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Biomonitoring of Nanotechnology Workers
Abstract
The widespread and increasing use of engineered nanomaterials (i.e., particulate materials measuring 1–100 nanometers (nm) in at least one dimension) poses a potential health and safety risk to exposed workers. Their unique properties have made nanomaterials useful in multiple industries. However, their production and use may compromise worker health, presenting an emerging occupational health hazard, the acute and chronic effects of which have not been fully assessed. In this scoping review, we critically assess the literature focused on the biomonitoring of nanoparticles and discuss the utility of biomonitoring as a means of assessing internal doses and the physiological effects of nanoparticle exposure among nanotechnology workers. Multiple databases were queried based on select inclusion and exclusion criteria according to PRISMA guidelines, and articles were independently screened by two topic experts. Of 286 articles initially retrieved, 24 were included after screening and eligibility. The reviewed articles indicate that sensitive, validated biomarkers of exposure and disease progression, may be useful for monitoring toxicological effects and risks associated with nanoparticle exposure in the workplace. This review will aid policy decision-makers in the occupational health field as they promote regulations and define occupational exposure limits to contribute to worker health and well-being.
Keywords: biomonitoring; biomarkers; engineered nanomaterials; nanoparticles 
________________________________________________________________________________
Introduction
The utilization of nanotechnology and nanoscale materials in industry is rapidly increasing in both scope and scale. According to the World Health Organization (WHO), the “increased production of manufactured nanomaterials and their use in consumer and industrial products means that workers in all countries will be at the front line of exposure to these materials, placing them at increased risk for potential adverse health effects” (WHO. 2017). There is high-quality evidence based on exposure assessment studies that workers are exposed to ENMs in a variety of industries and work tasks (Debia et al. 2016). Some industrial processes, such as cleaning, packaging, and recycling, may expose both workers and consumers to nanoparticles (NPs) (Kuhlbusch et al. 2011). Moreover, ENMs with new chemical and physical properties that offer value in specific technological applications, are being produced regularly. The properties of these ENMs and NPs, such as their small dimensions, shape, large surface area, high reactivity, charge, crystal formation, and tendency towards aggregation, determine their biological activity and can thus cause potentially toxic effects in exposed workers. According to Liao et al. (2014), these properties are not routinely considered in toxicity screening studies, and their adverse effects and toxicity remain mostly unknown. 	Comment by Editor: Define this acronym (emerging nanomaterials? Engineered?)
Within the context of occupational health, biomonitoring refers to the “repeated, controlled measurement of chemical or biological markers in fluids, tissues or other accessible samples from subjects exposed to chemical, physical or biological risk factors in the workplace” (Manno et al. 2010). Exposure to nanomaterials has been described via oral, dermal, inhalation, and injection routes, depending on use patterns (Sahu and Hayes, 2017). Consequently, the spectrum of NP-related biological effects is broad, and the opportunities for biological monitoring are diverse. Inhalation is the most biologically significant route of exposure in occupational settings, and NPs that accumulate in the lungs contribute to the development of idiopathic respiratory pathologies. According to Rinaldo et al. (2015), approximately 10−20% of insoluble NPs accumulate in the lungs. However, these multiple routes of NP exposure and bioabsorption highlight the possibility for different approaches to the biological monitoring of exposed workers. 	Comment by Editor: Don’t switch back and forth between NPs and nanoparticles (outside of quotes).
A WHO report (2017) acknowledges the “paucity of precise information about human exposure pathways for manufactured nanomaterials, their fate in the human body and their ability to induce unwanted biological effects such as generation of oxidative stress”. Biomonitoring is useful in the occupational health screening of exposed industrial workers and can be a surrogate strategy used to estimate the internal dose of a given compound or to quantify associated pathophysiological changes. As noted in a previous review on the biological monitoring of workers exposed to engineered nanomaterials, the significant physio-chemical variability of nanomaterials makes it difficult to assess associated occupational risks and may explain why there are no established screening programs or protocols for related biomarkers (Shulte et al. 2019). The present study undertakes a scoping review of published research focused on the use of biological markers associated with NP exposure in the workplace, including both engineered nanomaterials and nanoparticles produced as a byproduct of industrial activities such as welding. Based on the current state of the published toxicological research, we discuss the utility of biological monitoring of NP-exposed workers and directions for future research.	Comment by Editor: I would advise against alternating between “biomonitoring and biological monitoring” – stick to biomonitoring where possible.

Materials and Methods
Search Strategy and Inclusion Criteria
We conducted a scoping review to identify and analyze toxicological and epidemiological studies focused on the biomonitoring of nanomaterial-exposed workers. The Web of Science and PubMed search engines were queried utilizing an identification, screening, eligibility, and inclusion algorithm based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines (Tricco et al. 2018). Subject search terms included “nanoparticles” or “engineered nanomaterials,” “health effects,” “biological markers,” “biomarkers,” and “workers epidemiology.” (Table 1). Search restrictions included the English language, years of publication (January 1, 2009–December 31, 2021), and peer-reviewed studies. In order to expand the scope and reduce the probability of missing relevant literature, the term “nanoparticles” was used in addition to “nanomaterials.” Two hundred eighty-six unique search retrievals for each search term were obtained in both databases. Duplicate articles from different search terms were removed prior to the screening process.

Table 1. Search terms and query results.
	                                              Search terms
	PubMed
	Web of Science
	
	

	Nanoparticles AND workers AND biomarkers
	45
	46
	
	

	Biomonitoring AND nanomaterials workers
	27
	9
	
	

	Biomonitoring AND nanoparticles workers
	19
	16
	
	

	Biomonitoring AND engineered nanomaterials workers
	14
	3
	
	

	Biological markers AND engineered nanomaterials AND workers
	27
25
	2
2
	
	

	Biological markers AND exposure to engineered nanomaterials AND workers                 
Biological markers AND exposure to nanoparticles AND workers
	     42
	9
	
	

	Total
	199
	87
	
	





Figure 1. Flow chart of study selection, screening, and eligibility
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Figure 1 A flow chart of the selection process adapted from the PRISMA-ScR (PRISMA extension for Scoping Reviews) group statement (Tricco et al. 2018). The full texts of the papers considered eligible for this review were obtained, and reference lists were searched for additional articles that met the study inclusion criteria. Only publications that measured biological markers of occupational exposure to NP were included.	Comment by Editor: Any reason to not say “biomarkers”?



Eligibility process
After the removal of duplicate studies, the abstracts of the 165 remaining articles were reviewed independently by two researchers. We then narrowed the pool of relevant articles by excluding review articles as well as articles that were focused on non-occupational exposure (“not occupational”) or not clearly associated with NP exposure (“not nanoparticles”). Non-epidemiological in vitro studies were also removed during the screening. Following this screening for eligibility, 24 articles remained and were included in the review.

Results
The study populations, types of exposures, methods used, health outcomes, expression of specific biological markers, and potential confounding factors in the reviewed studies are summarized in Table 2.

The most frequently utilized and studied biological markers of nanomaterial-related effects, involving cardiovascular effects, lung fibrosis, lung and systemic inflammation markers, nucleic acids, lipid and protein oxidative stress markers, antioxidant enzyme activity, genotoxicity, and metabolic markers, are summarized in Table 3.

Table 2. Summary of the study populations, NMs or NPs, health outcomes, selected outcome-related biological markers, results, and confounding factors.	Comment by Editor: You haven’t used this acronym before. Consider using it for all iterations of the word nanomaterial.
	Author
	NM/ NP 
	Population Exposure/ Study/ Assay 
	Health Outcomes/ Biological Markers 
	Tested in humans
	Results
	Confounding factors

	Y. Song et al.
Eur Respir J
2009
	Polyacrylate (polyacrylic ester)

30 nm diameter
	7 females and 1 male (ages 18-47) working in print plant 5-13 months.

Assays:
a. Histopathology STEM
b. HE stain
c. Protein electrophoresis
d. Spirometry
e. Thoracentesis
	· Shortness of breath, pleural and pericardial effusions.
Skin exposure, itching on faces and arms
· Biomarkers:
Blood cells monocytes, lymphocytes
Biochemical markers
Fibrosis, granuloma in lung tissue
	Samples:
Lung tissue
Thoracic exudate Pleural
BALF effusion
Blood
Urine

Functional tests: liver, kidney, and lung 
	Increased:
Blood & serum: Monocytes, ESR, ALT, AST	Comment by Editor: I suggest italicizing/underlining or otherwise distinguishing these subheaders throughout the Table for clarity
Exudate: monocytosis
Pleural effusion: glucose
BALF: lymphocytosis. 
Decreased:
Blood & serum: neutrophils, albumin
Pleural effusion: chloride ion in all patients: very low
BALF: macrophages
Pathological examinations: nonspecific pulmonary inflammation, fibrosis, and foreign-body granulomas of pleura
	Nonsmokers
Not exposed to hazardous materials

	M.Wu
Environ. Health Perspect
2010
	CNT
Aluminum &
magnesium silicates, chrysotile asbestos, calcium phosphate & sulfate

	Case Report
7 previously healthy rescue and recovery workers exposed to WTC dust on 09/ 11/ 2001. 
Assays:
Histopathology: mineralogic tissue analyses by STEM & EDS
	· Severe respiratory impairment- interstitial lung disease, bronchio-parenchymal disease, non-necrotic granuloma, asthma, bronchitis, pneumonia
· Unexplained radiologic findings. 
	Samples:
Lung tissue sections
	Increased:
Lung tissue: CNT and silicates
Extensive interstitial/ parenchymal abnormalities, Small airways disease
	Age
Gender
Occupation
Smoking history Comorbidities
Length of exposure

	 J. H Lee
Nanotoxicology 
2012
	Silver NPs
	Case study:
Walkthrough evaluation of manufacturing process of 2 workers over 7 years.
	No significant findings
Silver concentration
	Samples:
Blood
Urine
	Silver in urine: not detected
Silver in blood: low conc. 
	_

	S.H. Liou
J. Nanopart Res
2012
	NPs:
CNT, TiO2, SiO2, Silver, Gold,
nanoresins, nanoclay, nanoalumina, and metal oxides

20-100 nm
	Cross-sectional study of
manufacturing & application workers.
227 exposed vs. 137 unexposed controls from 14 NP plants.
Assays:
Questionnaire
	· Biomarkers:
Cardiovascular: fibrinogen, ICAM, interleukin-6
Antioxidants: MPO, SOD, GPX
	Samples:
Blood
Urine
EBC
Pulmonary functions (FVC, FEV1, PEFR, MMF, FEF25 %, FEF50 %, FEF75),
Heart rate
Neurobehavioral function (correct rate of 7-digit backward memory) 
	Increased: 
fibrinogen, ICAM, and interleukin 6
Significantly higher in part of workers
Decreased:
SOD significantly (p < 0.05)
GPX significantly
in part of workers.
Neurobehavioral functions Significantly lower in part of workers.
No changes in DNA damage, genotoxicity, and pulmonary markers
	Exposure status
Demographics
Geographic and socioeconomic status Smoking and alcohol consumption
Betel nut chewing habits
History of respiratory disease
Dusty environment

	Andujar et al.
Part. & Fib.
Toxicol.
2014
	
Iron 20–25 nm
chromium and /or manganese, titanium, aluminum, silica and nickel in lung tissue

	Cross-sectional study
21 welders vs. 21 controls.

Assays:
a. Questionnaires
b. In vitro tests on macrophages from BAL
[bookmark: _Hlk16448424]c. Quantification of NPs in tissue: Imaging & material science techniques: STEM; μXRF; EDX.
d.Immunohistochemistry: Lung tissue sections stained HES (hematoxylin-eosin-saffron) or Perls Prussian
CD68 staining.
e. Fibrosis evaluation: Roggli Semi-quantitative score
	· Biomarkers
Pulmonary markers of inflammation: CXCL-8, IL-1ß, TNF-α, CCL-2−3, −4

	Samples:
Lung tissue sections BAL macrophages
Fibroblasts 
	Increased:
CXCL-8, IL-1ß, TNF-α, CCL-2. Moderate increase: IL-6, CCL-7, and −22 in macrophages in alveolar lumen and fibrous regions. No fibroblasts differentiation.
CD68 staining: High number of macrophages in lung tissue; Perls stain: high iron load; elevated count of siderophages (iron-laden macrophages),
high number of fibrotic lesions
	Gender
Smoking habits
Occupational seniority

	H.Y. Liao et al.
Nanotoxicology
2014
	Nanosilver, Nanogold,
Fe2O3, TiO2,
CNT, SiO2
[bookmark: _Hlk16426365]Multiple exposures to mixed types of NPs
Size < 100nm
	Longitudinal study of workers from colors, LED, colorants, air cleaners, CNT, photocatalyst, and textile industries exposed vs. unexposed.
Assays:
a. Questionnaires
b. Outcome biomarkers first examined in a cross-sectional manner and then 6 months later.
	· Biomarkers:
Pulmonary, cardiovascular disease, genotoxicity; inflammation and oxidative stress. 
Airway damage marker: Clara cell protein 16; lung function test Antioxidant enzymes; 
	Samples:
EBC
Blood
Urine  

	Increased:
VCAM, IL-6 ICAM, LF, VLF.
Decreased:
SOD, GPX CC16, PON1, Pulmonary function (changes of maximal mid-expiratory flow, PEFR, and FEF 25%) in exposed group.

	Age
Gender
Smoking habits
History of respiratory disease
Dusty environment

	Lee et al. Nanotoxicology 2015
	

MWCNTs
	Health surveillance study: Walkthrough personal and area exposure levels evaluation
9 manufacturing workers and 4 office workers.
 
	· Biomarkers:
Oxidative stress 
	Samples:
Whole blood
EBC

Pulmonary function test 
	Increased:
EBC:
MDA, 4-HHE, and n-hexanal in manufacturing workers significantly higher than in office workers.
Blood:
Normal hematology and biochemistry values
Lung function: normal

	Gender, median age, work period, smoking  status,
diurnal variation
work-shift


	Shvedova et al. PLoS One
2016
	MWCNTs aerosols
	Cross-sectional study.
Exposed (n=8) vs. non-exposed (n=7) workers in a 6-month period.

Assays:
a. Spectrophotometer IPA global mRNAs, ncRNA expression profile blood
b. RT-PCR miRNA sequencing
c. TEM count of CNT from breathing zone. 

	· Lung inflammation and/or fibrosis; granuloma; lung different type tumors; systemic inflammation; cardiovascular injury
· Biomarkers:
IL6, EGFR, TGFβ; ERK, PDGFA, CASP8
   KL-6 (MUC 1)

	Samples:
Whole blood
Particles in personal breathing zones
	Dysregulation: 
mRNA, lncRNA, and miRNA expression profiles of target genes affecting cell cycle regulation IL6, EGFR, TGFβ; ERK, PDGFA, CASP8
KL-6 (MUC 1)
	Age
Gender
Pernicious habits
Work experience History of disease

	Fatkhutdinova et al.
Toxicol. & Applied Pharmacol.
2016
	MWCNTs aerosols

	Cross-sectional study.
Exposed (n=10) vs. non-exposed (n=12).
22 workers (18 males, 4 females) aged 19–63 working > 1 year. 
Assays:
a. TEM count CNT particles
b.  EC: elemental carbon analysis
c. ELISA (serum and sputum)
d.  Flow cytometry (serum and sputum)
	· Biomarkers:
Inflammatory and fibrotic markers
	Samples:
Nasal lavage
Induced sputum
Blood
Serum
Air samples from specific areas and personal breathing zones
	Increased: significantly
Sputum: IL-1β, IL6, TNF-α, inflammatory cytokines, KL-6.
Serum: TGF-β1(in young) 
	Age
Gender
Smoking habits
Work experience

	Graczyk et al.
Particle and Fibre Toxicol.
2016

	Welding fumes (Tungsten Inert Gas, TIG)
	Cross-sectional study.
welding trainees, 15-24 y (n=10).
	· Biomarkers:
Oxidative stress: 8 hydroxy-20 -deoxyguanosine, MDA, hydrogen peroxide, and total reducing capacity
	Samples:
Exhaled breath condensate (EBC) Blood
Urine
	Increased: significantly
Plasma H2O2 24%;
14% 8-OHdG
urinary H2O2 91%;
45% urinary 8-OhdG
	Non smokers,
Trainees,
age
Males 
Weight, height, BMI

	Pelclova et al. Occ. & Env. Med.
 2016a
	NanoTiO2 pigment
	36 male workers
working with TiO2 pigment for at least 6 months and 45 unexposed controls.

Assays:
a. Questionnaire
b. Ecoscreen Turbo DECCS Jaeger: EBC sampling
c. Crystallography: Gemini 4 circle CCD diffractometer: for Ti in EBC
d. LC-ESI-MS/MS: Markers of oxidative stress in EBC 
	· Biomarkers:
Titanium
Oxidation of nucleic acids: (8-OhdG), (5-OHMeU)
Proteins: o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr) and 3-nitrotyrosine (3-NOTyr)
	Samples:
EBC
	Increased:
EBC: Titanium and most oxidative stress markers significantly higher in production workers (p<0.001) than in research workers and unexposed controls.

	Occupational history
Medical treatments Lifestyle habits 
(e.g., diet, alcohol 
intake, smoking, 
physical activity)

	Pelclova et al.
J. Breath Research
2016b
	NanoTiO2 aerosol

80% of particles <100 nm diameter
	30 workers exposed to TiO2 aerosol, 22 office employees, and 45 unexposed controls.

Assays:
a. LC-ESI-MS/MS
b.  FENO
c. Spirometry
	· Potential fibrotic changes in lungs, inflammation
· Biomarkers:
EBC: LT B4, C4, E4, D4
Lungs: % VCIN; % PEF
	Samples:
EBC
Urine
	Increased in EBC: LT B4, C4, E4, D4 in workers relative to controls (p < 0.01).
Cysteinyl LTs
Impaired %VCIN and %PEF (both p < 0.01).
	Allergic diseases
Smoking status

	Pelclova et al.
J. Breath Research
2016c
	Iron oxide aerosol

80% of particles <100 nm diameter
	14 workers aged 43± 7 y. exposed 10±4 y. and 14 controls (aged 39±4 y.)
Dose-dependent.
Assays:
a. LC-ESI-MS/MS
b. SMPS; APS; P-TRAK; DustTRAK DRX: for workplace aerosol 

	· Asymptomatic with Oxidative stress markers
· Biomarkers:
Oxidative stress, oxidation of nucleic acids- and inflammation
Proteins: o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine
	Samples:
EBC
Urine
	Increased:
EBC: MDA, HHE
HNE, 8-isoprostane,
aldehydes C6–C12, 8-OHdG,
8-OHG, 5-OHMeU, 3-ClTyr,
3-NOTyr, o-Tyr (all p < 0.001)
in workers relative to controls 
(p < 0.01).
Urine: no increase
	Age
BMI
Smoking and alcohol consumption

	Pelclova et al. 
Nanotoxicology 2017b
	nanoTiO2

80% of particles <100 nm diameter
	Cross-sectional study

Production workers and Controls.

	· Lung injury, inflammation,
· Biomarkers:
Lipid oxidation, oxidative stress, cytotoxicity, and genotoxicity
MDA, 4-hydroxy-trans-hexenal, 4-hydroxy-trans-nonenal, 8-iso Prostaglandin F2α; aldehydes C6–C12
	Samples:
EBC
	Increased:
11 markers of lipid
oxidation in production
workers relative to
controls
(p < 0.001) 
	Age
Smoking and alcohol consumption
Physical activity _

	Pelclova et al. 
Rev. Environ. Health
2017a
	Nanoscale titanium dioxide (nanoTiO2)

<100 nm diameter
	Cross-sectional study.
Short-term MVA. 22 office workers intermittently exposed to TiO2 vs. 14 unexposed. 
Assays:
a. Questionnaires
b. Physical exam
c. Spirometry
d. TiO2
	· Inflammation
· Biomarkers: Lipid oxidation MDA, HHE, HNE, 8-isoprostane, aldehydes C6−C12


	Samples:
EBC
Urine

	Increased:
9 markers of lipid
Oxidation, DNA and 
protein oxidative damage in
production workers.
EBC: highly significant difference between production and office workers. (p < 0.001)
   Urine: No increase

	Age
Smoking and alcohol consumption
Physical activity

	Vlaanderen
et al. Nanotoxicology 2017
	MWCNT
	Exposed vs. non-exposed workers. 

Assay:
Molecular cross-section

	· Pulmonary and immune system damage.
· Biomarkers:
 Immune markers & pneumoproteins: C-C motif ligand 20, basic fibroblast growth factor, soluble IL1 receptor II	Comment by Editor: Things like this should be replaced with appropriate acronyms, with definitions then being listed under the Table.
	Samples:
Serum
Whole blood (CBC)
FENO
Lung function
	Increased:
Significant upward trends for immune markers C-C motif ligand 20 (p= 0.005), basic fibroblast growth factor (p= 0.05), and soluble IL-1 receptor II (p= 0004)

	Age
BMI
Gender
Smoking status



	Liou et al.
J. Hazardous Mat. 2017
	TiO2, SiO2, indium tin oxide (ITO)
	Cross-sectional study.
130 workers 70% males and 30% females; mean age 35 yr. handling NPs 3.4 ds. / wk. 4.4 h/ day Exposed vs. non-exposed workers.
Assays:
Questionnaires

	· Biomarkers:
Global methylation, DNA oxidative damage, lipid peroxidation.
Oxidative stress
Urinary and WBC 8-OHdG, EBC 8-isoprostane
	Samples:
Blood
Urine
EBC 
	Increased:
WBC; 8-OHdG
8-isoprostane
8-OHdG (negatively correlated      with global methylation)
WBC and urinary 8-OHdG  positively correlated.

Lower global methylation in ITO handling workers.
	Demographic
Socioeconomic characteristics
Lifestyle (or smoking and alcohol consumption)
 Occupational history Personal and family disease

	[bookmark: _Hlk51504321]Dierschke et al. Int’l. Arc. Occ. & Env. Health
2017
	Welding fumes -mild steel welding (Iron 70% and Mn 30%)
	11 welders with and 10 without work-related symptoms from lower airways and 11 asymptomatic non-welders.

 Assays:
a. Questionnaires:
Exposed vs. non-exposed to fumes workers, random double-blind
b.  RTube for EBC sampling
c. Cytospin and May-Grüenwald Giemsa for NL
d.  Luminex Immunoassay (cytokines)
e.  Sysmex XE-5000/1800i counters (neutrophils)
f.  Visual analog scale for eyes examining
	· Biomarkers:
EBC: leukotrienes LT-B4
NL: IL-6
Neutrophils
IL-8
	Samples:
EBC
Blood
Serum
Nasal lavage (NL)
Lung function

	1. Lung function: No adverse effect.
2. EBC: LT-B4 pre-exposure significantly increased (tenfold higher level) in symptomatic sensitive welders with work-related airway symptoms (chronic exposure to welding fumes).
3. NL: IL-6 increased in non-symptomatic groups
4. Blood: rapid elevation of IL-8 and neutrophils after exposure followed by a significant decrease (ongoing neutrophilic low-grade inflammation).

	Non-current smokers (5 yr.)
Total welding time Age
Exposure
Allergies
Work-related symptoms from eyes and airways

	[bookmark: _Hlk51776696]Khatri et al. NanoImpact
2017
	Mixture of organic compounds with metal ENPs
	6 photocopiers workers vs. 11 controls 3 random weeks during 2 years.

Assays:
a. Quantitative airborne NPs
b. Chemistry
c. Lung burden estimates

	· Chronic upper airway inflammation and systemic oxidative stress
· Biomarkers:
NL: 14 pro-inflammatory cytokines/ chemokines, inflammatory cells, and total protein
8-OH-dG
	Samples:
Nasal lavage
Urine: 8-OH-dG 
	Increased:
[bookmark: _Hlk52126314]NL: IL-6, IL-8, TNFα, IL-1β and Eotaxin (significantly p˂0.0001)
inflammatory cell infiltration 2.7-fold
Total Protein: 4-fold
Urine: 8-OH-dG 4.3-fold 
	Age, gender,  Smoking status, job seniority

	Pelclova et al. Occ. & Env. Med. 2018
	TiO2
Iron oxides
Nanocomposites

	3 groups of workers vs. comparable control groups. 34 nano TiO2 workers over 2 years.
14 nano Iron oxides; and
32 nanocomposites workers 2-year follow up
Assays:
a. Spirometry
b. FENO
c. LC-ESI-MS/MS
d. APS, SMPS, OPS, and CPC (Aerosol exposure)
	·  Biomarkers:
Lipids oxidation, nucleic acids and proteins: MDA, HHE, HNE, 8-isoProstaglandinF2α, C6-C13, 8-OHdG, 5-hydroxymethyl uracil, o-tyrosine, 3-ClTyr, 3- NOTyr; pro-inflammatory leukotrienes LTB4, LTC4, LTE4, LTD4
	Samples:
EBC
	Increased:
Markers of oxidative stress: LTB4 and cysteinyl LTE4 most useful and elevated in nanoTiO2 workers.
	Job seniority,
materials used, Exposure to aerosols > 2 years

	Zhao et al. Nanotoxicology 2018  
	TiO2
	Cross-sectional study
83 exposed workers vs. 85 controls in packaging workshop.
Assays:
a. Questionnaire
b. Spirometer
c. ELISA
d. Cytometric Bead Array
e. BD FACSCalibur flow cytometer

	· Significant changes in chest X-ray images
· Biomarkers: Pulmonary surfactant protein D (SP-D)
Cardiovascular disease: VCAM-1, ICAM-1, LDL, and TC
Inflammatory and acute phase reactants, oxidative stress
	Samples:
Serum
Chest radiography
PFT
	Increased:
SP-D; VCAM-1 and ICAM-1
LDL
IL-8, IL-6, and TNF-alfa
IL-1beta, IL-10
Decreased (significantly): creatinine, triglyceride, and total cholesterol

	Demographic
Smoking and alcohol consumption
Occupational and medical history
Use of personal protection equipment (PPE)

	Baumann et al.
Nanotoxicology 2018
	Zinc- and copper welding fumes
 (in vehicle construction & interiors)
50 - 300 nm different shapes
	15 healthy male volunteers (age 26, nonsmokers).
Assays:
a. Lavages nasal strips (Leuco- sorb)
b. Coomassie Plus (Pierce)
c.  ECL
d. Spirometry
e. Plethysmography
f. Cycling ergometry
g. ROC curve analysis -Receiver operating characteristic to differentiate welding fume from control exposure
h. Field Emission SEM
i. EDX

	· Inflammatory responses Cardiovascular events: elevated risk
· Biomarkers:
Systemic: IL-6, CRP, and SAA
ICAM-1, and VCAM-1
Nasal interferon-c (IFN-c)
Total protein
	Samples:
Nasal secretion (serial)
Lung function

	Increased:
Nasal: (IFN-c)
Nasal Total protein, CRP, and SAA: significantly
No significant changes: IL-6, sVCAM-1, sICAM-1
	Non smoking, healthy lung function, non-exposed to metal fumes, 
no atopy, cardiac condition or asthma

	Yu et al.
Toxicology & Industrial Health 2020
	Iron oxide NPs (IONP)
	Cross-sectional study.
23 workers aged 23 unexposed to metal.
Assays:
a. ELISA
b. PCR

	· Biomarkers:
[bookmark: _Hlk51837526]Iron status, oxidation markers, methylation of genomic DNA
5-methylcytosine (5mC), hepcidin, iron, soluble transferrin receptor (sTfR), ferritin, 8-OHdG, and glutathione
	Samples:
Blood

	Increased:
5hmC
No change, the rest
Positive correlation: 5hmC and IONP
	Demographics (e.g., gender)
Occupational history

	A. Rossnerova et al. Int’l. J. Mol. Sci. 2020    
	Aerosolized welding fumes 2 fractions
<25 nm
25–100 nm

	Cross-sectional study.
20 exposed welding and machining vs. 20 unexposed. (both genders) 14.5± 9.2 years exposure.
No PPE used.
Assays:
a. Infinium Methylation Assay
b. EPIC BeadChips microarray
c. ELISA
d. SMPA
e. APS
	· Biomarkers:
Methylation pattern at CpG loci
	Samples:
Blood

	Increased:
Significant CpG in genes of lipid metabolism, immune system, lung functions, signaling pathways, cancer, xenobiotic detoxification.
	Age
Gender
BMI
PPE


	Wu WT et al. Nanotoxicology 2021
	Mixed  NM 
nano-TiO2, nano-SiO2, CNTs in ceramic coatings, semiconductors production fiber injection
	Cross-sectional study
14 factories
80 NM manufacturing/ handling workers
69 unexposed office workers
2 years exposure
Assays:
a. Quantitative airborne NPs
b. SMPS:Particle size distribution and Mass concentration (10-1000nm)
c. LC-MS/ MS analysis
d. Jaffe Method (Creatinine)


	· Biomarkers:
Lipid peroxidation: 8-Iso PGF2α
 2,3 dinor-8-iso PGF2α, and PGF2α.

	Samples:
EBC
Urine

	Increased:
EBC: 8-Iso PGF2α
Urine:  8-isoPGF2α, 2,3 dinor-8-isoPGF2α and PGF2α,  Total Isoprostane (Free+ Conjugated)
	Demographic and socioeconomic characteristics; lifestyle  
Smoking and alcohol consumption occupational history
 personal and family histories of disease.

	Ursini CL et al. Nanotoxicology 2021
	2 exposed groups:

1. graphene powder  (GNPs) 1.6nm x 1.1 mm size  
2. silica NP  (SiO2NPs)
50 nm size
	Pilot study.
12  FLG (Few Layers Graphene) production (synthesis) workers
11 healthy office workers as unexposed controls
Assays:
a. Questionnaire
b. Buccal Micronucleus Cytome (BMCyt) assay
c. Formamido pyrimidine glycosylase (FPG) protein -comet test (lymphocytes from whole blood),	Comment by Editor: Is this right?
d. Exposure metrics by Real-time measurements:  particle number concentration; average diameter; Lung Deposited Surface Area (LDSA); Size Distribution (SD) at nanoscale; gravimetric, chemical, and morphological analyses
	· Biomarkers:
Oxidative stress
8-oxoGua, 8-oxoGuo and 8-oxodGuo (urine)
Cytokines (serm)
BMCyt
FPG protein

	Samples:
Buccal cells
Whole blood
EBC
Urine
FENO (fractional exhaled nitric oxide)
Serum
	Increased:
BMCyt
FPG protein

	Age, gender,
Job seniority Smoking status
Alcohol consumption 
X-ray test
Use of PPE

	Bello D et al.
Nanoim-pact 
2021
	Mixture of ENM in toner-based printing equipment:
TiO2, MnO2
NiO2, Carbon Black, Iron and copper  oxides, amorphous silica; organic and inorganic compounds
Size: PM0.1 and larger



	Phase I: Cross-sectional study
Phase II: Longitudinal study
Exposure of 19 healthy copier operators at 6 photocopy centers in Singapore
4 times in 2 weeks
Assays:
a. Standardized Respiratory Questionnaire 
b. Immunofluorescence, Multiplex Immunoassays
c. Exposure metrics: particle number concentration; average diameter; LDSA
d. Exposure effect on air and airway microbiome (profiling)

	·   Biomarkers:
14 inflammatory cytokines 	Comment by Editor: Perhaps list them all?
	Samples:
nasal lavage (NL)
 plasma
urine
saliva and sputum 
	Increased:
NL: Fractalkine, IL-1β, IL-1α
Plasma:Fractalkine, IL-1β, TNF-α, IFN-γ
 Decreased: 
Plasma: GM CSF (Granulocyte Macrophage-Colony Stimulating Factor)	Comment by Editor: Move all acronym definitions to the list below the Table
	Occupational history, past exposures; full/ part-time employment
Intensity of work
Smoking status
healthy lung function, non-exposed to ENM
Pre-existing diseases (diabetes, myocardial or thyroid disease, etc)

	Zhangjian Ch et al.
Nanotoxicology 2021
	TiO2 NPs
	Cross-sectional study
56 exposed packaging workers 
44 unexposed office workers as controls 
age: >20 yr 
employed > 1 year in present job
healthy subjects
Assays:
a. Questionnaire
b. Metabolomics detection: Ultra- performance Liquid Chromatography time of flight Mass Spectrometry (UPLC)
c. Machine learning methods: Random forest, Support vector machines, and Boruta used for the screening of potential Biomarkers
d. Colorimetric assays
	·    Biomarkers:
Lipids peroxidation:
Serum metabolite: liquoric acid (represents 8 biomarkers metabolites)
	Samples:
Serum
	Increased:
Lipid peroxidation: 
MDA
Liquoric acid 
Significantly correlated (p<0.05),
Decreased:
Antioxidant enzyme SOD

	Age
Gender
BMI
Smoking status
Drinking habits
History of respiratory, heart, liver and kidney diseases, diabetes, cancer; recent fever or inflammation; other acute/chronic diseases.


	Zhangjian Ch et al.
Nanoscale 2021
	TiO2  NPs
	Cross-sectional study
66 employees of aTiO2 NP manufacturing plant
66 controls
Assays:
a. Questionnaire
b. HPLC-MS
c. Metabolomics detection: UPLC
d. Machine learning methods: Random forest, Support vector machines, and Boruta used for the screening of potential Biomarkers 
	·    Biomarkers:
Dibenzyl ether
Quassimarin
Tryptophan.
	Samples:
Urine
	Increased:
Dibenzyl ether
Quassimarin
Tryptophan
	Age
Gender
BMI
Smoking status
Drinking habits



Abbreviations:  CRP: C-reactive protein; SAA: serum amyloid A ;SOD: superoxide dismutase; GPX: glutathione peroxidase; NO: nitric oxide; NL: Nasal lavage; VCAM: vascular cell adhesion molecule; ICAM: intercellular adhesion molecule; IL-6: interleukin-6; Clara cell protein 16: CC16, VLF: very low frequency; LF: low frequency; L/H: tail/head ratio; PFT: Pulmonary Function Test; PEFR: peak expiratory flow rate; FEF25%: forced expiratory flow at 25%; LT: leucotrienes; PMN: polymorphonuclear neutrophils; LDL: Low Density Lipoprotein; BHTs: biological half times; ELISA: Enzyme Linked Immunosorbent Assay;  ECL:  electrochemiluminescense;  ICP-AES: Inductively Coupled Plasma-Atomic Emission Spectrometer ; MMPD: Multiple Path Particle Dosimetry;  PCR: Polymerase Chain Reaction; FENO: fractional exhaled nitrogen oxide ; PAI-1: plasminogen activator inhibitor-1; TF: Tissue Factor; MDA: malondialdehyde; 8-OHdG: 8 hydroxydeoxyguanosine; 5-OHMeU: 5-hydroxymethyl uracil; 3-ClTyr: 3-chlorotyrosine; 3-nitrotyrosine: 3-NOTyr; Titanium dioxide: TiO2; Cerium dioxide: CeO2 ,  MVA: Multi variate analysis; CCL-2, CCL-3, CXCL-8: chemotactic cytokines; TEM/ STEM: Scanning Transmission Electron Microscopy; μXRF: X-ray microfluorescence; EDX: energy dispersive X-ray;  EDS: energy dispersive spectroscopy; IPA: Ingenuity Pathway Analysis; APS: Aerodynamic Particle Sizer; SMPS: Scanning Mobility Particle Sizer; CPC: Condensation Particle Counter; OPS: Optical Particle Sizer; LC-ESI-MS/MS: liquid chromatography-electrospray ionization-tandem mass spectrometry; VCin: Inspiratory vital capacity; PEF: Peak Expiratory Flow; Ultra- performance Liquid Chromatography time of flight Mass Spectrometry (UPLC); yr: years 	Comment by Editor: Not all acronyms in the table are listed here. For example, WTC is missing. Carefully review and update the acronym list as needed.	Comment by Editor: That is more of an interpretive description, not an abbreviation definition.

Table 3. Summary of most commonly analyzed biological effect markers	Comment by Editor: The layout of this table is confusing – why are there spaces between some rows n some columns? It would make more sense to list categories of markers vertically with one cell then listing all of these examples, moving the abbreviations to a list under the Table rather than including them in the Table.
	Genotoxicity markers (DNA damage)
	Oxidative stress markers

	Pulmonary effect markers (tissue damage)

	Systemic inflammation markers

	Antioxidant markers

	Other markers (lipid and food metabolism and transport, cell membrane damage)

	XBP1 
	3-NOTyr (3-nitrotyrosine)
	CC16 (Clara cell protein)
	hsCRP (Highly sensitive C-reactive protein)
	SOD (Superoxide dismutase)
	Tryptophane	Comment by Editor: Tryptophan?

	Caspase-12
	5-OHMeU (5-Hydroxymethyl uracil)
	FENO Fractional exhaled nitric oxide
	IL-1β  (Interleukin1 β); IL-1α
	GPX (Glutathione peroxidase)
	Quassimarin

	CHOP
	PGF2α
	KL-6 (Krebs von den Lungen 6)
	IL-8 (Interleukin 8)
	PON1 (Paraoxonase 1)
	Dibenzyl ether


	
	8-isoprostane (8-Iso-prostaglandin F2α)

	
	IFN-γ (Interferon-gamma) 
	
	

	
	2,3 dinor-8- isoPGF2α
	
	Fractalkine 
	
	

	GADD34
	8-OHG (8-Hydroxyguanosine/
8 hydroxy-20-deoxy guanosine)
	MIP-1beta (Macrophage inflammatory protein-1b)

	IL-6 (Interleukin 6)

	
	

	miRNAs,
mRNA
	C6–C12 (n-alkanes)
	PFT (Pulmonary function test)
	IL6sR (Interleukin 6 soluble receptor)
	
	

	
	
	
	IL-4 (Interleukin 4)
	
	

	
	HNE (4-Hydroxy-trans-nonenal)
	FVC (Forced vital capacity)

	NF-kb (Nuclear factor-kappa beta)
	
	

	
	HHE (4-Hydroxy-trans-hexenal)
	FEV1 (Forced expiratory volume at 1s)
	TNF alpha (Tumor necrosis factor alfa)
	
	

	
	LTs (Leukotrienes)

	MMF (Maximal mid-expiratory flow)
	Vascular endothelial function biomarkers: miR-451a
	
	

	
	MDA (Malondialdehyde)

	PEFR (Peak expiratory flow rate)
	ICAM (Intercellular adhesion molecule)
	
	

	
	Liquoric acid metabolites
	
	VCAM-1 vascular cell adhesion molecule-1
	
	

	
	o-tyr (o-Tyrosine)
	FEF 25 / 50 / 75% (Forced expiratory flow at 25/50/75% respectively)
	MPO (Myeloperoxidase)

	
	

	
	3-Cl-Tyr (3-chloro-tyrosine)

	TGF-b1 (Transforming growth factor beta1)
	HRV (Heart rate variability)
	
	

	
	
	LDH (Lactic dehydrogenase)
	IFN-c (Nasal interferon-c) 
	
	

	
	
	Total Protein
	NOS (Nitric oxide synthase)
	
	

	
	
	Acid Phosphatase
	CCL-2, CCL-3, CXCL-8
	
	

	
	
	p-PERK
	leukotrienes LTB4, LTC4, LTE4, LTD4
	
	

	
	
	MCP-1
	Cysteinyl LT
	
	

	
	
	GM-CSF
	SAA (Serum amyloid A)
	
	




Discussion
The impact that NPs have on human physiology is primarily dependent on their unique composition, shape, size, and other physicochemical properties. The literature reviewed in this study primarily assessed the physiological impact of exposure to five general types of nanoparticles on worker’s health: metal oxides, multiwalled carbon nanotubes, single-walled carbon nanotubes, welding fume NPs, polyacrylate, and mixed composition NPs.	Comment by Editor: You list 6 types?	Comment by Editor: These aren’t really discussed at length.
(1) Metal oxide NPs. Printer toner is one of the most prevalent consumables in daily office work. The NPs released from toner-based printing equipment such as printers and photocopiers have been linked to genotoxicity and to both immunologic and respiratory diseases. Khatri et al. 2017 described the physicochemical and morphological properties of ENMs (e.g., titanium dioxide, iron oxide, fumed silica, and several other metals found in photocopier and printer toners) and their effects on human health in a follow-up study of photocopier operators. These authors observed upper airway inflammation and systemic oxidative stress in photocopier operators chronically exposed to NPs, in accordance with their previous study (Khatri et al. 2013) and similar studies conducted by Pirela et al. (2013, 2014), both of which included earlier results from cellular and animal toxicological studies. In humans, limited epidemiological studies report a 2-3-fold higher prevalence of chronic cough, wheezing, nasal blockage, excessive sputum production, breathing difficulties, and shortness of breath in copier operators relative to controls. Respiratory symptoms were found to be exacerbated during chronic repeated exposures as well as in susceptible individuals. Thus, respiratory, immunological, cardiovascular, and other disorders may develop following exposure to these NPs.
While there is much debate as to what constitutes appropriate safety screening methods, one common approach is the assessment of cellular injury pathways in an effort collect knowledge about hazardous material properties that could harm humans and the environment. George et al. (2010) studied the effects and resultant biomarkers of metal oxide NP-induced damage in pulmonary cells. They demonstrated the utility of using a rapid, throughput multiparameter cellular screening approach to evaluate toxic oxidative stress in bronchial epithelial and macrophage cell lines. Titanium dioxide (TiO2; classified by IARC as a group 2B) cerium dioxide (CeO2), and zinc oxide (ZnO) NPs triggered a biological oxidative stress response in these exposed cell lines. Of these materials, the dissolution of ZnO nanoparticles and Zn2+ release in particular were capable of generating reactive oxygen species (ROS) and activating an integrated cytotoxic pathway that includes intracellular calcium flux, mitochondrial depolarization, and plasma membrane leakage, which could thus be used as parameters to gauge exposure.	Comment by Editor: You need to provide context for what this means. Also, define IARC.
Iron oxide pigments are used in paints, ink, rubbers, plastics, cosmetics, and medical devices. Pelclova et al. (2016c, 2018) evaluated occupational exposure to iron oxide NPs, and correlated the elevated levels of oxidative stress markers found in the exhaled breath condensate (EBC) of workers during pigment production. Similarly, Yu et al. (2020) recently evaluated the NP exposure of manufacturing/handling workers in a plant where iron oxide NPs are manufactured These authors found that significantly increased airborne particle levels at the worksite were associated with increased methylation of genomic DNA marker 5hydroxymethylcytosine (5hmC) levels among occupationally exposed workers, suggesting this marker may be used to monitor epigenetic signatures and may have the potential to predict the onset of clinically significant diseases.
Zinc oxide ENMs have also been widely used in cosmetics, sunscreens, advanced textiles, self-charging devices, and other electronic devices. In addition to pulmonary damage, NP exposure is also strongly correlated with an increase in cardiovascular disease incidence; however, their toxic potential remains unclear (Chen et al. 2014).
The exposure of workers to nanoscale TiO2 has been extensively studied. Andujar et al. (2014), Liao et al. (2014), Pelclova et al. (2016a, 2017b), Liou et al. (2017), and Zhao et al. (2018) documented an increase in inflammation and lipid oxidation markers, markers of lung and airway injury, and DNA and protein oxidative damage in EBC and, to a lesser extent, in the bronchoalveolar lavage (BAL) fluid of production and packaging workers exposed to nanoTiO2 relative to appropriate controls (Zhao et al. 2018). A significant dose-dependent association between TiO2 exposure and lipid oxidation markers in EBC samples was established for these workers. Moreover, markers of cardiovascular disease and acute phase reactants were found in their blood samples and some urine samples, providing an opportunity for effective and sensitive noninvasive monitoring.
Two complementary studies performed by Pelclova et al. (2016a, 2017a) assessed the impact of short-term exposure to nanoTiO2 on physiological markers among office employees working in a building where TiO2 pigments were produced. Their findings strengthen previous results linking markers of systemic inflammation, oxidative stress, and pulmonary effect markers with occupational exposure to TiO2. Pelclova et al. (2018) examined EBC samples among three groups of workers exposed to various NP exposure profiles and compared these results to the same markers of lipid, nucleic acid, and protein oxidation. They detected elevated markers of oxidative stress in all workers, especially nanoTiO2 workers. The inflammatory markers leukotriene B4 (LTB4) and cysteinyl LTE4 exhibited the highest association in these workers. The authors thus considered EBC markers to be sensitive targets for the noninvasive monitoring of workers exposed to engineered NPs. Their findings were also partly supported in vivo by Oyabu et al. (2017), who examined the dose-response relationships of NiO and TiO2 NPs nanoparticles, each of which exhibited distinct toxicity profiles, through inhalation and intratracheal instillation studies.  They observed increased pulmonary inflammation and oxidative stress marker levels alongside NP biopersistence in the lungs as reflected by histopathological changes and other biomarkers in BAL fluid. However, due to the ability of NPs to translocate to other organs, biopersistence, which has previously been established as a useful toxicity indicator for micron-size particles, appears to be a particularly valuable indicator of biological effects in the lungs. More recently, Zhangjian et al. (2021) performed metabolomics screening in serum samples from packaging workers and identified liquoric acid as a new lipid oxidation biomarker of TiO2 NP exposure. In a similar work, Zhangjian et al. (2021) performed metabolic screening in urine samples from TiO2 NP production workers and found several metabolites involved in lipid transport, metabolism, and peroxidation, cell damage, and excretion such as quassimarin, tryptophane, and benzyl-ether. These compounds may thus represent potential biomarkers of the early health effects for occupational exposure to TiO2. 
Liou et al. (2017) described the effect of Indium tin oxide (ITO) on NP handling workers. As ITO is increasingly used in liquid crystal display and semiconductor production processes, they examined the exposure of NP manufacturing and handling workers to TiO2, SiO2, and ITO NP granules or indium nano-sized fumes during different processes involved in the splashing, pulverization, cutting, and grinding of the final ITO plates. Using noninvasive evaluation methods, they detected the presence of NPs in EBC, blood, and urine, signaling that exposure to metal oxide NPs may lead to global methylation, DNA oxidative damage, and lipid peroxidation.

(2) Multi-walled Carbon Nanotubes (MWCNTs). Several in vivo and in vitro mechanistic toxicology studies have focused on MWCNTs given that they are a commonly used nanomaterial, revealing that MWCNT exposure can potentially induce physiological effects in humans. These studies have shown considerable evidence of inflammatory induction, oxidative stress, pulmonary fibrosis, mesothelioma-like effects, and cardiovascular effects (Kim et al. 2015; NIOSH, 2013). In one occupational health survey of MWCNT-exposed workers, the assessment of personal and area exposure levels to MWCNTs was performed using a walkthrough evaluation approach. Blood and EBCs from manufacturing and office workers were collected, and pulmonary function testing (PFT) was performed. Analyses of the EBC samples from these workers revealed significantly higher levels of oxidative stress markers such as malondialdehyde (MDA), 4-hydroxy-2-hexenal, and 4-hydroxy-trans-nonenal in MWCNT manufacturing workers as compared to office workers. MDA and n-hexanal levels were also found to be elevated in a similar study (J.S. Lee et al. 2015), suggesting that they may represent valuable biomarkers of MWCNT exposure.
Vlaanderena et al. (2017) studied the effects of occupational exposure to MWCNTs through a molecular cross-sectional study in which they evaluated the association between occupational exposure to MWCNTs and the lung health and immunological activity in workers at an MWCNT-producing facility. They observed significant upward trends in the levels of immune markers including C-C motif ligand 20, basic fibroblast growth factor, soluble IL-1 receptor II, and fractional exhaled nitric oxide (FENO), as well as differences in all measured hematological parameters between exposed and non-exposed workers. Their results were found to be robust in sensitivity analyses, confirming the early effects of occupational exposure to MWCNTs on lung health and the immune system. The researchers concluded that some indications of early biological perturbations were associated with exposure to MWCNTs.	Comment by Editor: There is no need to provide an acronym for a term that isn never used again in the article when not refering to terms that are more familiar or to professional organizations. The same is true in other instances as well and I suggest recvising accordingly.
In another study, analyses were performed using the blood of manufacturing workers exposed to MWCNT aerosols during fragmentation, packaging, and laboratory handling processes for at least 6 months, with these samples being compared to blood samples from unexposed workers (Shvedova et al. 2016). These analyses revealed altered levels of key regulators of biological processes owing to global changes in mRNA, long non-coding RNA, lncRNA, microRNA (miRNA), and non-coding RNA (ncRNA) expression profiles due to interference with gene expression. Several animal studies have reported pulmonary inflammation and fibrosis in rodents (Shvedova et al. 2005; Porter 2010, Mercer 2011, Poulsen 2015), but the effects reported in animal studies have not yet been confirmed in humans. As such, the potential markers of MWCNT exposure in humans require further study. 	Comment by Editor: This is vague – describe the exposure more clearly
A case report regarding unintended occupational exposure to dust-containing CNTs, among many other materials, was published by Wu et al. (2010). In this report, the authors described the clinical and pathological findings in the lungs of first responders and rescue and recovery workers following the September 11th terrorist attack on the World Trade Center (WTC) complex in New York City who had been diagnosed with pulmonary fibrosis, chronic bronchiolitis, and granulomas resulting from CNT exposure. Their findings were detected in biopsy specimens as well as in air samples collected at the WTC attack site.

(3) Welding fume NPs. To date, there are no epidemiological studies that have specifically investigated the neurotoxic effects of manufactured NPs. However, studies of populations exposed to anthropic NPs provide an interesting perspective on concerns related to the possible effects of NPs on humans. Analyses of workers exposed to occupational pollutants released at the nanoscale (welding fumes and other non-intentional combustion-related mineral or metallic NPs) are of great interest when assessing this evidence. Andujar et al. (2014) provided the first confirmation of a link between human NP exposure and long-term pulmonary effects. They identified welding-related NPs such as Fe, Mn, and Cr oxides in welders’ lung tissue sections, alveolar macrophages, and in fibrous regions of the lungs. Macrophages exposed in vitro to those NPs exhibited the increased production of a pro-inflammatory secretome (inflammatory marker and chemokines including CXCL-8, IL-1ß, TNF-α, CCL-2, CCL-3, CCL-4). The effects of the nanoparticulate components of welding fumes on the human central nervous system were examined by Graczyk et al. (2016) in a cross-sectional study. They assessed oxidative stress biomarker concentrations (8-hydroxy-2’-deoxyguanosine, malondialdehyde, hydrogen peroxide, and total reducing capacity) in EBC, blood, and urine collected from non-smoking male welding trainees at different time points before and after a 60-min exposure to Tungsten Inert Gas (TIG). Their findings revealed significant increases in the measured biomarkers 3 hours after exposure. Similar results were obtained by Jarvela et al. (2013), and Kauppi et al. (2015), who found that after investigating the association between NP exposure, inflammation, and oxidative stress in both subject groups, pulmonary and systemic levels of the later biomarkers were significantly elevated in welders. Some of these results were also confirmed by Andujar et al. (2014), Song et al. (2016), Dierschke et al. (2017), and Rossnerova et al. (2020). The risk of cardiovascular events resulting from short exposures to ultrafine zinc- and copper-containing welding fumes was further investigated by Baumann et al. (2018) in analyses of nasal secretions. They detected a significant increase in nasal inflammatory mediators IL-6, C-reactive protein, and serum amyloid A (SAA) in exposed workers; thus, they concluded that measuring nasal inflammatory mediators may provide a useful noninvasive method for the occupational surveillance of workers exposed to ultrafine metal fume particles.

(4) Mixed NP types. In a longitudinal study of nanomaterial-handling workers recruited from 14 different factories performed by Liou et al. (2012), health hazards and possible exposure surveillance markers were compared between these workers and unexposed workers being monitored six months later. The researchers investigated markers of pulmonary and cardiovascular disease, inflammation, oxidative stress, antioxidant enzymes, and genotoxicity. They found that antioxidant enzymes (superoxide dismutase, glutathione peroxidase) and cardiovascular markers (vascular cell adhesion molecule, paraoxonase) were significantly associated with nanomaterial handling during the follow-up period. In a similar study, Liao et al. (2014) confirmed many of these findings while also noting that a small airway damage marker, Clara cell protein 16, and lung function test parameters were also significantly associated with handling nanomaterials, suggesting that these biomarkers and lung function tests can be used for the surveillance of nanomaterial-handling workers. Khatri et al. (2017) studied the influence of exposure to a mixture of organic compounds on photocopier workers, leading to the detection of metal ENMs in nasal lavage (NL) samples and urine. They observed a significant increase in markers of systemic inflammation (IL-6, IL-8, TNFα, IL-1β, and eotaxin) in NL samples as well as oxidative stress markers in urine, revealing a good correlation with previous results for the tested biomarkers. More recently, Wu et al. (2021) found strong evidence of exposure to NM, after assessing the effects of lipid peroxidation in EBC from workers handling different types of NMs- (nano-titanium oxide, nano-silicon dioxide, and carbon nanotubes) to unexposed workers. Furthermore, significant correlations were found between various prostaglandins (8-iso PGF2α, 2,3 dinor-8-iso PGF2α, PGF2α) in EBC and total isoprostane levels in urine in these workers, with further correlations being detected between EBC 8-iso PGF2α and urinary 2,3 dinor-8-isoPGF2α whether they handled nano-TiO2, nano-SiO2, or CNTs. In a pilot study, Ursini et al. (2021) sought to find sensitive biomarkers of genotoxic and oxidative stress together with the most optimal biological matrices for use in biomonitoring studies. The investigators monitored graphene NMs (GNMs) and silica NPs (SiO2NPs) in production workers, focusing the analyses on buccal cells given that they are among the main targets of NM exposure. They found that the Buccal Micronucleus Cytome (BMCyt) assay and fpg-comet test (lymphocytes) were the most sensitive biomarkers of early and still reparable genotoxic and oxidative effects, with these biomarkers thus being suitable for the biomonitoring of workers exposed to various NPs used in the NM production process.	Comment by Editor: Later relative to the exposed workers? Or 6 months post-exposure?	Comment by Editor: Comet test of lymphocytes?

(5) Polyacrylates. Song et al. (2009) examined a group of workers presenting unusual symptomatic findings after being exposed to a mixture of polyacrylate and other NPs (ZnO, TiO2, nanoscale silver clusters, and other engineered nanomaterials) in the process of coating polystyrene boards with this aerosolized mixture in a printing and decorating factory. Pathological analyses of lung tissue samples from these workers revealed nonspecific pulmonary inflammation, pulmonary fibrosis, and foreign-body granulomas of the pleura, raising concerns that long-term exposure to NPs without protective measures could severely damage human lungs. Markers of pulmonary lesions, tissue damage, and inflammation after exposure to toner-containing acrylates, among other nanomaterials, were also found by Bai et al. (2010) in their in vivo experiments, at least partially corroborating the findings published by Song et al.
Our review follows other landmark reviews that have assessed reported occupational routes and forms of exposure to engineered nanomaterials. Debia et al. (2016) reviewed studies describing 306 exposure situations in 72 work environments and graded the quality of the evidence of exposure to ENMs. They found high-quality evidence of occupational exposure to MWCNTs, single-walled CNTs, carbon nanofibers, aluminum oxide, and silver NPs.  The authors also reported high-quality evidence of elevated risk of ENM exposure during “handling tasks” and found that engineering controls substantially reduced such occupational exposures.  Basinas et al. (2018) reviewed 424 exposure assessment situations describing an “occupational process or activity during the manufacture, handling, or end-use of particular ENM or product containing ENM”. These authors concluded that there is a lack of measurement data for ENM exposure, although their review suggested that the route and form of occupational exposure is dependent primarily on nano-activities such as industrial processes and operational conditions. 	Comment by Editor: This seems to begin a new section, which is a bit confusing without a subheading as used above.
The goal of this review was to draw on the most recent information from epidemiological studies in order to identify the expression of biological markers of physiological and molecular effects resulting from occupational exposure to different nanomaterials and nanoparticles. Studies published to dave have assessed a variety of biological markers, many of them showing statistically significant changes in biomonitoring and respiratory function studies in humans. Experiments using animals exposed to different NPs at varying doses and exposure routes allow for analyses of the effects of doses relevant to physiological human exposures. Increases or decreases in markers of lipid oxidation and inflammatory cell activation, cardiovascular disease markers, markers of oxidative DNA damage, antioxidant markers, serum pneumoproteins, acute phase proteins, clotting factors, adhesion molecules, and metabolic markers have been described. 
	The majority of epidemiological studies have focused on NPs derived from the manufacturing and printing technologies, mainly single- and multi-walled carbon nanotubes, titanium dioxide, metal oxides, silicon dioxide, and other nanomaterials including nanoresins, nanosilver, nanogold, nanoclay, and nanoalumina. However, multiple exposures to mixed types of NPs are very common. TiO2 was the most frequently described nanomaterial in this context, with exposure occurring either separately or in combination with other NPs. Other common exposures included mixtures of nanomaterials in welding fumes and carbon nanotubes in a variety of industries. Biomarkers exhibiting statistically significant changes in samples from NP-exposed workers such as miRNAs, fibrogenic markers, micronuclei, and macrophage ICAM-1 expression have been reported. Human sample collection efforts in different epidemiological studies have shown EBC to be a sensitive technique for the noninvasive monitoring of workers exposed to NPs, allowing for the assessment of biomarkers that reflect intrinsic changes in the airway lining fluid and lung +inflammation. Upon dissolution in biological media, some metal NPs release ions that are detectable with specific analytical methods th
at could serve as valuable markers of occupational exposure. Although the results described in this scoping review demonstrate a good relationship between exposure of workers to NPs and physiologically significant biomarkers, in order to use these biomarkers in routine occupational medical surveillance, large-scale epidemiological studies among well-defined groups of workers will be required to confirm the utility of routine occupational biomonitoring.

Conclusions
This review highlights the adverse physiological effects of occupational exposure to nanomaterials, as demonstrated by the significant association between such exposure and specific effect-related biomarkers. Validated biomarkers will enable the further advancement of knowledge regarding the potential health effects associated with occupational NP exposure, and will contribute to the implementation of reliable, noninvasive occupational medical surveillance of potential health outcomes. The development of biological exposure indices and occupational exposure limits will help to protect workers from emerging exposures. With further research, biomarkers could be recommended for preventive occupational medicine surveillance and to help monitor workers with occupational exposure to NPs. Based on the findings of this review, workplaces with significant NP exposure should implement preventive measures such as the substitution of certain NPs, or administrative, engineering, or personal protective equipment where possible in order to reduce exposure levels and protect workers from potential adverse health effects.
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