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Abstract
Developed as a refinement of Stochastic Volatility (SV) models, Tthe Stochastic Volatility in Mean (SVM) model represents an advancement of Stochastic Volatility (SV) models, whereinincorporates the latent volatility is incorporated as an explanatory variable in both the mean and variance equations. This It therefore provides a way of assessing integration facilitates the assessment of the relationship between returns and volatility, albeit at the expense of complicating the estimation  process.

This study introduces a Bayesian methodology that leverages data- cloning algorithms to obtain maximum likelihood estimateions for SV and SVM model parameters. By aAdopting this Bayesian framework, allows approximate maximum likelihood estimateions can to be attained without the   need to maximize pseudo-likelihood functions. The key contribution of this paper makes lies in the proposition ofis that it proposes  an estimator for the SVM Mmodel, one which that uses Bayesian algorithms to effectively approximates the maximum likelihood estimateor with great effect through the utilization of Bayesian algorithms. Notably, these estimateions it provides yield superior outcomes when compared to than those derived from the Markov Chain Monte Carlo (MCMC) method in terms of standard errors, all the while being independent of unaffected by the selection of prior distributions.	Comment by David Stockings: I assume it is the outcome that is estimated, not the function.
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1 Introduction
When analyzing time series of returns on financial assets returns, it is necessarywe need to consider their specific properties, paying special particularlyattention to their the behavior of volatility, i.e. whether they exhibit behaviors such as heteroscedasticy, volati- lity clustering (Mandelbrot, 1963, and Tseng and Li, 2011), and excess leptokurtosis (Koopman and Uspensky, 2002). To account for these properties, mModels such as GARCH (Bollerslev, 1986, and Katsiampa, 2017) and Stochastic Volatility (SV) (Taylor, 1982, and Taylor, 1994) have previously been developed to account for these properties.

GARCH models define the conditional variance as a function of the past squared innovations and lagged conditional variances (Manera et al., 2016 and Chan and Grant, 2016). In contrast, variance in SV models is characterized as an unobserved component that follows a stochastic process (Koopman and Uspensky, 2002, Trolle and Schwartz, 2009, Brooks and Prokopczuk, 2013).

MoreoverFurthermore, whereas the SV model captures the deviation of returns from the mean using a function of two disturbance terms, whereas the GARCH model relies on a single disturbance term (Koop- man and Uspensky, 2002). This added complexity in the SV model allows for more flexibility (Asai et al., 2006, Balcilar and Ozdemir, 2019) and improved accuracy in capturing the vo- latility clustering of financial series (Kim et al., 1998,   Yu, 2002,   Carr et al., 2003,   Chan and Grant, 2016, Tiwari et al., 2019, Agbeyegbe, 2022). Additionally, The SV model is also better equipped at to handlinge the negative relationship between volatility and returns.. Furthermore, SV models are more robust to against misspecification and to against radical changes in the data (Tiwari et al., 2019, Balcilar and Ozdemir, 2019), in addition to and are better at estimating the properties of the financial series.

Recently, the Stochastic Volatility in Mean (SVM) model has emerged as a further refinement of the SV model. This model It allows for the simultaneous modeling of the mean and variance of financial time series data to be modeled simultaneously, allowing enabling the simultaneous analysis of the relationship between volati- lity and returns to be analyzed at the same time, which is  – an important aspect of financial modeling (Koopman and Uspensky,
 
2002). Other models, such as ARCH-M and GARCH-M, also attempt to estimate this rela- tionship, but they do not provide a simultaneous estimation of the ex- ante relationship between volatility and returns. Therefore, it is expected that We can therefore expect SVM models will to provide more accurate estimates of the behavior of financial time series data when analyzing leverage effects (Bouchaud et al., 2001) and the effect of volatility feedback (Koopman and Uspensky, 2002).

While SV models have been shown to be superior to GARCH models in the literature, they are not as widely used due to their  complexity involved in their estimation. This is because of the it is difficulty to directly evaluate the likelihood function directly and because they require us to estimateing both return and volatility at the same time.

Various techniques have been used to estimate Stochastic Volatility (SV) models, including methods based on the method of moments (Taylor, 1986, Melino and Turnbull, 1990, Renault, 2009) and likelihood-based methods. The estimators of moments do have the advantage of not requiring a likelihood assessment to obtain them, but their efficiency is known to be suboptimal compared to likelihood-based inference methods (Sandmann and Koopman, 1998). However, likelihood-based methods have limitations as well, such as being including that they are computationally intensive, requireing excessive simulation efforts, and making call for assumptions to be made that can be difficult to satisfy. Financial markets often require real-time decision- making, which requires means the estimators need to be computationally fast and robust, estimators that  and are limited in the amount of require less sampling they can involve (Yang et al., 2021).	Comment by David Stockings: Do you perhaps mean "effectiveness"? I.e. how accurately they do it, rather than how much processing is required. It seems that if likelihood-based methods require more computation, they would be less efficient.

Bayesian methods, such as Monte Carlo Markov Chains (MCMC) (e.g., Shephard, 1993, Jacquier et al., 1994, Kim et al., 1998, Broto and Ruiz, 2004, Andrieu et al., 2010, Beskos et al., 2013, Kastner et al., 2017, Li et al., 2019) and Integrated Nested Laplace Approximations (Mar- tino et al., 2011), are a good solutions for estimating the parameters of SV models as because they allow for efficient evaluation of the posterior distribution of parameters and volatility. However, these methods also have limitations such as requiring a prior distribution for the parameters, a  and a numerical evaluation of the likelihood function, and, and they can also experience potential problems with the convergence of the simulated  chains (Rue et al., 2009).	Comment by David Stockings: Perhaps "with achieving convergence of the simulated chains" or "getting the simulated chains to converge"? This phrasing sounds like convergence is the problem, rather than the goal, which is what I believe you mean.

This paper proposes the use of using a different approach called “data cloning” (Lele et al., 2007), for  to estimate the parameters estimation, utilizing the computational simplicity of MCMC algorithms while also enabling frequentist inferences, such as maximum likelihood estimates and standard errors, to be made. The method involves applying a Bayesian methodology to a data set constructed by cloning the original data set as many times as necessary so that for the solution to approximates the maximum likelihood solution (Ponciano et al., 2009 and Chaim and Laurini, 2022). The main advantage of using data cloning over other Bayesian methods is that the inferences are invariant to the choice of the prior distributions, and nodoes not require likelihood estimation is required. Overall, data cloning is a powerful method for estimating and studying complex models, especially when analyzing volati- lity.	Comment by David Stockings: Estimate?

We propose the use of ing this methodology to estimate the parameters of SV and SVM models, as as it has been shown to be particularly useful for complex models, as discussed in studies by Lele et al., 2007, Ponciano et al., 2009, S´olymos, 2010, and Chaim and Laurini, 2022.   Recently, this method has been successfully used to estimate the parameters of other complex financial models in Mar´ın et al., 2015, and de Zea Bermudez et al., 2020. Although it is beyond the scope of this article, models are recently currently being developed to estimate volatility in the valuation of financial options, using two volatility components (Pasricha and He, 2023, and Lin and He, 2023). These models are strong potential candidates for using an algorithm similar to like the one we have constructed in this paper to estimate their parameters.	Comment by David Stockings: Or "have recently been developed", depending on what precisely you mean.

This paper makes three important contributions to the literature. First, it provides an al- gorithm to estimate SV and SVM model parameters based on the data- cloning method. This is a simpler way of estimating SVM that allows obtaining frequentist inferences to be obtained without having to estimateing likelihood. Second, we by performing an analysis with of simulated data using the proposed algorithm, we and show that its estimates are more accurate than the those obtained using the MCMC method. Third,   in order to evaluate the predictive ability of the model over a real financial series, the methodology is applyied to model Bitcoin returns, obtaining allowing us to draw new conclusions about the relationship between volatility and profitability in cryptocurrencies –, conclusions that can only be obtained with the SVM method.

The structure of the article is as follows. In section 2, we specify the SV and SVM models that will be used in order to be able to estimate it later on, and . Iin section 3, we explain the data- cloning method method in general terms. , and then iIn section 4, we develop lay out the algorithms required to apply this method to the SV and SVM models. In this section, we also , then obtain the results and compare them with the MCMC methodology, demonstrating that the data- cloning methoddology is superior. In section 5, we apply SVM to a real example of a financial series (Bitcoin) and analyze the relationship between return and volatility , checking if to test the hypotheses of leverage effect and volatility feedback are fulfilled. Finally, in section 6, we present the main conclusions of the paper.

2 Definition and specification of the SV and SVM mo- dels
Definition 1. The Stochastic Volatility model defines the returns of   the   process   Yt   in discrete time t as

Yt = µt + σtϵt,   ϵt ∼ NID(0, 1),	(1)
 (
Σ
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where σ∗2 is a positive scaling factor and ht is a stochastic process defined as
ht = ϕht−1 + σηηt,   ηt ∼ NID(0, 1).	(4)
In (4), ϕ and ση are model parameters. Parameter ση is the variance of the independent and identically distributed normal variables ηt, while ϕ is the volatility- persistence parameter. It is important for ϕ to be positive and smaller than 1 (ϕ ∈ (0, 1)) to ensure stationarity.
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The SV model has two sources of variability by in the form of the means of two independent and mutually uincorre- lated disturbance terms, ϵt and ηt. This constitutes the is the main difference with between SV models and GARCH models (Bollerslev, 1986, and Koopman and Hol Uspensky, 2002). The unconditional variance implied implied in the SV model is	Comment by David Stockings: Unless "incorrelated" is a term of art I am not familiar with. The opposite of "correlated" is normally "uncorrelated".

      ση 
σ∗2e 2(1−ϕ2) .

One important characteristic of SV models is that they capture part of the excess of kurtosis that financial series present. The kurtosis of an SV series is defined by
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Definition 2. The returns of the Stochastic Volatility in Mean (SVM) model is defined as (1), and and its mean is defined as
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where parameter d is measuresing the effect of volatility in the mean of the process.

The variance of the SVM model is defined by equations (3) and (4).

The inclusion of variance in the mean equation allows for a better understanding of the rela- tionship between returns and volatility. It makes possible to enables perform studies like French et al., 1987, to be performed and analyze the returns’ partial dependence ofn volatility to be analyzed, as features in all financial theory assesses (Koopman and Hol Uspensky, 2002).


3 Data- cloning estimation
The estimation of these models, particularly SVM, is not straightforward. ThereforeTo resolve this, this paper proposes a technique based on data cloning to obtain approximateions of the maximum likelihood estimatores through Bayesian algorithms. The main idea is to clone the series k times and assume that each series represents an independent trajectory of the process. We consider all trajectories to be equal because the trajectory with the highest probability is the one obtained. Although the heuristic explanation alludes to the independence of implies that the cloned trajectories are independent, the mathematical proof of the algorithm does not rely on this assumption, and in no case it does it not assume that the k clones are independent.	Comment by David Stockings: Again, I assume this is about outcomes rather than the functions.	Comment by David Stockings: Below they are referred to as "sample paths". Is there a distinction?

This method was introduced by Lele et al., 2007, and Lele et al., 2010, as a means to of obtaining maximum likelihood approaches estimates for parameters of complex models where direct maximization of the likelihood is infeasible.

The data- cloning method offers an effective solution for estimating the parameters of SV and SVM models as it avoids the need for direct maximization of the likelihood function. Instead, it utilizes Bayesian algorithms to approximate the likelihood. Moreover, this methodology is not reliant on the specific prior distributions chosen, resulting in improved solutions compared to those provided by MCMC estimators.

Previous studies by Laurini, 2013, and de de Zea Bermudez et al., 2020, have successfully applied this method to estimate the SV model, albeit using a less general model. Their findings demonstrate the enhanced accuracy in of the parameter estimation compared to the standard Bayesian approach. Therefore, we aim to assess the effectiveness of this method in the context of a more more general SV model and the SVM model.

The data- cloning method begins with an observed data set y = (y1, y2, ..., yn) and the prior distributions for the parameters. It utilizes the posterior distribution of the parameter set θ, denoted   as   π(θ|y),   which   is   proportional   to   the   likelihood   function   L(θ|y)   multiplied   by   the

prior distribution π(θ). This posterior distribution is then used to generate samples using an MCMC method. In the data- cloning method,  samples are drawn from the posterior distri- bution   π(k)(θ|y),   which   is   proportional   to   the   k-th   power   of   the   likelihood   function   [L(θ|y)](k) multiplied by the prior distribution π(θ).

The data- cloning method is based on the principle that when k is sufficiently large, π(k)(θ|y) converges to a multivariate normal distribution with that has the maximum likelihood estimateor of the model parameters as its mean. Additionally, the covariance of this multivariate normal dis- tribution is equal to 1/k times the inverse of the Fisher information matrix for the maximum likelihood estimateor (Lele et al., 2007). Based on this, tThe data- cloning algorithm can therefore be sum- marized in the following steps:
Step 1: Create k-cloned data set y(k) = (y, y, . . . , y) by cloning the observed data set k times.
Each copy of y is treated as an independent sample path of the same process.
Step 2: Use an MCMC method to generate random values from the posterior distribution. Start the algorithm with the prior distribution π(θ) and the cloned data vector y(k) = (y, y, . . . , y).
Step 3: After running the MCMC method for a total of B iterations, compute the sample means and variances of the obtained values obtained for the marginal posterior distribution, denoted as   (θ)j,   where   j  =  1, . . . , B.   . The   sample   means   correspond   to   the   maximum   likelihood estimates, while the approximate variances of the maximum likelihood estimates are k times the posterior variances.

4 Data- cloning algorithms to estimate the SV and SVM SVM models
In order to facilitateTo simplify  the estimation algorithms for both models, the estimation of the cons- tant parameter will bewas excluded. Although it is possible to include this parameter in the algorithms, doing so its inclusion significantly increases the computation time as it requires a higher number of clones. However, aAfter conducting several empirical tests, it has been we observed that excluding the constant parameter does not significantly affect the results,.  so we Therefore, it has been decided to omit it in the simulations and work with variables in differences.	Comment by David Stockings: I have put this entire section in past tense for consistency with the discussion section. Alternatively, this first part explaining the model could be in present tense to indicate that it is a general description, rather than related to the specific test undertaken in this section.

4.1 Data- cloning estimator for the SV model
The algorithm based on the data- cloning method will be able was used to estimate the model parameters for the SV model described in section two 2 by equations (1), (3), and (4) and simplifying equation
 (2) to
µt = by˜t−1,	(6)
being y˜ = yt − y¯ (the returns in differences).
The model will be described to included just one autorregressive term. More autoregressive terms, or other kinds of terms, could be easily included if necessary, but each included additional term will would probably increase the required number of clones to achieve convergence, and consequently the computation time.

This model iwas characterized by four parameters: ϕ, ση, σ∗2, and b.

To apply the data- cloning method, is required to design an MCMC procedure needed to be designed, which makes ne- cessary to choose and prior distributions therefore needed to be chosen, even thought it is has been provedn that they do not affect the final

 results (see Lele et al., 2007). Considering thatIn light of this, the following vaguely informative distribu- tions will be were chosen as prior distributions: ϕ ∼ U (0, 1), ση   ∼ U (0, 10), σ∗2 ∼ U (0, 10), and and b ∼ U (−10, 10).
 (
t
)The joint posterior distribution iwas obtained by assuming that Yi ∼ N (µt, σ2), with µt defined in
 (
t
)(6) and σ2 defined in (3)., so t The likelihood function of the SV model iwas therefore:
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)The Ddata- cloning algorithm startsed from an initial solution ϕ(0), σ(0), σ∗2(0), and b(0).  and fFrom the conditional posterior distributions, it generatesd values for ϕ(m), σ(m), σ∗2(m), and b(m) in each itera- tion m. The initial values will be were simulated directly from the prior distributions, since it is not necessary there was no need to use specific values to achieve convergence within a reasonable time.

After a large enough sufficient number of iterations, a sample will be was obtained to constitute the posteriors whose means will  be an approach to formed the basis of the maximum likelihood estimateions of the model parameters. The steps of this algorithm can be summarized as follows:
 (
η
)Step 1: Set initial solution at m = 0 as: ϕ(0), σ(0), σ∗2(0) , and b(0).
Step 2: Generate ϕ(m+1) from its conditional posterior distribution
ϕ(m+1) ∼ π(k)(ϕ|ση, σ∗2, b, y˜).
 (
η
)Step 3: Generate σ(m) from its conditional posterior distribution

 (
η
)σ(m) ∼ π(k)(ση|ϕ, σ∗2, b, y˜).

Step 4: Generate σ∗2(m) from its conditional posterior distribution
σ∗2(m) ∼ π(k)(σ∗2|ϕ, ση, b, y˜).
Step 5: Generate b(m) from its conditional posterior distribution
b(m) ∼ π(k)(b|ϕ, ση, σ∗2, y˜).
Step 6: Set m = m + 1 and go to Step 2.
This  This algorithm   has  been  was implemented   using   the   package  dclone   package (S´olymos,   2010)   from   the
R project (R Core Team, 2012).

To test the performance of the algorithm in estimating the parameters of the SV model, a sample path of this model has been was simulated. This alloweds for a comparison betweenus to compare the real parameters and against the estimated ones. A simulator for this model has been was developed using R R to generate the series, which consisteds of 245 values, approximately representing approximately the number of working business days in a year. This is done to The purpose of this was to assess the performance of the algorithm when conside- ring over the annual evolution of the daily returns of a financial asset. The selected parameter values for simulating the model awere: ϕ = 0.97, ση = 0.12, σ∗2 = 0.2, and b = 0.2.

The data- cloning algorithm requires determining the optimal number of clones to be determined. This is achieved by evaluating the maximum eigenvalue of the posterior variance, the minimum squared squared error, the R2 statistic, and the Rˆ criterion (Lele et al., 2010, and Brooks and Gelman, 1998).   All these metrics can be computed using the dclone package. Based on these results, no significant improvements were found by using more than 20 clones, so the optimal number of clones is fixed fixed at 20.

The results obtained by applying the algorithm to a single sample path are presented in Table 1. The tableIt displays the real values for all parameters, the estimated parameters, the standard errors, and the 95% confidence intervals in columns. Additionally, the last two columns columns include the parameter estimates using an MCMC estimator and the corresponding estimation standard errors of estimate. This allows for a comparison to be made with the results obtained using data cloning.

	Parameter
	Real
Value
	Data cloning
Estimations
	S.D.
	95% confidence
Intervals
	MCMC
Estimations
	S.D.
(MCMC)

	ϕ
	0.97
	0.8879
	0.03931
	(0.5433, 1.2324)
	0.8335
	0.2077

	ση
	0.12
	0.1478
	0.03758
	(−0.1816, 0.4771)
	0.1910
	0.1220

	σ∗2
	0.2
	0.2130
	0.06577
	(−0.3635, 0.7895)
	0.2036
	0.0392

	b
	0.2
	0.2192
	0.01462
	(0.0911, 0.3474)
	0.1199
	0.0676



Table 1: Estimation Estimates for of the Stochastic Volatility model parameters using the data- cloning method.



It can be observed that, cBearing in mind onsidering that only one simulated sample path was simulated, we can observe that the estimator produces produces values that closely match the real values used to generate the path. Additionally, the standard errors of the estimateion are very small for all casesacross the board, indicating that the estimator yields good results, based on a single sample path. Moreover, all real values fall within the 95% confidence intervals, as expected.

Comparing these results with those obtained using a traditional MCMC estimator, data cloning demonstrates superior performance in almost all cases. It provides estimates with smaller standard errors that do not depend on the selected priors.
[image: ]

Figure 1: Histograms of the posterior distributions of the Stochastic Volatility model parameters.

Figure 1 shows the posterior distributions obtained by the data- cloning algorithm, letting providing a better understand better the behavioring of the estimates’ behavior. We observe can see a slight tendency to underestimate the value of ϕ, but for the remaining parameters, the higher probabilities of the posterior density function closely are aligned with the true parameter values.

It should be noted that data- cloning estimatores are approximations to of maximum likelihood estimateors, so they will have the same analytical properties.

4.2 Data- cloning estimator for the SVM model
The estimator for the SVM model based on the data- cloning method also requiresd simplifying the mean equation (5) to be simplified, in order to work with the returns in differences and fix the variables to be used.	Comment by David Stockings: Same approach to tenses taken here.
Thus, the equation of the mean is defined by

µt = by˜t−1 + dσ∗2eht.	(7)
Again, a unique single autorregressive term has been was included to simplify the algorithm execution. Thus, the model hasd five parameters: ϕ, ση, σ∗2, b, and d, one more than the SV model, to include plus  ht in the mean equation.	Comment by David Stockings: I assume this is in addition to the other five.

The prior distributions to be used in the algorithm awere:    ϕ ∼ U (0, 1), ση   ∼ U (0, 10),
Σ∗2 ∼ U (0, 10), b ∼ U (−10, 10), and d ∼ U (−10, 10).
 (
t
)The joint posterior distribution   will be was obtained considering that Yi   ∼ N (µt, σ2) , with µt
 (
t
)defined in (7) and σ2 defined in (3), so the likelihood function of the SVM model iwas
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I(0,1)(ϕ),


I(0,10)(ση ),


I(0,10)(σ∗2),

I(−10,10)(b),

I(−10,10)(d).

 (
n
) (
η
) (
η
)The algorithm startsed from an initial solution ϕ(0), σ(0), σ∗2(0), b(0) , and d(0)  and considering these values generateds the new ones solutions (ϕ(m), σ(m), σ∗2(m), b(m) , and d(m)) in each iteration (m) from the conditional posterior distributions. They were then used to obtain the posterior sample will be obtained with them, and its arithmetic means will constituted the maximum likelihood estimateions approach. The algorithm steps can be summarized as follows:	Comment by David Stockings: Small ambiguity: new solutions or new values?
 (
η
)Step 1: Set initial solution at m = 0 as: ϕ(0), σ(0), σ∗2(0), b(0) , and d(0).
Step 2: Generate ϕ(m+1) from its conditional posterior distribution
ϕ(m+1) ∼ π(k)(ϕ|ση, σ∗2, b, d, y˜).
 (
η
)Step 3: Generate σ(m) from its conditional posterior distribution

 (
η
)σ(m) ∼ π(k)(ση|ϕ, σ∗2, b, d, y˜).
Step 4: Generate σ∗2(m) from its conditional posterior distribution
σ∗2(m) ∼ π(k)(σ∗2|ϕ, ση, b, d, y˜).
Step 5: Generate b(m) from its conditional posterior distribution
b(m) ∼ π(k)(b|ϕ, ση, σ∗2, d, y˜).
Step 6: Generate d(m) from its conditional posterior distribution
d(m) ∼ π(k)(d|ϕ, ση, σ∗2, b, y˜).
Step 7: Set m = m + 1 and go to Step 2.
Again, Tthe   package  dclone   package (S´olymos,   2010)   from   the   R   project   (R   Core   Team,   2012)   has  been was used again to program the algorithm, analogously to the way how the data cloning algorithm was programmed to estimate the SV model.  The Iinitial values have been were simulated directly from the prior distribution.

The same procedure used as for the SV model will be was followed to analyze the quality of the estimates. Therefore, a series with 245 observations will be was simulated using the following para- meters for the model:  ϕ = 0.97, ση  = 0.12, σ∗2 = 0.2, b = 0.2, and d = 0.1.  The parameters of the model will were then be estimated using the series data, and the proximity of the estimated values to the real values, as well as  and the standard errors of estimateion, will be  were examined. Confidence intervals will were also be also obtained for the parameters and it will be checked if to test whether they include the true values.

To determine the optimal number of clones, the following criteria from the dclone package will be were employed: maximum eigenvalue of the posterior variance, minimum squared error, R2 , and Rˆ (Lele et al., 2010, and Brooks and Gelman, 1998).   It can be noted that, aAs this model have had one more parameter than the previous one, it is necessary to use a considerabley higher number of clones needed to be used in order to achieve convergence. After trying testing several estimateions, it has been possible to we concluded that 40 clones clones are enough sufficient to make high-quality estimates that are not substantially improved by including a larger number of clones. Hence, the optimal number of clones is set at 40.

The tTable 2 shows in columns the real data used to estimate the series, the estimates obtained, the standard errors of estimate,ion and the confidence intervals for each parameter. The tableIt also includes the estimates obtained using the MCMC method, with their respective standard errors, for the purpose of comparing the quality of the estimateions quality between yielded by the two methodologies. Figure 2 displays the posterior distributions of the parameters obtained by the algorithm.

	Parameter
	Real
Value
	Data cloning
Estimations
	S.D.
	Confidence
Intervals
	MCMC
Estimations
	S.D.
(MCMC)

	ϕ
	0.97
	0.9717
	0.0053
	(0.9055, 1.0379)
	0.9368
	0.0810

	ση
	0.12
	0.1386
	0.0171
	(−0.0736, 0.3509)
	0.1878
	0.0807

	σ∗2
	0.2
	0.1831
	0.0671
	(−0.6493, 1.0155)
	0.1717
	0.0511

	b
	0.2
	0.2548
	0.0103
	(0.1267, 0.3829)
	0.2527
	0.0654

	d
	0.1
	0.1386
	0.0171
	(−0.1454, 0.4145)
	0.1402
	0.1408



Table 2: Estimation for Estimates of the Stochastic Volatility in Mean model parameters using the data- cloning method.



Only one trajectory has beenwas considered, and yet it can be seen but we can see how that the estimation algorithm provides values very close to the real values of the parameters used to simulate it. The standard errors of estimateion are also small enough to support the quality of prove that the obtained estimates obtained are of high quality. Finally, it can be seen we can see that the 95% confidence intervals include the real values of the parame- ters and that the estimateions improve the are better than those obtained by an MCMC procedure in terms of the estimation standard errors of estimate. The histograms demonstrate the close correspondence between the estimated SVM parameters and the real values. From the results obtained, it can we can be observed that in the analyzed case, it overestimates the values of ϕ, σ∗2 , and d, while  and underestimatesing the values of of ση and b.	Comment by David Stockings: Slightly ambiguous: the estimation algorithm?
Alternatively rephrase to passive:

We can observe that the values of XYZ are overestimated and the values of XYZ underestimated.

Although it can be noted we can see that the estimates based on a single trajectory are good enough, different trajectories have also been were also estimated from the same parameters, obtaining as result the average of all the estimates as a result. As expected, this method providesd values which that are even closer to the true values of the parameters. We do not include further details of this option as it may not be applicable to real data, where only a single trajectory is available. However, it is worth mentioning that this approach enhances the quality of the estimator by reducing variance and
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Figure 2: Histograms of the posterior distributions of the Stochastic Volatility in Mean model parameters.


improving the accuracy of the mean value.

The algorithm has was also been evaluated with different size sample paths, showing good per- formance in all of them. It is We observed that when the sample paths awere small in size, the estimation results depended to a greater extent on the path considered. In contrast, convergence convergence iwas achieved with a number of clones even smaller than the 40 clones proposed to be used. When When the size of the sample paths iwas moderately large, the estimates awere more stable and depended less less on the considered path considered, but in some cases, it is necessary to use more than 40 clones needed to be used in order to reach convergence. The Rresults are summarized in tTable 3.

	Parameter
	Real
Value
	Estimations (S.D.)
n = 100
	Estimations (S.D.)
n = 245
	Estimations (S.D.)
n = 500
	Estimations (S.D.)
n = 1000

	Φ
	0.97
	0.9635 (0.0054)
	0.9717 (0.0053)
	0.9893 (0.0039)
	0.9631 (0.0024)

	ση
	0.12
	0.1143 (0.0143)
	0.1386 (0.0171)
	0.1401 (0.0086)
	0.1465 (0.0047)

	σ∗2
	0.2
	0.4505 (0.0261)
	0.1831 (0.0671)
	0.5086 (0.1575)
	0.2571 (0.0049)

	b
	0.2
	0.1335 (0.0190)
	0.2548 (0.0103)
	0.1341 (0.0072)
	0.2042 (0.0051)

	d
	0.1
	-0.061 (0.0252)
	0.1386 (0.0171)
	0.0656 (0.0133)
	0.1512 (0.0092)



Table 3: Estimation for Estimates of the Stochastic Volatility in Mean model parameters using the data- cloning method in sample paths paths of different sizes.




5 Applications of Applying the estimators to real data: Bitcoin
There is no doubt about the importance of cCryptocurrencies have undoubtedly become hugely important in the economy since the initial intro- duction of Bitcoin to the markets in 2008 (Urquhart, 2016, Katsiampa, 2017, Akkus and C¸ elik, 2020). Cryptocurrencies exhibit higher volatility and are more susceptible to bubbles compared to than traditional currencies (Cheah and Fry, 2015). In addition, the volatility of Bitcoin returns presents are subject to long memory, resulting in their analysis being analyzed as financial assets rather than traditional cu- rrencies. They are increasingly being included in financial portfolios, which and therefore makes modeling their volatility and its relationship to returns is very important in portfolio optimization, hedging

 and the valuation of derivative securities. Bitcoin remains the most importantlargest cryptocurrency in terms   of   market   capitalization   (Tiwari   et   al.,   2019,   Akkus   and   C¸ elik,   2020) , hence  and  that  is  why we are going to use chose it as an example.   Tiwari et al. (2019) obtain find that in general,   SV mo- dels consistently outperform the GARCH models when it comes to analyzing cryptocurrencies (particularly in the case of Bitcoin and, to a lesser extent, in Litecoin). Moreover, they show that in general using t-distributed innovations greatly improves the results of standard GARCH models, but this result is not significant for SV models. Considering thatthis, in this paper we use innovations that follow a normal distribution. Nevertheless, the analysis can be easily extended to incorporate a Student’s t distribution.

The data considered awere the daily returns of the cryptocurrency from October the 1st , of 2020, to March the 1st ,of 2021. The Ddata set have been was obtained from the Spanish financial news website https://es.investing.com/.

5.1 Modeling Bitcoin returns using the SV model estimated by the data- cloning method
To model real data by a SV model, since Given that the estimation algorithm excludes the intercept term,   we will used the deviations from the mean of the data to model the real data within an SV model.   Furthermore,   the five most recent 5 data values have been were excluded, to be used later to test the predictions. The estimated model parameters, the estimation standard errors of estimate and credible intervals are shown in tTable 4. It also includes the estimates of the model parameters and corresponding standard errors using the MCMC method in order to compare both the two methodologies.   . Bayesian confidence intervals are included because they will be can be used to analyze the significance of the parameters from a Bayesian point of view. However, as shown above, if a frequentist approach to the study is desired, confidence intervals can readily be readily calculated. This is one of the advantages of the data- cloning methodology.

	Parameter
	Data cloning
Estimations
	S.D.
DC
	HPD 0.95
	MCMC
Estimations
	S.D.
MCMC

	ϕ
	0.4722044
	0.2779
	(0.0170559, 0.9464303)
	0.4165
	0.26151

	ση
	0.1012176
	0.06509
	(0.0196413, 0.3175769)
	0.4825
	0.3382

	σ∗2
	0.0001425
	7.516e − 6
	(0.0001297, 0.0001603)
	0.0001489
	4.6174e − 5

	b
	−0.2081462
	0.02999
	(−0.2671039, −0.1502172)
	−0.1194
	0.1324



Table 4: Estimation Estimates of the for SV model parameters to estimate Bitcoin, using the data- cloning and MCMC methods.



As expected, the data -cloning and MCMC algorithms provided close values for all parameters except for ση. This is probably due to a high standard error in the MCMC method. Note that all parameters except ϕ have lower estimation errors in the estimates obtained through Ddata Ccloning.

All the parameters are significant at 5%, according to the credible intervals. The parameter b represents the effect of the lagged return in the expected value of the return, and in this case a negative value has been was obtained. ϕ is the first- order coefficient of the log- volatility equation volatility (4) while ση is moderatesing the effect of disturbance in the log-volatility equation (4). Finally, σ∗2 is the constant coefficient of variance and it takes represents a small value part of the total volatility overall, to which will beare increased by added ϕ and ση.

The value of ϕ is significant,   providing an evidence of volatility clustering. However,   its value is relatively low, suggesting that there is not a substantial persistence of volatility across consecutive periods. At the same time, the value of ση is quite high and significant, which means that the volatility of a period is strongly affected by the shocks of the samewithin that period, increasing the value of the variance. That implies that the course of the volatility process is less easily predictable. Finally, , b takes a is negative value, indicating that the profitability in differences in profitability of within one period negatively affects the profitability of the following period. Therefore, we can conclude the following:
       The negative value of b implies that returns from one period have a negative impact on the returns of the subsequent period.
       The variance exhibits a is generally high level, showing little dependence on the variance of the previous period but significant sensitivity to shocks occurring in the current period.
These parameters enable the construction of allow equations to be constructed for predicting the subsequent values using a one-step prediction method. This approach involves using the actual values from the previous period to generate predictions for returns. For constructing the next values in the series, tThe true value of the required lag (in this case, one1) is used to construct the next values in the series. Similarly, a lag is required for volatility, but since volatility is unobservable, the estimated value is employed in this contextused here.
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Figure 3: Bitcoin returns vs.   estimateions of Bitcoin returns generated by using the SV model estimated by the data- cloning algorithm.

Figure 3 displays the predictedions of bBitcoin returns obtained through SV modeling compared to the actual bBitcoin returns. The figureIt demonstrates the model’s ability to generate accurate one-step predictions for future values in this series.

5.2 Modeling bBitcoin returns using the SVM model estimated by the data- cloning method
The same dataset will was also be modeled using the SVM model estimated through the data- cloning algorithm introduced earlier. This model iwas expected to better incorporate the unob- servable behavior of volatility by considering its effects on both the returns and its their mean simul- taneously. Table 5 presents the estimated parameter values, their standard estimation errors of estimate, and the credible intervals. Additionally, iIt also includes the parameter values estimated through the MCMC method and their corresponding standard errors.

	Parameter
	Data cloning
Estimations
	S.D.
	HPD 0.95
	MCMC
Estimations
	S.D.
MCMC

	ϕ
	0.4918337
	0.3506
	(0.011611, 0.9855730)
	0.4290
	0.2661

	ση
	0.1158941
	0.06447
	(0.048043, 0.2844250)
	0.4556
	0.3318

	σ∗2
	0.0001422
	7.998e − 6
	(0.000131, 0.0001663)
	1.49e − 4
	5.28e − 5

	b
	−0.214432
	0.02091
	(−0.25487, −0.173575)
	−0.1212
	0.1314

	d
	7.1425561
	1.558
	(3.851365, 9.7414312)
	2.3354
	5.0931



Table 5: Estimates ofion the for Stochastic Volatility in Mean model parameters to estimate Bitcoin, using the data- cloning method.



Both estimation methods yielded similar parameter values, except for ση and d, where the MCMC method exhibitsed higher standard errors, resulting in less agreement with the data- cloning g estimateions.

All parameters are statistically significant at a 5% significance level, as indicated by the credible intervals. The significance of ϕ once again supports the presence of volatility cluste- ring, although its magnitude is not particularly high.  Similarly to the SV model, parameter b takes a negative value, indicating a negative impact of lagged returns on current returns.

In the SVM model,   a new parameter d is estimated,  which captures represents the effect of volatility on the mean returns. Its significance suggests that the variance has a substantial influence on the expected returns, and the positive value indicates a feedback effect of volatility on returns, aligning with our expectation when analyzing returns in differences.
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Figure 4: Bitcoin returns vs. estimateions of Bitcoin returns generated by using the SVM model estimated by the data- cloning algorithm.

Figure 4 presents the predicted values of the last observations obtained from the SVM model compared to the actual values. It demonstrates the effectiveness of the one-step prediction method in capturing the future behavior of the series. The close alignment between the predicted values and the actual observations highlights the accuracy of the SVM model in forecasting future values.

6 Final conclusions
The main goal of this paper is to introduce an estimator of for the SVM model parameters based based on the data- cloning algorithm, which provides an approximation to of the maximum likelihood estimates of the model parameters. The main findings of this study are as follows:
       DThe data- cloning algorithm is a good solution for estimating the parameters of SV and SVM models, whose complexity makes it difficult to use other estimation methods.
       Data cloning is especially interesting useful to for estimatestimating thee SVM model because it let to estimate allows the return and the volatility to be estimated at the same time.
       The estimates obtained by the data- cloning method to estimate the parameters of the SV and SVM models are shown to be better in terms of their standard errors than those obtained by obtained by the conventional MCMC algorithms in the simulation study.
       The SVM data- cloning estimation algorithm demonstrates consistent performance regard- less of the sample path size. However, it is observed how the estimates are observed to be more stable stable and less path- dependent when we increase its size.
       The hybrid nature of the data- cloning methodology proves to be a very suitable solution when estimating parameters by the maximum likelihood method using Bayesian algo- rithms.
       SV and SVM models are suitable for modeling financial data with volatility jumps, and and they let to provide a means of understanding the behavior of these series behavior.
       SV and SVM models are empirically shown good capabilities to to be highly capable of providinge one- step predictions predictions for cryptocurrencies like Bitcoin. They show that Bitcoin volatility is strongly related to to the return in the same period.
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