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ρ-EINSTEIN SOLITONS ON WARPED PRODUCT MANIFOLDS AND APPLICATIONS

NASSER BIN TURKI, SAMEH SHENAWY, H. K. EL-SAYIED, N. SYIED, AND C. A. MANTICA

Abstract. The purpose of this research is to investigate how a ρ-Einstein soliton structure on a warped product manifold aﬀects its base and fiberﬁber factor manifolds. Firstly, many the interesting pertinent properties of ρ-Einstein solitons are givenprovided. ThenSecondly, some numerous necessary and suﬃcient conditions ofn a ρ-Einstein soliton warped product manifold to make its factors ρ-Einstein soliton are examined. On a ρ-Einstein gradient soliton warped product manifold, necessary and suﬃcient conditions for making its factors ρ-Einstein gradient soliton are presented. Also , ρ-Einstein solitons on warped product manifolds admitting a conformal vector ﬁeld are also considered. Finally, the structure of ρ-Einstein solitons on some warped products space-times is investigated.



1. An introduction
Ricci soliton is crucial in the Ricci ﬂow treatment. In [10, 12], the Ricci ﬂow is deﬁned on a Riemannian manifold (E,g) by an evolution equation for metrics {g (t)} of the form
(1.1)	∂tg (t) = −2Ric,
where Ric is the Ricci curvature tensor. The initial metric g on E satisﬁes

(1.2)	Ric + 2Lζg = λg,1

where ζ is a vector ﬁeld on E, λ is a constant, and Lζ represents the Lie derivative in the direction of a vector ﬁeld ζ on E. Manifolds admitting such structures are called Ricci solitons [13]. Hamilton ﬁrst investigated the study of Ricci solitons as ﬁxed points of the Ricci ﬂow in the space of the metrics on E modulo diﬀeomorphisms and scaling [19]. A Ricci soliton is called shrinking (steady, or expanding) if λ > 0 ( λ = 0, or λ < 0, respectively). If ζ = 0 or is Killing, then the Ricci soliton is called a trivial Ricci soliton. If f is a smooth function and ζ = ∇f, then the Ricci soliton is described ascalled gradient, ζ is called referred to as the potential vector ﬁeld, and f is called the potential function. In this case, equation (1.2) becomes
(1.3)	Ric + Hf = λg,
where Hf is the Hessian tensor. Previously, For diﬀerent reasons and in distinct spaces, Ricci solitons have been remarkably studied in depth for diﬀerent reasons and in distinct spaces [5,6,21,24,28,30,31]. In [32], it is shown that a complete Ricci soliton is gradient. Gradient Ricci solitons are basic generalizations of Einstein manifolds [4]. If λ is a smooth function, then we say that (E,g) is a
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nearly Ricci soliton manifold [2,3,33]. A generalization of the Einstein'sEinstein soliton has been deduced by considering the Ricci-Bourguignon ﬂows [7–9]:

(1.4)	∂tg (t) = −2(Ric − ρRg).

These manifolds are called ρ-Einstein solitons and are deﬁned as follows:. Let (E,g) be a pseudo-Riemannian manifold, and let λ,ρ ∈ R, ρ = 0, and ζ ∈ X(E). Then (E,g,ζ,λ) is called a ρ-Einstein soliton if

(1.5)	Ric + 2Lζg = λg + ρRg.1


Likewise, if a smooth function f : E → R exists such that ζ = ∇f, then a ρ-Einstein soliton (E,g,ζ,ρ) is gradient and denoted by (E,g,f,ρ). In this case, equation (1.5) becomes

(1.6)	Ric + Hess(f) = λg + ρRg.

As usual, A a ρ-Einstein soliton is called denoted as steady, shrinking, or expanding , depending on whether λ has zero, positive, or negative values. The function f is called a ρ-Einstein po-tential of the gradient ρ-Einstein soliton. Later, this perception was circulated in many instructions, such as m-quasi Einstein manifolds [20], Ricci-Bourguignon al-most solitons [14], (E,ρ)-quasi-Einstein manifolds [22], etc. Huang got a suﬃcient condition for a compact gradient shrinking ρ-Einstein soliton to be isometric to a quotient of the round sphere Sn in [23]. Moreover, Mondal and Shaikh proved that a compact gradient ρ-Einstein soliton with a non−trivial conformal vector ﬁeld ∇f, is isometric to the Euclidean sphere Sn in [27]. Recently, in [14], Dwivedi demon-strated other isometric theories of the gradient Ricci-Bourguignon soliton. In [40], the authors investigated a gradient ρ-Einstein soliton on a Kenmotsu manifold. Some cur-vature conditions on compact gradient ρ-Einstein soliton M are given in [34] to guarantee that M is isometric to the Euclidean sphere. In contrast, an integral condition on a non-compact ρ-Einstein soliton M is given to ensure the vanishing of the scalar curvature. A splitting theorem of a gradient ρ-Einstein soliton is given in [36]. Accordingly, many characterizations of gradient ρ-Einstein solitons are con-sidered in [35]. The same study is was recently extended to Sasakian manifolds in [29]. A study of the lower bound of the diameter of a compact gradient ρ-Einstein soliton is given in [37].
As far as we knowTo the best of our knowledge,  no research has been done completed on such a structure on warped product manifolds. In this regard, the rResearch  problems in this regard from the point of view of warped product manifolds (WPMs)s can be summarized into into two pathsdirections:
(1) Under what conditions does a WPM become a ρ-Einstein soliton or a gradient ρ-Einstein soliton?
(2) What does a factor of a ρ-Einstein soliton WPM or a gradient ρ-Einstein soliton WPM inherit?
To address these problems, ﬁrst we proved many results on the ρ-Einstein soliton. Then, we investigated necessary and suﬃcient conditions on a (gradient) ρ-Einstein soliton WPM in order to make its factors (gradient) ρ-Einstein soliton. AlsoAdditionally, we studied ay ρ-Einstein soliton on a WPM admitting a conformal vector ﬁeld. Finally, we appliedy our results to generalized Robertson-Walker (GRW) space-times and standard static space-times.
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2. Preliminaries
2.1. ρ-Einstein solitons on pseudo-Riemannian manifolds. If ζ is a confor-mal vector ﬁeld with conformal factor 2ω in a ρ-Einstein soliton (E,g,ζ,λ), then1



Ric(U,V ) + 2Lζg (U,V ) Ric(U,V ) + ωg (U,V )
(2.1)	Ric(U,V )

=     λg (U,V ) + ρRg (U,V )

=     λg (U,V ) + ρRg (U,V )
=     (λ − ω + ρR)g (U,V ).

By taking the trace over U,V , we get

R n
(2.2)	R


=

=


λ − ω + ρR

(λ − ω)n 1 − nρ.


Since the scalar curvature of Einstein manifolds is constant, the conformal factor is also constant, that is, ζ is homothetic. Moreover, λ = ω if ρ = n.1

Proposition 1. Assume that ζ is a conformal vector ﬁeld on a ρ-Einstein soliton (E,g,ζ,λ) with factor 2ω. Then, ζ is homothetic, (E,g) is Einstein, and
(λ − ω)n 1 − nρ.
R =

where ρ = n. Moreover, λ = ω if ρ = n.1	1

Corollary 1. Assume that ζ is a Killing vector ﬁeld (KVF) on a ρ-Einstein soliton (E,g,ζ,λ), thennλ

R = 1 − nρ
where ρ = n. Moreover, (E,g,ζ,λ) is steady if ρ = n. Conversely, assuming that (E,g) is an Einstein manifold, thenR	1
1
1



n g (U,V ) + 2 (Lζg)(U,V )

(Lζg)(U,V )

=     λg (U,V ) + ρRg (U,V ) 	
=	λ − n + ρR     g (U,V )R


Therefore, ζ is a homothetic vector ﬁeld on E.

Proposition 2. In a ρ-Einstein soliton (E,g,ζ,λ), ζ is a homothetic vector ﬁeld on E if (E,g) is Einstein. Furthermore, ζ is Killing if λ = n − ρ R.
 
1

In local coordinates, a contraction of the deﬁning equation implies that1



Rij + 2 (∇iζj + ∇jζi) ∇iζi

=     λgij + ρRgij

=     nλ + (nρ − 1)R

Thus, the vector ﬁeld ζ is divergence-free. The conservative laws in physics usu-ally arise from the vanishing of the divergence of a tensor ﬁeld. Here is a simple characterization of the vanishing of the divergence of ζ.

Corollary 2. The vector ﬁeld ζ in a ρ-Einstein soliton (E,g,ζ,λ) is divergence-free if and only if nλ + (nρ − 1)R = 0.
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It is also known that the ﬂow lines of a divergence-free vector ﬁeld are volume-preserving diﬀeomorphisms [1, Chapter 3]. This discussion leads to the following result.

Theorem 1. The ﬂow lines of the vector ﬁeld ζ in a ρ-Einstein soliton (E,g,ζ,λ) are volume-preserving diﬀeomorphisms if and only if nλ + (nρ − 1)R = 0.
2.2. Warped product manifolds. Let  Ei,gi,Di,i = 1,2 denote two ni-dimensional C∞ pseudo-Riemannian manifolds equipped with metric tensors gi where Di is the Levi-Civita connection of the metric gi for i = 1,2. Let f1 : E1 → (0,∞) be a
smooth positive real-valued function. A WPM, denoted by E = E1 ×f E2, is the product manifold E1 × E2 equipped with the metric tensor g = g1 ⊕ f2g2 (fFor more details the reader is referred to [15,17,25,38,39] and references therein). Let E = E1 ×f E2 be a pseudo-Riemannian WPM and Ui,Vi ∈ X(Ei) for all i = 1,2. Then, the Ricci tensor Ric of E is given by
(1) Ric(U1,V1) = Ric1 (U1,V1) − n2 Hf (U1,V1), (2) Ric(U1,U2) = 0,f
2
1

(3) Ric(U2,V2) = Ric2 (U2,V2)−f◦g2 (U2,V2), where f◦ = fΔf+(n2 − 1)k∇fk , and Δ is the Laplacian on E1.
The scalar curvature a WPM satisﬁes
(2.3)	R = R1 + f2 R2 − 2n ff − n(n − 1) f2 g1 (∇f,∇f).1
Δ
1


Lemma 1. [38] In a WPM E1 ×f E2, the Lie derivative with respect to a vector ﬁeld ζ = ζ1 + ζ2 satisﬁes
(2.4)	Lζg (U,V ) =  L11 g1(U1,V1) + f2  L22 g2(U2,V2) + 2fζ1 (f)g2 (U2,V2),ζ	ζ


for any vector ﬁelds U = U1 + U2,V = V1 + V2, where Li      is the Lie derivative on Ei with respect to ζi, for i = 1,2.ζ
i



3. ρ-Einstein solitons structure on WPMs
In this section, we investigate the ρ-Einstein soliton structure on WPMs. For the rest of this work, let E = E1 ×f E2 be a WPM with warping function f and let g = g1 ⊕ f2g2. Also, let ζ = ζ1 + ζ2 be a vector ﬁeld on E. Let (E,g,ζ,λ), be a ρ-Einstein soliton,  that is,

(3.1)	Ric(U,V ) + 2Lζg (U,V ) = λg (U,V ) + ρRg (U,V ).1

Thus, for any vector ﬁelds U = U1+U2,V = V1+V2 and ζ = ζ1+ζ2 on E = E1×f E2, Lemma 1 implies that
Ric1 (U1,V1) − n2 Hf (U1,V1) + Ric2 (U2,V2) − f◦g2 (U2,V2)f

+2  L11 g1(U1,V1) + 2f2  L22 g2(U2,V2) + fζ1 (f)g2 (U2,V2) (3.2)	=     λg1 (U1,V1) + λf2g2 (U2,V2) + ρRg1 (U1,V1) + ρRf2g2 (U2,V2).1
1
ζ	ζ
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Let U = U1, V = V1, and Hf = σg, then Ric1 (U1,V1) + 2  Lζ1 g1(U1,V1)     =

(3.3)



λ1g1 (U1,V1)
	n
2

+ −λ1 + λ + f σ + ρR g1 (U1,V1)

(3.4)	=     λ1g1 (U1,V1) + ρ1R1g1 (U1,V1). Then, (E1,g1,ζ1,λ1) is a ρ1-Einstein soliton, wheren
2

ρ1R1 + λ1 = ρR + f σ + λ. Now, let U = U2 and V = V2, then
Ric2 (U2,V2) − f◦g2 (U2,V2)
+2f2  L22 g2(U2,V2) + fζ1 (f)g2 (U2,V2) =     λf2g2 (U2,V2) + ρRf2g2 (U2,V2).1
ζ

Thus,
Ric2 (U2,V2) + 1f2  L2 g2(U2,V2)2
ζ
2

=     λf2 + f◦ − fζ1 (f) + ρRf2g2 (U2,V2)	

=     λ2g2 (U2,V2) + −λ2 + λf2 + f◦ − fζ1 (f) + ρRf2 g2 (U2,V2) (3.5)	=     λ2g2 (U2,V2) + ρ2R2g2 (U2,V2).
 

Then, E2,g2,f2ζ2,λ2      is a ρ2-Einstein soliton, where
(3.6)	ρ2R2 + λ2 = ρRf2 + λf2 + f◦ − fζ1 (f).
Theorem 2. Let (E,g,ζ,λ,ρ) be a ρ-Einstein soliton. Then,
(1) (E1,g1,ζ1,λ1) is a ρ1-Einstein soliton if Hf = σg where ρ1R1 + λ1 = ρR + n2 σ + λ.f

(2)  E2,g2,f2ζ2,λ2 is a ρ2-Einstein soliton, where
ρ2R2 + λ2 = ρRf2 + λf2 + f◦ − fζ1 (f).
Let (E1,g1) and (E2,g2) be two Einstein manifolds with factors μ1 and μ2 re-spectively, and let Hf = σg. Then Equation (3.2) becomes
μ1g1 (U1,V1) + μ2g2 (U2,V2) − n2 σg1 (U1,V1) − f◦g2 (U2,V2)f

+1  Lζ1 g1(U1,V1) + 1f2  L22 g2(U2,V2) + fζ1 (f)g2 (U2,V2) =     λg1 (U1,V1) + λf2g2 (U2,V2) + ρRg1 (U1,V1) + ρRf2g2 (U2,V2).1
2	2
ζ


Thus,
(3.7)  L11 g1(U1,V1)     =ζ

(3.8)  L22 g2(U2,V2)     =ζ



	n
2

2 λ + f σ − μ1 + ρR g1 (U1,V1),
f2 f◦ − μ2 − fζ1 (f) + λf2 + ρRf2g2 (U2,V2).2


That is, ζ1 and ζ2 are conformal vector ﬁelds on E1 and E2.
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Theorem 3. In a ρ-Einstein soliton (E,g,ζ,λ), E = E1 ×f E2,
(1) ζ1 is conformal vector ﬁeld on E1 if Hf = σg and (E1,g1) is Einstein, and (2) ζ2 is conformal vector ﬁeld on E2 if (E2,g2) is Einstein.
The symmetry assumptions induced by Killing vector ﬁeldsKVFs, denoted by KVF, are widely used in general relativity to gain a better understanding of the relationship between matter and the geometry of a space-time. In this case, the metric tensor does not change along the ﬂow lines of a KVF. Such symmetry is measured by the number of independent KVFs.     Manifolds of constant curvature admit the maximum number of independent KVFs. Similarly, conformal vector ﬁelds (, denoted by CVFs), play a crucial role in the study of space-time physics. The ﬂow lines of a CVF are conformal transformations of the ambient space. Thus, the existence and characterization of CVFs in pseudo-Riemannian manifolds are essential, and therefore are extensively discussed by both mathematicians and physicists.
Now, assume that ζ is a conformal vector ﬁeld on E;, i.e., Lζg = 2ωg for some scalar function ω, then ω is constant and
(3.9)	Ric(U,V ) = (λ − ω + ρR)g (U,V ). This equation impliesn
2

Ric1 (U1,V1) − f Hf (U1,V1) + Ric2 (U2,V2) − f◦g2 (U2,V2) (3.10)	=     [λ − ω + ρR]g1 (U1,V1) + [λ − ω + ρR]f2g2 (U2,V2).

If Hf = σg, then

(3.11)	Ric1 (U1,V1)

Ric2 (U2,V2)


=     λ − ω + ρR + n2 σg1 (U1,V1),f

=     f◦ + λf2 − ωf2 + ρRf2g2 (U2,V2).

That is, both the base and fiber ﬁbre manifolds are Einstein.
Theorem 4. In a ρ-Einstein soliton (E,g,ζ,λ), E = E1 ×f E2 admitting a CVF con-formal vector ﬁeld ζ = ζ1 + ζ2,
(1) (E1,g1) is Einstein if Hf = σg, and (2) (E2,g2) is Einstein.
The condition Hf = σg is equivalent to ∇f is a concircular vector ﬁeld. Equation (3.2) yields
Ric1 (U1,V1) − f Hf (U1,V1) + 2  L11 g1(U1,V1) =     λg1 (U1,V1) + ρRg1 (U1,V1).n
2
1
ζ

Suppose that ∇f is a concircular vector ﬁeld with factor γ, i.e., DU ∇f = γU1, we get1

Ric1 (U1,V1) + 1  L1 g1(U1,V1) (3.12)	=     λg1 (U1,V1) + γn2 + ρRg1 (U1,V1)2
f
ζ
1

=     λ1g1 (U1,V1) + −λ1 + λ + γn2 + ρRg1 (U1,V1)f


(3.13)	=     λ1g1 (U1,V1) + ρ1R1g1 (U1,V1).
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Then, (E1,g1,ζ1,λ1) is a ρ1-Einstein soliton where (3.14)	ρ1R1 + λ1 = γn2 + ρR.f


Corollary 3. In a ρ-Einstein soliton (E,g,ζ,λ,ρ), assume that ∇f is a concircular vector ﬁeld with factor γ, then (E1,g1,ζ1,λ1) is a ρ1-Einstein soliton where
(3.15)	ρ1R1 + λ1 = γn2 + ρR.f


Bang-Yen Chen proved that a Riemannian manifold admitting a concircular vector ﬁeld is locally a warped product of the form I ×ϕ E1 [11]. Thus, the afore-mentioned warped product manifold becomes a sequential warped product mani-fold [16].¯

From Lemma 1, it is clear that ζ1,ζ2 are conformal vector ﬁelds CVFs on E1, E2 with conformal factors η1,η2, respectively. Then, by employing equation 3.11 we get	

L11 Ric1 (U1,V1)     =	 n2 σ + λ − ω + ρR L11 g1 (U1,V1) +ζ1 n2 σ + λ − ω + ρRg1 (U1,V1).f
f
ζ
ζ

 		n
f

n
2
f
σ + λ − ω + R

Lζ1 Ric1 (U1,V1)     =      +ζ12 σ + λ − ω + ρR ρη  g1 (U1,V1)1
1

=     ϕ1g1 (U1,V1).
where				 (3.16)              ϕ1 =      f σ + λ − ω + ρR η1 + ζ1         f σ + λ − ω + ρR     .n
2
n
2


Also,

Lζ2 Ric2 (U2,V2)2


Lζ2 Ric2 (U2,V2)2


(3.17)


		f
◦

=	f2 + λ − ω     f2 + ρRf2     L22 g2 (U2,V2)
f
ζ


◦2

=     f	f2 + λ − ω + ρR η2g2 (U2,V2)
=     ϕ2g2 (U2,V2)

where		 (3.18)                                       ϕ2 = f2      f2 + λ − ω + ρR η2.f
◦

Theorem 5. In a ρ-Einstein soliton (E,g,ζ,λ) admitting a conformal vector ﬁeldCVF ζ with factor ω,
(1) Lζ1 Ric1 (U1,V1) = ϕ1g1 (U1,V1) if Hf = σg, where	
n
2

n
2
1


(3.19)	ϕ1 =	f σ + λ − ω + ρR η1 + ζ1	f σ + λ − ω + ρR     ,
(2) Lζ2 Ric2 (U2,V2) = ϕ2g2 (U2,V2), where	 (3.20)	ϕ2 = f2      f2 + λ − ω + ρR η2.
f
◦
2
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The KVFsilling vector ﬁelds provide the isometries of space-time whereas the sym-metry of the energy-momentum tensor is given by the Ricci collineation. A vector ﬁeld ζ represents a Ricci collineation if the Ricci tensor is invariant under the Lie dragging through ﬂow lines of ζ. The foregoing previous conclusion establishes the shape of the Lie derivative of the Ricci tensor concerningwith regard to the ﬁelds ζi, on Mi, i = 1,2.
Let (E,g,ζ,λ,ρ) be a gradient ρ-Einstein soliton with ζ = ∇u, then
Ric + Hu = λg + ρRg. Thus,
Ric(U1 + U2,V1 + V2) + Hu (U1 + U2,V1 + V2) =     λg (U1 + U2,V1 + V2) + ρRg (U1 + U2,V1 + V2).

Let U = U1,V = V1


=



Ric1 (U1,V1) − f Hf (U1,V1) + H1 1 (U1,V1) λg1 (U1,V1) + ρRg1 (U1,V1)n
2
u



Ric1 (U1,V1) + H1 1 (U1,V1)φ

=     λ1g1 (U1,V1) + (−λ1 + λ + ρR)g1 (U1,V1) =     λ1g1 (U1,V1) + ρ1R1g1 (U1,V1),
where φ1 = u1 − u2 lnf and u1 = u at a ﬁxed point of E2. Then, (E1,g1,ζ1,ρ1) is a gradient ρ1-Einstein soliton where
ρ1R1 + λ1 = λ + ρR. Now, let U = U2,V = V2, thenφ



=
This yields

Ric2 (U2,V2) − f◦g2 (U2,V2) + H2 2 (U2,V2) λf2g2 (U2,V2) + ρRf2g2 (U2,V2).

Ric2 (U2,V2) + H2 2 (U2,V2)φ
 	

=     λ2g2 (U2,V2) + −λ2 + λf2 + f◦ + ρRf2     g2 (U2,V2)
=     λ2g2 (U2,V2) + ρ2R2g2 (U2,V2),
where u2 = u at a ﬁxed point of E1. Then, (E2,g2,ζ2,ρ2) is a gradient ρ2-Einstein soliton where
ρ2R2 + λ2 = λf2 + f◦ + ρRf2.

Theorem 6. In a gradient ρ-Einstein soliton (E,g,ζ,λ),
(1) (E1,g1,ζ1,λ1) is a gradient ρ1-Einstein soliton where
ρ1R1 + λ1 = λ + ρR,
(2) (E2,g2,ζ2,λ2) is a gradient ρ2-Einstein soliton where ρ2R2 + λ2 = λf2 + f◦ + ρRf2.
This theorem provides an inheritance property of the structure of the gradient ρ-Einstein soliton structure to factor manifolds of the warped product manifold.
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3.1. ρ¯-Einstein solitons on a generalized Robertson-WalkerGRW space-times. Let E = I ×f E be a generalized Robertson-WalkeGRWr space-time with metric g¯ = −dt2 ⊕ f2g. Then the Ricci curvature tensor Ric on E is¯
¨



Ric(∂t,∂t)¯


Ric(U,V )¯


=     −nf ,	Ric(U,∂t) = 0

=     Ric(U,V ) − f♦g (U,V ),

where f♦ = −ff − (n − 1)f2, see [16,18,26].¨	˙

Lemma 2. Suppose that h∂t,u∂t,v∂t ∈ X(I) and ζ,U,V ∈ X(E), then Lζg¯ U,V     = −2huv + f2Lζg (U,V ) + 2hffg (U,V ),¯ ¯
 	
˙	˙
¯
¯
¯
¯	¯
 
¯ ¯

¯	¯

where U = u∂t + U,V = v∂t + V and ζ = h∂t + ζ.
Let E,g¯,ζ,λ , E = I ×f E, be a ρ¯-Einstein soliton GRW space-time. Then, Ric U,V  + 2Lζg¯ U,V  = λg¯ U,V  + ρ¯Rg¯ U,V ,1
¯
¯
¯ ¯
¯
¯
¯ ¯
¯ ¯	¯
¯ ¯
¯
¯	¯	¯

where U = u∂t + U,V = v∂t + V and ζ = h∂t + ζ are vector ﬁelds on E. Thus, − f¨uv + Ric(U,V ) − f♦g (U,V ) − huv + 2f2Lζg (U,V ) + hffg (U,V )nf
1
˙	˙
¯	¯
¯	¯

=     −λuv + f2λg (U,V ) − ρ¯Ruv + ρ¯Rf2g (U,V ).
This yields		¨	¯	˙
¯

nf = f λ − h + ρ¯Rf,
and1

Ric(U,V ) + 2f2Lζg (U,V )¯
¯	˙

=     λf2g (U,V ) + ρ¯Rf2g (U,V ) + f♦g (U,V ) − hffg (U,V ).
Thus, (E,g,f2ζ,ρ) is a ρ-Einstein soliton, where¯
¯
 	

ρR + λ = λ + ρ¯R f2 + f♦ − hff.˙

Theorem 7. In a ρ¯-Einstein soliton  E,g¯,ζ,λ, where E = I×f E is a generalized¯ ¯
¯	¯

Robertson-WalkerGRW space-time, it  is
	¨	¯	˙
¯

(1) nf = f λ − h + ρ¯Rf,
(2) (E,g,f2ζ,λ) is a ρ-Einstein soliton, where ρR + λ = λ + ρ¯R f2.¯
¯
 	
¯ ¯
 	
¯	¯

In a ρ¯-Einstein soliton E,g¯,ζ,λ , where E = I×f E is a generalized Robertson-WalkerGRW space-time and ζ = h∂t +ζ is a conformal vector ﬁeldCVF on E, i.e., L¯g¯ = ω¯g¯, and ω¯ is constant (see Section 2), then¯
¯	¯
ζ
¯
¯	¯ ¯	¯	¯ ¯
 		 	  	

Ric U,V     = λ − ω¯ + ρ¯R g¯ U,V . Thus,¨

−nf uv + Ric(U,V ) − f♦g (U,V )f
¯	¯
¯	¯

=     − λ − ω¯ + ρ¯Ruv +  λ − ω¯ + ρ¯Rf2g (U,V ).
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Thus,

(3.21)

(3.22)



nf f¨

Ric(U,V )



=     λ − ω¯ + ρ¯R.¯
¯

=     f♦ +  λ − ω¯ + ρ¯Rf2g (U,V ).¯
¯



By using equations (3.21) we get
h		i¨	˙

Ric(U,V ) = (n − 1) ff − f2	g (U,V ).
	¨	˙

Therefore, (E,g) is an Einstein manifold with factor μ = (n − 1) ff − f2     .
Theorem 8. In a ρ¯-Einstein soliton  E,g¯,ζ,λ admitting a conformal vector ﬁeldCVF ζ = h∂t +ζ, where E = I ×f E is a generalized Robertson-WalkerGRW  space-time, (E,g) is an Einstein manifold with factor μ = (n − 1) ff − f2     .¯ ¯
¯
¯
¯
¨	˙
	


From Lemma 2, we get ζ is a conformal vector ﬁeldCVF on E with conformal factor
η. Then, by using theorem 8, we get
h		i¨	˙
ζ	ζ

L Ric(U,V )     =	(n − 1) ff − f2	L g (U,V )
	¨	˙

=     (n − 1) ff − f2      ηg (U,V ) =     ϕg (U,V ),
where		¨	˙

ϕ = (n − 1) ff − f2      η.
Theorem 9. In a ρ¯-Einstein soliton  E,g¯,ζ,λ admitting a conformal vector ﬁeldCVF ζ = h∂t + ζ, where E = I ×f E is a generalized Robertson-WalkerGRW space-time,¯ ¯
¯
¯
¯

LζRic(U,V ) = ϕg (U,V ),
where		¨	˙

ϕ = (n − 1) ff − f2      η.
In a ρ¯-Einstein soliton  E,g¯,ζ,λ, where E = I×f E is a generalized Robertson-WalkerGRW space-time, it is¯ ¯
¯
¯

Ric U,V  + 2Lζg¯ U,V  = λg¯ U,V  + ρ¯Rg¯ U,V .1
¯
¯ ¯	¯ ¯	¯	¯ ¯
¯
¯
¯	¯ ¯

Assume that (E,g) is Einstein, then for any vector ﬁelds U = U,V = V and¯	¯
¯

ζ = h∂ + ζ we have gett

			1
˙	¯
¯

Lζg (U,V )     =     2 f2      −μ + f♦ − hff + f2λ + ρ¯R g (U,V ) =     ηg (U,V ).
Then, ζ is a conformal vector ﬁeld on E with conformal factor η where
			1
¯
˙
¯

η = 2 f2      −μ + f♦ − hff + f2λ + ρ¯R .
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Theorem 10. In a ρ¯-Einstein soliton  E,g¯,ζ,λ, where E = I ×f E is a gener-alized Robertson-Walker GRW space-time, ζ is a conformal vector ﬁeld on E if (E,g) is an Einstein manifold with conformal factor η where¯ ¯
¯	¯

			1
˙	¯
¯

η = 2 f2      −μ + f♦ − hff + f2λ + ρ¯R .
3.2. ρ¯-Einstein solitons on a standard static space-times. A standard static space-time (also calledor  f-associated SSST) is a Lorentzian warped product manifold E = If × E furnished with the metric g¯ = −f2dt2 ⊕ g. The Ricci curvature tensor Ric on E is¯
¯
¯



Ric(∂t,∂t)

Ric(U,V )¯


=     fΔf	Ric(U,∂t) = 0
=     Ric(U,V ) − f Hf (U,V ),1


where Δf denotes the Laplacian of f on E.  This space-time is a generalization of some several notable classical space-times. The Einstein static universe and Minkowski space-time are good examples of standard static space-times [4].

Lemma 3. Suppose that h∂t,u∂t,v∂t ∈ X(I) and ζ,U,V ∈ X(E), then
	 
¯ ¯

˙
¯
¯

Lζg¯ U,V     = Lζg (U,V ) − 2uvf2      h + ζ (lnf) ,

where U = u∂t + U,V = v∂t + V and ζ = h∂t + ζ.¯
¯	¯

Let E = If × E be a ρ¯-Einstein soliton  E,g¯,ζ,λ, then¯ ¯
¯
¯

Ric U,V  + 1L¯g¯ U,V  = λg¯ U,V  + ρ¯Rg¯ U,V ,2
¯
¯
ζ
¯ ¯
¯ ¯	¯
¯ ¯
¯
¯ ¯


where U = u∂t + U,V = v∂t + V and ζ = h∂t + ζ are vector ﬁelds on E. Then, −Δf + fh + ζ (f) = λ + ρ¯Rf,¯
¯	¯	¯
˙	¯
¯


and

Ric(U,V ) + 2Lζg (U,V )1
1

=     λg (U,V ) + ρ¯Rg (U,V ) + f Hf (U,V ).¯
¯

Suppose that Hf (U,V ) = σg, then

Ric(U,V ) + 2Lζg (U,V ) = λg (U,V ) + ρRg (U,V ), where1
σ
¯
¯

ρR + λ = λ + f + ρ¯R.
Theorem 11. If Hf (U,V ) = σg in a ρ¯-Einstein soliton  E,g¯,ζ,λ where E = If ×E is a standard static space-time, then (E,g,ζ,λ) is a ρ-Einstein soliton, where¯ ¯
¯	¯


ρR + λ = λ + f + ρ¯R.σ
¯
¯
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The condition Hf = σg is equivalent to ∇f is a concircular vector ﬁeld with factor γ, i.e., DU ∇f = γU. Now, one gets

Ric(U,V ) − f g (U,V ) + 2Lζg (U,V )γ
1

¯



=     λg (U,V ) +     −λ + λ + f + ρ¯R     g (U,V ) =     λg (U,V ) + ρRg (U,V ).γ
¯

Then, (E,g) is an ρ-Einstein soliton where

ρR + λ = λ + f + ρ¯Rγ
¯
¯

Corollary 4. If ∇f is a concircular vector ﬁeld with factor σ on a ρ¯-Einstein soliton E,g¯,ζ,λ where E = If ×E is a standard static space-time, then (E,g,ζ,λ) is an ρ-Einstein soliton, where 
¯ ¯

¯	¯


ρR + λ = λ + f + ρ¯R.γ
¯
¯

Now, assume that ζ = h∂t + ζ is a conformal vector ﬁeld on E, i.e., Lζg¯ = ωg¯,¯
¯	¯
¯

then 
¯
¯ ¯	¯
	 	  
¯ ¯

¯

Ric U,V     = λ − ω¯ + ρ¯R g¯ U,V .
Then
(3.23)	−Δf = λ − ω¯ + ρ¯R.f
¯
¯


Also,	Ric(U,V ) − f Hf (U,V ) =  λ − ω¯ + ρ¯Rg (U,V ). If Hf (U,V ) = σg, then by using equation(3.23) we get1
¯
¯


Ric(U,V ) = f (σ − Δf)g (U,V ).1

Thus, (E,g) is an Einstein manifold with factor μ = f (σ − Δf).1

Theorem 12. If ζ = h∂t + ζ is a conformal vector ﬁeldCVF on a ρ¯-Einstein soliton E,g¯,ζ,λ where E = If × E is a standard static space-time and Hf (U,V ) = σg,¯
¯
¯
¯ ¯
 	

then (E,g) is an Einstein manifold with factor μ = f (σ − Δf).1

From Lemma 3, we get ζ is a conformal vector ﬁeldCVF on E with conformal factor η. Then, by using theorem 12, we get

LζRic(U,V ) = f (σ − Δf)Lζg (U,V ).1

Since ζ = h∂t + ζ is a conformal vector ﬁeld on E, ζ is a conformal vector ﬁeld on E with conformal factor η,. tThus¯
¯


LζRic(U,V ) = f (σ − Δf)ηg (U,V ) = ϕg (U,V ), where1
1

ϕ = f (σ − Δf)η.
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Theorem 13. If ζ = h∂t + ζ is a conformal vector ﬁeld on a ρ¯-Einstein soliton E,g¯,ζ,λ where E = If × E is a standard static space-time, then¯
¯
¯ ¯

 
¯

LζRic(U,V ) = ϕg (U,V ), where1

ϕ = f (σ − Δf)η.
In a ρ¯-Einstein soliton standard static space-time  E,g¯,ζ,λ,ρ, it is Ric U,V  + 2Lζg¯ U,V  = λg¯ U,V  + ρ¯Rg¯ U,V .1
¯ ¯
¯
¯
¯
¯	¯ ¯	¯ ¯	¯	¯ ¯
¯	¯ ¯

Assume that (E,g) is Einstein manifold and Hf (U,V ) = σg, then
σ
¯



Lζg (U,V ) = 2 f − μ + λ + ρ¯R g (U,V ).¯

Thus, ζ is a conformal vector ﬁeld on E.
Theorem 14. In a ρ¯-Einstein soliton  E,g¯,ζ,λ where E = If × E is a standard static space-time, assume that (E,g) is Einstein manifold and Hf (U,V ) = σg, then ζ is a conformal vector ﬁeld on E.¯ ¯
¯	¯
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