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Section a. State -of -the -art and objectives

Polyaromatic hydrocarbons (PAHs) are omnipresent in the interstellar medium (ISM) and take part in its chemical evolution. Their unique stability enables their survival in the harsh environment of the ISM. Despite their importance, the direct molecular mechanisms responsible for their formation are still not known. Photochemistry is expected to play a major role in the chemistry of the ISM; for example, photodissociation or ionization photodissociation can lead to the fragmentation of smaller PAHs or other important molecular species .[1, 2]. Understanding the dynamics taking placeoccurring in excited electronic states and the ability to model it them is crucial to the advancement of our knowledge. 
The field of astrochemistry is rapidly progressing with new data accepted expected to arrive from the James Webb Space Telescope launched earlier this year, as well as progress being made in astrophysics laboratory experiments. Quantum chemistry has a crucial role in deciphering chemical mechanisms at the molecular level and does works hand in hand with experimentalists. However, unfortunately, when it comes to astrochemistry photochemical reactions, concerning astrochemistry, the quantum chemistry toolbox is lacking in modelling capabilities of regarding excited-state dynamics - and thus cannot supply the missing pieces of the puzzle.     
The goal of this the proposal proposed research is to fill this gap by building a computationally inexpensive framework within ensemble DFT that will enable the study of excited- states' dynamics of large systems.
 Study of photodissociation processes 
Photodissociation of PAHs has been widely studied experimentally both for neutral and cationic species [3-8]. Photochemical evolution of large PAHs has been demonstrated to form C60 [9], and other studies have demonstrated that a major pathway in the photodissociation of PAHs is the loss of C2H2 units [6, 8, 10].  However, very little is known about the underlying mechanisms and resulting products. To obtain this information, the aid of quantum chemistry is needed. While accurate modelling requires taking into account the excited states, for practical reasons and the lack of an efficient way to do so, studies have used density functional theory (DFT) and have studied possible reaction mechanisms on the ground state potential under the assumption that it is thermally excited [11-16]. 
For example, Chuvilin et al. studied the formation pathway from graphene to fullerene using the B3LYP functional with the 6-31g* basis set [17]. In a different study, Zhou et al. studied the fragmentation dynamics of the benzene trimer representing a prototype of higher-order aromatic clusters. To model the dynamics of the system, ab -initio molecular dynamics simulations were performed using DFT with the B3LYP functional and cc-pVDZ basis set, where in which the population of the vibrational states was determined by Boltzmann distribution [18]. Zhen et al. demonstrated experimentally that under the influence of a strong laser field, small PAH clusters converted into larger PAHs. The dimer cations, for example, will photo-dehydrogenate and photo-isomerize and form fully aromatic cations. Possible formation mechanisms were modeledmodelled on the ground-state potential using the dispersion-corrected functional B3LYP-D3 to account for the intermolecular forces in the clusters [19].  The dissociation path of dibenzopyrene was studied experimentally by spectroscopy with VUV photons using synchrotron radiation. To model the main dissociation pathways (2H/H2 loss), DFT was used, and the potential energy surfaces were built using the B3LYP functional and 6-31G(d,p) [12]. 
In a recent combined experimental and theoretical combined study, Kaiser et al. demonstrated the importance of excited-state dynamics on the reaction products. They studied benzyl self-reaction to form phenanthrene and anthracene, demonstrated isomer-selective excited-state dynamics,, and showed the important role of excited states in forming aromatic products.  To model the process, which includeds excited states, they calculated both the singlet and the triplet states using DFT (B3LYP/6-311G(d,p)) [20]. 
In my laboratory, we modeledmodelled chemical growth upon the photoionization of different clusters of acetylene, HNC, and cyanoacetyle by using DFT with the functional on the ground state of the cationic system under the assumption that after the ionization, the cation is in its ground state. Upon ionization, we demonstrated the formation of various molecules, including cyclic and bicyclic molecules and nitrogenated PAHs [21-25].  
Non-adiabatic relaxation dynamics were incorporated with Timetime-Dependent dependent DFT (TDDFT) calculations [26, 27]. In the a study of the allyl radical and its 1- and 2‑methylated counterparts, excited- state energies were also calculated using EOM-CCSD, which gave more accurate excitation energies when compared to thethan those from experiments, demonstrating the deficiencies in TDDFT [28].
The dynamics of highly excited PAHs at the femtosecond and attosecond timescale was studied by Marciniak et al. [29].  They suggested a mechanism in which a XUV photon ionizes a molecule and creates a hole in the valence shell, which then can then lead to the excitation of another electron forming an excited “‘shake-up”’ state. The excited molecular cationic state relaxes through a non-adiabatic mechanism. To theoretically model the process, coupled electronic and nuclear dynamics were carried out. The potential energy surfaces were obtained using the algebraic diagrammatic construction (ADC) scheme [30] of the one-particle, many-body Green's function. All-in-all, 19 geometries were chosen, and for those these geometries, wave-packet propagation was employed using the multiconfigurational time-dependent Hartree (MCTDH) method [31] to calculate the non-adiabatic relaxation of the states determined by ADC. Due to the huge large computational effort of the computational scheme, studies were limited to naphthalene [29]. In a recently published paper, Recio et al. demonstrated experimentally and computationally the importance of intersystem crossing in the entrance channel of the reaction between atomic oxygen and pyridine [32].  
To accurately perform the dynamics of excited states, one we can use multideterminant wave-function methods such as second-order, complete, active, space perturbation theory (CASPT2) [33, 34];, second-order, perturbation theory, restricted active space (RASPT2) [35, 36];, or the N-electron, valence- state, perturbation theory (NEVPT2) [37, 38], which have been successful in modelling fragmentation pathways - – albeit at high  computational cost, which limits the system that can be modeled in this way.The ability to study photochemical reactions requires an efficient way to model the excited-state dynamics - – for which currently the toolkit of quantum chemistry is currently lacking. To bridge the gap between the current capabilities of quantum chemistry and the urgent need to model photochemical reactions, we will develop the computational framework within Ensemble ensemble DFT.   


 Ensemble DFT 
Ensemble DFT is a simple extension to DFT with the potential to solve strong multiconfiguration correlation effects for both for the description of the ground and the excited states, with computational scaling similar to DFT. In additionally, it can be used to calculate excited states. Thus, this approach bears has the potential of for enlarging the current capabilities of computational quantum chemistry. 
Ensemble DFT for regarding the description of the excited states is based on the work of Gross Oliveira and Kohn's (GOK) work, which derived the Rayleigh–-Ritz variational principle for a general ensemble [39]. The development of ensemble DFT for the description of excited states started in the 1970s, when the methods for excited-state calculations were inaccurate or extremely expensive computationally [40]. However, the development of ensemble DFT was abandoned due to difficulties in the method, as well as and the parallel rapid progress and accomplishmentsuccess of TDDFT. Indeed, today, TDDFT is currently widely used and has been successful in many cases. However, there are important phenomena that cannot be treated within TDDFT, among them are the description of double excitations and excited states with a multi-reference character, which is of high great relevance to astrochemicalstry problems. Thus, todayTherefore, there is has been a steep rise in interest in the time-independent extension of DFT for ES descriptions [41-44]. Among them is ensemble DFT, - which drew attracted much attention in the last decade. Despite many difficulties and scarce practical applications, it has enormous potential, and many efforts have been put forwardcarried out to make it a rigorous, reliable, low-cost, black-box method [45-57].
The promise of the above mentioned methods lies in the fact that the ensemble of states is composed of the ground-state (GS) and excited-states configurations, - and is thus is multiconfiguration in nature. Working with ensemble densities (as in the ground -state), we rely on a self-consistent, one-electron, Kohn–-Sham (KS) equation;: thus, the computational cost is similar to the computational cost of ground-state KS. The multiconfiguration character is realized in the KS orbitals as fractional occupations. 
One of the challenges in the framework of ensemble DFT is the description of the Hartree and the exchange term. In ground-state DFT, we have:

and 

where  is the one-body, reduced- density matrix. In order to extend the expressions for Hartree and exchange them into ensemble DFT formalism, we can use the following natural definitions in the ensembles, where the ensemble density and 1-body RDM are simply plugged into the GS equations:


The use of the GS functional is very appealing as it easily allows the use of standard available functionals easily in the framework of Ensemble ensemble DFT. However, the use of the GS functional in ensemble DFT is unfortunately not straightforward: when using approximate GS functionals in the ensemble formalism, they contain the so-called ghost -interaction, which has no analoganalogue in GS DFT and results from the spurious interactions between cross-terms in the ensemble components [58-64]. 
Several correction schemes have been proposed to correct the unphysical ghost interactions [58, 61]; other researchers have tried attempted to develop methods to approximate the ensemble XC functional [65-71]. 
One of the reasons for the lack of success of GOK-DFT is the absence of an approximated XC build built for ensembles;, thus therefore, efforts have been made to develop ensemble XC functionals [72, 73].	Comment by Editor: Please ensure that the intended meaning has been maintained in this edit.
Progress has been reported in the work of Fromager and coworkers [74]. They presented the generalized adiabatic connection to ensembles where in which the ensemble density is fixed along the adiabatic connection path, and both interaction strength and ensemble weights are varied. In their work, which set the ground for a rigorous multideterminant treatment at the DFT level, they are showingshowed that not only  should be kept linear with the ensemble weights, but also each of its components should be kept linear. 
This realization places an important constraint on the exact ensemble , which is crucial when developing ensemble functionals. When using GS Hxc functionals, they present a curvature in the energy versus the ensemble weights due to the unphysical ghost interactions. This is in analogyanalogous to the self-interaction errors in GS DFT. The spurious self-interaction results in an unphysical curvature in the energy curve with respect to occupation number when an approximate XC functional is used. PPLB showed in their seminal work that this curve should be a series of straight lines with slope discontinuities at integer N [75]. The unphysical curvature is closely related to the self-interaction error, and its elimination and restoring restoration of the correct (linear) behavior results in fixing many of the ailments that it has caused (such as the disobedience of the ionization–-potential theorem, description of the homoHOMO–-lumoLUMO gap, and diffuse states, to name a few) [76-78].
In ensemble DFT, to eliminate the ghost interaction, one we needs to restore the energy components' correct linear behavior of the energy components concerningwith respect to the ensemble weights. For that this task, a lesson can be made learned from work on (particle-number) ensemble. Kraisler et al. have suggested a scheme to restore the required piecewise linearity in approximate density functionals by transforming to (particle-number) ensemble formalism [79]. Working in an (particle-number) ensemble formalism, they were able to restore the piecewise linearity and correct orbital energies and the IP theorem even when using local and semi-local functionals!
A key component for the success of ensemble DFT in describing excitation energy is that not only the total ensemble energy  should be kept linear concerningwith respect to the weighting factor, but also its component should be kept linear in the ensemble weighting factors. 
The description of the systems in an ensemble formalism also leads to a correct step structure description of the XC potential, which is crucial for describing dissociation processes. The XC potential should exhibit a step structure as observed for the exact potential;: such a structure is lacking in the GS–-KS formalism due to the absence of derivative discontinuity in approximated local and semi-local functionals [80, 81].  
I am planning to extend the above mentioned correction to state-ensemble DFT.: a A good starting point is the already available functionals for the ground-state, and testing their performance when obeying the exact condition of linearity and naturally eliminating ghost interactions.: this This step is expected to yield significantly improved excitation spectra at DFT computational scaling. The identification of the importance of this constraint on the XC functional can pave the way for developing new functionals obeying this essential condition. 
 Impact: 
Theoretical progress and the ability to model highly electronic, excited states will enable the leap needed for progressing advancing our understanding of astrochemicalstry processes. The ability to model excited states will significantly advance our understanding of interstellar chemical processes. Specifically, they will enable us to study not only chemistry starting from the basic building blocks, but also fragmentation processes of large molecules that may be responsible for many of the observed species in molecular clouds. 
The theoretical progress we will make is expected to lead to progress in many other fields as photoinduced processes are central in a variety of scientific and technological arenas and will likely affect scientific areas such as physics, chemistry,, and biology. Examples are include organic photovoltaic devices [82], photocatalysis [83], photosynthesis [84],, and DNA interactions with radiation [85],  to name just a few.
Section b. Methodology
The primary goal of this proposalthe proposed research is to study the excited- state reactivity of PAHs. Highly excited PAHs play a major role in the chemistry of the ISM. To this end, I will model photochemical reactions, and the propagation of systems in time after being excited by a UV photon. This will be done performed using non-adiabatic, ab -initio molecular dynamics simulations. In ab -initio molecular dynamics, the propagation of the system in time is done performed via solving Newton's equation of motion numerically, where in which the forces acting on the nuclei are calculated "on the fly" as the simulations progressed, using electronic structure calculations. 
Large PAH molecules are characterized by a small gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO–-LUMO gap), which give indicatesan indication to the dominance of static correlation in those these systems. Thus, electronic structure methods cannot accurately model the correlation in large PAHs due to this radicaloid character [86-88]. CorrectA correct modelling of the electronic structure of such systems requires an accurate description of static electron correlation. AdditionallyIn addition, the bond- breaking processes, and highly correlated excited states also require multi-determinant solutions for their qualitative and quantitate description.
For this aimTherefore, I will develop an approach within ensemble DFT that will provide the means to study PAH systems in the ground and in excited electronic states cheaply inexpensively, at regarding the cost of DFT, and accurately as ensemble DFT can model multideterminant effects. The developed ensemble DFT approach will be incorporated with the molecular dynamics simulations to model the propagation of the system with in time. The newly developed computational tools will be incorporated into Q-Chem quantum chemistry code, and will be available for the community to use. This will be done conducted in work Work package Package A. 
When performing dynamic simulations of the PAH systems, and modelling an electronic excitation, one we needs to consider the coupling between electronic and vibrational degrees of freedom. This requires to gogoing beyond the Born–-Oppenheimer approximation to account for the non-adiabatic coupling between states leading to the splitting of populations among several states which that results in intricate dynamic processes upon excitation. Specifically, with increasing size, PAHs’ the optical gap of PAHs is lowered, making the coupling between the ground state and the first excited state more pronounced - – and non-adiabatic effects play a significant role in the chemistry taking place! Moreover, the singlet–-triplet gap of PAH systems is small - and is getting becomes smaller with its length, which can lead to intersystem crossing. 	Comment by Editor: Please consider whether “connection” would be a more precise word choice here and elsewhere in the manuscript.
[bookmark: _Hlk114838920]To account for non-adiabatic effects in our simulations, I will also use the Q-Chem code, which provides a way to incorporate non-adiabatic effects in the molecular dynamic simulations by performing trajectory surface hopping (TSH) [89]. Using the TSH, we treat the nuclei classically and the electrons quantum mechanically, - which makes the calculations feasible computationally feasible. The nuclear dynamic is then propagated on an electronic potential energy surface (PES), and at each time step, the probability to transition to a different electronic state is calculated. A stochastic algorithm is used to decide on which transition the trajectory will continue on the next time step.
I have chosenprefer to use the Q-Chem software for several reasons.: the The first one is that I have previously worked with the source code and hence I am familiar with it and have experience in contributing codes to it. The second reason is that it already supplies much of the needed infrastructures;: it contains codes for performing ab -initio molecular dynamic simulations, including non-adiabatic effects and trajectory surface- hopping algorithms.  Moreover, it contains all the newest functional and DFT infrastructure. We will contribute and code ensemble DFT formalism into Q-Chem code, and then combine it with the existingent algorithm for performing non-adiabatic, ab -initio molecular dynamics (NA-AIMD) simulations. 
Once me and my team and I have set the stage for the performance of NA-AIMD, we can move forward and study photochemical reactions relevant to astrochemistry. We will start by conducting a systematic study of fragmentation pathways of PAHs (WP B), and continue to study photochemical reactions in condensed environments (WP C). 

Preliminary results
My team has performed preliminary calculations to demonstrate the importance of non-adiabatic dynamics in fragmentation processes, starting with the basic building blocks of large PAHs:, benzene and anthracene. We have modeled two fragmentation pathways: one is was fragmentation of hydrogen, and the second is was fragmentation of acetylene. For each fragmentation pathway, we calculated the ground and excited states along the fragmentation path. 

To describe the excitation energies, initially, we initially calculated the equilibrium structure of both benzene and naphthalene using the ωB97X-V functional with the aug-cc-PVTZ basis set. Starting from the equilibrium structures, we have separated the leaving groups (hydrogen and acetylene), and gradually increased the distance. At each distance, we calculated excitation energies by performing a single point calculation using CASSCF with the aug-cc-PVTZ basis set. For the removal of the hydrogen atom, we artificially separated the hydrogen atom from the equilibrium structure and performed the CASSCF calculations gradually increasing the separation distance between the units by 0.1 Å (namely, unrelaxed scan). For the reverse Diels–-Alder reaction (resulting with thein acetylene), we first marked the center of mass of the acetylene, and the center between the exterior carbons of the diene. By doing so, we could artificially separate the acetylene from the diene while keeping the molecules parallel. As the acetylene is was not at equilibrium within the aromatic rings (i.e., it is was not linear), we switched to its linear equilibrium structure at an arbitrarilyy chosen distance of 1.8 Å between the acetylene and diene.

To perform the CASSCF calculation, the determination of the active space is was required. It is was only sensible at the very least to include all the π electrons within the systems;: therefore, we included at least 6 electrons for in the benzene and 10 electrons for in the naphthalene. As we break were breaking bonds, it would bewe thought it wise to take into accountconsider the additional two electrons which that we were breaking, to making a total of 8 electrons for in benzene and 12 electrons for in naphthalene. After some trial and error, we concluded that the “square” CASSCF of 8 electrons and 8 orbitals for in the benzene, and 12 electrons with 12 orbitals for in the naphthalene gives provided acceptable results in comparison to the equilibrium excitation energies. It should be noted that for demonstration purposes, we only described the singlet excitation states; - however, triplets excitations are also close in energy and will be taken into accountconsidered when performing non-adiabatic dynamic simulations. 	Comment by Editor: Please ensure that the intended meaning has been maintained in this edit; particularly, the choice between past tense and present tense.
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Figure 1: PES of ground and excited statesd along the ffragmentation  path of hydrogen and acetylene from benzene (Top top panel) and naphthalene (bottom panel).
The results are presented in Figure 1.: at In the top panel, fragmentation paths of benzene are shown. The; left graph shows the ground state and the first five excited states along the hydrogen fragmentation coordinate. The top right panel shows the ground state and first five excited states along the acetylene fragmentation coordinate. The bottom panel of in Figure 1 shows fragmentation paths of naphthalene:; the results of hydrogen (left) and acetylene (right) fragmentations paths starting from an equilibrium structure. One can see from tThe figure shows that the excited states are close to one another and crosses one another;, and thus, it is crucial to include curve crossing when performing dynamic simulations. Moreover, it is well established that the HOMO–-LUMO gap of acene is gettingbecomes smaller with the increasing size [90];, thustherefore, crossing between the ground and excited states is also likely, - emphasizing the need to perform non-adiabatic simulations.

Work and Time Schedule
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Work Package A: Ensemble DFT framework
This project aimsThe aim of this project is to lay the theoretical groundworks to enable an accurate description of systems that contain a static correlation in the ground and in the excited states. The theoretical framework developed here will be used throughout the next work packages. 
In ensemble DFT, the term  should be kept linear concerningwith respect to , the weights of the ensemble. This is not obeyed when using functionals developed for ground state DFT, which makes their use in ensemble DFT not valid as it leads to ghost interactions. In this work package (WP), we will first incorporate ensemble DFT into Q-Chem code, and then we will assess the deviation from linearity of different functionals and study the connection between their deviation to their performance in describing bond-breaking processes and double excitations (WP A1). We will then implement the ensemble correction terms to improve the linear behaviourbehavior and reassess their performance (WP A2). In parallel, we will perform benchmark calculations using wave-function methods on small molecular systems and investigate the resulting ground and excited potential energy surfaces along bond-breaking coordinates (WP A3). 
The aims of the benchmark study are two foldtwofolded: first, it will allow us to demonstrate the connection between functionals’ the performance of functionals and the deviation from linearity of the different functionals prior to the correction. Second, we would will be able to assess the performance of different corrected functionals concerningwith respect to the benchmark systems and choose the corrected functional that best fitsfit to our purposes (WP A4). 
After establishing a framework that enables the accurate description of ground and excited states, we will continue and combine the code with the code performing NA-AIMD simulations (WP A5), which will allow us to progress and study the evolution of astrochemical relevant systems with time. 
This WP involves method development and programming, for which I intend to recruit a postdoctoral fellow with expertise in ensemble DFT. I anticipate that this unit will result in several contributions and will be a benchmark for the computational chemistry and DFT community, with the ability to accurately describe processes involving the dominant contribution of static electron correlation to be the most important onecontribution.
A1: Deviation from linearity of ground state functionals. 
In this WP, we will assess the deviation of different XC functionals from linearity with respect to the weights when they are plugged in to the ensemble DFT scheme. We will compare functionals from different Rung rungs in Perdew’s “‘Jacob’s ladder”’, and test their deviation from linearity. The deviation from linearity will then serve as a predictor of the performance of different functionals when used in ensemble formalism. This will be tested by comparing results of ground and excited electronic states of stretched bonds of various multiatomic molecules, for which exact results will be available from a benchmark study that we will perform. We will test the performance and check the interrelationship between performance and deviation from linearity.
A2: Implementation of ensemble correction to XC functionals 
Next, we aim to correct the behavior of the ground state functionals so that the property of linearity of Hartree Exchangeexchange–-correlation functionals will be obtained.  The ensemble properties of the Coulomb energy of the KS system, associated with the operator  , have been demonstrated for an ensemble of with a different number of electrons .[79]. Following the same arguments, we can write:



Where:


As  and  are not linear , the required  cannot be obtained by simply inserting fractional-electron density, - and the Hartree and exchange terms do not retain they their usual form for the ensemble state.
Instead, we have  and  were in which the ensemble correction is:

As expected for  or ,and  reduce to their usual forms. 
Explicit An explicit linear form of the exchange–-correlation can be obtained in the same spirit:

The excited- state energy can then be simply obtained from the ensemble expression using the corrected functional form via


The ensemble correction will be implemented in the Q-Chem software. Ensemble formalism with the corrected functionals will thus be thus available to the whole quantum chemistry community to use and benefit from.
While we can write  to be explicitly linear, some implicit non-linear dependencies from the function  will arise., we We will thus will test again the deviation from linearity with respect to the weights of the ground-state corrected functionals. The success of the correction scheme is crucial for the success of the whole project, as this key step will enable the study of large systems relevant to astrochemistry. I thus suggest two remedies for the case that this will not provide satisfactory in the “‘feasibility and risk assessment” ‘section in case the correction scheme is not satisfactorily successful.	Comment by Editor: This sentence was restructured to improve its clarity. Please ensure that the intended meaning has been maintained.
A3: High- level ab -initio benchmark calculation on small molecules 
We will perform a benchmark study on small cyclic and non-cyclic carbonaceous systems containing  electrons and model the energy of the ground and excited states of the systems along different bond-breaking coordinates for both the neutral and charged species. The choice of the systems stems from the astrochemical scenarios we will need to model. For the benchmark calculations, we will use the extended multi-state (XMS)-CASPT2 method to build the PES of the different fragmentation paths under study, as they produce improved potential on the near- crossing regions. 
Having benchmark results will serve two purposes: 
· The energy of the available functionals deviates from linearity with respect to the ensemble weights. Prior to any correction, we will systematically compare the deviation of different functionals and the interrelationships with their ability to reproduce the benchmarked results.

· Having a set of benchmark PESs will allow us to test the performance of the corrected functionals and their ability to reproduce accurate wave-function results. 
A4: Ensemble DFT study on benchmarked systems
We will systematically test the correction scheme and the performance of corrected functionals of on different Rungs rungs on of “Jacob’s Ladder”, including LDA, GGA, and hybrid functionals to test which corrected functionals gives the best results and are best suited for our purposes. For each functional, we will repeat the calculation of the fragmentation path performed in WP A3 and obtain a benchmark of the performance of the corrected functionals in the ensemble formalism. This will enable us to choose the functional best suited for our purposes, and will provide a valuable information on the performance of the functionals in the ensemble formalism. 
It is crucial to test the performance of the corrected functionals in the ensemble formalism on larger systems as well, as static correlation effects might be more prominent in larger aromatic systems. As a direct comparison between ensemble DFT and wave-function methods cannot be achieved for large systems, we will work in close collaboration with the experimental group of Dr. Musa Ahmed at Lawrence Berkley National Laboratory. Dr. Ahmed is currently building capabilities in its the laboratory that will allow for excited- state dynamics experiments and thus will allow a direct comparison to of the calculated PES of fragmentation pathways in the ground and excited states.
 A5: Incorporation with ab -initio molecular dynamic simulation
Once the ensemble DFT formalism together with the corrected ground-state functionals is incorporated into the Q-Chem code, we can combine it with the code performing the ab -initio molecular dynamic simulations. The ab -initio part will be calculated via the ensemble formalism and will require the calculation of the forces. For many of the ground-state functionals, the forces are have already been implemented in Q-Chem, and we will extend them for use in the ensemble formalism with the corrected functionals. 
Calculation of the non-adiabatic coupling is crucial for the ability to perform nonadiabaticallynon-adiabatic, ab -initio molecular dynamics. ToIn order to compute transition probabilities between electronic states, we need to calculate the first-orderfirst order derivative coupling  and the non-adiabatic coupling vector .  This These terms are also coded in Q-Chem code for the different functionals and we will extend them for the use in ensemble formalism.

Work Package B: Systematic study on fragmentation products of PAHs
After establishing the accurate performance of ensemble DFT, we will move forward to the study of PAHs and their fragmentation products. In this part of the project, the aim is to reveal possible fragmentation pathways of PAHs upon interaction with UV radiation that excite the molecule to the first excited electronic state, and to answer the following questions: 
· What is the distribution of the possible fragmentation products?
· How does the size of the PAH influences the distribution of the fragmentation products? 
· How does the geometry of the PAH influences the distribution of the fragmentation products? 
· How does the energy of the excited photon influence the distribution of the fragmentation products?
· What is the role of the triplet state in the formation of different products?
At In the first stage of the study, I will focus on linear PAHs: benzene, naphthalene, anthracene, tetracene, pentacene, hexacene,, and heptacene. By comparing different sizes of linear acenes, we will understand the effect of size on the fragmentation (WP B1). Additionally, I plan to study the effect of the PAH’s structure on the fragmentation pathway. To do so, we will study acene with the same number of rings as before, but fuzed not linearly fused. Specifically, we will study: biphenyl and, fluorene (containing two aromatic rings);, phenantrene, benzo[c]fluorene and phenalene, (containing three aromatic rings);, chrysene,  triphenylene, and pyrene (containing four rings);, perylene, benzo[a]pyrene, and corannulene, (containing five aromatic rings); and benzo[ghi]perylene (six aromticaromatic ring), and in additionas well as to coronene and ovalene (WP B2). To study how the UV radiation affectseffects fragmentation pathways, we will start the dynamic simulations from higher excited states;: this will be examined in WP B3. 	Comment by Editor: Please ensure that the intended meaning has been maintained in this edit.
I anticipate that the outcomes of this WP will be of high great interest to the astrochemical community, as PAHs fragmentation products are key astrochemical reactions.  
B1: Ensemble DFT study on the fragmentation pathways of linear acene from the first excited state
The goal of this work package is to model PAHs’ the fragmentation of PAHs that occurs as a result of interaction with UV radiation. I will perform a systematic study of the fragmentation pathways of excited linear PAHs. For this purpose, we will need to perform NA-AIMD simulations starting from an excited electronic state. We will need to calculate a large number of trajectories to obtain converged statistics. The starting point will be the optimization of the structures under study;, namely, benzene, naphthalene, anthracene, tetracene, pentacene, hexacene, and heptacene, as shown in scheme Scheme 1. Optimization will be done performed using  with the cc-pVTZ basis set as this is expected to yield accurate geometries. For each structure, we will perform the dynamics simulations where in which the ab -initio part is the ensemble DFT developed in WP A. 
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Scheme 1
The molecular dynamic simulations will run in the microcanonical (NVE) in which the energy is conserved. For each structure, we will ran run at least 50 trajectories, and then verify convergence of the results. If the statistics depend on the number of run trajectories, we will increase the number of the trajectories until convergence. We will sample different initial conditions via the starting velocities., we We will randomly sample the nuclear velocities according to the Maxwell–-Boltzmann distribution. AdditionallyIn addition, we will sample by choosing velocities toin order to put zero-point vibrational energy into each normal mode with random signs. While this option requires frequency calculations to run beforehand, this is not an issue as our ab -initio method is economically enoughsufficient. Moreover, we want to eliminate any dependence on the choice of the initial conditions.
The results of this WP will supply us with a product distribution as a function of the number of fuzzed fused benzene rings.
B2: Ensemble DFT studies on the fragmentation pathways of non-linear PAHs from the first excited state
After gaining insights into fragmentation pathways of the linear PAHs, we will continue and test the effect of the PAH geometry on the fragmentation products and their relative distribution by starting the excited- state dynamics simulations. We will repeat the excited- state molecular dynamics simulations as done performed in WP B1, where in which our starting structures will be biphenyl, fluorene, phenantrene, benzo[c]fluorene, and phenalene, chrysene,  triphenylene, pyrene, perylene, benzo[a]pyrene, corannulene, benzo[ghi]perylene, coronene, and ovalene, as shown in scheme Scheme 2. The procedure for the performance of the NA-AIMD will be similar to those we have employed in WP B1. A directDirect comparison of the results of WP B1 and WP B2 are is expected to increase our understanding of the role played by the geometry in fragmentation processes. 
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Scheme 2
B3: Effect of excitation energy
To quantify the effect of the photon’s energy, we will repeat the NA-AIMD simulation performed in projects Projects B1 and B2, - but now we will start from the second and third excited electronic states. The product distribution is expected to differ from what was previously obtained due to the large changes in the energy distribution along the molecular degrees of freedom and possible different relaxation paths. This WP will emphasize the effect of energy distribution and the importance of the starting state on the chemical processes taking placeoccurring. 
Work Package C: Photochemistry of PAHs in condensed environments.

In this work package, I would like to study the photochemical reactivity of PAHs taking placeoccurring in condensed environments. PAHs fragmentation products, as well as PAHs themselves, are likely to be seeded in astronomical ice in the cold areas of molecular clouds. The ices provide a unique environment in which several molecules are in a close proximity to one another, and the result of the photochemical reactions can be various substituted PAHs. The goal of this WP is to study the chemical reactivity taking placeoccurring in those these condensed environments. To achieve this goal, I will need to model the seeded PAH in an ice composed of CO, CO2, CH3OH, CH4, and NH3 in different compositions (which are a typical components of astronomical ices) [91]. For this aimTherefore, I will use a hybrid approach, namely quantum mechanics/molecular mechanics (QM/MM) [92, 93]. In The QM/MM  part of the system (the reactive part) is treated with quantum mechanics - and the rest of the system (the environment) is treated with force field-based molecular mechanics [92, 94]. Dividing the system into a QM part and an MM part is usually not straightforwardstraight forward. In the systems under study, the division is relatively simple, as it does not include any breaking of chemical bonds. As a reactive part, I will choose the PAH together with the first solvation shells sounding surrounding it in the ice. This choice will allow the study of the photochemical reactions between the PAH and the molecules in close proximity to it. The rest of the ice will be considered as the environment. 

For this purpose, I will also use the Q-Chem program [95] as it has the infrastructure for QM/MM calculations, which can be easily combined with my newly implemented code. For realization of these calculations, force fields which that are suitable for describing the ice environments will need to be developed to use in the MM part – this is the aim of WP C1. Once we have available force fields to describe the ice environments, we can perform simulations using QM/MM where in which the description of the quantum part is by ensemble DFT developed in WP A. The simulations will be performed starting from an excited electronic state as in the simulations performed in WP B. This work package will allow us to answer the following questions: 
· What are the possible products upon irradiation of different ices seeded with aromatic molecules?
· What are the exact underlying molecular mechanisms responsible for the formation of each product?
· What is the relative distribution of the different products?
· How are the size and geometry of the PAHs affecting the identity of the products and their relative distribution?
· How does the composition of the ice affect the resulting products and their relative distribution?
· How does the energy of the excited photon influence the product distribution?
· What is the role of the triplet states in the formation of different products?

We will follow the systematic study performed in WP B and start with the study of linear PAHs, and will continue with the non-linear structures (WP C2). In WP B, we will studied study the fragmentation path of PAHs, and we will also seed the ices with important fragmented PAHs identified in WP B. 

This project will benefit from close collaboration with the experimental group of Prof. Micha Asscher at the Hebrew University. Asscher’ss’ research group performs experiments on ices of different compositions and has the ability to seed different organic molecules and study the photochemical products. Close collaboration with an experimental group will allow us to calibrate and further validate the developed force-field models.  Once the models are calibrated, performing the experiment parallel to the calculations we will enable us to further ratify verify our model and to produce a thorough study to on the photoreactions.

This WP involves force- field parametrization, for which I intend to recruit a postdoctoral fellow with expertise in the field. The force- field parameters will be published and will serve the astrochemical community for regarding the study of chemical reactions in ice.
C1: Force- field parametrization 

ToIn order to correctly describe the ices, we need an accurate parametrization for the force fields; we will build several force fields corresponding to different ice compositions. The force field is an empirical model for which we use a simple mathematical form to model interatomic forces by fitting the force- field results to quantum mechanical results. An accurate parametrization is crucial for a reliable description of the effect of the environment. This can be obtained by fitting the parameters so that they will reconstruct the results of the accurate ab -initio calculations modelling the ice environment. To model the bulk systems for parametrization purposes, plane-wave DFT which that utilizes plane-wave basis sets will be used. Plane-wave basis allows for the use of fast Fourier transform algorithms by taking advantage of the periodic structure of the bulk system. We will perform these calculations using the VASP code [96] with (projector augmented wave method) PAW [97] pseudopotentials, in which the valence electron wavefunctions are smoothed near the atomic core, reducing significantly computational time significantly.

In order to build the bulk ices, we will take the atomic positions from the literature where available. Otherwise, we will search for the minimum energy in a bulk supercell using DFT calculations together with any applicable ice geometry rules .[98, 99]. We will model the ice surface by fixing a bottom ice layer with the relaxed bulk atomic positions; on this, several layers of ice with a vacuum above them will be placed and allowed to relax. The organic molecule will then be placed in several different orientations and positions, and the energy minima will be founddetermined. As the system involves an ice environment and organic molecules, dispersion forces are crucial;, and therefore, all our calculations will be carried out with dispersion forces included via the dDsC correction method [100, 101]. In this method, the dispersion coefficients and damping functions are charge-density dependent;, and therefore, they canare able to take into accountconsider variations in the van der Waals contributions of atoms due to their local chemical environment. 

Calculations will be performed using the PBE exchange–-correlation functional [102], which is reliable for the accurate prediction of molecular structures. Once the data is are obtained, we will create and use the data to optimize the different force fields using the free software ForceBalance software, which enables an automatic and systematic determination of force fields using gradient and stochastic minimization [103]. Further verification of the performance of the force fields will be done performed in collaboration with the experimental group of Prof. Micha Asscher.

Having the force fields to accurately model the ice environment, we can perform QM/MM molecular dynamic (MD) simulations. For this part, we will also use the Q-Chem software package, as it allows stand-alone QM/MM calculations with user-defined force fields.

The force fields that will be developed in this work package will be published and will serve the astrochemistry community for various studies on chemical reactions taking placeoccurring in ice. 

C2: Photochemistry of PAHs of different sizes and geometry

In this work package, we will perform simulations of photochemical reactions of PAHs in an ice environment. We will seed the ices with PAHs of different sizes and geometry (using the structures used in WP B). AdditionallyIn addition, we will use PAHs fragmentation products identified in WP B according to their abundance. The more abundant structures are more likely to be more important and more frequently formed and thus will also be considered. 

As the ice environment is likely to change the geometry of the structures, we will re-optimize the structures in ices of different compositions. Optimization will be performed using QM/MM, where in which for the the QM part, we will use   with the aug-cc-pVTZ basis set, as this is expected to yield accurate geometries;, and for the MM part, we will use the force fields parametrized in WP C1. This study will give provide insight into the effect of ice composition on PAH geometry. This, I anticipate,  will interest the community and will result in a publication.

The next stage is will be to perform NA-AIMD simulations in the ice environment. As in WP B, we will sample the initial conditions and verify the convergence of the statics. The simulation will be performed on the different structures, and will then be repeated by changing the ice environment. At the end of this WP, I expect to achieve the following goals:
· Identifying possible products and intermediates. Once we identified identify the products forming during the simulations, we will proceed and calculates accurate PESs for their formation by optimizing the structures along the path (optimization can be done performed on the ground electronic state and on the excited electronic state).

· Understanding the effect of ice composition on the different products.

The outcome of this project will be interesting, as it is expected to reveal new organic products and their specific formation mechanisms, - thus providing potential for high-impact publications. This project will benefit from close collaboration with the experimental group of Prof. Micha Asscher at the Hebrew University, which has the ability to radiate different ices at different wavelengths and will allow for a direct comparison between experiments and theory. 

C3: Photochemistry of various PAHs on higher ES
In this WP, I aim to quantify the effect of the radiation energy. Higher energy can alter either the distributione along the vibrational degree of freedom (on the excited electronic state) or can result in an excitation to a higher excited state. We will repeat the simulation performed in WP C2, but now start them the simulation from the second excited electronic state. Even if the result is a quick decay to a lower level, changes in the dynamics are expected. I expect the following changes:
· The change in energy can alter the products distribution.
· The change in energy can lead to product formation via different underlying molecular mechanisms.
Performing the simulations will allow us to quantify the effects described above. From the NA-AIMD simulations, we will identify products and intermediates and will optimize them (in the ice environment via QM/MM) to produce the relevant PESs, which include ground and higher electronic states. 
Feasibility and risk assessment
This project aims at modellingplans to model the excited- state dynamics of large PAH systems. This is not a simple task and several obstacles may arise along the way, as summarisedsummarized at in the table below.:
	Risks
	Remedies

	The success of the suggested project relies on the ability to accurately describe excited states containing static correlation using ensemble DFT with using functionals inherited from ground-state KS formalism. The risks are: 

1. The correction scheme suggested by us will not lead to satisfactory results.
 2. While we can write  to be explicitly linear, some implicit non-linear dependencies from the function  will arise.
	I propose two possible remedies for these issues:

1. There are suggested techniques in the literature to achieve linear behavior of the functional (some of them by memyself). In the case that our correction will not lead to satisfactory results, we will try attempt other possibilities to achieve linearity with respect to the ensemble weights.
2. We will adopt a different approach: - we will directly develop XC functionals for a correct description of static correlation by taking the existingent functional forms and refitting the parameter to describe the problem at hand.  

	One of the main challenges when performing non-adiabatic molecular dynamic simulations is the including of decoherence effects, which are not properly described via the surface- hopping method and can lead to the different populations at in the different states and can thus provide spurious results in long- time dynamics.
	Artificial decoherence can be added to the calculation using augmented, fewest switch, surface hopping;, already available in Q-Chem code. The algorithm allows the wave -packet on different surfaces to separate, and be subjected to different forces .[104]. 



Team description
To accomplish the proposed research, two Ph.D.PhD students and two postdoctoral fellows (sequential) will be hired from the requested budget. As a the PI, I will dedicate 60% of my time to the realization of this project. I will closely supervise the two Ph.D.PhD students, and teach them computational quantum chemistry, and work closely with them in executing the needed calculations. I will guide themthen until they gradually become independent. Moreover, I will work closely with the postdocs; at in the first two years, I will work closely with the first hired postdoc to implement the ensemble DFT formalism and the suggested correction (WP A2). I will try attempt to involve the Ph.D.PhD students in the development part as well, as it is important for their education. 
The Ph.D.PhD students will perform the needed calculations on functionals in ensemble formalism (WP A1), and benchmark calculations (WPs A4 and A5). While each member of the group has will have its their own independent projects to carry out, they are will all be in the same fields working to achieve the same goal, which will enable the mutual exchange of knowledge.  At In the 3rd  and 4th years of the project, the Ph.D.PhD students will start performing massive amounts of NA-AIMD simulations (WP B).  At this stage, a second postdoc will join the group with whom I will work closely on parametrized force -fields. The availability of the force fields will allow performing the study in anon ice environments, which will be performed by the two Ph.D.PhD students in the fifth year of the project. (WP C2 and C4).  
Estimated budget
The suggested project involves both method development and massive computational effort as we plan to perform a large amount on of NA-AIMD simulations. To achieve the goals of this proposal and perform the aforementioned calculations, substantial computational capabilities are needed beyond what I have at the moment. I thus request a computer cluster containing 35 nodes with high RAM memory which that will be used solely to perform the NA-AIMD simulations of this project. AdditionallyIn addition, two Ph.D. students and two postdocs are necessary in order to carry out the calculations, two PhD students and two postdocs are necessary.
Summary and Outlook
The proposed research will provide a leap in our ability to model and understand photochemical reactions in conditions crucial for the field of astrochemistry. We will be able to predict the formation of different fragmentation products together with the underlying molecular mechanisms responsible for their formation, including the unique role of excited electronic states. The computational methods which that we will implement in the realization of this the proposed research will enable the study of systems whose size, and as well as the computational cost of the available quantum chemistry methods, has previously prevented them from being studiedtheir study. The fact that we will enlarge the scope of capabilities of quantum chemistry will makes it this research useful in the multidisciplinary study of molecules in the ISM. The ability to accurately model excited states of large systems is of great importance to quantum chemistry, as it will allow facilitate its use in many fields, from biology to material science.  
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