a).

Let us nowWe now find derive the sound field from a point source in this waveguide in two ways: (i) in the adiabatic approximation, using expansion (5) under and the assumption , and (ii) using the parabolic equation. We start with. 
,                                                (8)
where     and,    is some value ofa wave number, corresponding, for example, to the a speed of sound speed 1500 m/s.   
Figure 4 shows theThe calculation results are shown in Figs. 4. As can be seen from Figureure 3, at a given frequency                
 (500 Hz) and for the same waveguide parameters chosen before, there are only three propagating modes exist at the source location. , and Figure 4a shows that, in the adiabatic approximation, the field is formed by only three adiabatic modes. In accordance with the Figure. 2, the sound field in the waveguide becomes transforms into a near-bottom field after traveling a distance of ~pproximately 2 km, where and the third mode “"dives”" under the thermocline. Figure 4b shows tThe results of the calculations using based on the PE are demonstrated in Fig. 4b and, which shows reveals the presence of a field in the upper layer almost over almost the entire length. This gives rise to, which means, in our opinion, the appearance of higher mode numbers as a result ofbecause of mode coupling.	Comment by Author: Please spell out "PE."
More detail pattern of theThe modal amplitudes variations as a function ofwith distance from the source can be obtained in more detail by using applying a modal decomposition of the sound field . A, decomposition of  , obtained by using the pParabolic eEquation, gives the same amplitudes:                                          a                                                                                                    c
[image: D:\Users\User\Desktop\wedge bottom\IWs_shelf_kran\Picture of withoutIws_s1m\F=500Hz,.jpg][image: D:\Users\User\Desktop\wedge bottom\IWs_shelf_kran\Picture of withoutIws_s6m\F=500Hz,.jpg]
                                            b                                                                                               d
[image: ][image: ]


                                      (9)
Figure .5. Sound field in wedge from the a point source calculated using PE. Source, depth of the sourceis           (a) – 0.5 m, (c)  –  5 m. Panels ( b) and (d) show variations ofthe modal amplitudes as a function of range. The, dashed lines denote show the positions of quasiquasi-crossing of eigen values (the corresponding pairs are denoted in the figure). 	Comment by Author: Please spell out "PE."
The Figures 5a and 5c show the calculatedion amplitudes of the excited modes results are shown in Figs. 5 for two different source depths that determine the amplitudes of the excited modes. Table 1 lists the Values of mode amplitudes at thefor each source.  are shown in the tables	Comment by Author: No table appears in the paper. Please verify.	Comment by Author: Please ensure that the intended meaning is maintained.
in FFiguress. 5ab and 5c. Figs. 5b,d show the changes of the corresponding modeal amplitudes. Both picturesThe results show that,  at a distance of ~approximately 1 km from the source, in the region of convergence of the first and second eigenvalues, there isthe corresponding amplitudes change a noticeablye change in the corresponding amplitudes. Next, then, in the region of convergence of the second and third modes (at aapproximately distance of ~ 2.2 km from the source), there is a sharp change of the corresponding amplitudes change abruptly, etc. 	Comment by Author: Please ensure that the intended meaning is maintained.
CLet us consider now the situation shown in Ffigures. 5c and 5c,d, where the source is placed approximately at the point where the second mode vanishes and the initial amplitude a  is small. Accordingly, the values of  and  are large. In the regionAt r ≈~ 1 km, the second mode is excited. Let us presentWe  analytically estimates of the amplitude of the second excited second mode in accordance with the Landau-–Zener theory of quasiavoided level -crossing. This can be done only on the basis ofbased on an approximate description of the behavior of the eigenvalues. We select the area of quasi-intersection (see Figure. 6), where describing the dependence of the eigenvalues may be expressed as hyperbolas. T, the minimum distance between the branches is 2γ ( (the values are visible from in Figure. 3b)),  of the x and y axes, which we introduce, as well asand the asymptotes can be constructed based on the data presented in Figure. 3a).
[image: ]
Figure 6. Model of quasiquasi-crossing for two eigen values.

2 ,  
 k  is the slope of the asymptotes   ;

Let’s We use Landau- Zener formula (            ):	Comment by Author: Is this an intended citation? If so, please insert the author and year. If not, please delete the parentheses.

                                         ,  where                                    (10)

In our case, the minimal distance between eigen values and slope gives the following values:
~ 0.7   and    .
The aAmplitude  ~ 0.4 (: see in the fFigure 6)ure, that whichit is close to the results of numerical calculationsresult. 
In principle, it is possible to estimate modal amplitudes in for the following propagation following after a quasi-crossing of higher mode numbers if toby constructing an some S -matrix and, transforming the vector of modal amplitudes near the source into a vector of modal amplitudes at the receiving point.


Conclusion 
CONCLUSION
In summary, the results show that iIn the a wedge with a sound- speed profile, additional mode coupling takes occursplace, as a function of distance in area ofnear the quasi-crossing of eigen values.  as a function of distance
MThe mechanism of mode coupling can may be called as “non-adiabatic mode coupling in the a smoothly changing varying waveguide” and , it is described by the Landau–-Zener theory. ;
ThisSuch mode coupling MC has a sequential character with distance for adjacent pairs of modes,  andit can lead to exciteation of propagating modes numbers that, which did not exist at the source collation;.
This mode coupling initiates redistributesion of the sound field over the modes and in the turn in vertical plane, and appearance ofcreates a the sound field in the upper layer (in the shadow zone in the adiabatic approximation). RemarkNote that, that the model of the wedge in the paperused herein has is illustrative character and that , quasi-crossing of modes can be occur in different situations and should lead to a be manifestations inredistribution of the sound field redistribution, pulse propagation, horizontal refraction, etc. More detail consideration will include analysis of frequency dependence and in taking into To account for bottom attenuation, the frequency dependence should be analyzed.
Experimental registration of Landau–-Zener transitions will beare detected provided  by modal decomposition of the sound field in in down-slope (or up-slope) propagation combined with an analysis of behavior ofthe eigen values and normal modes in a waveguide as a function of distance. 


This wWork was supported by a RFBR grant 	Comment by Author: Please spell out “RFBR”.
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