

COURSE BOOK

 [image:]
Smart Services I
DLBINGSS01

Learning Objectives

Introduction	9

The purpose of this course, Smart Services I, is to convey ideas surrounding smart services and the methods involved in developing them. To this end, it will start by introducing the term “smart services” in the context of digitalization and Industry 4.0. Having laid this foundation, it will show how much of a disruptive effect innovative services can have on existing business models, or even entire markets, using digital intermediaries as an example. It will then introduce a selection of methods and technologies that can be used to identify and model potential opportunities for digitalization. It will also present a selection of architectures and platforms that can be used to integrate these types of services, before finally moving on to technologies that can be used to implement smart services and presenting a brief summary of how agreements relating to service quality can be reached.

Unit 1
Digitalization, Industry 4.0, and Smart Services

STUDY GOALS	Comment by Johnson, Lila: EN: Study Goals

After completing this unit, you will...

... be familiar with the introductory principles and the context of digitalization and cyber-physical production systems.
... be informed about the foundations of smart services in Industry 4.0.
... know some examples of smart services.

DL-D-DLBINGSS01-L01

1. Digitalization, Industry 4.0, and Smart Services

Introduction
Mr. Smith wishes to order a custom-configured car tailored to his personal needs from a well-known car manufacturer. Is such a service possible in today’s market? Or perhaps even commonplace? And if so, to what extent? And what are the requirements and conditions?

At first glance, this request may not seem like a particularly challenging task. However, looking more closely at individual cases reveals that – with the technology currently available – there are still several barriers to be overcome, with the result that customers’ desires go unfulfilled. Let us consider a specific example to illustrate the sorts of issues that may arise:

· Take a customer who is 6 feet 8 inches tall. Due to the seat height provided in the majority of vehicles, this customer cannot sit up straight and is, therefore, uncomfortable when traveling in the car. When configuring their new vehicle, they start by selecting the model, the engine, the power, and the bodywork color. They then specify that the seat should be 7.5 inches lower than the standard configuration. Is this something that the car manufacturer can do?
· The manufacturer receives this customer query via the product configurator. Developing such a design for the customer specifically (“engineer to order”) would be laborious and too expensive for the customer, so the query is processed via the series production process. The car and seat manufacturers carry out a joint engineering simulation of the seat. If successful, the next stage would be to construct a full prototype. Are the seatbelt and airbag compatible with the altered seat height, and are they (still) correctly positioned? Are the right tools available to carry out the production process?
· Next, the price must be simulated. How much would it cost to make this change? What price would need to be charged to the customer? Could this configuration be sold to other customers as well? What sort of production timeframe can be achieved?

Once all of these questions have been answered, the order data for the customized seat can be passed on to production planning. The specific construction amendments are sent to the supplier for use in the machine control system. This example illustrates a key aspect of Industry 4.0, one of national relevance. Being able to customize products has become essential to maintaining international competitiveness (cf. Kaufmann 2015, p. 1f.).

It also shows the many layers of products and services in today’s world. Given this reality, the next section will lay out the fundamentals of digitalization and the opportunities that it presents, focusing in particular on cyber-physical production systems. After this, the concept of “smart services” – services based on data and centered on the user – will be positioned within the context of Industry 4.0. Finally, some illustrative examples of smart services from different sectors will be presented.
 (
40
) (
Unit 2
)
 (
19
) (
Unit 1
)

Digitalization, Industry 4.0, and Smart Services

1.1 Digitalization and Cyber-Physical Production Systems
Digitalization is a key phenomenon in the modern world and is bringing about radical changes in all areas of the economy and society. Over time, working and living digitally have become part of everyday life (cf. Boes 2014, p. 11). Digitalization has altered our lives in terms of “how we do things” (Borgmeier/Grohmann/Gross 2017, p. XV). As this development progresses, existing products, services, groups of products and services, business processes, business models and entire industries are increasingly experiencing significant changes or are being displaced. Similarly, the ways in which industries interact are also being transformed. This process is referred to as “digital transformation” (Borgmeier/Grohmann/Gross 2017, p. XV; cf. Boes 2014, p. 11ff.). Today, in the context of smart services and Industry 4.0, it is particularly in the areas of service bundles (groups of products and services) and e-services that we see significant potential for growth Customer desires and customer satisfaction are essential factors for success, and it is becoming increasingly important to integrate “external factors” (i.e. customers) into operating processes. This is particularly the case for e-commerce and e-services in the context of smart services or Service 4.0 (cf. Wehrlin 2018, p. Vf.). The following figures illustrate the progression of digitalization.	Comment by Anne Pabel: This was retained from the original. If there is no page number, we could perhaps use the paragraph number and designate it as 'para. X'.

[image:]	Comment by Johnson, Lila: Please only translate the graphics in the separate graphics file.

Digitalization, Industry 4.0, and Smart Services

[image:]

The amount of digital information being generated and shared worldwide is constantly increasing (cf. Evans 2003, p. 3). The number of digitally connectable devices increases in waves (cf. Fullan/Donnelly 2013, p. 9).

One of the consequences of this development is that value-based partnerships and coproductions, along with know-how in big data or data analysis, are emerging as significant competitive advantages. This in turn is leading to the substitution and displacement of the traditional requirements and advantages that previously applied to the development of a product or service (cf. Borgmeier/Grohmann/Gross 2017, p. XV; Boes 2014, p. 11ff.). The following figure presents the digital maturity of different sectors.

[image:]

The media and trade sectors have always been particularly fertile ground for digitalization, hence why they were the first sectors to undergo it. Digitalization is ongoing across transportation, healthcare, production, and lastly, the energy sector (cf. acatech 2014, p. 17). Digitalization will only continue to progress, bringing about changes in both economic sectors and user behavior. In Germany alone, more than 62 million people use the internet, and more and more people are spending an increasing amount of time online. Social media (or rather online-based platforms) can be used to communicate and establish networks amongst the users themselves and between users and service providers. The exchange of data between companies/service providers and users/customers is of particular importance (cf. Wehrlin 2018, p. 48f.).

Digitalization As digitalization advances, companies must develop profitable business models and smart services
in response.

As our current period of advanced digitalization, Industry 4.0, and the Internet of Things (IoT) continues to progress, companies must develop and successfully implement profitable business models and smart services (i.e., smart, digital or data-based services) in response. Here it is important to include both the B2B (business-to-business) and B2C (business-to-customer) sectors in our considerations (cf. Borgmeier/Grohmann/Gross 2017, p. XV; Kagermann 2014, p. 67ff.).	Comment by Johnson, Lila: For all side notes, please put the coordinating term in the text in bold.

As part of the digital transformation and the associated technologies (Internet of Things and Industry 4.0) companies are learning how customers use their products and services. In other words, “B2B is becoming B2B2C” (Gassmann/Sutter 2016).

Digitalization, Industry 4.0, and Smart Services

We are seeing a shift in the power relationships between OEMs (original equipment manufacturers) and suppliers. Sales models are also undergoing disruptive change. Significant competitive advantages are being gained through service engineering, business model innovation, and know-how in data analysis and data-based services (referred to as “smart services”) (cf. Grohmann et al. 2017, p. 3ff.). This groundwork enables a value-based cooperation between service providers and service recipients as a cooperation of both value-creation processes. It is also opening the door to sharing both the profits and risks associated with the results of these value-creation processes (cf. Grohmann et al. 2017, p. 3ff.).	Comment by Anne Pabel: This sentence was a bit difficult to understand in the original. Please check if this grasps the intended meaning.

Cyber-Physical Production Systems

In addition to networked production, Industry 4.0 also involves establishing networks with customers and other actors. The central feature of Industry 4.0 is the smart factory. People, machines, and products are communicating using new technology, and networks are being established with suppliers, customers, and even companies in other sectors. The flow of information between the different actors is based on shared standards, for example through the use of reference architectures in the form of software applications and/or services that have been made available (cf. Wehrlin 2018, p. 52). Industry 4.0 is often primarily associated with the deployment of new types of technology. However, if we look closer, we can see that many of the relevant technologies were already available long before the period that we started explicitly talking about Industry 4.0,

such as minicomputers, radio-frequency identiﬁcation (RFID), etc. On this issue, Armin Roth points out, for example, that what is really new about Industry 4.0 is “the merging of these technologies within the industrial environment into a unified solution that acts in concert” (Roth 2016, p. 37) (cf. Kagermann 2014, p. 67ff.). Roth believes that these resulting networks of standardized communication and control technology are essential to making the idea behind Industry 4.0 a reality. This process can be described in the five following key paradigms of industrial production (PIP) (cf. Roth 2016, p. 37):	Comment by Anne Pabel: Please check if the intended meaning of this sentence has been retained as it was a bit difficult to follow in the original.

· PIP 1 – Vertical and horizontal integration
· PIP 2 – Peripheral intelligence
· PIP 3 – Peripheral control
· PIP 4 – Consistent digital engineering
· PIP 5 – Cyber-physical production systems

These paradigms build on each other sequentially from 1 to 5, and there is an overlap between neighboring paradigms. Each paradigm, therefore, also forms a partial intersection with the following paradigm.

Industry 4.0 Industry 4.0 is underpinned by creating networks of standardized communication
and control technologies. It can be described in the form of five paradigms of industrial production (PIPs).

Cyber-physical production systems are the fifth new paradigm of industrial manufacturing. A cyber-physical production system (CPS) describes the entirety of a production line in light of the Industry 4.0 approach (cf. Roth 2016, p. 35ff.). A cyber-physical production system is a construct made up of production systems that provide data to the control system, via the use of sensors and actuators. Once received, the data is evaluated by the control system, which then sends it back to the production system. A cyber-physical production system also includes smart means of production that hold information regarding their individual production process. The data and services can be used anywhere in the world via the Internet of Things and cloud services (cf. Roth 2016, p. 35ff.).

Production network All objects within a production network are allocated a new identity via the internet. Interfaces are used to create a reciprocal connection between the systems involved in the production.

Smart services These represent a supplement to Industry 4.0 smart products.

In accordance with the Industry 4.0 approach, all objects within a production network are allocated a new identity (IPv6 address) via the internet. A reciprocal connection is created between the systems involved in the production via interfaces. Doing so enables them to be integrated, optimized, and tested (cf. Roth 2016, p. 35ff.).

The real and virtual worlds are increasingly merging with each other, added to which is the use of real-time data. These developments are creating new opportunities and possibilities for companies to support their production and logistical processes. A key prerequisite for a cyber-physical production system is the vertical integration of all the systems into a sort of unified system landscape. Another requirement is horizontal integration in order to create a complete value-creation network. Decentralized cyber-physical systems can retrieve relevant information via a control system. This includes, for example, information relating to the current production process, set-up status, and available capacity (cf. Roth 2016, p. 35ff.).

The system is able to use this information to make decisions autonomously and to react in a situation-specific manner. Viewed as a whole, a cyber-physical system can be described as a complete, cooperative system created in the context of Industry 4.0 (cf. Roth 2016, p. 35ff.). Cyber-physical production systems are a key foundation for smart services, particularly in the processing industry.

1.2 Smart Services in Industry 4.0
Smart services act as a supplement to Industry 4.0 smart products. It is assumed that new forms of services are smart by default, and indeed that they should be smart. This involves, amongst other things, the use of new technologies such as sensors, processors, artificial intelligence (AI), and cloud connections (cf. Förderland 2018; BMWi 2017, p. 2ff.).

Digitalization, Industry 4.0, and Smart Services

The use of new technologies is enabling services to be tailored to users and to be provided to them promptly. Smart services and digitally enhanced products are emerging as a result (cf. Förderland 2018; BMWi 2017, p. 4ff.). The following figure shows the various aspects of Industry 4.0.
[image:]

These aspects of Industry 4.0 demonstrate that the user/customer is at the heart of the process of digitalization and these services (cf. Borgmeier/Grohmann/Gross 2017, p. 110f.). This means that the services are subject to rapid release cycles, and, as such, they can be adapted to challenges in an agile manner and scaled accordingly. The resulting disruption means that recognized structures, products, offers and value-creation chains are no longer compatible with current and future requirements. This radical upheaval is causing changes in major industrial branches. All of this shows that companies must be prepared for the Fourth Industrial Revolution. Smart services are prompting sectors to converge as a result of the emergence of cross-sector ecosystems, and the users of these types of data-driven business models may come from different sectors. In this context, more smart services data centers are required in the place of factories. These services require the exchange and corresponding evaluation (smart data) of huge amounts of data (big data) via the cloud or the internet (cf. Förderland 2018; BMWi 2017, p. 45; Kaufmann 2015, p. 7f.; Kagermann 2014, p. 67ff.). The following figure shows the impacts of Industry 4.0 at different levels.

[image:]

Digitalization, Industry 4.0, and Smart Services

Digital business models require us to change our thinking. For example, the emphasis is shifting from ownership to an “as-a-service” approach (cf. Förderland 2018; BMWi 2017, p. 45; Kagermann 2014, p. 67ff.). In this approach, solutions are offered as a service that can be rented, e.g., renting a piece of software. The following figure illustrates the contexts in which smart services are involved.

[image:]
The economy is experiencing a significant paradigm shift. The focus is no longer on individual suppliers and their traditional products and services but rather on the user and their processes (cf. Kagermann 2014, p. 67ff.).

Digitalization, Industry 4.0, and Smart Services

Users – in their role as customers, renters, patients, employees, or travelers – expect to be able to acquire combinations of products and services tailored specifically to them whenever and wherever they require (cf. Kagermann 2014, p. 67ff.).

1.3 Examples of Smart Services
We can find examples of customer-centered smart services in nearly any sector. These smart services are ripping up and revolutionizing value-creation chains in, for example, production, trade, healthcare, transportation, media consumption and finance (cf. Förderland 2018; BMWi 2017, p. 2ff., 20ff.; Kagermann 2014, p. 67ff.). Some examples are presented below.

Automobiles: Transportation/Ordering on the Move/Sharing/Using Service Offers

One of the consequences of smart services is that it may no longer be worthwhile for some individuals to buy a car. It may be cheaper to use their smartphones to order a car based on their individual, situational requirements and location. This is referred to as a “car sharing” service. Another version of this service exists in the form of driving services such as Uber (cf. n.p. 2018a; BMWi 2017, p. 4ff.).

IT: Software-as-a-Service (SaaS)

Customers that require a specific piece of software can rent it instead of buying it. This is referred to as “software-as-a-service” (SaaS). Here, the software can be rented and used for a specific period of time (cf. n.p. 2018a).

Trade: Inventory Management and Ordering

One example of this is refrigerators that hold information about their contents. They manage the inventory and are familiar with the habits, typical consumption and preferences of their owner and can order replenishments. This is bringing about a disruption in trade (cf. n.p. 2018a).

Financial Services

Fintech services are making it quicker and simpler to make payments (cf. n.p. 2018a). This includes:

· Payment services – rapid and simple payments, i.e., digital/electronic payment services
· Robo-advisors
· Payment services
· Mobile payment
· Micro-loans
· Crowdlending
· Online/direct banking
· Crypto-blockchain applications and
· Digitalized loans or investments.

One of the consequences of smart services is that it may no longer be worthwhile for some individuals to buy a car. It may be cheaper to use their smartphones to order a car based on their individual situational requirements and location. This is referred to as a “car sharing” service. Another version of this service exists in the form of driving services such as Uber (cf. n.p. 2018a; BMWi 2017, p. 4ff.).

Customers that require a specific piece of software can rent it instead of buying it. This is referred to as “software-as-a-service” (SaaS). Here, the software can be rented and used for a specific period of time (cf. n.p. 2018a).

Media: “On Demand” Business

Using smart services, customers can access media services at any time and based on their needs. This is referred to as “on demand” business and yields savings in both resources and time, as in the case of streaming providers like Netflix and Spotify, for example. The providers are also able to supply customers with suitable media content quickly and cheaply via the internet. The use of media smart services is also increasing in other sectors with great success (cf. n.p. 2018a).

Medicine

Smart services are seeing an increasing use in medicine. Creating stronger connections between doctors, patients, and operating theatres, for example, can increase efficiency in patient care. They can also improve treatment results (cf. n.p. 2018a; BMWi 2017, p. 14ff.).

Machine Engineering: Digital Platforms/Fully Automated Marketplaces/Production Optimization/Actively Ensuring Full Machine Capacity Use

Smart services are bringing about innovations in the private sector, in the economy and in administration. The innovations associated with smart services are particularly relevant in the industry. These

Digitalization, Industry 4.0, and Smart Services

are essential to (international) competitiveness, amongst other things. Digital platforms are already leading to the emergence and development of fully automated marketplaces and will continue to do so in the future. AI is providing the means to continuously optimize production. It also means that machines can bid for work, doing so actively and autonomously (cf. n.p. 2018a; BMWi 2017, p. 20ff.).

However, smart services are bringing about entirely new challenges in machine engineering. They are also leading to the creation and advancement of new business models (cf. BMWi 2017, p. 20ff., p. 45).

Summary

Digitalization is a major topic with wide-ranging implications. It is bringing about radical changes in all areas of the economy and society. One of the consequences of this development is that value-based partnerships and coproductions, along with know-how in big data or data analysis, are emerging as significant competitive advantages. This in turn is leading to the substitution and displacement of the traditional requirements and advantages that previously applied to the development of a product or service.

Cyber-physical production systems are a key foundation for smart services, particularly in the processing industry. These are constructs made up of production systems that provide data to the control system, via the use of sensors and actuators. Once received, the data is evaluated by the control system, which then sends it back to the production system. A cyber-physical production system also includes smart means of production that hold information regarding their individual production process. The data and services can be used anywhere in the world via the Internet of Things (IoT) and cloud services. In accordance with the Industry 4.0 approach, all objects within a production network are allocated a new identity via the internet. A reciprocal connection is created between the systems involved in the production via interfaces. To accommodate this sort of development, more smart services data centers are required in the place of factories. These services require the exchange and corresponding evaluation (smart data) of huge amounts of data (big data) via the cloud or the internet.

Using new technologies, particularly sensors, processors, artificial intelligence (AI), and cloud connections, allows providers to offer tailored customer solutions and smart services. This is bringing about fundamental changes in some value-creation chains, and the resulting digital business models are prompting a major change in thinking. For example, the emphasis is shifting from ownership to an “as-a-service” approach. Smart services are bringing about innovations.

 (
These are essential to (international) competitiveness. Digital platforms are already leading to the emergence and development of fully automated marketplaces and will continue to do so in the future.
)

Unit 2

Digitalization and Disruption

STUDY GOALS

After completing this unit, you will...

... understand digital business models.
... understand the context of value-added services and smart services.
... be familiar with connecting factors for new business models.
... understand the key principles of the intermediary business model.
... have seen some examples of disruptive business models.

DL-D-DLBINGSS01-L02

2. Digitalization and Disruption

Introduction
Smart data is produced by establishing connections with a large amount of data (big data). It can then be used to generate information on which to build business models. Having been refined into smart data, it is then monetized as new smart products and smart services that can be combined on an individualized basis. This opens the door to new business models that put the significant potential offered by these volumes of data to innovative use. Smart data allows companies to anticipate and satisfy customer desires, even before the users themselves become aware of those desires. There is also a shift in progress from product-oriented to user-oriented business models – this requires companies to change their thinking, particularly the more traditional ones. For companies that wish to maintain or improve their (international) competitiveness, it is essential to take advantage of the opportunities presented by the Internet of Things. Such companies must, therefore, proactively overhaul their business models – in fact, they may even need to think and act disruptively themselves. Intermediaries provide access to platforms that can quickly and easily connect suppliers and buyers, with intermediaries or agents even being able to gradually take control of the customer interfaces.	Comment by David Stockings: This is how I interpret the word "Verknüpfung" in this context. Explanations of this process online tend to say something like "turning large amounts of data into actionable insights", e.g. https://www.wired.com/insights/2013/04/big-data-fast-data-smart-data/

2.1 Digital Business Models
The emergence of smart, data-driven services is leading to the development of new business models, both in the industry and in the SME sector. These new models are attractive both in terms of customer loyalty and as a secondary source of income (cf. Steinhaus 2018; Kagermann 2014, p. 67ff.).

Thanks to smart data and the smart products and smart services built on it, the volumes of data generated can be put to innovative use (cf. Kagermann 2014, p. 67ff.; Kaufmann 2015, p. 12ff.; Steimel 2016). The following figure shows a solution model for Industry 4.0 solutions.
 (
28
) (
Unit
2
)
 (
29
) (
Unit 2
)

Digitalization and Disruption

[image:]

Many manufacturing companies are developing from suppliers of products into suppliers of solutions. In other words, they are offering not just products but also additional services. For example, a manufacturer of a digital camera could also provide the corresponding image-editing software as a solution. In this context, the service business starts to play a greater role in that it provides new ways to approach and connect with customers, allowing the manufacturer to identify customer needs and factor them into its approach. This, in turn, helps to shape new business models (cf. Kagermann 2014, p. 16; Kaufmann 2015, p. 12ff.).

If digital data is used and combined in new ways, it can – in some circumstances (depending on market conditions) – lead to the creation of disruptive business models. Any company can benefit from using smart data (cf. Kagermann 2014, p. 67ff.). They can use it to establish new business models, whether they are smart data analysis and usage consulting firms, manufacturing companies, or primarily data-driven service providers. Small and medium enterprises (SMEs) will also be able to use such services and software systems in future, even if they cannot currently afford to do so within the confines of today’s licensing and business models (cf. Steimel 2016; Kagermann 2014, p. 67ff.; Kaufmann 2015, p. 12ff.). The following figure shows the existing relationships between data, analytical processes, and services.

Disruptive business models
These emerge as a result of using digital data and combining it in new ways.

[image:]

Business Models/Monetization of Smart Service Models

The monetization of “as-a-service” models is becoming an increasingly prominent feature of the market. Using smart data allows services to be offered at a cheaper price than previously, and the data gathered can be processed and

Digitalization and Disruption

used in such a way that it generates added value for the customer. Customers can also receive custom-tailored or ideally suited solutions, benefiting both the customer themselves and the company in the form of increased revenues (cf. Förderland 2018; BMWi 2017, p. 45; Kaufmann 2015, p. 12ff.).

SMEs can utilize these types of data-driven services as manufacturing operations, thereby potentially establishing a secondary source of income, supplementing their core business or original product/service and acting as a sort of backup. Smart services often result in a greater degree of continuous contact with the customer, which, in turn, improves the customer’s loyalty to the manufacturer. When combined with close customer support, this also opens the door to customers acting as a sort of “co-engineer” or “co-designer”. Given that customers use the products or services on a daily basis, they generally have valuable experience with those products and services (cf. Steinhaus 2018). Companies can make use of this knowledge via customer feedback, for example, by assessing customer complaints or evaluations, then using the outcomes to implement product and service improvements. The information gained in this way can be an important tool for improving products, services, and processes or developing new solutions, all as part of the company’s continuous improvement process (CIP) (cf. Wehrlin 2014, p. 146ff.). The following figure illustrates the distribution of networked digital and physical processes along the entire product lifecycle.

[image:]

Generally speaking, the costs associated with data-driven services are low. Once a digital solution has been developed, providing it to new customers incurs very little additional cost. The development costs are generally high in the beginning or in some individual cases. However, they are not incurred again for every additional customer that the solution is provided to (cf. Steinhaus 2018).

Digitalization and Disruption

2.2 Connecting Factors for New Business Models
Change and innovation strategies must take various factors into account, including the current and future needs, requirements, desires and wishes surrounding the relevant products and services – in short, the customers’ demands. Ideally, these products and services should be personally and optimally tailored to individual customers – smart products, smart services and innovative business models are an important tool here.

Smart Products

Smart products, also known as “intelligent products”, are products that can connect to the internet and that are equipped with sensors. Smart products are able to collect data. They analyze the data and can both send and receive it, hence they are referred to as “intelligent”. Smart products, or intelligent products, will be able to execute the following functions in future (cf. Steimel 2016):

· Smart products will be able to complete tasks autonomously.
· They will be able to communicate with other things.
· They will adjust themselves autonomously.
· They will be able to alter themselves in order to extensively meet user requirements.
· They will be able to update themselves autonomously.
· They will be able to manage their own ongoing costs autonomously and decrease them.
· They will optimize themselves.
· They will increase their productivity autonomously.
· They will be able to anticipate dangers or accidents.
· They will be capable of acting proactively.

From Value-Added Services to Smart Services

If a company’s products are able to collect data, i.e., the company already provides smart products, then that company is in a position to offer its customers added value beyond the actual product benefits. These additional services are referred to as “value-added services”. This leads to the emergence of smart services (cf. Steimel 2016; Kagermann 2014, p. 67ff.). For example, in addition to supplying energy, an energy company may offer its customers an app that can display their daily energy consumption as an additional service. The customer can use this to find out when, where, and how much electricity or gas they have consumed/are consuming and at what price.

Smart products These are intelligent products that can connect to the internet and are equipped with sensors. They can analyze, send and receive data, and perform a multitude of functions.

Innovative Business Models/Service Innovation – Evolution of Business Models

One of the outcomes of this development is that business models are no longer built solely around products. Instead, data and services are the key drivers of today’s business models. Consequently, a large number of connecting factors have emerged that offer opportunities to design and enhance previously unheard-of, and therefore innovative, new business models (cf. Steimel 2016). The following figure displays the connecting factors for new business models.
[image:]

Smart services are centered on the user. Smart data enables companies to provide an individualized service (cf. Kagermann 2014, p. 67ff.). As in the earlier example of an energy provider, the supplier is able to offer a personalized customer experience and individualized service. It no longer simply provides electricity or gas – it also enables customers to manage devices within their smart home and to optimize their energy consumption, whilst also improving the efficiency of supplying energy from the intelligent network. The role of service innovation will only continue to increase in the future (cf. Steimel 2016).
	Comment by Anne Pabel: This quotation was already in English in the original version.
“Every product is a service waiting to happen. […] Designing with data in mind. […] Achieving continual service change” (Accenture cit. in Steimel 2016).

Digitalization and Disruption

The suppliers of smart services require a comprehensive understanding of the user, their behavior and their requirements (cf. Steimel 2016). There is a shift in progress from product-oriented business models to user-centered business models (cf. Kagermann 2014, p. 67ff.). The relationships between these are illustrated in the following figure, which shows the IoT structural model.

[image:]

Digital enabling is a principle that is closely associated with the IoT structural model, albeit one primarily focused on the technical designing of platforms. The Industry 4.0 approach underpins all of this. The technical design of a company’s platform allows it to differentiate itself from its competitors, for example, by erecting barriers to entering or changing the market. Its economic success depends on five value-creation levels: physical object, sensors/actuators, connectivity, data analysis, and digital service. The term “data lake” is used in this context to refer to a collection of data. Data is collected internally from within the company and externally from customers, e.g., regarding their habits, behaviors, consumption, etc., before being connected and analyzed (cf. Borgmeier/Grohmann/Gross 2017, p. 271f.).

Digital enabling Digital enabling refers to the process of designing platforms and the capacities they are given.	Comment by David Stockings: See previous comment about this term vs. digital enablement. 	Comment by David Stockings: This is how I interpret "Befähigung" in the context of other definitions of this term.

2.3 Digital Intermediaries

Digital Transformation – Key Principles of the Intermediary Business Model

Intermediaries
 These provide platforms that can quickly and easily connect suppliers and buyers. Intermediaries can also take control of customer interfaces.

Intermediaries provide platforms that both connect suppliers and buyers and also manage and support them. Intermediaries, or agents, can take control of the customer interfaces – for example, a hotel booking portal might prevent a guest from booking directly with a hotel connected to the platform. Even if the guest goes directly to the hotel’s home page, when they attempt to book a room, they are transferred to the booking portal (cf. Keuper 2015; Kagermann 2014, p. 67ff.).

An analysis and evaluation of the intermediary business model reveals the following key principles (cf. Hebenstreit 2016):

· Focusing behavior
· Increasing business model flexibility
· Dynamism/rapidity
· Evolving structure and working methods

Intermediary business model key principle 1 – Focusing behavior
The intermediary business model simplifies the process of accessing services or the market. For suppliers of products and services, this means quicker access and additional revenue. For customers, it means access to services and/or products highly suited to them. The intermediary business model enables its two target groups to achieve their personal and professional goals. As such, potent elements of behavioral psychology are directly relevant and at play in this process (cf. Hebenstreit 2016). Examples from the German market include pizza.de, mytaxi, Check24, immoscout, myhammer, etc.

Intermediary business model key principle 2 – Increasing business model flexibility
The intermediary business model is heavily virtualized. An intermediary outsources a large part of the value-creation process to its partners but carries out marketing and administrative activities in-house. The business model is built on a digital system consisting of the web presence, query maps (the routes and steps that a query passes through), and electronic customer relationship management (eCRM). Once an intermediary has established a given area of expertise, it is relatively easy for it to add additional areas of expertise, and it is perfectly possible for the offer to be domestic to begin with, but then to expand to a more international reach over time. One outcome of the intermediary business model is the development of an extensive and detailed customer database, which the company can use at any time to take strategic steps into new business fields (cf. Hebenstreit 2016), as Netflix and Amazon did, for example.	Comment by David Stockings: ST error: "gilt als stark virtualisiert"	Comment by David Stockings: I cannot find the term "Anfragestrecke" used in any other reliable sources.

Digitalization and Disruption

Intermediary business model key principle 3 – Dynamism/rapidity
The intermediary’s digital technology is the cornerstone that underpins its business model, which means the model is easy to scale up and adjust. New benefit and value propositions can conceivably be tested directly on the customers. The fact that the provision of the services themselves is outsourced to partners reduces the cost of the intermediary business model. The development risk, the time burden, and the operational processes are also fully outsourced to the suppliers. The company can react quickly and easily to market developments or set out new offers. The only potentially problematic area is that the company must focus heavily on two specific target groups (cf. Hebenstreit 2016). Examples include Check24, Facebook, etc.

Intermediary business model key principle 4 – Evolving structure and working methods
The operations of intermediaries are underpinned by digital systems. As such, they benefit from all of the advantages of lean start-ups and the customer development methodology. Using digital data, intermediaries are well positioned to take an analytical approach in order to continuously enhance highly suited offers for companies and end users (cf. Hebenstreit 2016).

Intermediary Business Model

A defining characteristic of intermediaries is that they operate in markets that are highly opaque (for example, one where customers cannot easily gain an overview of the market or offers). Within this business model, suppliers and buyers are connected to each other through new and innovative ways and means. The supplier side is typically populated by smaller companies, the self-employed, and SMEs, which generally do not have the marketing power to extend their reach beyond their local markets. Consumers are also often unable to assess the quality of the products or services (cf. Hebenstreit 2016).

The SME sector is considered the “backbone” or “engine” of the economy. “Germany benefits from the innovative strength of its ‘hidden champions’ and market leaders for niche products” (Matouschek 2017).

According to the results of a study by the consulting firm PwC (study on insurance in SMEs, cf. Matouschek 2017), there is significant demand for digital offers in insurance. This demand has not yet been met, however, which means there are significant opportunities and challenges. For example, insurance companies need to develop multi-channel strategies, which should be adapted to customer requirements. Similarly, these online offers need to be able to provide the personal expert advice and consulting required in this segment. The business models that already exist in individual markets should be adjusted to meet this demand in a digital format as far as possible (cf. Matouschek 2017).	Comment by David Stockings: I assume this is a description, not the name of the publication. PWC does have a section on its website on insurance in SMEs that refers to "our research", but I cannot find any actual publication:
https://www.pwc.co.uk/industries/insurance/insights/building-trust-with-sme.html

Intermediary business models, or agent models, are becoming increasingly important because of the fundamental importance of empirical information about customers and their needs. E-commerce marketplaces, such as Alibaba, Amazon, and eBay, have achieved significant size advantages and a dominant market presence. Many suppliers that generally rely on their services could hardly survive without them. As such, a certain relationship of dependence is developing. But trade is not the only area in which digital customer access is important. In logistics, for example, it is also essential to fourth-party logistics (4PL) providers, which do not have their own transportation infrastructure. These suppliers aggregate different offers in order to select the ideal freight carrier for the customer. They charge a corresponding commission for this service (cf. Keuper 2015).

Intermediaries Intermediaries provide visibility, access, and evaluations within the market.	Comment by David Stockings: This was already defined on p. 36, though with a slightly different definition.

Intermediaries provide visibility, access, and evaluations within the market. Therefore, they enable buyers to access previously unutilized resources. Intermediaries also help suppliers generate new orders. Their revenue stems from the commission they charge on the orders that they broker. The company CoMatch provides an illustrative example of this type of business model. CoMatch matches top management consultants with customers that need those consulting services. They sidestep traditional management consultancy firms in the process (cf. Hebenstreit 2016). The following figure illustrates the relationships within the intermediary business model.

[image:]

Digitalization and Disruption

The figure clearly shows that the intermediary is positioned between the supplier and the customer. It acts as a sort of broker that connects the supplier and the customer. Take the example of a hotel booking platform: A customer ends up on an intermediary’s portal and finds numerous suitable options. They book a hotel. Both the customer and supplier enter into a contract via the intermediary. They agree to the GTCs and the contract. The intermediary evaluates and selects the supplier. The customer has no option to book directly with the supplier. Even if they go to the homepage of that hotel and attempt to make a booking, they are transferred to the booking portal. Once the customer has booked, the supplier provides the service to the customer. The customer pays the supplier, and the supplier pays the intermediary the contractually agreed commission.	Comment by David Stockings: This is what the ST says, but I don't think it really represents how hotel booking platforms work. Or at least, the platform carries this out before a customer attempts to book.

The intermediary business model is popular with digital start-ups and is the one most commonly deployed. Typical examples include delivery services, hotel booking platforms, or consultant matching. One advantage offered by the intermediary business model is that it does away with the need for partners to build up their own implementation capacities. For example, a hotel receives customer bookings without having to run its own additional marketing campaigns. Partnering with the hotel booking platform means that the guests become aware of the hotel and book rooms of their own accord. Without the platform, the hotel would have to operate its own homepage, etc. This model enables the partners’ capacity to be utilized, whereas these partners would not normally have broad market access. One disadvantage of the model is that the intermediary must secure its position between the customer and the supplier, which it can do, for example, through high-cost marketing, an outstanding customer experience on the platform, and seamless processes (cf. Hebenstreit 2016).

The relationship between suppliers and buyers is governed by contracts. These contracts also ensure that the intermediary is included in all economic interactions between the two parties. Consider the example of CoMatch again: Contracts ensure exclusive access to customers and suppliers here as well. Here, CoMatch relies particularly on what it calls “transfer fees”. As soon as the customer and buyer enter into a direct economic relationship, this fee becomes payable. In the intermediary business model, revenue is generated through commissions. For example, the virtual management consultancy CoMatch matches customers with consultants in upper management. This incurs a commission of up to 15% of the rate per day. Hotel search engines can typically charge up to a 50% commission on the booking price. The main task of the intermediary is to ensure its exclusive market access. As such, its key activities can be summarized as follows: extensive online marketing, optimized simple processes, and a strong customer orientation (cf. Hebenstreit 2016).

Intermediaries offer advantages to help secure the customer’s loyalty to the platform rather than to the service provider.

Opaque Markets

Intermediary companies and users of intermediary business models are involved in markets that are highly opaque. This means that customers cannot identify suppliers, whether entrepreneurs or the self-employed, without overcoming significant barriers. The quality of such suppliers and their evaluations can only be compared to a limited extent, if at all. The signs of reliability that most companies provide, such as size, revenue, or key references, cannot be viewed or cannot be unambiguously matched to a particular supplier. Companies that operate an intermediary business model provide access to small market participants. They ensure the quality and performance of the suppliers through internal selection processes (cf. Hebenstreit 2016).

Markets with Financial Potential

The intermediary business model allows for making use of economic resources that were previously unusable or difficult to use. The intermediary business model reduces the cost of making previously unused resources available. For example, a small, previously low-profile country hotel starts working with booking.com. This considerably decreases its advertising costs and significantly improves its reach and visibility. The hotel receives more bookings, reduces its unused capacity, and becomes more profitable to run.

Typically, the suppliers of such resources only have a very limited reach and visibility. The intermediary business model allows small providers to access a larger market (cf. Hebenstreit 2016).

The Two Constituent Models of the Intermediary Business Model

The intermediary business model is built on a construct in which two business models are associated with different customer groups. Here, the two customer groups have a mutual interest in the other’s resources: One of the groups wishes to purchase a service or solution on the market; the other one wishes to become a market participant and increase its visibility. The two target groups have corresponding requirements in terms of the excellence and simplicity of the intermediary’s processes. The first step towards creating an intermediary business model is to connect one of the two groups to the intermediary. This is a challenging task. The first group must have a need for the second group. An intermediary will normally try to start with the group that has the greater need, which is typically the group that did not previously have any market access or visibility. Intermediary companies are, therefore, keen to establish a connection with this first group, which they can do, for example, by generating lead lists (cf. Hebenstreit 2016).

Digitalization and Disruption

Securing Market Access and Customer Loyalty

Whereas some business models prioritize gaining new customers over customer loyalty, the intermediary business model emphasizes customer loyalty. For one thing, it is generally cheaper to retain existing customers than to gain new ones. Ensuring the simplicity and excellence of the platform prevents customers on both sides of the business model from seeking out alternatives. This is absolutely essential to ensuring that the intermediary business model can function on a practical level and without issues. It is vital that buying services through the platform is simpler and creates more value than going through suppliers of corresponding alternative products. When it comes to acquiring new customers, the marketing must be targeted so as to ensure that the intermediary’s offer is listed before the offer of the smaller market participants. For example, booking.com posts adword-based adverts on searches for hotel names so that the intermediary is listed before the hotel. Here, the clear goal is to direct the user back to the intermediary’s platform to ensure that they ultimately book through it rather than directly (cf. Hebenstreit 2016).

These digital ecosystems exist in many sectors, for example in the automobile industry (connected cars), in plant and machine engineering (Internet of Things/Industry 4.0), and in finance and banking, etc. The intermediary business model or agent model is also expanding into the banking sector (cf. Keuper 2015).

The intermediary business model is currently the one most commonly deployed. Using this business model enables companies, e.g., Priceline (booking.com, kayak.com), to build up a central point of access to the market. They then charge significant fees for this access. Priceline makes up to € 600,000 in profit per employee. Compare this with Hilton, for example, which makes € 60,000 in profit per employee. If the intermediary successfully connects the customers and suppliers early on, new value creation is achieved as a result. These new value-creation processes can bring about significant changes to entire markets in a short timeframe. For example, CoMatch provides access to top independent consultants or highly suited project staff. These personnel are selected for projects in a targeted manner, which spares the fees charged by management consultancies. In addition to highly suited project staff, the company is also offered consulting at significantly more favorable conditions. However, this involves significant challenges. For example, the intermediary has to win over two target groups and connect them in a value-creating manner. It is advisable here to establish a contractual basis for the direct contact between the two target groups. This is a strategic consideration that needs to be constantly taken into account and monitored within the intermediary business model (cf. Hebenstreit 2016).

2.4 Examples of Disruptive Business Models
When it comes to smart services or data-driven services, new types of business models for both the industrial sector and SMEs are being developed at an increasing rate.

Digital Disruption and Business Models

Business models in the captive finance ecosystem provide a particularly clear illustration of the developments in digital disruption. Captive finance refers, for example, to when a car manufacturer operates an in-house financing company or bank that offers customers special financing offers (e.g., Volkswagenbank). The captive finance industry largely avoided any disruptions until 2016 but has experienced significant upheaval since then. Today, start-ups are exerting a direct or indirect influence on the existing business models in the captive finance industry as well. These start-ups can be divided into three categories (cf. Mende 2016):

· Business model – new direct competitors,
· Competitors in neighboring business models,
· Intermediary platforms.

Business model – new direct competitors
In 2003, Tesla began to break into the automobile industry with its strict focus on electric transportation. In 2015, the company created a financial services unit in Germany. This enabled it to take advantage of the wide-ranging opportunities offered by sales financing in the captive finance market. Tesla is able to offer a fully digitalized application process, for example, whereas this is still a far-off dream for the vast majority of captive finance organizations already in business. This example demonstrates that establishing new players is not the only way into the automobile market. Another way is to create captive finance units, which can benefit from the types of advantages typically available to start-ups such as their lean structure and innovative systems. New direct competitors can also emerge from within the sector’s own ranks. Digital units and innovation centers are currently an area of focus for development within OEMs and captive finance companies. A new “digital direct captive” sector is emerging, comparable with the direct bank model (cf. Mende 2016).

Competitors in neighboring business models
New players can also emerge in neighboring industries. These new players are increasingly using their products to enter into both the traditional and more recent captive finance business. They offer crowdfunding and peer-2-peer lending and provide options to enter into loans at more favorable conditions or with lower credit-rating requirements. There are various successful examples on the market such as Lendico, Lending Club, and SoFi. These types of suppliers are influencing the financing business through the platform-based nature of their businesses. They can also offer customers the option to invest their money at attractive interest rates in transparent

Digitalization and Disruption

risk categories. Within this field, players, such as Daimler FS, Volkswagen FS, and BMW Bank are attempting to establish themselves in the low-interest market through overnight money and fixed deposit products. Captive finance companies are primarily seeking to expand within the transportation services area such as Car2Go and VW FS Rent-a-Car. Due to the significant opportunities offered by transportation and Internet of Things trends, this business presents points of entry that can be easily exploited by innovative players. Such players are in a position to establish scalable and customer-focused business models. Examples include the evolving taxi and delivery specialist Uber, the innovative parking and refueling experience EvoPark, MobileNow, or the comprehensive journey-planning platform Moovel (cf. Mende 2016).

Intermediary platforms
One clear observation about intermediaries and intermediary platforms is that they are increasing the pressure that new players are exerting on the market. Examples include brokers and, in particular, the rapidly expanding comparison portals. Intermediaries are also creating a type of transparency – or at least the appearance of transparency – for end customers with their increasingly intelligent search engines. Customers can easily access these services at home or on the move. As in neighboring business models, the intermediary market is home to both wide-ranging players, such as Check24, and more specialized portals. These are now operating in almost every part of the captive finance field. Check24 offers customers a loan comparison service and in 2018 even actively advertised (including using TV ads) loans starting from 0.00% interest (although these zero-percent-interest offers from various providers were primarily “bait-and-switch” offers).	Comment by David Stockings: https://www.investopedia.com/terms/b/bait-switch.asp

Customer Communication as a Smart Service

Digital smart services are already in use in many contexts. Here, it is important to ensure they are being used appropriately, for example, for customer communication, support, troubleshooting, etc. (cf. Steinhaus 2018).

Digression

Crowdfunding
Crowdfunding refers to a specific type of financing for start-ups or projects.

Peer-2-peer lending In peer-2-peer lending, loans are granted by private individuals directly to other private individuals (i.e., without going through banks).

 (
The start-up Smoope has designed a
messaging
 application specifically for mobile customer service. It works in a similar way to WhatsApp, except that it provides secure communication with the relevant business partner.
A
 customer can install the app on their smartphone and use it to chat with customer service employees. This type of messenger app could, in the long term, replace all other customer communication channels. This would mean that call center waiting queues etc. would no longer be necessary (cf. Steinhaus 2018).
)

Mechanical engineering is one area rich in opportunities for deriving digital services from the automated analysis of usage data. This would create value-added services for customers, such as remote maintenance in the event of technical problems or optimizing operations using sensor data. Other potential uses of the data obtained in

this context include replacement part ordering and upstream products (cf. Steinhaus 2018).

Example of a Disruptive Business Model (Klöckner & Co)	Comment by David Stockings: The phrase "Stahl- und Metallindustrie" is marked as "[sic!]" in the ST, but I cannot quite see why. I cannot see any grammatical errors. Perhaps the ST author was highlighting that steel is a type of metal?
 (
Great thought has gone into how the steel trader Klöckner & Co
is
making use of the IoT and Industry 4.0. According to Kloeckner.i: “Our vision is a digitalized steel and metal industry in which market partners can interact quickly, simply
,
 and efficiently” (Kloeckner.i GmbH 2018).
Instead of
 wait
ing
 to be left behind by other companies taking the initiative and creating disruption, the company decided to become the disruptor itself. It recognized early on how advances in digitalization could have a negative effect on its business model. A professional analysis of
its
 customers’ desires helped to develop new and innovative tools. The company now sells steel online – something previously considered
 unfeasible or even
 unimaginable in this sector. The company’s vision is that the series of reforms will result in a shared steel-trading platform that holds supplier and customer data (cf. Steimel 2016).
)

Summary
 (
Smart data is produced when a large amount of data (big data) is organized into a structured format. It can then be used to generate information on which to build business models.
Having gone through this process of refining big data into smart data, it is then monetized as new smart products and smart services that can be combined on an individualized basis.
 If digital data is used and combined in new ways, it leads to the creation of disruptive business models. Smart data allows companies to anticipate and satisfy customer desires, even before the users themselves become aware of those desires. There is also a shift in progress from product-oriented to user-oriented business models – this requires companies to change their thinking, particularly the more traditional
ones
. For companies that wish to maintain or improve their (international) competitiveness, it is essential to take advantage of the opportunities presented by the Internet of Things. Such companies must
,
 therefore
,
 proactively overhaul their business models – in fact, they may even need to think and act disruptively themselves.
Intermediaries provide access to platforms that can quickly and easily connect suppliers and buyers, with intermediaries or agents even being able to gradually take control of customer interfaces.
)	
	

Digitalization and Disruption

 (
Intermediaries provide visibility, access
,
 and evaluations within the market. The
refore, they
 enable buyers to access previously unutilized resources. Intermediaries also help suppliers generate new orders. Their revenue stems from the commission they charge on the orders that they broker. The intermediary business model is popular with digital start-ups and the one most commonly deployed. Typical examples include delivery services, hotel booking platforms
,
 or consultant matching. One clear observation about intermediaries and intermediary platforms is that they are increasing the pressure that new players are exerting on the market. Examples include brokers and, in particular, the rapidly expanding comparison portals. Intermediaries are also creating a type of transparency – or at least the appearance of transparency – for end customers with their increasingly intelligent search engines. Customers can easily access these services at home or on the move.
)

Unit 3
Potential Opportunities for Smart Services

STUDY GOALS

After completing this unit, you will...

... understand the Business Model Canvas.
... understand and be able to use personas.
... understand and be able to map customer journeys.
... understand and be able to use domain-driven design.

DL-D-DLBINGSS01-L03

3. Potential Opportunities for Smart Services

Introduction
When it comes to smart services, it is important to identify potential opportunities early on and to think about both the present and the future when taking advantage of them. There are various tools available to help identify potential opportunities, including the Business Model Canvas, personas, customer journeys, and domain-driven design (DDD).

3.1 Business Model Canvas

Business Model Canvas

A company’s value-creation process is comprised of different components. These components can be analyzed, modeled, and documented using the Business Model Canvas.

 (
48
) (
Unit 3
)
 (
49
) (
Unit 3
)

Business Model Canvas
The Business Model Canvas is a method for summarizing, visualizing, and developing business models.	Comment by David Stockings: I am not quite sure if the difference between the in-text "Entwicklung" and definition "Weiterentwicklung" is intentional.

The Business Model Canvas is a method for summarizing, visualizing and enhancing business models. It was first proposed in 2004 by Alexander Osterwalder as part of his dissertation at the University of Lausanne (cf. Osterwalder 2004). The purpose of the Business Model Canvas, he explained, is to develop a “shared language” for “describing, visualizing, assessing, and changing business models” (cf. Osterwalder 2004; Osterwalder/Pigneur 2011; Weitekamp 2016).	Comment by David Stockings: This is actually all one quote in the English version of this publication. It is the subheading of the first chapter. It was published in 2010 though, so I assume it is a later translation and the reference would need to be changed if quoting directly from it.	Comment by David Stockings: "Gemeinsame Sprache":
In BMC: "shared language"
In DDD: "ubiquitous language"

The Business Model Canvas outlines nine building blocks for a business model’s success (cf. Osterwalder 2004; Osterwalder/Pigneur 2011; Weitekamp 2016):

· Customer Segments: The Customer Segments building block summarizes groups like users or subscribers, in other words, paying customers. It includes any and all people or organizations that the start-up intends to create value for.
· Value Propositions: This building block looks at the start-up’s Value Propositions, with the assumption there is a separate Value Proposition for each Customer Segment. Value Propositions are how the company responds to the needs of each Customer Segment in the form of a coordinated combination of products and services.
· Channels: The Channels building block relates to the individual channels and touchpoints through which the start-up in question communicates with its customers and conveys the value that it proposes.
· Customer Relationships: The Customer Relationships building block describes what forms of engagement the start-up intends to establish with customers. Does it plan to create a community? Does it anticipate providing personalized service and advice? Does it intend to provide automated services, for example?

Potential Opportunities for Smart Services

· Revenue Streams: The Revenue Streams building block examines what pricing strategies the start-up intends to implement in order to generate income and, therefore, new value for the company.
· Key Resources: The Key Resources building block relates to the resources and infrastructure that the start-up requires in order to offer its product or service. It also asks which items are absolutely essential to the business model.
· Key Activities: The Key Activities building block relates to what central activities are required in order to offer the product or service.
· Key Partners: The Key Partners building block looks at what resources the start-up must source from external suppliers and what Key Activities need to be outsourced. The start-up’s Key Partners are understood here as the companies and organizations that support the start-up.
· Cost Structure: The Cost Structure focuses on the start-up’s overarching financial plan.

In the Business Model Canvas, the building blocks of the business model are intertwined, thereby illustrating the network of relationships that exists within it. A template poster can be used to work with the Business Model Canvas, particularly for the visualization stage. This is provided under a Creative Commons license and can be printed and hung up on the wall. The individual ideas and approaches can be written on post-its and stuck onto the poster. They can be moved and swapped around over the course of the planning process. Drawings and different colors can also be used. Multiple “canvases” can also be created to present alternative ideas (cf. Weitekamp 2016; Osterwalder 2004; Osterwalder/Pigneur 2011).

Although the Business Model Canvas cannot replace an actual business plan, it can act as a useful supplement, helping the members of start-ups to avoid getting lost in lengthy design processes. Moreover, it provides an overview of the relevant factors and helps determine if all of them have been fully taken into account. Therefore, it can help identify any unresolved weaknesses in the business model. Even if a start-up does not yet have its own business plan, the Business Model Canvas enables founders to sort through and select their own ideas, and to use this as a basis on which to establish and develop a sort of basic framework for their own business model. But it is not just start-ups that use this method – established entrepreneurs also use it to evaluate and revise their business fundamentals. A background in economics is not always essential in order to utilize the method. It is also used in the not-for-profit sector, for example, by universities or for developing personal goals and projects (cf. Osterwalder 2004; Osterwalder/Pigneur 2011; Weitekamp 2016; Faltings 2018).

[image:]

Potential Opportunities for Smart Services

3.2 Personas

Digital transformation is also bringing about rapid and extensive changes in the business and working world, including in communication with customers. When it comes to communication, however, the biggest successes are not based on big data or algorithms. In the digital era, it is not – as is often assumed – analytics and mathematics that yield results. An understanding of human nature and empathy are far more important. Multi-sensory communication provides a means of going far beyond words, images, and stories. Touchpoints are points of communication between providers and customers, and they can be analyzed and optimized. Choosing the right ways of communicating is essential to succeeding in the digital present and future (cf. Schüller 2016, p. 11ff.).

A persona is a fictional representative of a customer group, one that combines all of that group’s characteristics, expectations, and practices. When taking a persona approach, the anonymous mass target group is replaced by a human figure. This enables users to visualize how that person thinks and feels (cf. Schüller 2017).

Empathy is an essential prerequisite for creativity, and this is where personas come in useful. For example, personas allow employees in non-customer-facing positions to see and understand the people behind the order number, customer number, account reference, etc. In the context of digitalization, with its processing of algorithms and data, personas can help bring data packages to life, to an extent (cf. Schüller 2017).

For example, when drafting the text for a mailshot, it can be helpful to imagine that the relevant target person is actually physically sitting in front of you. If the person writing the text does not know the recipient personally, it can be helpful to give them a name and a face. There are six key elements to a persona (cf. Schüller 2017; Schüller 2016):

· Element 1 – Name and photo: The first element focuses on the name and the photo. The initial question is what a typical representative of the target or customer group looks like and what their name is. A drawing can also be used instead of a photo. Using photos of real people – from picture databases, for example – often defines a person too specifically.
· Element 2 – Background information: The background information element includes the persona’s age, gender, hometown, profession, family relationships, income, hobbies, and other interests.
· Element 3 – Statements: The third element may include written statements that this persona would typically identify with, for example. Keywords can also be listed to represent their values, positions, views, and attitudes. Typical brands can also be associated with the persona.

Touchpoints
These are the points of contact between the supplier and customer.

Personas
Fictional representatives of a customer group are referred to as “personas”. They group together typical characteristics, expectations, and practices.

· Element 4 – Expectations/goals: This element focuses on what the persona wishes to achieve by purchasing or using a product or service. What problems do they wish to resolve? What benefits do they wish to receive? What feelings could be associated with the purchase? What fears might they have in this regard? What would inspire enthusiasm in this persona?
· Element 5 – Buying process: The buying process element is based on how that persona buys products or services, what their customer journey looks like, in what ways and through which channels they wish to receive information, who influences them, how important an offline/online presence is for this persona, and what the most important touchpoints are.
· Element 6 – Ideal solution: This element focuses on the question of what the ideal product or service solution (might) look like from this persona’s perspective.

3.3 Customer Journeys

Customer journey The customer journey refers to the individual steps that the customer takes when approaching the company, or how they proceed through the touchpoints, i.e., how they encounter and interact with the company.

A carefully thought-out product or service in itself does not suffice to ensure customer satisfaction. In fact, every contact a (potential) customer has with a company can have a decisive impact on the future of the relationship. It is not about the individual points of contact or touchpoints, but rather increasingly about the customer journey as a whole. Therefore, three key questions for mapping the customer journey exist:

· Which steps has the customer passed through, for example, before calling a call center?
· How long did they have to spend on the website in order to find the information they needed about a product?
· What is the critical factor (in customer service) and what does it involve?

In previous years, the focus was on process efficiency, throughput times, and costs. Today, however, it has shifted to the customer experience, and particularly to analyzing and understanding it. In this context, the following questions can be used to identify key issues relating to customer satisfaction (cf. Henn 2017):

· At what points or where does the customer experience frustration?
· Where and in what situations does the customer get lost?
· Which of the company’s statements or explanations are misleading or inconsistent?
· At what points in the journey does the customer spend a disproportionate amount of time? How long is a disproportionate amount of time for the customer?

Potential Opportunities for Smart Services

Customer Journey Mapping

Customer journey maps are graphical representations of all of the customer touchpoints, including all their positive/frustrating experiences. These representations can act as both a helpful supplement to and expansion of methods such as service blueprinting. In service blueprinting, the focus is on thinking through the processes. However, not enough attention has been paid to customer requirements so far. These two methods are currently at a stage where they could be enhanced. For example, they could factor in the customer’s prior knowledge and the supplier’s knowledge, along with the systems that are necessary to support the process steps. The following aspects are essential in order to understand the customer journey and provide a positive customer experience (cf. Henn 2017; Pninheiro/Manhães 2013):

· Understanding of the customer’s prior knowledge.
· Understanding of the context in which the customer acts,
· Understanding of the touchpoints that the customer has already passed through,
· Understanding of the knowledge and systems that are required at each individual touchpoint,
· Understanding of the persona-specific expectations and requirements.

The following figure showing the service design process provides an illustrative example of the customer journey.

[image:]

The goal is to integrate the customer’s prior knowledge and the supplier’s knowledge into the customer service processes. If customers are not aware of a new product or a service innovation, it can be helpful to lay out different paths through the customer journey. This is to help ensure that relevant requirements are met. There is a close connection between a company’s products and services and the customer experience. This is true whether the customer is using a product, engaging with customer service, or making an inquiry. From the customer’s perspective, the overall outcome can only be	Comment by David Stockings: Probable ST error: neuen Produkt oder einer Ser- vice-Innovation

Potential Opportunities for Smart Services

positive if the products, services, and customer services are all optimized. Here, critical factors include simplicity, time savings, process effectiveness, and the rate at which issues are settled or resolved. In the context of digitalization, another factor is relevant: intelligent networking of services and processes. Today the defining factor of new service offerings, platforms, and systems is “that they solve a single problem or, at the very most, a smaller bundle of problems” (Henn 2017; cf. also Pninheiro/Manhães 2013).

3.4 Domain-Driven Design

Eric Evans is the originator of the term “domain-driven design” (DDD) (Evans 2003). Domain-driven design is an approach to designing complex project-oriented software driven primarily by application domains (cf. Lobacher 2010, p. 5).

Domain-driven design (DDD) is far more than a collection of design patterns. It is more of a development philosophy. It does take a certain amount of time to let go of existing viewpoints and ways of thinking and shift towards a new DDD-based perspective (cf. Priebsch 2016).

The two groups involved in the software-development process have different understandings of domain-specific concepts, and this is the main reason that their ideas diverge (cf. Lobacher 2010, p. 10):

· User/customer,
· Application developer/service provider.

The two key assumptions in domain-driven design are (cf. Lobacher 2010, p. 6)...

· That the key focus of software design is the core domain and domain logic.	Comment by David Stockings: "Fachlichkeit" translated (throughout) as "core domain" per:
https://www.dddcommunity.org/learning-ddd/what_is_ddd/
And
https://www.domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf

And also Wikipedia:
https://en.wikipedia.org/wiki/Domain-driven_design
· That designs of domain relationships should be based on a model of the domain.	Comment by David Stockings: This is the same as the way it is phrased on the German Wikipedia article on DDD, so I assume it comes from a key ressource, but "fachliche Zusammenhänge" does seems a slightly confusing way of saying it. I assume "fachlich" in this context refers to the "Fachlichkeit"/"domain".

The second principle according to the DDD Community is "Base complex designs on a model", but there are three principles there instead of two, so perhaps it is somewhat outdated.

Implicit relationships should be made explicit.

Instead of starting out with the MVC framework, it makes more sense to concentrate on the core domain and less on the technical aspects (cf. Priebsch 2016). Designers using this model should not focus on the technical details too early, and it is essential that they speak to the customer in their domain language – under no circumstances should the customer be confused through the use of technical terminology. The key idea that the

Domain-driven Design (DDD)
DDD is used to
design complex project-oriented software. It is a set of design patterns and a type of development philosophy.

MVC framework
The MVC (model-view-controller) model is an architectural pattern for breaking a piece of software down into the data model, how it is presented, and how the program is controlled.

Domains
A domain is a delimited problem area, specialist zone, business field, or area of deployment. Platforms are leading to the creation and development of fully automated
marketplaces.

core domain should be the focus of the software development process (domain-driven design) applies primarily to developing complex systems (cf. Priebsch 2016).

Domain and Model (Domain Model)

A domain is a delimited problem area, specialist zone, business field, or area of deployment. A unified understanding needs to be developed between the following groups:

· Domain experts and
· Application developers.

A model is a simplified description of reality created for a specific purpose (cf. Lobacher 2010, p. 12ff.).

Modeling is an important process that involves domain experts (customers) and service providers (PMs or programmers). It is an iterative (i.e., repeating) and agile process. It results in the creation of a model (cf. Lobacher 2010, p. 15).

Core component of the modeling process
The core component of the modeling process is a ubiquitous language (UL), i.e., a shared or common language. It is essential that everyone speaks this language, particularly all team members, managers, customers, etc. It underpins all of the project’s activities and results and also acts as the namespace for all of the artefacts in the model. The ubiquitous language is a particularly important tool for successfully establishing a uniform domain model. This model, established using – among other things – the ubiquitous language, must then be implemented. An interdependent three-way relationship exists between the ubiquitous language, the model and the implementation. This means that any change within one of these factors simultaneously causes or is associated with changes in all of the other factors. The ubiquitous language can, in principle, be multilingual. However, English is generally preferred. The ubiquitous language is understood as a consulting process (cf. Lobacher 2010, p. 16f.).	Comment by David Stockings: This term is not explained anywhere.

Ubiquitous language (UL) modeling
The modeling language is normally used to create a diagram (UML – ubiquitous modeling language). This combines the characteristics, functionalities, and relationships of the relevant components of the problem area into objects and lays out the relationships between them. The diagram generally contains notes or keywords relating to posting, blogging, tagging, and content (cf. Lobacher 2010, p. 19).

Potential Opportunities for Smart Services

[image:]

Domain object
Evans makes an important distinction between the model elements based on whether an object has an identity (cf. Evans 2003). Objects need to be identifiable, i.e., it needs to be possible to distinguish one object from another. If an object is identifiable, it can also be retrieved later, so that it can be reused for subsequent operations, e.g., people, events, accounts, etc. There are other objects that only represent a characteristic, e.g., colors, tags, etc. These objects are defined through all of the characteristics (cf. Lobacher 2010, p. 22).	Comment by David Stockings: Please check that this sentence retains the intended meaning.

Entity
The process starts by looking at the most important patterns, which are entities, i.e., (persistent) objects with an identity. These could be, for example, people or customers with unique identities (cf. Priebsch 2016).

First, every entity is allocated an ID object. In the following example, the PersonId is based on a Universally Unique Identifier (UUID). (It is assumed that a corresponding object exists.) The person’s class and other code sections also depend on the UUID. UUID is one method for implementing the detail of the PersonId. In another possible implementation of the PersonId, an auto-increment value in the database could be used as the identifier, for example (see Listing 1) (cf. Priebsch 2016).	Comment by David Stockings: The use of "Code" in the ST is a little inconsistent - it is sometimes used the same way as in English, but also sometimes to refer to sections of coding (e.g. the section of code that looks up a price).

Universally Unique Identiﬁer (UUID)
A Universally Unique Identiﬁer (UUID) is a standard for identifiers in software development. Its purpose is to allocate a unique designation to a piece of information in distributed systems without having to implement a centralized coordination
system.

[image:]

Each person also has other attributes and behaviors. The focus in domain-driven design is on behavior rather than on data. When applying this approach, methods that use names do not have any getters or setters. Instead, they describe the behavior of the object from a business perspective (cf. Priebsch 2016).	Comment by David Stockings: "business" seems to have quite a specific meaning in DDD:
https://en.wikipedia.org/wiki/Business_domain

When using entities, the idea is not to create an all-encompassing model. For example, a person may be an employee, customer and/or business partner, and in a complex system, the same person can have multiple roles. A key principle of domain-driven design is that these differing elements should not be represented in a single class. Instead, multiple models should be created, resulting in a lower degree of complexity. The persistence infrastructure of the application is used to ensure that for entities there is only instance of each ID in the memory. This is to prevent one person in the system from having two or more – potentially varying – statuses and, therefore, to avoid all of the ensuing undesirable knock-on effects (cf. Priebsch 2016).

Potential Opportunities for Smart Services

Value objects are objects that cannot be identified, i.e., they do not have any identity of their own. Examples include customer or supplier addresses. This distinguishes them from entities, which are objects that can be identified. Entities do have their own identity, for example, a customer. Services are functions that are not associated with one object or that involve the handling of multiple objects, e.g., a transfer between two accounts (cf. Lobacher 2010, p. 23f.).

Object lifecycle
The following figure illustrates the lifecycle of an object in real life compared to its lifecycle in domain-driven design.
[image:]

Repositories
Technical details (of the persistence) must not intrude into the UL. Repositories are created to handle the technical details and are used to load an entity. In DDD, repositories are part of the domain, rather than a component of the persistence infrastructure. They can be best understood as an interface, and they make creating mock-ups for testing easier. (For the sake of simplicity, no interfaces will be included in the following listings.) The number of ways that a repository can be accessed should be kept to a minimum. The following listing (Listing 2) provides one example of an access method (cf. Priebsch 2016).

[image:]

The factory method(s) used to generate an entity can also be directly incorporated into the repository (Listing 3). In this case, no specific add() method is required in order to add an entity to the repository (cf. Priebsch 2016).
[image:]

One of the repository’s key functions is to manage the identity of entities. It acts as a sort of in-memory-cache for objects. If an object not yet held in the memory is requested, the object is loaded. If, on the other hand, the object is already available in the memory, the repository returns a reference to it instead. This prevents multiple copies of a single or identical person from being held in the memory. Another key function of the repository is to store changes to objects, for example, via a commit method (cf. Priebsch 2016).

Potential Opportunities for Smart Services

Factory
In DDD, factories are also part of the domain, and they are used to create objects. An abstract factory can be used in order to dissociate the call code from the specific class name. If the generating object has dependencies, or the generation process is complex, a factory object known as a “dependency injection container” or a “builder pattern” can be used. Factory methods can be used in order to dissociate code from objects. The following example (Listing 4) demonstrates a static factory method (cf. Priebsch 2016).
[image:]

Value Objects
Value objects are important patterns/concepts in domain-driven design and include types such as a “money object”. Money is not used as integers or floating point figures in the code. In business applications, a money object is used instead. This makes it easier to convert different national currencies. Here, a money object encloses all information, such as two different national currencies, into one object. This is illustrated in the example (Listing 5) using factory methods (cf. Priebsch 2016).

[image:]

The following example (Listing 6) shows how sums of money can be compared.

Potential Opportunities for Smart Services

[image:]

Value objects are used where there are multiple interrelated pieces of information. This means that not only sums of money can be compared, but so, too, can other units such as weight, measurements, and so on. Value objects are also used for single pieces of information such as plausibility tests, time recording, etc. This helps to avoid code duplication and errors (cf. Priebsch 2016).

Value objects need to be immutable, and their status must never be changed after they are generated. If a new status needs to be applied, appropriate methods are used to return a new object instance, as illustrated in the example (Listing 7) (cf. Priebsch 2016).
[image:]

Unlike entities, value objects have no identity. As many instances as necessary can be generated, and as many attributes as needed compared. Generally, a method like equals() or isEqualTo() is used to define the details of the comparison to be made. The decision about whether to use a value object or an entity in a given situation is not simply a technical one. The core domain is far more of a crucial factor (cf. Priebsch 2016).

Aggregate
An aggregate is an object structure consisting of an entity and additional objects. An aggregate root acts as an entry point that provides the user with an API to access the entire aggregate. Objects contained within an aggregate do not necessarily need to have their own universally unique ID – a locally unique ID is sufficient. Objects within an aggregate can only be modified via the aggregate root. An aggregate also represents

Potential Opportunities for Smart Services

the smallest unit that can be loaded by the persistence. The scope and structure of an aggregate depend on the core domain, and the aggregate’s task is to ensure consistency. It also needs to be able to execute at least one business-relevant process autonomously. The aggregate contains all of the data it needs in order to ensure compliance with all of the relevant business rules for a usage case. The example (Listing 8) illustrates an aggregate object for a person. The premise of the example is that the aggregate object’s task is to ensure that any one person can only open a limited number of bank accounts (cf. Priebsch 2016).
[image:]

In domain-driven design, the purpose of an aggregate is to ensure compliance with the business rules and, therefore, to ensure consistency. Any (data) redundancy does not present any issues in this context. The communication generally takes place via messaging (cf. Priebsch 2016).

Services are another important design pattern in domain-driven design. A service encapsulates a functionality that cannot be unambiguously allocated to an entity or an aggregate. Services are less about technical services, such as sending emails, generating PDF documents, etc., and more focused on determining product prices, potentially factoring in customer groups, rebates, etc., or a credit rating from an external service. However, it is not always possible to unambiguously determine what a service is. Similarly, it is not always possible to clearly delimit what functionality should be allocated to an entity or aggregate (cf. Priebsch 2016).
[image:]

Domain-driven design offers the following advantages (cf. Lobacher 2010, p. 32):

· Improved understanding of the domain,
· Clear structuring of the codes,
· Elegant, neat code,

Potential Opportunities for Smart Services

· Code understandable for anyone,
· Ability to handle significant complexity,
· Clear separation of responsibilities,
· Simple to extend,
· Shorter time-to-market (TTM).

DDD in TYPO3 FLOW3/Extbase

· FLOW3: The FLOW3 architecture is based on DDD. It is the first PHP framework to have a fully DDD-based implementation (cf. Lobacher 2010, p. 34).
· TYPO3: Extbase & Fluid – since TYPO3 4.3, the system extension Extbase (Jochen Rau) has been part of the core, together with Fluid (Sebastian Kurfürst), and downport of FLOW3 DDD concepts. The upwards compatibility following the implementation of FLOW3 ensures that it is future-proof (cf. Lobacher 2010, p. 35).	Comment by David Stockings: As far as I can tell, 'downport' is not another extension, it is a description of where the system extension Extbase sits in the architecture.

Domain-driven design (DDD) is far more than a collection of design patterns. The patterns it describes act as a prerequisite for the development of a successfully domain-driven piece of software (cf. Priebsch 2016).

Summary
 (
A company’s value-creation process is comprised of different components. These components can be analyzed, modeled
,
 and documented using the Business Model Canvas. The Business Model Canvas is a method for summarizing, visualizing
,
 and developing business models.
A persona is a fictional representative of a customer group, one that combines all of that group’s characteristics, expectations
,
 and practices.
The customer journey, i.e.
,
 the individual steps that the customer takes, represents how the customer approaches the company or how they engage or interact with the company at all of the touchpoints.
Domain-driven design (DDD) is used to design complex, project-oriented software. It is a
set of
design pattern
s
 and a type of development philosophy.
)

Unit 4
Development and Specification of Smart Services

STUDY GOALS

After completing this unit, you will...

... be familiar with modeling the entire context of a system.	Comment by David Stockings: Added for clarity, see intro to chapter.
... understand the modeling of physical processes.
... be able to follow the modeling of technical interfaces.
... understand and be able to use tools for API specification.

DL-D-DLBINGSS01-L04

4. Development and Specification of Smart Services

Introduction
Various modeling approaches can be used for the development and specification of smart services. This includes modeling the system context, modeling specialist processes, modeling technical interfaces, and using suitable tools for API specification.	Comment by David Stockings: I don't believe "fachlich" is being used in the same way as in the previous section on DDD.

4.1 Modeling the System Context

 (
80
) (
Unit 4
)
 (
83
) (
Unit 4
)

Gartner Hype Cycle
The Gartner Hype Cycle presents the typical progression of expectations surrounding new technologies or a new Industry 4.0 and the IoT technological field in five phases.

The Gartner Hype Cycle presents the typical progression of expectations surrounding new technologies or a new Industry 4.0 or Internet of Things technological field. The cycle passes through several phases (cf. Gartner 2016):

· Phase 1: Technology/innovation trigger,
· Phase 2: Peak of inflated expectations,
· Phase 3: Trough of disillusionment,
· Phase 4: Slope of enlightenment,
· Phase 5: Plateau of productivity.

The following figure shows the Hype Cycle for 2015 according to Gartner.

Development and Specification of Smart Services

[image:]

What the Gartner Hype Cycle shows is that the Internet of Things is one of the most important components of Industry 4.0 and is currently in the second phase, i.e., the peak of inflated expectations. In other words, Industry 4.0 is currently surrounded by inflated expectations, and as such, it is difficult for companies to fulfill the expectations that customers have of Industry 4.0 solutions at the moment. Many companies still do not have a consistent understanding of Industry 4.0 and the associated business models (cf. Echterhoff et al. 2016). This means it is difficult for companies to assess their own progress toward implementing Industry 4.0 and, therefore, to focus their activities accordingly (cf. Haggenmüller et al. 2016).

A descriptive maturity model enables companies to categorize their progress towards implementing Industry 4.0. The following figure illustrates one maturity model, specifically the Connected Product Maturity Model (cf. Lee 2014).	Comment by David Stockings: See comment in graphics file.

Development and Specification of Smart Services

[image:]

Note that the characteristics described in levels 5 and 6 of the maturity model in particular represent an especially advanced form of Industry 4.0. Within this model, Industry 4.0 means far more than simply automation and management of manufacturing processes. Specifically, Industry 4.0 is characterized by the innovation of fully integrated and comprehensively networked product-manufacturing-service systems.

There is already a high degree of automation in many areas of manufacturing. However, there is as yet no overarching networking of manufacturing plant and assembly phases (cf. Echterhoff et al. 2016; Haggenmüller et al. 2016).

Smart Service Development Phases

Smart services are developed in development phases. The development process extends from the vision through to the market deployment of the developed service. The company Felss serves as a useful example here. At Felss, for example, smart services are developed in five steps (cf. Haggenmüller et al. 2016):

· Development phase 1: Target setting,
· Development phase 2: Designing a smart service,
· Development phase 3: Prototype construction,
· Development phase 4: Design validation,
· Development phase 5: Customization for specialized area.

The following figure shows the process of developing smart services using a phase milestone model, which passes through individual phases.

Development and Specification of Smart Services

[image:]

Phase 1: Target setting
The first phase involves looking for new solutions that can be used to comprehensively design, optimize, and manage complex processes. This is to be carried out by the users themselves, based on a collection of data, which should be used in an intelligent and targeted manner in order to increase efficiency. Smart services (or intelligent services) are integrated into the service offering to enable customers to use the data for their individual needs. The products should be more effectively integrated into the value-creation chain using digitalization. The idea is to innovate the product experience using the intelligent services (cf. Haggenmüller et al. 2016).

Phase 2: Designing a smart service
The second phase is to design the smart service. For example, ideas can be developed in creativity workshops for the “Development and Innovation” department. Process analyses reveal what information is required for those processes and how it is used. Different tools can be used to address the relevant target groups. For example, developers use “smart design”, whereas production managers use “smart product management”. This yields a centralized and comprehensive collection of data, which can be used as the basis for evaluations. The data is comprehensively analyzed and the entire process chain is optimized. The idea is to get closer to truly making the “smart factory” a reality. The following figure provides an overview using the example of Felss’ smart services (cf. Haggenmüller et al. 2016).
[image:]
Phase 3: Prototype construction
The third phase is to begin drawing up and detailing the smart services and programming the initial software and analysis prototypes. The prototypes are networked with the sensors or test machines, so that tasks (including new ones) can be processed and completed autonomously on the machines. For example, employees can program and design smartphone apps on their own (cf. Haggenmüller et al. 2016).

Development and Specification of Smart Services

Phase 4: Design validation
The design can be validated via live presentations or customer interviews at trade fairs, for example. The customers’ opinions are then analyzed, and the feedback is used to improve the smart services.

Phase 5: Customization for specialized areas
In the fifth phase, developers can concentrate on the actual implementation and improvement of – to begin with – three to five relevant smart services that have been prioritized by customers in the surveys. Multiple elements of the smart service development process can take place in parallel. When planning the project, it can be helpful to establish a roadmap that lays out the subsequent steps in detail. The main questions are “When do any required software and hardware elements need to be available?” and “What technical requirements (e.g., relating to the machines) need to be met to achieve this?”. The technical development takes place in parallel – for example, the required sensors and interface packages are adjusted for industrial use. The next step is to put a fully networked machine into permanent use in the industrial environment, for example, in the form of a field test with customer feedback. The knowledge gained from the field test can then be fed back into the smart service software- and hardware-development process. Once this is complete, the solution is implemented in cooperation with strategically significant customers (cf. Haggenmüller et al. 2016).

This approach can also be used to accelerate the development of new business models. A smart service package is about more than simply improving a service or optimizing a process. The services that accompany the product can be used in line with any varying business models. The development of smart service business models must focus on achieving noticeable benefits for the customer (cf. Haggenmüller et al. 2016).	Comment by David Stockings: I think this is the most likely interpretation of this sentence. Please check if the intended meaning has been retaíned.

4.2 Modeling Specialist Processes
The complexity of smart services can be made more transparent by modeling lifecycles. Developers of smart services need to be able to clearly identify the effects associated with operating the service. To do this, they require a solid understanding of the relationships that exist between the individual product, software, and service components of a smart service. The goal here is to improve how that complexity is handled. Modeling the lifecycles of smart services for different stakeholders can be very useful here (cf. Wellsandt/Anke/Thoben 2016, p. 233ff.).

Wellsandt/Anke/Thoben (2016, p. 233ff.) conducted an evaluation of a model of the processes and structures involved in delivering smart services for networked products. To do this, the characteristics of smart services for networked products were identified. This meant examining the system components and the importance of lifecycles in order to identify goals for the modeling process. Next, they described a smart service for the automated provision of consumables – using the example of 3D printers –

and modeled it using the Lifecycle Modeling Language (LML). Finally, the model was assessed in terms of how well it fulfills its goals and can provide useful conclusions for various stakeholders.

Hybrid service
bundle Smart services carry out CPS-supported services for technical products.

This process enabled them to draw conclusions about how suitable lifecycle models are for smart services in the design processes and to identify further research requirements (cf. Wellsandt/Anke/Thoben 2016, p. 233ff.). Smart services can be seen as hybrid service bundles that carry out services supported by cyber-physical systems (CPS)
for technical products (cf. Schäfer/Jud/Mikusz 2015). When it comes to mapping lifecycles, the system components used to provide smart services are critical. The following table shows the elements that make up a generic CPS intended to support smart services (cf. Wellsandt/Anke/Thoben 2016, p. 233ff.).	Comment by David Stockings: Potential ST error: eines allgemeinen CPS für die Ausprägung eines CPS

	Manifestations of CPS Elements Required for a Smart Service – Generic CPS Elements	Comment by Johnson, Lila: Please recreate any editable tables directly in the translated document. These are not included in the separate graphics document.

	Generic CPS element
	Manifestation of the CPS element for a smart service

	Physical process
	Local physical function of the product

	Sensors and actuators to measure and/or influence physical processes
	Various manifestations depending on the product in question, e.g., sensors to detect level of fullness, temperatures, pressure, and actuators that can flip switches or activate controls

	Embedded systems
	Embedded systems for controlling the physical product using embedded software and a communication module

	Digital networks
	Various technologies used to connect the embedded system and operator platform,
e.g., via radio waves, WLAN, or company networks

	Use of globally available data and services
	Operator’s (cloud-based) software platforms and, if applicable, additional web services such as electronic marketplaces

	Multimodal human-machine interfaces
	Various manifestations enabling users to interact with the product itself, via mobile apps or online applications

Development and Specification of Smart Services

	Generic CPS element
	Manifestation of the CPS element for a smart service

	Management processes
	Management of the service (posting, configuration, charging)

	Coordination processes
	Provision of the service, performance management

	Logistical processes
	Delivery of physical (e.g., replacement parts, consumables) or digital components (e.g., software updates)

Lifecycles in Smart Services

A lifecycle can be defined as distinct sequential periods of time that characterize a product’s or service’s life. The lifecycle can divided into flow-based phases. It can be divided into the following three phases (Kiritsis 2011):

· Beginning-of-life (BOL),
· Middle-of-life (MOL),
· End-of-life (EOL).

These phases can, in turn, be broken down into processes, e.g., material, energy, and information flows throughout the lifecycle (cf. Herrmann 2010). An example product lifecycle model is shown below.

[image:]

The provider of a smart service is generally responsible for the entire lifecycle of the underlying service system. Deliverables and services need to be developed as individual components, but they must be able to cooperate in an integrated manner. In addition, the components of a smart service all have different lifecycles. For example, there may be different versions of one component, such as with a software platform, for instance (cf. Wellsandt/Anke/Thoben 2016, p. 237ff.). Similarly, alterations to the lifecycle of individual components can arise from new customer requirements, legislative changes, or the availability of new technologies (Wolfenstetter et al. 2015). For this reason, all of the lifecycles laid out in the representation must be considered simultaneously.

The following examples show what effects changes in the lifecycle of one component involved in the provision of a service can have (cf. Wellsandt/Anke/Thoben 2016, p. 233ff.):

· A fault in a product leads to the product being exchanged and to a logistical service being necessary in order to deliver, return, and reconfigure the service (adaptation to new hardware).
· A fault in an embedded system leads to the corresponding hardware being replaced, the embedded software being updated, or to the old configuration being replicated (where the digital product identity needs to be maintained).
· A change in the service management process (e.g., through the introduction of subscription or prepaid models) requires the operator platform to be adjusted. In some circumstances, the customer may need to adjust the service configuration (choice of charging model), leading to an update to the embedded software.

Development and Specification of Smart Services

4.3 Modeling Technical Interfaces
An API is an interface, one that is provided by a software system to allow it to be incorporated into other programs. The abbreviation “API” was originally short for “application programming interface”. Often, however, the term is shortened to “programming interface” (cf. Behrendt 2018; Ding/Johnson 2006, p. 1–26).

“In computer programming, an application programming interface (API) is a set of subroutine deﬁnitions, protocols, and tools for building application software. In general terms, it is a set of clearly deﬁned methods of communication between various software components. A good API makes it easier to develop a computer program by providing all the building blocks, which are then put together by the programmer” (Laboissonniere 2018).	Comment by Anne Pabel: This quotation was already in English in the original version.

In a software system, an API, or interface, acts as a tool that allows other programs to connect to that system. This enables software developers to affect the system’s hardware, in order to operate a monitor or alter the data on a hard drive, for example. The software does not need to communicate directly with the hardware to do so – instead, the operating system acts as an interface. It does so by receiving queries from the programs via libraries and forwarding them to the hardware (cf. Behrendt 2018; Ding/Johnson 2006, p. 1–26).
[image:]
APIs are particularly relevant when using web services. Via the interfaces provided, developers can dynamically integrate any supplied content into their own program. This means that APIs can be used to exchange and further process data and content between different websites, programs, and content providers. APIs are also used to provide third parties with access to previously inaccessible data pools and groups of users (cf. Ding/Johnson 2006, p. 1–26; Behrendt 2018).

From a primarily technical perspective, APIs can be viewed as the machine equivalent of a user interface, with the difference that APIs have been optimized for use by humans and are, therefore, also “human-readable” (cf. Behrendt 2018).

An API is an interface adapted for use by software, and it is machine-readable. It provides clearly abstracted and structured access to the backend functions. In addition, data can be exchanged in a reduced format that is easy to further process. Web APIs include internal, external, platform, authentication and authorization APIs (cf. Behrendt 2018; Ding/Johnson 2006, p. 1–26).

For example, the YouTube API enables developers to search for videos with their desired parameters, e.g., name, length, etc. The API provides the results in the form an XML file. The response can be used for analyzing the developer’s own website, for example (cf. Behrendt 2018).

4.4 Tools Used for API Specification

Java SE/FX APIs

Up-to-date approaches for API specification can be found on the Oracle website, for example. These include the “Java Platform, Standard Edition & Java Development Kit Version 9 API Speciﬁcation” in the following sections (cf. Oracle 2018):	Comment by David Stockings: This is not my area of expertise, but it seems like there have been more recent versions of some of these:
https://www.oracle.com/uk/java/technologies/downloads/archive/

· Java SE: “The Java Platform, Standard Edition (Java SE) APIs deﬁne the core Java platform for general-purpose computing. These APIs are in modules whose names start with java.”
· JDK: “The Java Development Kit (JDK) APIs are speciﬁc to the JDK and will not necessarily be available in all implementations of the Java SE Platform. These APIs are in modules whose names start with jdk.”
· JavaFX: “The JavaFX APIs deﬁne a set of user-interface controls, graphics, media, and web packages for developing rich client applications. These APIs are in modules whose names start with javafx.”

Certain new features and supplements not previously included in version 8 have been added to the public review version of the Java 9 specification for Java SE 9 of 2017. These include “an extensive summary of all changes to API specifications, drafts of the Java Language Specification (JLS) and Java Virtual Machine Specification (JVMS), along with annotated versions of the Java 9 API specification and the Java Native Interface (JNI) specification, all of which differ from Java SE 8” (Schlosser 2017).

Development and Specification of Smart Services

JSON API

The JSON API specification allows sections of code to be reused beyond individual projects. The JSON API provides various advantages (cf. Otto-Wittes 2018).

JSON-based APIs have been made available through a large number of projects or are used by these projects, mainly in line with the RESTful principle. A combination consisting of JSON and REST is already in wide use, but there are slight differences between these APIs. However, the JSON API specification can reduce or remedy these differences. The teams working on the implementation of JSON have achieved varied results regarding the exact JSON structure, naming of REST endpoints, etc. This has led each team to design and build their own individual API based on those results. However, this is decidedly disadvantageous in terms of reusing code beyond individual projects. The JSON API specification solves this problem (cf. Otto-Wittes 2018).

API Explorer/OAS

Dynatrace’s APM specialists have developed an API explorer and an OAS specification (OpenAPI Specification) for their software (cf. Dynatrace 2018; Schlede 2018).

The OpenAPI specification is connected to the new API explorer for users of the Dynatrace software. OAS is a Linux Foundation Collaborative Project that defines a standard interface for REST APIs that works regardless of the programming language. Dynatrace offers an OAS specification for all Dynatrace API endpoints. This is what enables the company to provide the API explorer (cf. Dynatrace 2018; Schlede 2018).

The new features allow an OAS specification to be offered automatically for every Dynatrace-REST endpoint. The OAS specifications can be used to automatically issue API documentations, create an API explorer, and review new endpoints and outdated software areas (deprecations) (cf. Schlede 2018; Dynatrace 2018).

[image:]

Users can access the API explorer directly in the software’s dashboard. All available API endpoints are listed for the relevant Dynatrace environment. It provides a link to the “raw” OAS specification, which enables the user to call it directly using an OAS-compatible tool such as Swagger. Developers can use the explorer to develop and perform API calls. The Dynatrace API OAS specification is also available, which can be used to quickly access any desired language binding. The software also supports the creation of flexible combinations of different API calls using automatically inserted cURL commands. Developers can use these in bash scripts for the purposes of automation or in order to integrate Dynatrace API calls into third-party manufacturer tools (cf. Schlede 2018; Dynatrace 2018).

Microsoft Azure Portal – API Management Instance (APIM)

API Management Services
Developers can use the Azure portal in order to manually add an API to the API Management (APIM) instance. One common scenario where an empty API needs to be created and manually defined is when simulating API responses. For example, in order to create an empty API, “httpbin.org” (public test service) is provided as the backend API (cf. Microsoft 2017).

Developers need to complete the quickstart guide “Create a new Azure API Management service instance by using the Azure portal” first.	Comment by David Stockings: The name of this guide seems to have changed:
https://learn.microsoft.com/en-us/azure/api-management/get-started-create-service-instance

Development and Specification of Smart Services

Developers navigate to the APIM instance as follows (cf. Microsoft 2017):

· “Sign in to the Azure portal.”	Comment by David Stockings: The steps also seem to be different. See this guide:
https://learn.microsoft.com/en-us/azure/api-management/add-api-manually
· “Select ‘All Services’ from the top left of the screen.”
· “Enter ‘api’ into the search box.”
· “Click on ‘API Management Services’.”
· “Select your APIM service instance.”
[image:]

An API can be created as follows (cf. Microsoft 2017):

· “Select ‘APIs’ under ‘API Management’.”
· “Select ‘+ Add API’ in the left-hand menu.”
· “Select ‘Blank API’ from the list.”
· “Enter the settings for the API.”

[image:]

Functions that can be performed here include adding and testing (parametrized) processes, adding additional APIs, importing a backend API using the OpenAPI specification, importing the standardized XML representation of a SOAP API, etc. (cf. Microsoft 2017).

Summary
 (
The Gartner Hype Cycle presents the typical progression of expectations surrounding new technologies or a new Industry 4.0 and IoT technological field in five phases. The complexity of smart services can be made more transparent by modeling lifecycles. Developers of smart services need to be able to clearly identify the effects associated with operating the service. To do this, they require a solid understanding of the relationships that exist between the individual product, software
,
 and service components of a smart service. The goal here is to improve how that complexity is handled. Smart services can be seen as hybrid service bundles that carry out CPS-supported services for technical products.
An API is an interface, one that is provided by a software system to allow it to be incorporated into other programs. The abbreviation “API” was originally short for “Application Progra
m
ming Interface”.

Often, however, the term is shortened to
)

Development and Specification of Smart Services

 (
“programming interface”. Various tools and aids are available to developers to help with the API specification process. These include the Java Platform, the Standard Edition & Java Development Kit Version 9 API Speciﬁcation, the JSON API, API explorers, an OAS specification (OpenAPI Speciﬁcation) and the Microsoft Azure portal – API Management instance (APIM)/API Management Services.
)

Unit 5
Service Architectures

STUDY GOALS

After completing this unit, you will...

... understand the infrastructure/platform/software-as-a-service (SaaS) context.
... understand everything-as-a-service (EaaS).
... understand service-oriented architectures (SOA).
... understand and be able to use microservices.

DL-D-DLBINGSS01-L05

5. Service Architectures

Introduction
There are several approaches and models available for designing service architectures, all of which are underpinned by the infrastructure/platform context and the software-as-a-service (SaaS) model. Other approaches include everything-as-a-service (EaaS), service-oriented architectures (SOA), and microservices.

5.1 Infrastructure/Platform/Software-as-a-Service (SaaS)

 (
100
) (
Unit 5
)
 (
Unit 5
103
)

Software-as-a-service (SaaS)
This is a distribution model in which the software is hosted by a supplier or service provider and made available to users via a network.

Software-as-a-service (SaaS) is a distribution model and can be understood as part of the larger concept of cloud computing. In this model, the software is hosted by a supplier or service provider and made available to users via a network (typically the internet) (cf. Rouse 2018). In a software-as-a-service system, the customer can use the software application online for a fee (cf. o. V. 2018b). This fee is typically charged on a monthly or annual basis, but in principle, a pay-per-use model could also be applied.

Examples of SaaS include bidding for a Gameboy on eBay, ordering a book through Amazon, and completing a tax return on the computer using a piece of Datev software.

What unites all of these examples is that they involve the customer using a computer program without having to install any software on their own PC. The provider, e.g., eBay or Amazon, provides access to the program via an internet browser. This is called the
“one-to-many” principle, where a single solution can be used by multiple users at the same time. These solutions must ensure that any data a user enters via the screen mask is not mixed with other users’ data (cf. Lixenfeld 2008).

These sorts of one-to-many solutions have been around for a long time. However, deploying corporate software, such as customer relationship management (CRM) software, is a relatively new phenomenon.

Other cloud computing services include infrastructure-as-a-service (IaaS) and platform-as-a-service (PaaS) (cf. 1 & 1 Digitalguide 2018).

SaaS allows users to avoid having to invest in comparatively expensive hardware. All they need is an internet-enabled end device such as a PC, smartphone, tablet, iPad etc. The operating system of the device is not relevant when using SaaS, as the software actually runs in the background within the SaaS provider’s system. The only thing that the user needs to have on their device is a web browser that can transmit control commands when operated (cf. Stelzel-Morawietz 2010).

Service Architectures

[image:]

SaaS has become the dominant model for supplying software. One of the reasons for this is that the underlying technology for internet services and the service-oriented architecture have now had time to mature significantly. In addition, new development approaches, such as Ajax, are becoming increasingly popular. Many regions now have sufficient internet bandwidth to operate SaaS, which means that users can access the software all over the world. SaaS, the application service provide (ASP) model, and the software-on-demand model are all closely related (cf. Rouse 2018).	Comment by David Stockings: ST error:
Model Application Service Provider (ASP)

5.2 Everything-as-a-service (EaaS)
As digital transformation progresses, there is increasing discussion of “IT cloudification”. This is the “conversion of the IT architecture to cloud solutions” (Schaudel 2017). There is an accelerating shift towards “everything being provided as a service” (ibid.).

Everything-as-a-service (EaaS) can be defined as the “needs-based provision of IT resources. The costs incurred in connection with these resources are mainly associated with their usage, and there are usually no purchasing costs” (Fehling 2018).

Examples include Amazon Web Services, Google App Engine, Open Telekom Cloud, Salesforce, Adobe Creative Cloud, Ofﬁce 365, and many others.

Everything-as-a-service (EaaS)
This term refers to the needs-based provision of IT resources.

The most common services can be grouped together as follows (cf. Schaudel 2017):

· IaaS – Infrastructure-as-a-service (public/private/hybrid),
· SaaS – Software-as-a-service,
· PaaS – Platform-as-a-service.

IaaS – Infrastructure-as-a-Service

Infrastructure-as-a-service (IaaS) is at the core of cloud computing. As a solution, it appeals to users or companies that do not operate their own data centers or do not have their own internal company server but for whom data security is a priority. Companies can use these services instead of buying and operating their own expensive servers. As a result, renting an area within a data center can be a more cost-effective way of creating their own cloud. The supplier provides all of the necessary infrastructure and is responsible for the hardware and continuous maintenance. IaaS can be divided up into the three following forms (cf. Schaudel 2017):

· Public IaaS: This uses virtualization technologies that allow multiple users to share a service.
· Private IaaS: This also uses virtualization technology, but the server is specifically configured to the needs of one company. It is integrated into the company’s environment, meaning that this server is only available to that company. No other companies can use this server.
· Hybrid IaaS: A hybrid IaaS is a combination of public and private IaaS.

IaaS offers several advantages which can be summarized as the scalability of the infrastructure, the fact that the user only has to pay for what they actually require and use, and the absence of significant purchasing costs. However, it does come with the risk of becoming dependent on the service provider (cf. Schaudel 2017).

SaaS – Software-as-a-Service

The advantages of software-as-a-service (SaaS) can be summarized as lower purchasing costs, the fact that the software remains up-to-date, and the fact that there are no maintenance or subsequent costs. It does, however, come with the risk that the customer loses access to the software if the contract is canceled – this includes any previous versions of the software (cf. Schaudel 2017).

Service Architectures

PaaS – Platform-as-a-service

The platform-as-a-service (PaaS) model is particularly appealing to system architects and programmers.

As the tools used in development work change constantly and rapidly, keeping them up-to-date requires significant effort. This is where PaaS comes in, as it involves providing a company with constantly up-to-date databases, development tools, frameworks, and runtime environments. This means that the company, developer, or programmer does not need to create the entire infrastructure themselves. The process of doing so is outsourced (cf. Schaudel 2017).

The advantages of the PaaS model can be summarized as follows: Development times are shortened, development processes are standardized, and it provides access to a large number of APIs and plug-ins. However, the risks and disadvantages must also be factored in, for example, potential limitations imposed by APIs and programming models (cf. Schaudel 2017).

5.3 Service-Oriented Architectures (SOA)

Service-oriented architecture (SOA) has become a service-oriented paradigm in software development. This is particularly true in the context of developing and executing distributed business processes. SOA provides a way of creating complex, distributed specialist applications. It can be applied if a project involves building on a large number of web service functions or if legacy applications need to be integrated into the modern workflow (cf. Josuttis 2008, p. 15ff.).

SOA is a paradigm, i.e., a way of thinking or a concept, that can help establish a value system for large systems containing different areas of responsibility. SOA is, therefore, not so much a concrete architecture as a philosophy or approach that can lead to the creation of a concrete architecture. SOA is neither a clearly defined tool nor a framework. It involves making certain decisions when designing a software architecture (cf. Josuttis 2008, p. 15).

SOA’s purpose, like that of other IT concepts, is to improve the quality and flexibility of the software development process. It involves (cf. Josuttis 2008, p. 16f.)...

· Finding solutions,
· Storing data,
· Managing data,
· Automating (business) processes that use the data, and
· Identifying high-quality solutions promptly.

Service-oriented architecture (SOA) This is a paradigm in software development, particularly for business processes. Its purpose, like that of other IT concepts, is to improve the quality and flexibility of the software development process.

Flexibility, a clear organization, clear roles, and clear processes are essential here. SOA also incorporates these sorts of non-technical aspects (cf. Josuttis 2008, p. 17).

SOA is driven by (cf. Josuttis 2008, p. 17ff.):

· Distributed systems,
· Varied owners,
· Heterogeneity.

The following concepts are important in SOA (cf. Josuttis 2008, p. 21f.):

· Services,
· Strong interoperability,
· Loose coupling (flexibility, scalability, error tolerance).

The following SOA components are required (cf. Josuttis 2008, p. 23ff.):

· Infrastructure,
· Architecture,
· Processes,
· Governance.

Classification of Services

Services have different characteristics and can be defined in different ways. A fundamental classification of a service can be based on the following three criteria (cf. Josuttis 2008, p. 81):

· Basis services,
· Composed services,
· Process services.

The service layers and SOA development levels are defined on this basis.

Service Architectures

[image:]

SOA development level 1: Fundamental SOA
Introducing business services brings an architecture to SOA development level 1, known as “fundamental SOA”. Here, the user is able to access specialist interfaces from individual backends via an ESB, as illustrated in the following figure (cf. Josuttis 2008, p. 85).	Comment by David Stockings: I wonder if this is supposed to be "basis services"?

[image:]

SOA development level 2: Federated SOA
Composed services: SOA development level 2 is reached when composed services are added. This involves the first category of services, basis services or composed services, which consist of a combination of services created in a process referred to as “orchestration” (cf. Josuttis 2008, p. 87f.).	Comment by David Stockings: I assume this should be "Ausbaustufe", not "Austauschstufe".	Comment by David Stockings: Please check if the intended meaning has been retained here as the original sentence was a bit ambiguous.

Service Architectures

Federated SOA: Reached by combining basis services and composed services, the second development level of SOA is referred to as “federated SOA” or alternatively “network SOA”. This development level contains an additional layer for composed services, as the following figure illustrates (cf. Josuttis 2008, p. 89).	Comment by David Stockings: I assume this is the correct interpretation of this phrase. 	Comment by David Stockings: 'Schicht' not 'Sicht' in the ST, I assume, based on the diagram (i.e. the composed service layer is part of the orcherstration level.)
[image:]

An example of a composed service is a service that consistently alters the addresses for all backends. It calls the relevant business services (cf. Josuttis 2008, p. 89).

SOA development level 3: Process-ready SOA
Introducing process services brings an architecture to SOA development level 3, known as “process-ready SOA”. At this level, business processes running through multiple frontends can be managed, as illustrated in the following figure (cf. Josuttis 2008, p. 92f.).

Service Architectures

[image:]
Business processes can be interrupted by human interaction in some cases.

SOA Architecture Models

Various SOA-based architecture models have been created.

Logical architecture models
A logical architecture model prioritizes the technical or logical aspects of an SOA landscape, as illustrated in the following figure (cf. Josuttis 2008, p. 135f.).	Comment by David Stockings: The term used in the ST is "fachlich", but the rest of this section makes a distinction between "technische" and "logische" aspects, so I assume "technical" is the correct translation here.

Service Architectures

[image:]

SOA architecture model with logical and technical elements
The relevant relationships that exist within an SOA architecture model with logical and technical elements are illustrated in the following figure (cf. Josuttis 2008, p. 137f.).

Service Architectures

[image:]

Technical architecture model
A technical architecture model contains a technically driven layer, as illustrated in the following figure (cf. Josuttis 2008, p. 138f.).	Comment by David Stockings: Again, I assume "Schicht", not "Sicht", but it is difficult to be sure because I am not sure which part of the figure it is referring to.

Service Architectures

[image:]

There are various models available for creating an appropriate structure within a given SOA-based system landscape. Some of them focus more on a logical level, others prioritize technical elements. However, there is a certain contradiction here, because all of these aspects need to be taken into account. Successful management of an SOA-based system landscape regards technical considerations as implementation details. The landscape must be viewed from an organizational perspective, rather than following a logical or domain-oriented structure. Process services are generally referred to as “backend services”. These services do not communicate directly with the user. Accordingly, for frontends, the data used by applications is collected into different backends. This data is integrated into a separate workflow and only called when a process service is run or amended. After this, it no longer interacts directly with the user (cf. Josuttis 2008, p. 150). Efforts must be made to ensure that process services do not result in any errors. To achieve this, it is generally advisable to apply validation to frontend data and entries for typical transactions (cf. Josuttis 2008, p. 150).

5.4 Microservices

MicroservicesMicroservices are a way of modeling software. In this approach, modules are run as programs or their own processes. The microservices approach is based on the principle of modularization. Microservices allow work to be carried out in an uncoupled manner.

Microservices are a way of modeling software, within which large systems are broken down into small modules, in order to simplify the process of creating and developing software. Microservices use individual programs as modules, with these programs each carrying out their own processes. The microservices approach is based on the UNIX philosophy and is subject to the following requirements (cf. Wolff 2015, p. 2):

· A program should only complete one task and should do so correctly.
· Programs should and can cooperate.
· A universal interface (text streams) should be used.

There is no clear definition of a microservice. However, the following criteria are relevant: It is a modeling concept in which the services can be deployed separately from each other, they can be implemented in different technologies, and they each have their own data storage or separate area within a shared database. They are independent processes, may perform their own support services, and must communicate via the network or use protocols that support loose coupling, e.g., REST or messaging solutions. Microservices are distinct from deployment monoliths (cf. Wolff 2015, p. 2ff.). The following figure illustrates the main advantages of microservices.

Service Architectures

[image:]

These advantages argue in favor of adopting a microservices approach. However, the following challenges must also be taken into account (cf. Wolff 2015, p. 6):

· Hidden relationships,
· Difficulty of refactoring,
· Significant relevance of technical architecture,	Comment by David Stockings: Again, the ST uses 'fachlich' here.
· Complex operation,
· Complexity of distributed systems.

Summary
 (
Software-as-a-service (SaaS) is a distribution model. In this model, the software is hosted by a supplier or service provider and made available to users via a network.
Everything-as-a-service (EaaS) can be defined as the needs-based provision of IT resources.
Service-oriented architecture (SOA) is a service-oriented paradigm in software development, particularly for business processes. Its purpose, like that of other IT concepts, is to improve the quality and flexibility of the software development process.
Microservices are a way of modeling software. In this approach, modules are run as programs or their own processes. It is an approach based on the principle of modularization. Microservices allow work to be carried out in an uncoupled manner.
)

Unit 6
Integration Platforms

STUDY GOALS

After completing this unit, you will...

... understand the characteristics and purpose of integration platforms.
... understand and be able to use enterprise integration patterns.
... understand the fundamentals of external integration using Zapier and IFTTT & Co.

DL-D-DLBINGSS01-L06

6. Integration Platforms

Introduction
Integration platforms are hugely important to the development and success of smart services. Their characteristics and purpose are, therefore, just as important. This unit will look at enterprise integration patterns, which are useful and practical integration aids, and Zapier and IFTTT, which are pioneering approaches to external integration.

6.1 Characteristics and Purpose of Integration Platforms

Enterprise Application Integration (EAI)/Integration Platform – Business Bus

 (
140
) (
Unit 7
)
 (
Unit 6
123
)

Enterprise Application Integration (EAI)
EAI focuses on the integration of business functions across the entire company. These functions are distributed along the entire value-creation chain across varied applications on different platforms.
The idea is to link them all together into a single integrated data and business process system.

Enterprise application integration (EAI) is an approach to the integration of business functions across the entire company. These business functions are distributed along the entire value-creation chain across varied applications on different platforms. The idea is to link them all into a single integrated data and business process system in order to achieve integrated business processing via a network of internal company applications of different generations and architectures. A wide variety of interrelated methods can be used to accomplish this. These include data integration, in the form of an enterprise service bus (ESB), application integration, in the form of a message broker, or process integration, in the form of a process management tool (cf. Steinhaus 2015).

In addition to planning and methodology, enterprise application integration also involves the software required for integrating heterogeneous, autonomous application systems on a process basis. This means that external application systems can also be included, if necessary. EAI is a process-oriented approach to integrating different application systems into heterogeneous IT application architectures without having to make any changes to the implementation of individual business functions. All of the organization’s functional interfaces can be abstracted using adapters. Interface converters can be useful here (cf. Hohpe 2002, p. 1–36; Hohpe/Woolf 2003).	Comment by David Stockings: This term is not explained, but it has quite a specific meaning in programming:
https://www.cs.cornell.edu/courses/cs211/2006sp/Lectures/L08-Abstraction/08_abstraction.html

One important concept, or rather implementation, when it comes to integrating applications is the business bus, which can also serve as a collaboration protocol, and which involves the components that form part of a value-creation chain. The business bus goes by various other names as well, including “enterprise service bus” (ESB), “EAI backbone”, or “integration platform”.

The following figure illustrates where the integration platform/business bus is situated within the overall system.

Integration Platforms

[image:]
On the business bus or integration platform, dynamically interpreted rules and process descriptions enable the data of a transaction to be correctly forwarded. It is essential that the data of a transaction is correctly passed through the individual functions in the right order and that the results are correctly forwarded.

Independent applications can be integrated using enterprise application integration. The business bus can be broken down into different levels. Firstly, there is the business level. This includes, for example, contracts and legal and regulatory frameworks. Next is the process level. This contains the business processes that take place along the value-creation chain. The application level contains business applications and business solution components. Another level is the software level. This includes, for example, standard software, standard components, and basic software such as a database or middleware. Then there is the system level, which includes hardware, the operating system, and the network (cf. Steinhaus 2015).	Comment by David Stockings: I haven't been able to find any reference to these levels in any English resources, so the terms here are not "official" translations.

This integration is “loosely coupled”, which involves maintaining a strict separation of the business process logic from the business functions. To achieve this, the individual business processes are broken up into macro- and micro-processes. Micro-processes

Integration This is a type of loose coupling that involves, amongst other things, a strict separation of the business process logic from the business processes. The business processes are divided into macro- and micro-processes. Micro-processes are sometimes integrated into
functions.

IT architecture
This refers to all static and
[bookmark: _Hlk125215094]dynamic elements of the IT system within an organization. It lays out the underlying structure and defines rules that determine how all of the components
are coordinated.

are sometimes integrated into functions. This kind of separation cannot be achieved when using a standard piece of software. EAI provides one way of representing the business process logic; however, this can also be achieved using a large number of middleware products by integrating a business process engine. Because it is a process-oriented approach to integration, EAI is both a technical integration platform and, in a way, a component of the implementation itself within the company’s organizational architecture (structures and business processes) and IT architecture.

The EAI approach is often used for the practical execution of these types of tasks and similar ones. It provides a selection of patterns referred to as “enterprise integration patterns” (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017).

EAI is applied in all areas of process integration, but particularly in e-business and portals, and it is essential to straight-through processing.
	Comment by David Stockings: The ST reads:
In Großunternehmen wird durch EAI mit komplexen IT-Landschaften

But I think it should be
In Großunternehmen mit komplexen IT-Landschaften wird durch EAI
In large companies with complex IT landscapes, traditional middleware products are often replaced by EAI, and it is a key component in IT architecture.

IT architecture can be understood as all of the static and dynamic elements of the IT system within an organization such as the infrastructure comprised of hardware, locations, networks, etc. Software is another component, in the form of applications, for example. Technologies, interfaces, IT-supported functions and processes are also part of the IT infrastructure. Another important component is architecture management, which covers configuration- and capacity-planning, burden distribution, backups, availability, reliability, and business continuity planning. An IT architecture breaks an organization’s IT down into two levels: the fundamental structure on the one hand, and the rules that coordinate the dynamic interaction of all the components on the other.

Example: Integration Platforms Within a Smart Home

Integration platforms, such as those implemented in a smart home, can be broken down into different types/forms and into platform providers (cf. Arnold 2015):

· Pure B2C company platforms, e.g., Gigaset, eQ-3 Homematic, SMA, devolo, and Rademacher
· Other B2C integration platforms, e.g., Nest, Samsung SmartThings, and RWE
· B2B platform providers, e.g., Qivicon, iControls, HomeKit
· Technology alliances, e.g., Thread and AllSeen

Market participants are currently competing to achieve the most effective approaches to interoperability in order to gain partners for their platforms. For example, in the context of smart homes, the goal is to enable end customers to achieve intelligent interaction between a large number of end devices, actuators, and sensors from a huge variety of

Integration Platforms

manufacturers. The situation can be summarized in the following statement: “Pure B2C smart home platforms are becoming obsolescent in smart homes” (Arnold 2015).

6.2 Enterprise Integration Patterns
The enterprise integration pattern approach is based on the work of Gregor Hohpe and Booby Woolf. Enterprise integration patterns can be used in the designing, creation, and provision of messaging solutions. The patterns are derived from descriptions of successful approaches and are templates that can be applied in other integration projects. Therefore, they represent recognized solutions for recurring integration problems. The development of this approach was triggered by the realization that there was a lack of resources on asynchronous messaging systems (cf. Hohpe 2002, p. 1–36; Hohpe/Woolf 2003).

To fill this gap, the two authors wrote the textbook Enterprise Integration Patterns to describe previously successful approaches to integration (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017).

Integration Problems

Creating integration solutions is a major challenge. It is often only possible to determine whether an entity has chosen the right architecture for its needs after several months or even several years. There are no “recipes” for company integration solutions. Although integration consultants do suggest methods and best practices, there is no guarantee of success (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017).

In practice, sophisticated applications do not operate in isolation – on the contrary, applications are often interconnected. For example, the customer management system is often connected to the logistics system, the purchasing module has access to an auction platform, or a smartphone may be synchronized with the company calendar. Creating reciprocal connections between applications generally increases their usefulness. However, for this to be successful, all of the integration solutions must be able to deal with various challenges such as (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018):

· Unreliable networks,
· Network sluggishness,
· Variations between applications,
· Inevitability of change.

Unreliable networks
Integration solutions need to be able to transmit data from one computer to another via networks. However, unlike when dealing with one process within one computer, doing this within distributed systems presents a particularly long list of potential problems. The computers that need to be connected may be located on different continents. In this case, the data needs to be transmitted via phone lines, LANs, routers, switches, public networks, or satellites. This also means that there is a risk of delays and/or interruptions in each of these steps, which may cause the networks to become unreliable to an extent (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).

Network sluggishness
It takes much longer to send or exchange data via a network compared to within a single computer, where a function can be called quickly. If a distributed system is designed within a local application, negative effects on performance must be expected (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).

Variations between applications
Integration solutions transmit data between applications, which may be written in different programming languages, run on different platforms, or use different file formats. The challenge for the integration solution is to harmonize all of these different technologies (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).

Inevitability of change
Applications change over time, and any integration solution needs to be able to handle these changes. If systems are designed in a less-than-optimal way, there is a risk of a sort of snowball effect, whereby one change within one system potentially affects or brings about changes in all of the other systems. As such, it is important to keep dependencies between systems to a minimum. This is generally aided by ensuring the systems are loosely coupled (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).

Asynchronous Messaging Architectures

Asynchronous messaging architectures have emerged as the best strategy for company integration. These architectures contain loose solutions that make allowance for the limitations imposed by long-distance communication, latency, and unreliability. For this reason, most EAI suites and ESBs are based on asynchronous messaging. However, asynchronous messaging is not foolproof. An independent design guide may help developers to avoid making mistakes and ensure that the integration architectures built on asynchronous messaging are stable (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017).

Integration Platforms

The enterprise integration pattern approach provides various patterns for company development but makes no claim that these patterns are exhaustive. There is a particular focus on the absence of resources on synchronous messaging. Synchronous messaging is becoming more important in enterprise software development, especially in the context of integration. Integration plays a particularly important role because applications do not operate in isolation or independently of each other. In light of this, techniques need to be developed that will enable different applications to work together – the whole is greater than the sum of its parts. The challenge when it comes to this messaging technology is that there is as yet no effective message transmission system. Messages are, by their nature, asynchronous. There are significant differences in the ways systems are designed in an asynchronous context (cf. Hohpe 2002, p. 1–36; Hohpe/Woolf 2003).	Comment by David Stockings: Moved slightly further away from the ST, but I think it makes sense.

Support from Patterns

Patterns are a possibility to access expert knowledge, which has previously proved successful in practice. This is particularly useful when a developer is unable to find a solution. Each of these patterns addresses a specific problem. The right solution is not simply the first possible approach considered. Instead, the focus is on the solution that has proved successful in practice over time. This type of solution encapsulates knowledge that experienced developers and architects have developed over time. They have had the time to deploy the solutions over and over again and to learn from their mistakes. Through this learning process, they have been able to find and develop continuously improving solutions (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017).

The patterns established and catalogued by Hohpe and Woolf in Enterprise Integration Patterns include 65 integration patterns gathered from a large number of integration projects since 2002 (cf. Hohpe/Woolf 2003). These patterns provide a design guide for developers and architects that can be applied to any technology. This allows stable integration solutions to be described and developed (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017).

Purpose of Patterns

Company integration is complicated and cannot be successfully achieved using simple formulae or standardized solutions. Patterns may provide a guide by documenting an accumulation of experience, ways of thinking, and solutions that would normally only be available to experts and architects. These patterns are accepted solutions to recurring problems within a particular context. They are sufficiently abstract to be harmonized with most integration technologies, but specific enough to represent common patterns that can be conveyed to developers. The patterns also

provide a sort of vocabulary, a (symbolic) specialist language developers can use to describe their solution efficiently (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017).

The heterogeneous nature of system landscapes is increasingly presenting developers and architects with complex problems that need to be solved. This is particularly true when it comes to integrating applications. Over time, systems can become complex, and they are generally very tightly coupled to the interfaces that they are associated with. However, the solutions and tools provided can also be applied even when a system contains its own unique interfaces. When getting started with enterprise integration patterns, it is helpful to look at frequently recurring problems that arise when integrating enterprise applications in heterogeneous environments. Suitable solution designs can then be developed and applied to resolve these problems (cf. Innoq 2018).

Overcoming the Challenges (Solution Approaches)

Over the years, four fundamental approaches to integration have emerged. These approaches have proven helpful when it comes to overcoming the challenges (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018):

· File-based approach,
· Shared database approach,
· Remote procedure calls approach,
· Messaging approach.

File-based approach
In this approach, information is written into a file by one application. That file is then read by another application. For this to work, the applications need to concur with each other on the following components: file name, file location, file format, schedule for writing and reading the file, and responsibility for deleting or moving the file if necessary (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).

Shared database approach
In a shared database approach, the applications share a database following an agreed schema. The data only physically exists in one place, and it does not need to be transmitted from one application to another (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).

Remote procedure calls approach
The remote procedure calls approach assumes that an application provides access to one of its functions that can be called by another external application. In this case, communication is synchronous and in real time. This fundamental principle also includes, amongst other things, all service-oriented architecture (SOA) concepts, and the microservices approach (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).

Integration Platforms

Messaging approach
In the messaging approach, one application creates a message in a standard message channel. The messages in this channel can then be read by another application, including at a later time. The applications need to agree on the message channel and message format for this to work. The communication is asynchronous (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).

The Patterns

A total of 65 (messaging) patterns have been developed and documented. They are listed in the following figure by the integration context they are used in (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017).

[image:]

The patterns can be divided up into the following groups (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017):

Integration Platforms

· Integration Styles contain all the different types of integration applications. They are a historic collection of integration technologies that have previously been made available. All of the subsequent patterns follow the Messaging Style.
· Channel patterns describe how messages are transmitted through a channel. These patterns are executed through the most commercially available open-source messaging systems.
· Routing patterns focus on how messages are routed from a sender to the correct recipient. Routing patterns take a message from one channel and publish it or forward it – normally without making any changes – to another channel. Routing patterns are patterns in that they provide specialization to Message Patterns.
· Transformation patterns alter the content of a message in order to, for example, compensate for any differences in the file formats used by the sending and receiving systems. Data may also be added and removed or reordered. The underlying pattern in this section is the Message Translator.
· Endpoint patterns describe how messaging system customers create or use messages.
· System Management patterns describe the tools that can be used to keep a complex messaging system running. It also includes dealing with fault conditions, performance bottlenecks, and amendments within the partial systems (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017).

Product Tool or Enterprise Integration Pattern?

Patterns are not bound to a specific implementation. They are useful as means of producing better solutions in the design process, assuming some of the following platforms are used (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017):

· EAI and SOA platforms, such as IBM WebSphere MQ, TIBCO, Vitria, Oracle Service Bus, WebMethods (now Software AG), Microsoft BizTalk, or Fiorano,	Comment by David Stockings: Possible ST error: Some of the names in these bulletpoints had been translated. I tried a couple but wasn't able to look them up by the translated names, so it might be better to switch them back to the English names in the ST.
· Open-source ESBs like Mule ESB, JBossESB, OpenESB, WSo2, Spring Integration, or Talend ESB,
· Message brokers such as ActiveMQ, Apache Kafka, or RabbitMQ,
· Web service or REST-based integration, including Amazon’s Simple Queue Service (SQS) or Google Cloud,
· JMS-based messaging systems,
· Microsoft technologies such as MSMQ or Windows Communication Foundation (WCF).

When it comes to the application, it is a question of successfully putting theory into practice. Here, for example, the Java-based order management system of a service company may be helpful for connecting different interfaces from different business partners. Implementations of the patterns using the Java EE 7 APIs, such as JMS 2.0

and JAX-RS 2.0, can be compared with the Spring Integration and Apache Camel approaches in order to identify the advantages and disadvantages of the specific solutions (cf. Innoq 2018).

6.3 External Integration Using Zapier, IFTTT & Co.

Combining Integration Approaches (Based on the Use Case)

Every integration approach comes with advantages and disadvantages. In practice, therefore, integration approaches need to be combined in whatever way suits the specific use case. Combinations of integration approaches are applied accordingly to create integration solutions (e.g., for SMEs). All of the approaches can be included in one system (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).

The approaches can be illustrated using the example of a legacy ERP system:

· E.g., file-based approach: The legacy ERP system imports and exports CSV files in order to exchange item information data. The relevant information is read out within the ESB, transformed, and then written into a central database (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).
· E.g., Shared database approach: Another service may then be able to access the data. This service converts the data in order to import the items into an online shop (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).
· E.g., remote procedure calls approach: The ESB also contains a REST service. This allocates a current price and stock level to an item number (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).
· E.g., messaging approach: Next, the pricelists generated from the item data and prices are transmitted to the server in Excel format via (S)FTP in the form of a message. The process does not have to wait for the transmission to be completed. It can specify that the messaging system will carry on trying to transmit the message until it is successfully complete (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).

There is no such thing as an ideal integration approach. Only designs that are appropriate for the specific company can be applied. Is there any benefit to investing in entirely synchronous services at the cost of effort and performance when some processes do not require synchronous communication? The key aspect is often to focus on the most pragmatic solutions. An SME does not need to follow the same specification as a large conglomerate, for example. If it were to try to, that approach may well prove to be inappropriate in this use case or it may be more expensive (cf. Hohpe/Woolf 2003; Hohpe/Woolf 2017; Synoa 2018).

Integration Platforms

External Integration Using Zapier

Automation can make a company’s working processes significantly easier. For example, in marketing, it can simplify daily business by automating email campaigns, social media activities, lead nurturing on the company’s website, etc. (cf. Viewneo 2017).

Today, anyone can use platforms like Zapier and IFTTT to achieve results that – a few years ago – would have been impossible without putting significant technical effort into solutions. They can be used to easily create reciprocal connections between hundreds of apps, for example, in the context of a smart home. Digital signage is another area where automation is a frequently discussed issue. Content management takes a significant amount of effort and employee time. The content may even need to be updated manually. There is a demand for simpler ways of completing these tasks, prompting the creation of, for example, versatile options for dynamically adjusting playlists in order to ensure that advertising messages achieve the greatest effect. The playlist adjusts to the current situation, e.g., “If it is raining today, play the ‘umbrella offers’ playlist” (Viewneo 2017).

This type of automation was previously only available for large, high-cost projects. Now, however, integrating Zapier into digital signage software and accessing all of the associated options is becoming available to anyone, for example (cf. Viewneo 2017).

Zapier is an external platform that allows users to connect their Lodgify account to over 1,000 external applications. Creating these connections enables users to share data easily and automatically from Lodgify posts to other platforms. This, in turn, means working processes can be optimized (cf. Gross/Lodgify 2017).

Zapier is a service that enables users to use or connect two otherwise unconnected services via its APIs (or protocols). This opens up a huge variety of options such as creating a Trello task from an Evernote token, publishing an RSS article via Facebook, attaching new emails to a spreadsheet, creating email functions using Dropbox, etc. (cf. Bozhanov 2018). The workflows between the different apps automated in this manner are called “zaps”.

External Integration Using IFTTT

Although there have already been significant advances in technology, there are still various problems to resolve in the context of the modern smart home such as networking individual software and hardware components. If, for example, the lighting cannot coordinate with the sensors, or the sensors cannot coordinate with the heating system, there is a risk of a disruption in the smart home. This type of disruption can negatively impact the home’s comfort or intelligent functionalities. IFTTT can help resolve this type of problem (cf. IFTTT 2018; Schiller 2016).

IFTTT was created in 2010 in San Francisco and it is short for “if this then that”. It is pronounced like “lift” without the “l” (cf. IFTTT 2018).

IFTTT operates on the fundamental principle of carrying out an activity when triggered by the occurrence of an event. If a fully specified, preset, or defined event occurs, a predetermined task is carried out. The task must be defined precisely in advance. A wide variety of web services that provide IFTTT in the form of “channels” can act as event creators or activity processors. These include Facebook, YouTube, Instagram, Evernote, etc. (cf. Allmich 2012).

The following figure lists event creators and activity processors, i.e., web services and channels, that provide IFTTT.
[image:]

Each of the web services generally offers a huge variety of APIs (function calls) for developers. These APIs can be used to exchange data with the relevant web services, which, in turn, use IFTTT to identify certain events or to trigger activities. IFTTT can only handle events and activities that are provided by the producers of web services.

Integration Platforms

IFTTT queries the event at short intervals. Although actual real-time processing is not possible, the frequency reached in this way achieves practically the same thing (cf. Allmich 2012).

IFTTT is increasingly important as demands on the functionalities of modern devices and applications continue to grow. One of the defining characteristics of IFTTT is the simplicity of the way it works. The IFTTT website provides what they call “recipes”, which act as preconfigured function processes. For example, how can Device A communicate with Device B or Device C with Software Y (cf. IFTTT 2018; Schiller 2016)?

“IFTTT is the free way to get all your apps and devices talking to each other. Not everything on the internet plays nice, so we’re on a mission to build a more connected world” (IFTTT 2018).	Comment by Anne Pabel: This quotation was already in English in the original version.

The users themselves provide ideas for integrations. IFTTT is short for: “if this [happens], then [do] that” (cf. Schiller 2016). Following this logic, users are able to combine different components together.

For example, a user may wish that every time someone enters their house and this is detected using a motion sensor, a Facebook post saying, “I’m home.” should be sent.

Summary	Comment by David Stockings: The explanation of "loosely coupled" is actually worded as:
Diese beinhaltet unter anderem eine strikte Trennung der Geschäftsprozesslogik von den Geschäftsprozessen.

But I believe it should "Geschäftsfunktionen" not "Geschäftsprozessen" (as earlier in the unit).
 (
Enterprise application integration (EAI) focuses primarily on the company-wide integration of business functions.
These functions are distributed along the entire value-creation chain across varied applications on different platforms and need to be linked into a single data and business process system.
The “business bus”, “enterprise service bus” (ESB)
,
 or “EAI backbone” is also referred to as an “integration platform”.
Applications that are integrated are considered to be loosely coupled, which involves maintaining a strict separation of the business process logic from the business functions.
B
usiness processes are divided into macro- and micro-processes. Micro-processes are sometimes integrated into functions.
IT architecture refers to all static and dynamic elements of the IT system within an organization. It lay
s
 out the underlying structure and define
s
 rules
that determine how all of the components

are coordinated.
)

 (
IFTTT is the most well-known integration platform and is particularly popular with private users. This free platform offers a large number of integrations and gives user
s
 access to a huge number of well-known cloud services for private and business services. Zapier is as flexible as IFTTT but is focused on the largest SaaS suppliers for business customers.
IFTTT means: “If this then that.” It works on the principle of
carrying out
 an activity when a triggering event occurs. In other words, if a certain event occurs, a previously defined task is carried out. Event creators and activity processors may be, for example, different websites that provide IFTTT as channels. Enterprise integration patterns can be used in the designing, creation
,
 and provision of messaging solutions. The patterns are derived from descriptions of successful approaches and are
,
 therefore
,
 templates that can be applied in other integration projects.

They
,
 therefore
,
 represent recognized solutions for recurring integration problems.
Zapier is an external platform that allows users to connect their account
s
 to more than
1,000 external applications and to use or connect two or more services via its APIs or protocols. Zapier is a system that facilitates integration between a wide range of applications and cloud-based services.
)

Unit 7
Technologies for Smart Services

STUDY GOALS

After completing this unit, you will...

... understand the JSON and XML data exchange formats and be able to compare and use them.
... understand the main internet communication protocols.
... be informed about the possibilities offered by semantic descriptions.
... understand complex event processing (CEP).
... be familiar with data protection and security considerations.

DL-D-DLBINGSS01-L07

7. Technologies for Smart Services

Introduction
Smart services need to be built on suitable technologies. There are several aspects that need to be taken into consideration here, including in particular existing data exchange formats, internet communication protocols, semantic descriptions, complex event processing (CEP) as well as ensuring data protection and security.

7.1 Data Exchange Formats
In recent years, XML has been displaced as the format of choice for web APIs and configurations by simpler formats such as JSON and YAML (cf. Keshavarzi/Bayer 2011). For example, Twitter has discontinued its support for XML in its own streaming APIs.

JSON

 (
126
) (
Unit
7
)
 (
Unit 7
129
)

JSON (JavaScript Object Notation)
JSON is a text format used to exchange data. JSON is associated with a scripting language and is derived as a data format from
JavaScript. However, it performs similar functions
to XML.

JSON (JavaScript Object Notation) is a text format used to exchange data (cf. Karlstetter 2018). It is recognized as a simple standard for structured coding of data in the form of human-readable text. This provides the advantages of automated further processing and improved accessibility for a manual inspection or review (cf. Augsten 2018). JavaScript Object Notation is a format used to serialize objects. The format was specified by Douglas Crockford and uses the JavaScript syntax for its notation. A JSON document is, therefore, also an executable JavaScript (cf. Keshavarzi/Bayer 2011). The name “JavaScript Object Notation” refers to the connection between JSON and the scripting language, which has been standardized since 1997 in the form of ECMAScript. JSON is derived as a data format from JavaScript. However, its applications are not restricted simply to this scripting language. JSON can be used to carry out similar tasks to XML. When using JSON, data is structured and stored in both human- and machine-readable format, using name-value pairs and curly bracket-based formatting to do so. This formatting allows data structures within the program to be serialized so that the data can be communicated and externalized to permanent memories. One major advantage of JSON is how simple it is to implement and apply. YAML is an alternative to JSON (cf. Augsten 2018). JavaScript Object Notation allows data to be stored and transmitted in human- and machine-readable format. Examples of languages that take a similar approach include YAML and XML (cf. Augsten 2018).

Advantages and Disadvantages of JSON
Benefits of JavaScript Object Notation are (cf. Augsten 2018):

Technologies for Smart Services

· Simplicity of implementation and application
· From ECMAScript-Version 5 upwards, simple to insert into JavaScript using “JSON.parse()”

Advantages of JSON are (cf. Keshavarzi/Bayer 2011; Müller 2007):

· Clear notation,
· Low overhead,
· Provides good support through a variety of programming languages,
· In terms of pure exchange of data, provides almost all of the advantages of XML,
· Syntax is compact and minimal, meaning lower volumes of data need to be transmitted compared to XML,
· Entirely JavaScript, doing away with the need for long parsing processes,
· Processing of JSON objects on a server is relatively simple.

Disadvantages/weaknesses of JSON (cf. Müller 2007; Augsten 2018):

· Syntax considered to require some getting used to,
· No optimal options for integrating metadata or comments,
· Not widely distributed for a long time (unlike XML),
· Not widely accepted for a long time,
· Numbers are unclearly defined in it,
· No universal standards for converting unsupported JavaScript data types.

YAML

According to Ruby on Rails, YAML Ain’t Markup Language (YAML) has become known as a configuration format. It is a language used to exchange data, but unlike XML, it is easy to read and simple to edit. The associated advantages are mainly due to the fact that it completely does away with brackets, quote marks, and tags. YAML also supports data types and type casting. It uses indentations in order to indicate hierarchical structures. This makes the way it presents the code more compact and clearer than JSON (cf. Keshavarzi/Bayer 2011). This is illustrated in the example in Listing 2.

[image:]

XML

XML is now in very wide use, and as a result, there are now thousands of markup languages based on XML. It is used in almost all areas of application, with the one exception of web design. Web designers tend to avoid using XML. IE namespace declarations in XML documents are often filtered out and not displayed (cf. Keshavarzi/Bayer 2011).

XML does not specify any fixed set of markup elements, unlike HTML, for example. XML is a data exchange format that can be used by programmers to define their own markup language using any desired tags. No all-purpose tags need to be used to define a paragraph, for example. The programmer can decide themselves what tags to use and how to format them. There is, therefore, no issue with using markup elements like <StructuredList>, <InvoiceItem>, or <Chapter>. XML can be used to define markup languages for specific situations, such as exchanging data between two companies or for generally relevant online areas of application (cf. Kobligk 2004).	Comment by David Stockings: Again, this seems like the most likely interpretation of 'Absatz', since as I understand the tags are not predefined in XML. So in HTML <p> can only be a paragraph, whereas in XML <p> could be e.g. 'price'.

The following approaches underpin the creation of XML (cf. Kobligk 2004):

· Application-specific markup,
· Clear structures,
· Separation of content and layout,
· Simplicity,
· Optimal error checking.

Technologies for Smart Services

The following figure, Listing 4, provides an example in XML format.
[image:]

Comparing JSON and XML

JSON and XML are intended to be used in the same areas of application, but they do vary on the following points (cf. Augsten 2018):

· Unlike XML, JSON takes a much more simplified approach, doing away with the option to include comments in a JSON document.
· The XML standard features a strict document type definition, the specification of a formal document structure, user-specific data types, and tags using schemata. This allows XML documents and data streams to be formally validated. In JSON, on the other hand, this is only available as an add-on.
· The process of standardizing the JSON schema is taking place as an aside, as it were, in the form of an Internet Draft.
· JSON formats data in a similar way to XML, but does so in an extremely compact form.
· The difference in the size of a dataset formatted using the two languages depends on the type of coding. There are two options here in XML. Simple data types within a structure can be stored in the form of XML tags or in the form of attributes. Storing them as attributes is more compact in XML than in JSON.

Advantages and disadvantages of XML
Advantages of XML (cf. Müller 2007):

· Simple readability of sometimes complex data transmitted in a nested form,
· Established as a standard exchange format,
· Convenient transmission of comments and metadata,
· Simplified exchange of data with third parties.

Disadvantages of XML include (cf. Müller 2007):

· Complex syntax, often filled with unnecessary “ballast”,
· Although indispensable as a full-fledged markup language for XML, not necessarily required for pure transmission of data,
· Structure must first be defined so that the data can be converted into corresponding JavaScript objects.

The dominance of XML has largely been overturned by JSON. For special tasks, such as the serialization of objects, a leaner alternative is available. JSON and YAML are both examples of languages that offer improved readability. However, XML does still have several advantages, such as its versatility, tool support, and the large number of standards that are built on XML and can, therefore, be combined (cf. Keshavarzi/Bayer 2011).

Compared to XML, JSON facilitates a simpler, easier, and more structured way of exchanging data. JSON is making great inroads into pure data exchange and is increasingly replacing XML. It can be assumed that more web developers, service providers, etc., will use JSON in future (cf. Müller 2007).

7.2 Internet Communication Protocols
When it comes to developing information and communication technologies, a huge number of systems, networks, and services are now available. Communication protocols – particularly internet communication protocols – are essential to ensuring that these function flawlessly (cf. Kaderali 2005, p. iii, 308).

The internet is a decentralized, packet-switching data communication network that allows a vast number of computers (hosts) and transmission nodes (routers, nodes) to be connected. The main backdrop for the development and evolution of the internet was the emergence and expansion of the internet communication protocol referred to as “TCP/IP” (transmission control protocol/internet protocol) (cf. Kaderali 2005, p. 308).	Comment by David Stockings: Probable ST error: "InternetkommunikationsprotokolL", not "Kommunikationsinternetprotokoll"

The original proposal for TCP/IP was first published in 1974 by Vinton Cerf and Robert E. Kahn (cf. Cerf/Kahn 1974). In 1980, the (approximately 300) host computers of the ARPANET were converted to TCP/IP. The conversion to TCP/IP was completed in 1983, representing what might be considered the “birth” of the internet. In the 1980s,	Comment by David Stockings: Seems to be used without article:
https://www.britannica.com/technology/TCP-IP
All other protocols that I checked seem to be used with article.

Technologies for Smart Services

TCP/IP was freely available. After the military, scientific establishments and universities were the first to use the internet to exchange information. From the 1990s onwards, the internet became increasingly attractive for commercial and private applications (cf. Kaderali 2005, p. 308).

Central to the transmission principle, i.e., the principle of TCP/IP transmission, is the clear distribution of tasks between the individual TCP/IP protocols. The role of the Internet Protocol (IP) is to forward data packets from a sender to a recipient via the communication network. The communication partners are generally not notified if a package is lost. This task falls to the TCP, which operates above the IP. In this situation, the TCP demands that data packets be retransmitted (cf. Kaderali 2005, p. 308f.).

The TCP/IP Model

The TCP/IP family of protocols includes a large number of additional protocols other than TCP and IP, which may be distributed across various layers within the OSI model. TCP/IP protocols can be allocated to different levels of the OSI model. Unlike the OSI model, the TCP/IP model consists of four layers rather than seven. However, these layers can be clearly matched against the OSI layers (cf. Kaderali 2005, p. 310). This is illustrated in the following figure, which shows the TCP/IP level model.

Internet Protocol (IP) The role of this protocol is to forward data packets from a sender to a recipient via the communication network.

[image:]

The advantage of using this sort of layer model is that application developers, for example, do not need to know precisely which network technology a potential user or customer is currently using. Within this layer model, the technologies being used are hidden beneath the IP layer. This means that the application can be developed without having to know which technology is being used (cf. Kaderali 2005, p. 310).

The network interface layer provides the data transmission services. It can do so via an STM-1 SDG channel or via an ATM-AAL5 interface, for example, but it can also use a Frame Relay PVC or an Ethernet card. This includes cables, hardware (network cards), software (interface drivers), etc. The network interface layer is accessed via the Address Resolution Protocol (ARP). The Address Resolution Protocol is responsible for mapping addresses within the network layer (IP addresses) to addresses in the network interface layer (e.g., MAC addresses) (cf. Kaderali 2005, p. 310f.).

The Internet Protocol (IP), amongst other things, is contained within the internet layer. It is supplemented by the Internet Control Message Protocol (ICMP) and the Internet Group Message Protocol (IGMP). The main challenge here is to transmit datagrams in a section-by-section connectionless manner following a best-effort delivery approach. There is also the task of routing. Several protocols have been developed in order to complete these tasks, such as the Routing Information Protocol Version 2 (RIP2), the Border Gateway Protocol Version 4 (BGP4), and Open Shortest Path First (OSPF) (cf. Kaderali 2005, p. 311).

These protocols have improved over time. Newer protocols are also being developed in order to try to identify IP datagram streams. Efforts are also being made to match these datagram streams to different applications such as WWW or voice-over-IP. One of the reasons behind this is to enable the handling of the IP packets to be prioritized using quality of service (QoS). This would provide a way of managing the traffic and is inspired by algorithms from asynchronous transfer mode (ATM) technology. Multiprotocol label switching (MPLS) is of particular importance in this context. Its “label switching” technology facilitates rapid routing, along with the conversion of addresses that this technology requires, in a manner comparable to ATM technology (cf. Kaderali 2005, p. 311).	Comment by David Stockings: Again, this sounds a little awkward, but it does seem to be how it is used in practice:
https://en.wikipedia.org/wiki/Quality_of_service

The transport layer acts as a connecting link between the transport layer applications and the communication network. It is normally integrated into the operating system of a host or node. Two protocols are important in this layer. The first is the Transmission Control Protocol (TCP), which ensures the connection is secure and corrects errors (stream control). The second protocol is the User Datagram Protocol (UDP), in which case the connection is unsecure, and though it can identify errors, it does not have the ability to correct them or control the stream. These two protocols together provide end-to-end connectivity between two end systems. This connectivity is identified using their IP addresses. This allows the message traffic to be segmented (cf. Kaderali 2005, p. 311).	Comment by David Stockings: I wonder if this should be "Sie sind", i.e. the end systems are identified by their IP addresses, rather than the connectivity. Please check if the intended meaning has been retained.

Technologies for Smart Services

The Realtime Transport Protocol (RTP) is normally also used in the context of the UDP and multimedia applications such as voice-over-IP. It is used in an attempt to minimize through-put times and IP packet jitter within the network (cf. Kaderali 2005, p. 311).

Application protocols are provided within the application layer. The user sees the results of these protocols on the monitor. A variety of protocols with different functions are available here. The Hyper Text Transfer Protocol (HTTP) allows World Wide Web (WWW) content to be displayed. Other protocols include the Simple Mail Transfer Protocol (SMTP), the Post Ofﬁce Protocol Version 3 (POP3) for emails, the File Transfer Protocol (FTP) for transferring files, the Telnet Protocol for terminal applications, and the Simple Network Management Protocol (SNMP), which acts as the network management standard (cf. Kaderali 2005, p. 310f.).

7.3 Semantic Descriptions

Semantic Data Model

In the context of data modeling, a semantic data model is an abstract, formal description and representation of an extract of an environment observed in a given context such as a project. A wide variety of modeling languages are available for formulating semantic data models such as the entity-relationship model (cf. Simsion 2007, p. 49; Chaomei/Il-Yeol/Weizhong 2005, p. 189ff.).	Comment by David Stockings: It seems odd to describe a model as a 'language' to me, but according to Wikipedia, modelling languages can be graphical: https://en.wikipedia.org/wiki/Modeling_language

A semantic data model can be used for various goals or purposes (cf. Simsion 2007, p. 49; Chaomei/Il-Yeol/Weizhong 2005, p. 189ff.):

· For example, this type of model can be used during project design phases in software development. It can also serve as the basis for developing and using a database.
· Alternatively, it could be deployed as a data model of a department or company. Models can be developed, for example, for individual departments or for an entire company, which can then be used in individual projects as design patterns or as reference models. Designated labels and text descriptions can be used in this context. Labels can also be used to indicate user media elements such as monitor settings, list views in short form, long form, etc.
· A semantic data model can also be used to provide a simple and clear presentation of any relationships between information, such as roles, rights, the parties involved in an organization study, or metamodels documented in methodological handbooks.

Semantic Data Models
A semantic data model is an abstract, formal description and representation of an extract of the environment that is perceived in a given context or project. Different modeling languages can be used to create it.

Components of a semantic model
The components of a semantic model depend on the modeling language chosen.

Units or entities, for example, referred to as “entity types”, can be determined from relevant informational concepts. These are then used to process or store information.	Comment by David Stockings: This is how I interpret this sentence as it is written in the ST, but it doesn't seem entirely compatible with any definitions of an "entity type" that I have been able to find.

An "entity type" is normally described as a category, whereas an entity is a single instance of something with that category. The IBM website explains this quite clearly:
https://www.ibm.com/docs/en/imdm/12.0?topic=concepts-key-entity-attribute-entity-type

I wonder if it's supposed to be:

Als relevante Informationsbegriffen werden beispielsweise Einheiten bzw. Entitäten bestimmt, sogenannte Entitätstypen.

So:

Units or entities, for example, are defined as informational concepts that are relevant to the model and grouped together into "entity types".

Example
 (
An online bank records a person’s name, date of birth, account opening date, transfer amount, balance, interest
,
 and zip code in a logical order as follows: PERSON, ACCOUNT, TRANSFER, LOCATION. The relationships between the defined entities need to be determined. For example, assume: Every ACCOUNT belongs to one person or every PERSON can have multiple accounts. These circumstances need to be described in a text-based format
, which
can be done graphically, using an ER diagram for example.
)

The semantic data models can vary in terms of the layout used, the content selected, or the concepts applied. Accordingly, the criteria below can be identified:

· Choice of modeling method: Models created using UML look different than models created using ERM.
· Purpose for creating model: More detailed descriptions are required when designing a new database than, for example, for a maintenance project, where the data is already in place.
· Modeling tool used: Different modeling tools can be used, e.g., in the form of a graphic showing the relationships via shapes or lines, etc., the selected labelling of concepts or relationships, etc. These tools may vary.
· Project/company specific rules: These rules include the level of detail in the model, e.g., in the relationships, or the requirement that the first step in creating a data model should be the DV approach.

Modeling languages
The entity-relationship model (ER model) is the best-known model for semantic data modeling, and it is constantly being expanded. In practice, simplified models are often used as well such as crow’s foot notation (cf. Simsion 2007, p. 49; Chaomei/Il-Yeol/Weizhong 2005, p. 189ff.). In addition, the model is also used for object-oriented modeling and for the Unified Modeling Language (UML).

Technologies for Smart Services

7.4 Complex Event Processing

Complex Event Processing (CEP) is an area of IT that deals with recognizing, analyzing, grouping, and processing interdependent events. CEP is used as a sort of umbrella term for a variety of methods, techniques, and tools that are used to promptly process events whilst they are in progress.

Event-driven information systems need to be able to process events using CEP systematically and automatically.

CEP can be used to derive a far larger amount of more valuable information from events. This information exists in the form of complex events. These are situations that can only be identified as such through a combination of multiple events (cf. Eckert/Bry 2009).

Large processing capacities are required in order to enable the systems to process the various data streams in real time and to extract and analyze the events.

Example areas of application in this context include networking monitoring, public safety, disaster prevention, and energy management. The number of events taking place in computer systems has dramatically increased in recent years as a result of (cf. Eckert/Bry 2009):

· Service-oriented architecture (SOA),
· Event-driven architecture (EDA),
· Cheap sensor technology,
· Legal, contractual, or operational obligations to monitor information systems.

Consequently, these events need to be managed and processed automatically, systematically, and promptly.

CEP is used mainly in the following areas of application (cf. Eckert/Bry 2009):

· Business activity monitoring,
· Sensor networks,
· Market data.

Business activity monitoring surveils business processes and tracks resources that are critical for the company. The goal is to identify problems and opportunities early on. To this end, events are summarized in key performance indicators such as the average duration of a process (cf. Eckert/Bry 2009).

Complex Event Processing (CEP)
The umbrella term “complex event processing” refers to methods, techniques, and tools that allow events to be processed whilst they are in progress.

Sensor networks are used to transmit measurement data from the external world (e.g., data held in supervisory control and data acquisition systems), which is used to monitor industrial plant, for example. The aim here is to avoid, or at least minimize, measurement or other errors, which means that data from multiple sensors needs to be combined. Often, more complex situations (e.g., fires) need to be identified from simple numerical measures (e.g., temperature, smoke, etc.) (cf. Eckert/Bry 2009).

Market data can also be viewed as events, e.g., raw material prices, share prices, etc. This market data needs to be continuously analyzed in as close to real time as possible. This is the only way that trends can be identified in advance or promptly. It is also what enables the company to act, react, intervene, etc. correctly, automatically, and promptly. The concept of “algorithmic trading” is also relevant here. Situations that need to be identified and the associated information about multiple events are distributed across the applications. CEP is then used to identify these situations from multiple events and the relationships between them (cf. Eckert/Bry 2009).

Types of Complex Event Processing

The term “complex event processing” originally covered a large number of independent lines of research. These include areas like event-oriented simulation using active databases and network management (cf. Luckham 2002).

CEP is growing in importance as its own area of expertise, particularly in industrial contexts. For example, the Event Processing Technical Society was founded in 2008.

CEP focuses particularly on handling events that can only be identified through the interaction of multiple events. These types of events are typically characterized by interdependency between multiple occurrences resulting from physical characteristics, sequential or simultaneous occurrences, repeated occurrences within the same chain, independence or relationships, and, potentially, occurrences in parallel processes.

Focus of CEP
Event-driven computer applications use a sequential order of events to control what the program does and when. For example, when individual events occur, such as a mouse click, the arrival of an email, the end of a loading process, etc., other dependent events are triggered. This is what happens when a file is saved to a hard drive, when a warning message pops up, or a program window is closed. CEP focuses on events that occur multiple times for no reason, events that occur multiple times simultaneously, or – where applicable – events that do not occur in a reliable order. The logic of the occurrence is not clearly defined, but rather follows what is called “fuzzy logic”. CEP can then classify

Technologies for Smart Services

validated events as a status, which can, in turn, be used to eliminate undesired or superfluous source events, if necessary.	Comment by David Stockings: The exact meaning of "bereinigt" is not clear here. Perhaps "filtered" or "distilled", or even "confirmed".

Events
In the context of complex event processing, the term “event” can refer to a variety of phenomena. These include, in particular, something occurring or not occurring, or an object that represents, codes, and/or stores the event for reasons that include machine-based processing. An event is typically taken to mean something occurring within a certain system or a domain. The event can be viewed as completed or as something in progress within that application domain. The term “event” also includes the description of a programming entity that represents such an event within an IT system.

CEP Concepts
High-level concepts can be described in CEP. These are used to process events and to recognize event patterns. In the context of CEP, a “virtual event” is defined as an event that does not occur physically, i.e., in the real world. These are treated like every other type of event in CEP.

Nearly anything that exists in the real world or is represented within a computer is an event from a CEP perspective. CEP aims to identify the relationships within the various levels of event and within the design patterns used to establish events. The semantics of the CEP must not be allowed to impair the functionality of the storage medium or transmission mechanism. There are parallels between this definition and the definition of an event in probability theory. There are two potential scenarios in CEP (cf. Eckert/Bry 2009):

Complex events can be specified a priori as identified patterns in event streams. Here, special event query languages provide a simple way of specifying complex events and recognizing them efficiently. Alternatively, previously unidentified patterns need to be recognized as complex events within the streams. Machine learning and data mining for events are useful techniques here. The following section focuses on the event-query approach.

There are several other topics that are closely related to CEP, such as visualizing event-related data for human users, message-based middleware for forwarding messages, rule systems for specifying reactive behavior (ECA rules, reactive logic programming, etc.) and business process management (BPM) (cf. Eckert/Bry 2009).

Event Query Languages

There are three main types of language used for expressing event queries, which are based on the following key ideas (cf. Eckert/Bry 2009; Paton 1998):	Comment by David Stockings: Probable ST error: two?

· Composition operators,
· Data stream query languages.

Composition operators
Active rules in database systems: Composition operators were originally derived from active database systems (cf. Paton 1998). New systems, such as Amit (cf. Adi/Etzion 2004, p. 177ff.), on the other hand, are not dependent on a particular database. When using these systems, queries for individual events are bundled together into complex event queries using various operators. A conjunction of events is a typical example of this kind of operator. This applies to all events, including – where applicable – events occurring at different points in time. Another operator is a sequence of events, i.e., a series of events happening one after another, or alternatively the negation of a sequence, i.e., if an event does not occur in the period between two other events. Highly complex events can also be represented using nesting. Some languages can impose restrictions. For example, they can define which events should be included when composing a complex event. A selection process may be applied, for example, in order to select only the first or last event of a given type. “Consuming” events can prevent them from being reused in new complex events, for example, if they have already been used as part of another complex event.

Composition operators provide an intuitive way of specifying complex events and can be a useful tool for identifying complex events. They are a good way of handling temporal relationships and negation, and they offer ways of both selecting and consuming events. However, this intuitive understanding of operators can also occasionally present problems, such as where there are multiple variations in the interpretation of a sequence. In addition, there is a risk in practice of data contained in events being neglected, particularly if composition and aggregation are applied. Some CEP products are based on composition operators such as IBM Active Middleware Technology (Amit) and ruleCore (cf. Eckert/Bry 2009; Adi/Etzion 2004, p. 177ff.).

Data stream query languages
Data stream query languages include for example CQL (cf. Arasu/Babu/Widom 2006, p. 121ff.). They are based on the database query language SQL. The basic principle is as follows: Where data streams contain events in the form of a tuple, these are converted into relations, which then allows a normal SQL query to be run. The result, for example, in the form of a relation, can be converted into a data stream. In principle, the process can take place at any timepoint within a given discrete time axis (cf. Jain et al. 2008, p. 1379ff.).

In general terms, data streams can be converted into relations via a variety of window operations. For example: “all events within the last 30 minutes” or “the last 20 events”, etc.

The following options are available to convert a resulting relation back into a data stream (cf. Eckert/Bry 2009):

Technologies for Smart Services

· Only tuples that arise in comparison to the previous event become a new event.
· Only tuples that lapse become a new event.
· Every tuple relating to the current result becomes a new event.

The data stream query languages used to aggregate results data are particularly useful for market data, for example. Most of them can also be highly effectively integrated with databases. On the other hand, they often cannot easily express negation or temporal relationships. Converting streams into relations and back again and requiring a discrete time axis is also considered unnatural. However, SQL-based data stream query languages are tried and tested approaches to CEP. They are supported by their own efficient and scalable industrial products such as Oracle CEP, Coral8, Streambase, Aleri, and the open-source project Esper. One important thing to remember is that there are significant differences between the language variants. There are also considerable extensions available, some of which go beyond the original core principle (cf. Eckert/Bry 2009).

Complex event processing is an industrial growth market and a significant area of research. However, there is still a need to gather information from the use of event query languages in actual projects. The reason for this lack of information is that secrecy is of paramount important in algorithmic trading, the largest CEP market. There are also no adequate benchmarks for comparing and predicting CEP system performance. CEP is an important use case for event query languages. In addition, CEP is also highly relevant in reference architectures and design patterns (cf. Eckert/Bry 2009).

There is still a need for research into complex event processing, focusing primarily on the formal foundations, particularly in terms of its expressiveness and how it can be optimized. When it comes to query optimization, shared partial queries (multi-query optimization) and distributed and parallel analysis play an important role. Future areas for research also include handling imprecise events, using probabilistic methods, for example, and identifying unrecognized complex events, e.g., data mining in event streams (cf. Eckert/Bry 2009).

Blockchain/Smart Contracts

Blockchain is a groundbreaking database technology that can be used to overcome limitations in the financial industry. For example, it can be used for preventing prescription fraud, charging electric vehicles, etc. It is paving the way for new business models and altering entire sectors (cf. Kaltofen 2016).

Blockchain is a new technique for storing data. It also represents a means of managing information of any kind securely. It originates in the internet currency Bitcoin, which enables sums of money to be transferred without going through central banks.

Blockchain
Blockchain is a new technique for storing data.

Transactions are the central basic unit of a blockchain. After two parties swap information with each other, the data can then be verified and validated. Whether a party has the appropriate rights to carry out the transaction can also be checked. This is then followed by “mining”, which is the process of bundling transactions into blocks after a certain period of time. A hash value is also generated. The blocks are then assembled into chains and distributed via a peer-to-peer network (cf. Kaltofen 2016).

Blockchain technology is considered to be secure against manipulation because the blocks are encrypted using a hash function. Copies of the file are distributed online. If someone wanted to manipulate the content of the blockchain, at least 51% of the copies would have to be altered, the cost of which would be (too) significant (cf. Kaltofen 2016). Blockchain can be used to establish intelligent, automated contractual relationships (cf. Neidel 2016).

Smart contracts (or intelligent contracts) are a technological form of legal contracts, the contents of which are machine-readable. The terms and conditions of the contract can then be made available for querying in third-party sources, and compliance with them can be verified autonomously. Appropriate responses can also be derived autonomously based on the result of those checks. (cf. Neidel 2016).

Smart contracts are the best-known application of blockchains and represent a new form of contract. At their core are web-based computer protocols that replicate contracts. They also provide technical support for settling contracts. The corresponding computer algorithms can determine which conditions lead to which decisions. For example, the algorithms are able to monitor contracts in real time and automatically assert the rights of the contracting parties. Lawyers would no longer be necessary for drafting and monitoring contracts (cf. Kaltofen 2016).	Comment by David Stockings: This may have been true in 2016, but I would think cryptocurrencies are probably a better-known use of blockchain technology today than smart contracts.

Example
 (
An electronic version of a loan or leasing contract for a vehicle with automated settlement (smart contract) is stored physically in the car. The vehicle autonomously verifies every month whether the driver has made the agreed payments. If a payment is not made, the contract issues automatic warnings. As a last resort, it could even activate an immobilizer and physically prevent any further use of the vehicle. No external management is necessary in order to run any of these individual process steps. The car almost extends its presence into cyberspace, thereby eliminating conventional control and management
bodies
, including manual
bodies
. This
would
involve storing and managing the integrity, history
,
 and validation of all of the transactions in the blockchain (cf. Neidel 2016).
)

Technologies for Smart Services

Microsoft Azure Cloud is a platform that can be used to technically implement a blockchain. Blockchain will allow marriages to be entered into via the internet using a QR code. Using a variation on Bitcoin might provide a way of making payment to electric vehicle charging stations, for example. There are plans to use blockchain technology to create a unified and low-cost payment system that works without requiring a cash register. For example, electronic vehicles could be charged and the electricity paid for digitally (cf. Kaltofen 2016).

The combined deployment of the decentralized Blockchain Trust Center Unit and the associated networking with digital actuators and interfaces to third-party systems will enable a contracting entity to make use of extensive options for monitoring contracts and responding accordingly. All of the outsourced process steps and value-creation stages could be digitalized and automated. These may be omitted completely or used for new value-producing services (cf. Neidel 2016).	Comment by David Stockings: I have not been able to find anything about this except on the page that I believe is referenced (and this paragraph copies quite closely from it):
https://cloudero.de/blockchain-smart-contracts/

It sounds like there was supposed to be a single Trust Centre, but I cannot find any reference to it. The post is from 2016, so perhaps the plans never came to anything.

The costs of intermediaries will also cease to apply. This will prompt the financial industry to move to take advantage of new opportunities for a secure, efficient, ubiquitous, and global payment architecture based on a suitable blockchain (cf. Neidel 2016). The following figure shows some potential models.

[image:]
Business models are also threatened by blockchains. There will be significant changes in the legal profession, for example. The use of smart contracts will enable contracts to be concluded without notaries or lawyers. It is also possible that some of the work of bailiffs may be avoided. For example, access to goods or services that have not been

Technologies for Smart Services

paid for could be blocked. Similarly, there will be changes in the real estate sector. It is conceivable, for example, that the sale and purchase of real estate could be settled using smart contracts, which would make estate agents unnecessary and save the commission payable to them. In banking, blockchain may lead to the infrastructure becoming leaner (cf. Kaltofen 2016).

7.5 Security

Security and Data Protection Considerations

A key requirement for smart services to work is exchanging data. However, the greatest risks in the whole realm of digitalization are associated with the exchange, processing, and storage of data. It is well-known that every component contains security flaws. Cybercriminals can exploit these to intercept users’ information and use it for their own purposes. Sensitive data ranges from personal data and current locations through to financial data and medical histories. As a great deal of data is private and sensitive, it requires particularly high levels of protection, but this is not always practicable in reality. As a result, there is a strong need for industry and politics to reflect on the issue of data protection, establish regulations, and define reliable standards. The goal of data protection is to increase IT security (cf. o. V. 2018a; BMWi 2017, p. 43f.).

Given the expensive and devastating consequences of cybercrime for companies, implementing strategic planning and monitoring of investments in IT security is a growing priority (cf. Accenture 2017). The following figure shows the costs of cybercrime.

[image:]

Targeted investments in innovative technologies could achieve significant benefits. Cybercrime needs to be crushed (cf. Accenture 2017). Dynamic and flexible security strategies need to be implemented in order to enable companies to react appropriately as attacks become more and more sophisticated. Instead of focusing exclusively on the extent of the security solution, it is far more worthwhile to increase its robustness. Doing so should be one of every organization’s core activities (cf. Accenture 2017). In practice, it has become clear that a major feature of the corporate IT landscape is the often extensive presence of older legacy systems. It is essential that where these sorts of systems exist, special attention is paid to proactively and professionally protecting them, because the technological basis on which they are built is often no longer supported by the latest or newest security products. This makes them a priority target for hackers (cf. Accenture 2017).

Cybercrime is a problem that needs to be taken seriously and a challenge for IT developers. For example, the computer worm Tuxnet brought about a total blackout of the power network in Ukraine on Dec 23, 2015. In the EU, Windows computers were blocked by WannaCry, causing damages of up to € 4 billion. Other well-known examples include the attack on the German Federal government by a Russian hacker group that continued for a certain period of time within the German administrative

Technologies for Smart Services

network. Another dangerous trend is “botnet attacks”. For example, there is an increasing risk of malware being distributed via PCs, tablets, smartphones, smart TVs, smart refrigerators, etc. Even a brand new USB stick could contain a piece of malware that brings the system down or spies on data, e.g., through “Trojans”, etc.

As digitalization advances and the economy and society become increasingly networked, data security is becoming ever more essential, as are reliable standards. This has ultimately prompted the German Federal Ministry for Economic Affairs and Climate Action (BMWi), for example, to provide companies and SMEs with suitable information in order to help them better defend against the dangers lurking online. This is to enable these SMEs to properly take advantage of digital transformation (cf. BMWi 2018).

The “IT Security in the Economy” initiative was implemented by the BMWi to continuously develop concrete measures that will bring about a long-lasting improvement in IT security awareness, particularly in SMEs. Key areas of focus here include (cf. BMWi 2018)…

· Optimizing service quality,
· Strengthening the national and European IT security economy,
· Identifying IT security characteristics using quality labels and certificates.

Data Security in the Cloud

As cloud services are at the heart of digital transformation, reliable data protection in the cloud is essential. Cloud services are only listed on the Trusted Cloud platform if they meet the requirements of the Trusted Cloud label. They must be reliable and fulfill the requirements of transparency, security, quality, and legal compliance. Trusted Cloud is particularly useful for SMEs (cf. BMWi 2018).

Uniform Standards for Industry 4.0

As technologies and value-creation processes become closely networked, the volumes of data exchanged via interfaces are growing. Uniform norms and standards are essential to Industry 4.0 (cf. BMWi 2018).

Standardization and Interoperability

In information and communication technology (ICT), standardization and interoperability are essential from both the technical and economic perspectives. Standardization and interoperability significantly improve security.

Anyone who manages to develop and implement standards can achieve significant competitive advantages. There is an increasing dependence on public standards and interoperability. The aim here is to ensure the functionality of complex ICT systems and unhindered access to the ICT markets. At the same time, it should facilitate a greater level of fairness in competition (cf. BMWi 2018).

Security and Data Protection

There is also a data-protection question here: If a portal operator has implemented a web service from an external provider in their portal, for example, is that web service acting as a data processor? This is particularly important if doing so results in personal data being exchanged. This must be decided on a case-by-case basis, and it depends on the service being provided. Often, however, functions are transferred to third parties. This is particularly the case if an entire set of duties is transferred in addition to the actual processing of personal data. An important factor is that the third party is no longer a data processor, but instead becomes a data controller itself. In this kind of situation, it is not just a question of whether the processing of the data has been contracted, but also whether the services provided and processes executed may lie entirely with the area of responsibility of the web service provider (cf. Czernik 2016).	Comment by David Stockings: I have tried to use the GDPR terminology here, even though the ST does not, since I assume the GDPR terminology is probably better known by this point, even in the US. The GDPR doesn't actually use term "Auftragsdatenverarbeitung", but an "Auftragverarbeiter" is a "processor".	Comment by David Stockings: Again, the ST uses "veranwortliche Stelle", which in GDPR terms is a "Verantwortlicher"/"controller".

https://eur-lex.europa.eu/legal-content/DE-EN/TXT/?from=EN&uri=CELEX%3A32016R0679

If a function has been transferred, the organization must check whether the data can be transmitted in accordance with Section 28 of the German Federal Data Protection Act (BDSG) for “own business purposes” or whether consent may need to be obtained (cf. Czernik 2016). Previous data protection provisions were significantly expanded by the EU’s General Data Protection Regulation (GDPR), which came into force on May 25, 2018.	Comment by David Stockings: I think the law must have been updated since this was written. Section 28 of the BDSG now relates to "Datenverarbeitung zu im öffentlichen Interesse liegenden Archivzwecken" (https://www.gesetze-im-internet.de/bdsg_2018/BJNR209710017.html) / "Data processing for archiving purposes in the public interest" (https://www.gesetze-im-internet.de/englisch_bdsg/englisch_bdsg.html#p0244). "Eigene Geschäftszwecke" does not seem to appear at all.	Comment by David Stockings: I have left this, but I think the GPDR term would be "berechtigte Interesse" / "legitimate interests"

When it comes to securing systems, and particularly web services, the following points must be considered (cf. Czernik 2016):

· Securing the means of transmission for web services (encryption),
· Role and authorization system,
· Penetration tests,
· Protocolling,
· Regular implementation of security-related updates,
· Regular checking of the availability and functionality of interfaces.

Summary
 (
JSON is a text format
used to exchange data
. It is recognized as a simple standard for structured coding of data in the form of human-readable text. JSON is associated with a scripting language and is derived as a data format from JavaScript. However, it can also complete similar tasks to XML.
)

Technologies for Smart Services

According to Ruby on Rails, YAML has become known as a configuration format. It is a language used to exchange data that is simple to read and easy to edit. XML is a data exchange format. A large number of markup languages are based on it. XML does not specify any fixed set of markup elements. Instead, it allows users to define their own markup language using any tags they wish. XML can be used to define markup languages for specific situations, such as exchanging data between two companies or for generally applicable online areas of application. The role of the Internet Protocol (IP) is to forward data packets from a sender to a recipient via the communication network.

A semantic data model is an abstract, formal description and representation of an extract of an environment observed in a given context such as a project. Different modeling languages can be used to create it. Various web service technologies are useful when it comes to creating semantic descriptions, including supporting protocols such as http, SOAP, etc. XML is used as a uniform data format.

“Complex event processing” is an umbrella term for methods, techniques, and tools that enable events to be managed whilst they are in progress. The costly consequences of different forms of cybercrime are becoming an increasing problem for companies, making IT security ever more important. The focus is increasingly shifting to proactive and professional protection. Amongst other things, reliable standards are essential to data security. When it comes to securing systems, and particularly web services, the following points must be considered: securing the means of transmission for web services (encryption), role and authorization system, penetration tests, protocolling, regular implementation of security-related updates, and regular checking of the availability and functionality of interfaces.

Unit 8
Smart Services Quality and Operation

STUDY GOALS

After completing this unit, you will...

... understand the quality characteristics and maturity of APIs.
... understand how service level agreements work.
... understand and be able to use service level management.

DL-D-DLBINGSS01-L08

8. Smart Services Quality and Operation

Introduction
Quality is a major issue when it comes to operating smart services. One consequence of this is that quality considerations, their characteristics, and the maturity of program interfaces and APIs must be discussed. Moreover, service level agreements – agreements between clients and IT service providers – lay out relevant principles that are then implemented in practical service level management.

8.1 Quality Characteristics and Maturity of APIs
For any business wishing to become a digital company, the issues surrounding program interfaces and APIs are of central importance. These days, modern software systems are supported by or equipped with APIs from their inception (cf. Krafft 2016).

An interface is a connection between two systems that enables communication or transmission between them. A socket, for example, acts as an interface for transmitting electrical power (cf. Czernik 2016).

 (
150
) (
Unit 8
)
 (
Unit 8
153
)

API interfaces These make it easier to establish networks with other systems. Networking using API technology is particularly important when it comes to automating communication. APIs enable one piece of software to be incorporated into another
system.

API interfaces make it easier to establish networks with other systems. In particular, it is absolutely essential to use API techniques to network systems together in order to automate communication between them (cf. Krafft 2016). “API” is an acronym for “application programming interface” (cf. Czernik 2016).

Interfaces are hugely important in IT. They enable communication between both software and hardware components. For example, a USB connection on a computer provides a hardware connection to the USB stick. Operating systems also contain interfaces. For example, interfaces within the operating system enable access to the hard disk or to a graphics card via an application program (cf. Czernik 2016).

APIs are taking on a key role in system integration because they enable one piece of software to be incorporated into another. Implementing an API also enables a program to call and use the functionalities of another piece of software. This means that different software modules/program components (services) can be created separately, then communicate with each other via an interface. This type of modular programming has the advantage that the software is easier to maintain, and adding further modules allows the software to be expanded based on individual requirements (cf. Czernik 2016).

Smart Services Quality and Operation

Web Service/Web API

There is a difference between a conventional API and a web API (web service). All web services also contain an API, but in this case, the API is also used to provide a web service. For example, a web service can enable a website provider to offer different services. An external provider can integrate the exchange of data into its portal via a network (intranet/internet) in order to offer services, for instance (cf. Czernik 2016).

There is no uniform definition of web services. A web service is defined by the following characteristics (cf. Czernik 2016):

· It provides a service via a network.
· It provides automated exchange of data and the use of functionalities.
· Data is exchanged and the functionalities are provided regardless of the programming language or hardware. It can be integrated into different systems.
· It provides computer-to-computer communication.

Web services wishing to make the core functionalities of their own product available to other developers via an API runs counter to challenge of achieving the level of API quality required. Quality is a key characteristic for a functional and useful API. In principle, a high-quality API could potentially support the distribution of a product. Flickr, Twitter, and Amazon use a large number of various clients and unplanned applications in order to achieve significant market penetration. APIs provide opportunities to generate additional revenue. However, it is important in this context to note that it is difficult to amend an API once it has been published. The problem is that third-party applications may no longer work correctly or may even become damaging. The interfaces and their documentation need to be available to all, and they must be designed accordingly. In any event, it is impossible to control access to documentation if a product is of significant interest (cf. Lawrenz 2009).

8.2 Service Level Agreements (SLAs)
A customer orientation and a professional service level management (SLM) system, along with the corresponding service level agreements (SLAs), are essential to the long-term success of any service company. There is a desire and a need for suitable, practical means and implementation options in order to professionalize the interfaces that connect service recipients and IT service providers. This includes the drafting and monitoring of SLAs (cf. Scholderer 2016, p. 1ff., 4ff., 10ff., 14ff.).

Web API (web service)
All web services also contain an API, but in this case, the API is also used to provide a web service. This type of service runs counter to the requirement of API quality.

Information technology (IT) needs to be able to ensure a predictable and guaranteed level of quality in the functionalities that it is intended to provide. In the context of IT services, only by supplying the required level of functionality can it be ensured that the service computer has and provides the desired level of quality or is/can be in a condition to be used as stipulated or intended. Suitable methods and models need to be in place in order to ensure that an IT operation is managed and IT services or IT service management (ITSM) are delivered in a quality-assured manner. These include (cf. Scholderer 2016, p. 1):

· COBIT (Control Objectives for Information and Related Technology),
· ISO 20000 or ISO/IEC 20000,
· ITIL (Information Technology Infrastructure Library),

The term “IT service” can be defined in different ways (cf. Scholderer 2016, p. 4ff.): An IT service...

· Consists of one or more functions provided by IT systems to support business areas. Functions consist of software, hardware, and communication facilities.
· Provides access to an application (e.g., a reservation system) or to a series of hardware and software platforms.
· Consists of a group of components intended to support one or more business processes. The IT service includes configuration elements such as routers, workstations, etc. As far as service recipients are concerned, it represents a closed, unified and coherent unit.
· Is a service provided by service providers to customers. An IT service is built on the use of information technology. It supports the business processes of a service company. An IT service consists of a combination of people, processes and technology. The IT service needs to be defined in an SLA.

From the service recipient’s perspective, in addition to the actual service (people, processes, and technology), a web service also includes (cf. Scholderer 2016, p. 5ff.):

· Communication services,
· System services,
· Application services,
· Processes.

The defining characteristics of IT services are that they are described in a form that is understandable to the customer and that they are directly provided using the resources of networked IT systems (cf. Scholderer 2001).

Smart Services Quality and Operation

Operational Level Agreements (OLAs)

An operational level agreement (OLA) is an agreement reached internally between the departments of a company. In large data centers, internal operations are generally divided into individual IT departments such as service operations, application hosting, etc. However, when services are provided to end customers that are highly complex, for example, then those IT services are generally made up of different IT departments, and it is useful to define ITIL operational level agreements as well (cf. Bon 2008; Scholderer 2016, p. 6).

This enables interactions between OLAs and SLAs to be based on a shared template. The OLA must, therefore, include the structure of an IT service catalogue. The department responsible for the SLM concludes an OLA with the relevant service providers (cf. Scholderer 2016, p. 6f.).

A service catalogue describes the IT services that a service provider offers to its service recipients (cf. Scholderer 2016, p. 7). The following figure illustrates these relationships.
[image:]

Service Level (SL)

A service level (SL) is a quantification of an IT service (Kütz 2010). It expresses a result that characterizes one property of the service. An SL contains statements with simple and clearly interpretable results, e.g., indicators. The following figure provides an example of top result indicators (cf. Scholderer 2016, p. 10).
[image:]
A service level agreement is a service contract that describes and governs the relationship between service recipients and service providers (cf. Scholderer 2016, p. 11).

The establishment and monitoring for compliance with the agreed IT service is based on the ITIL Service Level Management process (cf. Central Computer and Telecommunications Agency [CCTA] 2011; Scholderer 2016, p. 11).

8.3 Service Level Management (SLM)
Service level management (SLM) is the management and guaranteeing of a sufficient level of service quality in accordance with business priorities and acceptable costs. Its goal is to improve the relevant IT services for all IT users (cf. Scholderer 2016, p. 14).

Smart Services Quality and Operation

Service level management (SLM) is a continuous process to help implement the service concept and optimize the service quality (cf. Scholderer 2016, p. 14). This continuous process is made up of the following four processes (cf. Scholderer 2016, p. 14):

· Identifying and adjusting service targets and service level indicators,
· Managing the defined performance, cost, and quality targets,
· Providing evidence of service having been provided,
· Improving and optimizing performance.

There are many roles within the SLM process that are involved in supplying the IT service to service recipients. The most important roles in the SLM process are the service recipient, the service level manager, and the service provider. Coordination is often necessary between the required/involved IT departments. Data also needs to be clarified. The SLM process helps to reduce the effort required for this coordination. It does so by adding appropriate parameters to the service catalogue (cf. Scholderer 2016, p. 14f.). The following representation shows the various relationships.
[image:]
The figure shows how the SLM process works. The service recipient has the option to choose from a service catalogue or from a pre-prepared service offering from which it can select the required service level. It can also define its own custom service level requirements (SLRs). This involves either the direct creation of an IT framework agreement, within which individual SLAs can be created, or meetings have to be arranged so that the service recipient’s requirements can be determined in detail (cf. Scholderer 2016, p. 15).

SLM involves a drafting stage that results in a proposed SLA draft for the service recipient.

Summary
 (
API interfaces make it easier to establish networks with other systems. Using API techniques to establish networks is particularly important for automating communication. APIs enable one piece of software to be incorporated into another. All web services also contain an API, but in this case, the API is also used to provide a web service. The requirement of API quality is also incumbent on all web services and must be fulfilled.
An operational level agreement (OLA) is an agreement reached internally between the departments of a company. A service level (SL) is a quantification of an IT service. A service level agreement (SLA) is a service contract that describes and governs the relationship between service recipients and service providers. Service level management (SLM) is the management and guaranteeing of a sufficient level of service quality in accordance with business priorities and acceptable costs for the purposes of improving IT services for all IT users.
)

image3.jpeg

image4.jpeg

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.jpeg

image21.jpeg

image22.jpeg

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.jpeg

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg

image36.jpeg

image37.jpeg

image38.jpeg

image39.jpeg

image40.jpeg

image41.jpeg

image42.jpeg

image43.jpeg

image44.jpeg

image1.png

image45.jpeg

image46.jpeg

image47.jpeg

image48.jpeg

image49.jpeg

image50.jpeg

image51.jpeg

image52.jpeg

image53.jpeg

image54.jpeg

image55.jpeg

image56.jpeg

image57.jpeg

image58.jpeg

image2.jpeg

image59.jpeg

image60.jpeg

image61.jpeg

image62.jpeg

image63.jpeg

image64.jpeg

