[bookmark: _p4yjd6a6z2c4]CSS Layers for CSS Resets
I have always was frombeen one of those thawhot preferred the aggressive CSS Rreset methods, which tried to delete most of the default styles of the web browser, likesuch as removing the default heading styles of <h1> to z elements that have bigger larger font-size and font-weight.
On the other endHowever, I also like the waytreatment that Normalize CSS is doing tohandles shadow DOM elements, which we do n’ot have in any any differentof the CSS Rreset methods.
Because of this, I always find methods to mix them both. But eEven then, however, I have had some issues with CSS specificity that I needed to dofind a workaround for.
But nowHowever,, in 2023, as all browsers now support the new CSS {Cascade} Llayers, and we can start rethinking how to do it even better.
[image:]
Before we start, lett’s me say a few words about CSS Rreset methods.
[bookmark: _4yrj3hwfebtz]CSS Reset Methods
For many years, there was a “fight” over which method of Rresetting CSS is better.
In this competitioning method, we had two familiar onemethods:
1. Normalize CSS —– a gentle approach to fix differences between browsers while keeping the native styles of HTML elements liksuch ase the heading elements of <h1>, <h2>, and so on.
As mentioned before, Normalize CSS also takes care of shadow DOM elements that sometimes look different in different browsers.
Demo of treatment inof shadow DOM elements in Normalize CSS:
/**
* 1. Correct the inability to style clickable types in iOS and Safari.
* 2. Change font properties to `inherit` in Safari.
*/
::-webkit-file-upload-button {
 -webkit-appearance: button; /* 1 */
 font: inherit; /* 2 */
}
2. CSS Reset —– on the other endin contrast, CSS Reset was a more aggressive method that said that, in most cases, we do n’ot need the default style that we get from the browser, and we should remove them by using an aggressive CSS Rreset.
As mentioned earlier, in most cases, we want to define our unique style for specific HTML elements. Because of this, we will try to remove most of the browser’s' default styles, likesuch as the default styles of the <h1> to <h6> elements.
Demo on how CSS reset can be done:
h1, h2, h3, h4, h5, h6 {
 margin: 0;
 font-size: inherit;
 font-weight: inherit;
}
[bookmark: _sw03x625euji]Combining Methods
Combining the method of Normalize CSS and CSS Reset is to profitallows us to gain from both approaches.
On the one hand, I want to earn thebenefit from the advances of Normalize CSS, taking care of inner shadow DOM elements. On the other hand, I want to achieve have the CSS Reset power to remove unuseful styles that we are getting from the web browser.
The easiest way to do itthis is just to load them both.: Ffirst, load the Normalize CSS with its main fixescorrections of shadow DomOM elements,; and Ssecond, load CSS Reset, which will remove the default styles of the browsers and override some unnecessary definitions in general, and including some of those of Normalize CSS.
WayHow to implement this in Sass preprocessor:
/* CSS Resets */
@use 'normalize';
@use 'reset';
Because we load first Normalize CSS first, and then we load the CSS Reset, this will make give our CSS Reset with a stronger CSS Sspecificity, right? Well, Nnot precisely., and now lLet’s talk about some issues with it.
[bookmark: _sh70syaa50q]Issues with Combining Methods
In our Appwrite project of Appwrite, we are usinge Normalize CSS whileand combininge it with “The New CSS Reset”,,” which I created while using the new native CSS reset features.
For both projects, we are takinge them fully from NPM, even the unnecessary parts from Normalize CSS, likesuch as fixing the different style of the <h1> element that will need to be removed with the CSS Reset.
Header <h1> style in “Normalize CSS”:
/**
* Correct the font size and margin on `h1` elements within `section` and
* `article` contexts in Chrome, Firefox, and Safari.
*/

h1 {
 font-size: 2em;
 margin: 0.67em 0;
}
General remove style in “The New CSS Reset” (includes <h1> element):
/*
 Remove all the styles of the "User-Agent-Stylesheet",
 except for the 'display' property.
 - The "symbol *" part is to solve Firefox SVG sprite bug
*/
*:where(:not(html, iframe, canvas, img, svg, video, audio):not(svg *, symbol *)) {
 all: unset;
 display: revert;
}
[bookmark: _c10t3t8389qk]CSS Selectors Specificity Conflict
Every selector in CSS has its CSS specificity powers. The first one is the order of the selectors; in this case, the order of our CSS Rresets is good.
But besides itHowever, in addition, we have the strength of our selectors, which are defined according to the CSS selector strength (elements, class names, and ID names).
If we take a look at the Normalize CSS selector of <h1> elements, it has the power of one element:
/* 0 (ID), 0 (Classes), 1 (element) */
h1 {...}
This is a relatively low-strength selector.
But now, let’s look at the main CSS Reset selector (from “The New CSS Reset”):
/* 0 (ID), 0 (Classes), 0 (element) */
*:where(:not(html, iframe, canvas, img, svg, video, audio):not(svg *, symbol *)) {...}
To make it withensure the lowest specificity possible, the :where() pseudo selector is used. One of the main ideas of the :where() pseudo selector is the removeal of any CSS specificity created by the selector.
But here comes the conflict,: the style of the <h1> is stronger than the style of the CSS Reset, and this is an issue for us because we want the CSS Reset to overcome override the Normalize CSS.
One way to solve this conflict is to remove the unnecessary parts of Normalize CSS, which means removing all the unnon- shadow -DOM parts styleelements. ButHowever, this can be an issue if we load the project from an NPM package, which is complex to maintain.
[bookmark: _7h1ml5u99ypi]CSS Layers for Rescue
CSS layers were invented to solve cases like this, where we want to tell the browsers that a specific layer is more important than the others and not to take the CSS specificity of another layer into account.
To do so, we have the @layer rule, thatwhich defines a layer. This will wrap part of the styles, define the parts of the layer, and enact the CSS specificity only inside the layer itself.
@layer normalize {
 /* CSS Normalize Here */
}
@layer the-new-css-reset {
 /* CSS Reset here */
}
This in itself will solve our issue.
To be more precise in defining the order of the layer, we can add the “layer statement” that will determine the order in which you want the code to appear. Example:
/* layer statmentstatement - define the order,
 even if the order of the code will not be in the same way */
@layer normalize, the-new-css-reset;

@layer normalize {
 /* CSS Normalize Here */
}
@layer the-new-css-reset {
 /* CSS Reset here */
}
[bookmark: _js3y5dtwzlwe]Sass Preprocessor Support
To keep the separation of files while using Sass, we will need to add some adjustments to our Sass code.
@use 'sass:meta';

@layer normalize, the-new-css-reset;

@layer normalize {
 @include meta.load-css('normalize');
}
@layer the-new-css-reset {
 @include meta.load-css('the-new-css-reset');
}
This way, we can keep our CSS layers separate in separate files and ensure that the last layers will win the “cascade war” while keeping our code well organized.
[bookmark: _fbgxrrnhrsb1]Browser Support
CSS Llayers have already been implemented in all evergreen browsers for quite a while. In iOS, the functionality exists from version 15.4, which at the time of writing this post, we are currently on version 16.2.
[bookmark: _aazznxetp8k6]To Summarize
This post covered how we can solve CSS specificity issues, specifically on CSS Rreset layers.
This method of using CSS Llayers to solve CSS conflicts will be more commonly used as we approach the end of 2023, aswhen users upgrade their browsers.
In our case at Appwrite, the product is for developers, and we can consider new versions of browsers for our users.
[bookmark: _6why993dxki]Final Words
That’s all.
I hope you’ have enjoyed this article and learned from my experience.
If you like this post, I would appreciate applause likes and sharing :-)
You can follow me via Twitter.
Who Am I?
I am Elad Shechter, a CSS Aarchitect at Appwrite.

image1.png

