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Abstract	Comment by ACL: Abstracts are typically single paragraphs. You may wish to consult the journal requirements for the abstract.
	Reliability is a fundamental requirement in any microprocessor design to guarantee correct execution over its lifetime. The design rules related to reliability dependsdepend on the process technology being used and the expected operationaloperating conditions of the device. The use of To meet reliability requirements, advanced process technologies (28nm28 nm and below) imposes impose highly challenging design rules in order to meet reliability requirements.. Such design-for-reliability rules have become a major burden on the flow of VLSI implementation flow due to their because of the severe physical constraints.  they impose. 
	The focus of this	This paper isfocuses on electromigration (EM), which is one of the major critical factors that affectaffecting semiconductor reliability, Electro-migration (EM).. EM is the aging process of on-die wires and vias. It and is induced by an excessive current flow that can potentially result in damageddamage wires and may also have a significantsignificantly impact on the ICintegrated-circuit clock frequency. EM hasexerts a comprehensive global effect sinceon devices because it impacts wires that may reside inside the standard or custom logical cellcells, between logical cells, inside memory elements, and within wires that interconnect functional blocks.
	So far,The design-implementation flowsflow (synthesis and place-and-route) detect the currently detects violations of EM-reliability rules violations and attemptedattempts to solve them;. In contrast, this paper proposes a newan approach that suggests to enhance these flows with anby using EM-aware architecture. This study showsThe results show that ourthe proposed solution can relax EM design efforts in microprocessors and extend theirmore than double microprocessor lifetime by x2 or higher.. This work demonstrates this newproposed approach for modern micro-processors, thoughmicroprocessors, although the principals and ideas can be adoptedadapted to other use-cases as well. 	Comment by ACL: 
Please note that claims of novelty are discouraged in peer-reviewed journals because they are hard to verify and because all work published in such journals must be novel to be published.
1. Introduction
	Chip reliability is an essential design requirement thatand is crucial to assure the correct functionality of a semiconductor integrated circuit (IC). Chip vendors are required to provide for For every product,  (e.g., processor,), chip vendors are required to guarantee a guaranteed minimum lifetime, thatwhich depends on itsa reliability prediction. for each chip. To meet these reliability requirements, a design-for-reliability methodology was developed. Unfortunately, it that, unfortunately, is a highly complicated process sincebecause it depends on the expected workload, the process technology, the operating voltage, and the temperature (PVT) conditions.. As part of the design-for-reliability methodology of modern processors, a workflow is defined [15, 16, 20] that aims to guarantee a minimum product lifetime of the product under a specified workload, aka (i.e., the mission profile. The need for high reliability is becoming more crucial recently as a result of). Given the use of new advanced process technologies and the use of new applications such as computecomputation-intensive infrastructures,  (e.g.., autonomous cars, data-center computing, cloud computing, life-support systems, etc. 	Comment by ACL: Please note that references should be cited in chorological order, so these references should be numbers 1–3. You may wish to reorder all references accordingly.
	Electro-migration (EM) .), the need for high reliability has become one of the most influential factors on modern systems reliability. This is due to the recently heightened.
	The shrinking dimensions of VLSI technology dimensions, the increasing density of logical elements, and the challenging operating conditions of voltage and temperature. operating conditions combine today to make electromigration (EM) one of the most influential factors affecting the reliability of modern systems. EM is a phenomenon related to the reliability of wires and vias reliability in integrated circuits. It and is inducedcaused by an excessive current flow that can potentially damage a physical device. Such a damage may cause either reduction of wires reduce a wire’s conductivity or acause wire disconnect. Both can result in , both of which lead to reliability concerns. In this work, we focus on the impact of the how EM onaffects on-chip wires and vias that reside inside logical cells or memory elements; or are used as interconnects between logical cells or functional units.
	So farTo date, the design community has focused on enhancing the chip-design implementation flow ([[1], [,8], [,10], [,13], [14], [15], [16], [17], [–18])] to solve EM issues and there were limited, whereas few works thathave proposed architectural solutions. In thisthe present study, we present a novelpropose an architecture that significantly improves reliability by reducing EM impact while relaxing the physical design efforts and significantly extending microprocessors' microprocessor lifetime. The groundwork of this This study is based on the observation that many of thenumerous reliability concerns are a result offrom excessive write activities (or change of logical state) spread across the processing elements of the same type (gates, logical units, or memoriesmemory elements) in a non-uniformnonuniform manner. This observation leadsled us to the development ofdevelop enhanced new resource-allocation mechanisms that uniformly distribute write operationsthe writing workload across all resources. As a result,This approach minimizes the maximum EM stress induced byon singular elements is minimized, and the overall IC reliability is extended in up toby several orders of magnitude. In thisThis work we present thefocuses on a microprocessor as a case -study, though; however, the concepts can be applied to other ICs and applications as well.	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
	The restremainder of this paper is organized as follows: Section 2 introducedintroduces EM reliability challenges and provide overview onreviews EM and previous works to deal withthat discuss EM effects,. Section 3 introduces the limitations of modern microprocessor architecture to deal with EM effects, Section 4 describes our novelthe proposed EM-aware architectural enhancements, and Section 5 presents simulationthe results of a simulation of the proposed EM-aware architecture and. Finally, Section 6 summarizes thisthe study and suggests future research works.
2. IC reliability 
	IC reliability has become a crucial discipline in VLSI chip design. The need for highly reliable systems existshas existed from the early days of modern computing. In. the past such a demand and was mainly driven in the past by “special -systems” such as mission-critical embedded systems. However, today reliability is a fundamental requirement from most systems due togiven the vulnerability of the new process technology and the appearance of new applications that require highly safe and reliable processing such as autonomous cars, large-scale computecomputing-intensive systems (e.g., HPC, cloud computing, data centers)), and life-supportingsupport systems., reliability today is a fundamental requirement for most systems. The product specificationspecifications of such systems enforcesimpose strict requirements on reliability through the lifetime and operating conditions. For example, the automotive industry expects an IC to function correctly function for 10-–15 years underat a given temperature (usually range of up to 125Cabout 125 °C [22], [,23])] and under various workloads. In datacenterdata-center computing, the requirements are littleslightly relaxed but stillremain challenging: the lifetime requirements is forrequirement demands at least 10ten years while, whereas the temperature can range betweenfrom 105-110C to 110 °C with arbitrary workloads. AllNone of these reliability-sensitive applications cannotcan afford any microprocessor fault inducedfaults caused by reliability causesissues. 
	InOver the recentpast decade, as advanced process technologies werehave been introduced, the susceptibility to reliability-related issues has grown dramatically grown. Starting at 28 nm process technology of 28nm and below (16, 7, 5, and 3nm3 nm), the design efforts dedicated to reliability have substantially increased. The design community has mainly invested effortstried to enhance the synthesis and place-and-route flows to minimize and solveeliminate reliability-related issues. Such flows involve substantial design efforts and, in many cases, required multiple iterations to convergemake the IC compliancecomply with the design rules (also knowknown as the “sign-off process). It should also be noted”). Note that limited numberfew prior works exists thatstudies have addressed these physical reliability challenges from the architecture point of view ([[8], [,10], [,13], [,14]).]. The restremainder of this section provides an overview is provided on the reviews the EM phenomenon and previous studies on the prior works to handle EM impact of EM.
2.1 Electro-MigrationElectromigration	
		Electro-Migration (EM) is a physical phenomenon related to excessive current density within wires and vias. EM had becomebecame a major concern in advanced process technologies wherewhen the geometrical dimension of wires and vias shrank intoto very small dimensions such that they became , making them highly susceptible to the negative effect of electrical current stress. This stress is induced by the force of conduction electrons and metal ions. When the force of conduction electron reacheselectrons exert a certain strength leveltotal force, it may tear atoms from the boundary of the metal and transport them in the direction of the current flow. WhenIf such current force is kept constantmaintained for a long time or when there are frequentif current flows frequently, the wire may become malformed. OneTo ease the problem, one may consider to switchoccasionally reversing the current directions in order to ease the problem, direction, but experiments indicate that it hassuch a strategy only minor impact onweakly affects the overall reliability issues;  (e.g.., wire disconnect or significant change in the wire resistance. When ). The occurrence of such an issue occurs, even on a single wire, it may result in the overall chip failure. It shouldNote also be noted that the geometrical granularity of wires playplays a major role in susceptibility to EM where smaller wire, with greater granularity encourages higherfacilitating greater EM forces. Therefore, we expect that EM willto continue to be a major challenge in semiconductors as we leverageintegrate new advanced process technologies ([[18]).].
		In EM study done by Black ([[6]), a] derived the following formula for the EM mean time to failure,  (MTTF, was introduced:):


Equation 1 - EM MTTF

Wherewhere A is a constant, J is the current density,  is the activation energy, n is a scaling factor, KkB is the Boltzmann constant, and T is the absolute temperature. It can be observed that theThe MTTF isdepends exponentially dependent on temperature. In; in fact, higher temperature accelerates the EM negative effect sinceof EM because it weakens the wire’s atom connectionsatomic bonds in a wire by making them even more sensitive to EM forces.  SinceBecause many new applications, and in particular control systems such as(e.g., in the automotive or robotics fields), are required to operate at high thermal conditionstemperatures of 105-125C;–125 °C, this induces even much higher EMgreater susceptibility to EM that will be highly challenging to mitigate during the IC implementation and signoffsign-off. 
	In addition to the temperature effect, Refs. [6] and [,14] formulatedexpress the current density J in metals J, as:



[bookmark: _Ref33017743][bookmark: _Ref33017683]Equation 2 - Current Density

Whenwhere C is the wire capacitance, W/ and H are the metal width/ and height, respectively, VDD is the operating voltage, f is the clock frequency, and p is the switching probability, also known as the toggle rate. In order toTo meet the reliability requirements, 2two additional design rules-rule constraints are usually enforcedimposed by advanced process technology design rules ([[24]):]: 
1. The current applied onin every wire should be less than or equal to the peak current allowed by the process technology.
2. The current flow overin a wire needs tomust be calculated by using RMS (the root mean square). It should be notes (RMS). Note that usingthe use of an average current willis not be useful for EM analysis since usually because the average current is 0. This is due to the fact that usually zero since the number of charge carriescarriers is equalthe same when charging andor discharging an electrical junction. Further studyMore details on RMS current can be foundare available in Ref. [24].
For advanced process technologies, RMS current has become a very significant causeconcern for EM reliability concerns due to because of the incredibly shrinking dimensionsmall dimensions of metalswires and vias.
	Handling the design rules for both maxmaximum current and RMS current design rules is highly challenging. Max The maximum-current constraint is mainly enforced by the physical design implementation tools that assure that the driving gates will not exceed max the maximum-current limitation and by other physical design means ([[24]).]. With respect to the RMS current, the situation is even more complex. Equation 2complicated. It can be observed in , shows that the RMS current flow within wiresa wire is proportional to both the toggle rate and the clock frequency. This, which means that thea higher the toggle rate offor logical elements increases the higher susceptibility to EM stress. Therefore, the MTTF of wires and vias can be increased by either by increasing their physical with,width W, or by minimizing their switching rate, p. Increasing the width of metal wires width has, of course, a negative impact on die area and on the number of available routing resources, which can effectively lead to a degradation indegrade performance and increase overall power increase. Minimization ofconsumption. Minimizing the switching probability isdepends on both workload and architecture dependent. In many cases, the switching probability is a result in depends on the change of logical state due to a write operation or utilizationto the use of logical elements for different computations.
	Further studies on EM and its failure effects can be foundare available in Refs. [1], [2], [3], [4], [–5] and [,19]. In To relax EM stress, we propose in Section 4 we present a novelan architectural solution to relax EM stress effect that takes advantage ofexploits the relationship between EM and the toggle rate relationship.	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
2.2 EM Related Prior Works on Electromigration 
	This sub-sectionsubsection summarizes previous EM related studies. Ourworks on EM. The overview will distinguishdifferentiates between works that attempt to findpropose EM solutions through the physical design flow from studies attempting to find reliefand works that do so through micro-architecturearchitectural or architecturearchitectural solutions.
2.2.1 Physical designPrior work based Prior Workson physical design 
	EM phenomena werehave been broadly studiesstudied from the physical design point of view. Various studies ([[6], [,15], [,20])] examined different interconnectinterconnects such as copper or aluminum and how they are affected by EM under different PVT (process, voltage, and temperature conditions). The . From a physical point of view, the most common solution for EM, from a physical point of view, is to widen the interconnect wires. As Equation 2 indicates, widening a wire reduces the current density and eventually degradedecreases the effect of EM impact, but, from the physical design point of viewviewpoint, it is not always the preferablepreferred solution sincebecause it may introduce several overheadssecondary effects, such as increase ofincreasing the interconnect and the overall die area, a creation of which leads to more suspectable to crosstalk delays and hence, it may degrade, which would reduce the device frequency. In addition, the potential increase ofa larger die size may also create timing and power challenges asbecause signals would need to travel to longer distancesfarther. 
	Modern EDA electronic-design-automation tool vendors, in conjunction with process foundries, enforce EM-related design rules that must be met as part of the IC sign-off process. Such tools validateverify that interconnects and vias meet the EM design rules and identify all EM-related violations that require design fixes. EM analysis tools are even able to simulate switching activity patterns that are extracted from functional simulations representing real applications and take it these patterns into account in the EM analysis process. When the worst-case switching patterns cannot be determined, designers often use a statistical analysis provided by the EDAelectronic-design-automation EM sign-off tool. In this case, the design is analyzed under a given switch probability numbers - Thisset of switching probabilities, which may of course lead to an over-design process. The EM sign-off process is a very painful activity that tedious and involves many fix iterations and trials. Some of the trials involve usagethe use of wider metals and viavias and, in several cases, it may even end up in limiting limit the clock frequency, the switching activity rate, and the computational workload. AllThe combination of all these limitations may result in degraded IC performance. 	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
	AdditionalA study by Dasgupta et al. [13] introduced in [13] a methodology for synthesizing the design and scheduling data transfers oftransfer from the control data flow graph ontoto the hardware buses in an EM-aware manner. Their algorithm requires determiningthat the activity in advanced and as a resultbe determined in advance, so it becomes tightly coupled to aeach specific computational use-case. that it targets. 
	A broad survey of additional physical-design-based techniques to mitigate EM impact can be foundis available in Ref. [18].
2.2.1 Architecture-2 Prior work based Prior Workson architecture 
	Only a limited number of prior works thathave suggested architecture-based solutionsolutions to the EM problem. Srinivasan et al. in [10] suggested structural duplications (SD)duplication and graceful performance degradation (GPD) techniques to handle the EM effect. SD usesStructural duplication adds spare design structures which are added to the IC and are turnedturns them on when the original structures fail. GPDGraceful performance degradation, however, shutdownsshuts down failing structures but keeps the IC functional while degrading its performance. This approach seems to haveincur a major hardware area overhead related to the dedicated mechanisms to detect EM degradation through thenormal IC normal operation and the need for special circuits to switch on the redundant logic. In addition, it introducedintroduces extra power and performance overhead due to the addition of redundant hardware being added.
	Abella et al. suggested in [14] a novel architectural approach for “refueling” bi-directional busses by monitoring the current-flow direction everyeach time data wasare transferred on the bus and suggested a mechanism that will trigger atriggers current compensation whenever there is an imbalance inoccurs between the amount of current flowing in both directions.each direction. Such a scheme could indeed reliefrelieve EM stress in older technologies,; however, it has limited impact on advanced process node technologies sincebecause the healing effect of RMS current is less effective, and its negative impact on wireswire and viasvia conductivity and reliability is more significant. In addition, given their design complexity, modern VLSI design circuits do not commonly use bidirectional buses due to their design complexity.. The refueling mechanism also disrupts the bus operation and may introduce a dynamic power overhead due to the reversal current. 
	Srinivasan et al. in Suggested in [8] and [,9] suggested a dynamic reliability management (DRM) approach where the processor dynamically maintainmaintains its lifetime reliability target by responding to the changing behavior of the application behavior. As a result, it. This approach allows a processor with lower reliability to operate while compromising performance or operating conditions.	Comment by ACL: Do you mean “without”?
	As indicated by this section	Thus, applying only physical design-based solutions only isdoes not sufficient due to suffice because of the growing challenges involved by EM. The restremainder of this paper describes our comprehensive architectural solution for EM handling.   EM. 
3. EM Stress Distribution of Electromigration Stress in Modern Microprocessors
	Since EM design rules are limited by the weakest -link;  (i.e., the wire, which is most likely to be damaged,), we start this study by looking atconsidering the distribution of the EM stress  effect over the entire design of a modern microprocessor (it should be notednote that the same concept couldmay be applied to other ICs and applications as well). In this paperwork, we choose to focus on subsystems that expect to show an intensive toggling rate of wires that in return, result, which results in hotspots of EM stress. The next 2 sub-sections are organized as follows: In sub-sectionSubsection 3.1 we describedescribes our experimental environment, and in sub-sectionsubsection 3.2 we presentpresents our comprehensive observations on EM stress in micro-processorsmicroprocessors.
3.1 Experimental Environment
	For this study, we useused the sniper x86×86-64 simulator [21]. We modified ] with the simulation platform modified and added the needednecessary mechanisms added to model the behavior and measure the characteristics required for ourby the experiments. The simulation environment includesincluded both a detailed cycle-level x86×86 core model and a memory system. Table 1The  summarizes the configuration of the simulation environment is summarized in the following (based on the Intel Gainestown core [25]).

	Core model
	Frequency
	2.66 GHz

	
	Execution units
	3 ALUs, 1 FP add / sub, 1 FP mul /div
1 Branch, 1 Load unit, 1 Store unit

	
	Dispatch width
	4

	
	Execution order
	Out-of-order (instruction window: 128)

	Memory system model
	L1-D Cache
	32KB, 8-Way, 64B block size, LRU, 4 clock cycles access time and a throughput period of one cycle.

	
	L1-I Cache
	32KB, 4-Way, 64B block size, LRU, 4 clock cycles access time with instruction prefetching and instruction queue of 16-byte per cycle throughput

	
	L2 Cache
	256KB, 8-Way, 64B block size, LRU, 8 clock cycles access time.

	
	L3 Cache
	8MB, 16-Way, 64B block size, LRU, 30 clock cycles access time.

	
	D-TLB
	64 entries, 4-Way

	
	I-TLB
	128 entries, 4-Way

	
	S-TLB (2nd level)
	512 entries, 4-Way


[bookmark: _Ref35233219]Table 1 – Baseline Simulation Model Configuration of baseline simulation model 
	OurWe used the simulation benchmarks are Spec2017 ([[11], [,12])] with ref inputs. Every benchmark was run as a single-core workload in 2two different regions of interest: Initialization initialization phase and main execution phase (denoted as “Init” and “Main,” respectively). Each experiment usesused 10 billion instructions (for both initialization and main execution phasedphases). 
3.2 EM Stress Experimental Observations of Electromigration Stress 
	This section examines the EM stress induced by 3three different regionsparts of the microarchitecture: ALU execution units, architecture register files, and memory hierarchy sub-systemsubsystem. We believe that these areas involve the most intensive EM activities when running these workloads and hence, thus, will induce heavyexperience intense EM stress. 
	ALUs: Figure 1 depictsshows the distribution of write operations among different ALUs, when using the FIFO selection mechanism, among all ready instructions is used. It can be observed. Note that ALU0 is the most utilized-used ALU among allof the 3three available ALUs, while, and ALU2 is the least utilized. This can be explained dueused, which is attributed to the fixed allocation policy of the available ALUs where, whereby a higher priority is given to an ALU with a lower ALU index. Since ALU execution time is 1 clock cycle, all ALUs become available every cycle. For example, for a program that hasprovides exactly one instruction ready everyper cycle, we can expect that only ALU0 willto be used. Figure 1 supports this claim and shows that ALU0 is utilized moreused at over twice the rate than twice in respect to ALU1, and nearly 10ten times more frequentthe rate than ALU2 infor most benchmarks. In such a logical implementation, the worst-case switching factor of ALU0 dictates the worst-case EM scenario that will need to be taken into account and be applied to all ALUs. 	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
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[bookmark: _Ref35209103]Figure 1 - Distribution of ALU Execution Count distributionexecution count 

	Register-file: Our next set of experiments examineexamines the EM stress on architectural registers. Figure 2 illustrates the distribution of write operations on GPRgeneral-purpose registers (GPRs: integer general purpose) for the Spec2017 benchmarks. It can be The distribution clearly observed that the distribution is not uniform,; for example, the RAX register is the most-stressed register in terms of write operation while operations, whereas the non-legacy registers are hardly being used, and so,thus are significantly less stressed than the x86×86 legacy registers. The root cause of these differences is the nature of compiler register-allocation algorithms of compilers.. Figure 2 also shows that the ratio of the average number of write operations to the maximum number of writes write operations varies betweenfrom nearly 7% to 33%. This measurement providesis another indication that EM stress is not equally balanced between registers; thus, the register with the worst-case greatest number of writes will dictatedictates the overall switching ratio for EM. 	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
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[bookmark: _Ref35210963]Figure 2- General Purpose Register Writes Distribution of general-purpose-register writes 

Figure 3 presents the number of write operationoperations on FP registers only for the Spec2017 benchmarks that involve FP operations. The results presented infor this case are similar to the results presented in Figure 1. For FP registers, the number of writes is significantly highergreater in the registers with lower indexes,  (i.e., ZMM0, ZMM1, and ZMM2 are the registers with the highest write count relative to all others.). Similar to integer registers, this can be also be explained by the nature of the register-allocation algorithm of common compilers. In this case, the ratio of the average number of write operations to the maximum number of writes write operations is even smaller, which indicatedis indicative of an even a biggerlarger variance relative to integer registers. 
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[bookmark: _Ref35211964]Figure 3 - Floating Point Registers Write Distribution of writes to floating point registers 

	Memory hierarchy: Memories are highly suspectablesusceptible to EM sincebecause they employ high-density bitcells with narrow and long metal wires that toggle upon every change of logical state. In addition, physical design tools lack the ability to handle every bitcell in an individual manner,; therefore, the worst-case scenario is commonly applied to all bitcells. Since write operations are not uniformly distributed across all memory bitcells, the worst-case scenario is determined by the bitcell with the biggestlargest number of writes. 
Please note	Note that the granularity of the EM stress differs from one level of the memory hierarchy to another’another; e.g., at the L1 cache, a single byte can be written in the L1 cache, but ata minimum granularity of the cache line is imposed on all other levels of the cache hierarchy , a minimum granularity of a cache line is imposed (assuming a line-fill mechanism). Since all bits within thatthe write granularity hashave the same EM stress, we need to assume that they all of them hashave the same probability for failure and that conventional error-correction mechanisms, are not effective at that granularity.	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
	Due to the importance of	Because the memory hierarchy is important to the reliability of the entire system, Figure 4, put together collects the write statistics of the components that assembleform modern memory hierarchy; : L1 instruction and data caches, L2 cache, L3 cache and, the instruction TLB table look-aside buffer (ITLB), data TLB (DTLB)), and secondary TLB (STLB). This figureFigure 4 depictsshows the ratios of the average number of write operations (as a result of TLB entry allocation) per entry. It shows, which reveals that DTLB involves a significantly higher number of writes of more write operations than the ITLB. DTLB also involves nearly x10 writestenfold more write operations relative tothan STLB. SimilarA similar observation is reported whenresults from examining the ratio of write access of the L1-D cache to that of the L1-I cache. The L1-I cache involves write -operations only upon cache linesline replacement, whilewhereas L1-D maintains a much higher rate of write operations due tobecause of block replacement and each time that an instruction targets a memory location is the target of an instruction.	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
	It should be noted	Note that, although the initial observations indicate that the L1-D cache and the D-TLB are the elements withhave the highest write rate of writes., we must still need to continue carefully watching the write distributions in the rest of theremaining memory hierarchy. In particular, it is important to watch aftermonitor the write distribution to caches L2 and L3 caches. Although our experimental results show that these caches maintain lower write rates of write operations, they may be much more suspectablesusceptible to EM than the L1 caches due tobecause of physical design considerations. Since both the L2 and L3 caches are significantly biggerlarger than the L1 cache, they involve higher-density memory bitcells and significantly longer and narrower interconnect metal vias. Equation 2 supports this argument since it indicatesby indicating that the current density is inverseinversely proportional to the metal width whileand proportional to the wire capacitance. The interconnect metals in both the L2 and L3, that uses caches, which form long wires, introduce a much highergreater interconnect capacitance relative tothan the L1 caches.
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[bookmark: _Ref35240046]Figure 4 – Write ratios in memory hierarchy

	Based on this observation, the next few graphs will focus aton how EM affects the EM impact on L1-D cache, L2 cache, L3 cache, and D-TLB. In the next figures, we present histograms of write operations partitioned into 5five histogram bins: 0-%–25%, 26-%–50%, 51-%–75%, 76-%–90%%, and 91-%–100%. Each bin shows the number of cache entries with the ratio of write distributiondistributions relative to the cache entry with the maximum number of write operations. E.g., if the value of For example, 20% for bin 26-%–50% is 20% then it means that 20% of the cache entries each experienced (each) write operations in thea ratio range of 26-%–50% relative to the cache entry with the maximum number of write operationoperations. The cache entry with the maximum number of writes is the one entry that dictates eventually the EM toggle-rate assumption for the entire cache and therefore illustrating. This illustrates how the distribution of all cache entries relative to the onecache entry with the maximum number of writes can help understanding how clarify the EM stress is distributed distribution among all cache entries and allow us to explore for new architecture to relief therelieve EM stress. 	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
Figure 5 shows the write histogram of D-TLB entries and their tags. It can be observedNote that, for all Spec2017 benchmarks, only a small number of entries experience a heavylarge ratio (above 90% relative to the entry with the maximum number of writes) and ); these entries dictate the overall switching rate of the D-TLB, while the. The majority of entries experience much smaller rates oflower write operations. This figurerates. Figure 5 also illustratespresents the ratio of the average number of writes per entry to the entry with the maximum number of writes of all entries, which varies from 2% up to 100% while the%, with an average isof 55%. 	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
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[bookmark: _Ref35256298]Figure 5 - Distribution of DTLB writes distribution

Figure 6 illustrates the writes  shows a histogram of writes to L1-D cache data lines. We observe similar A phenomenon appears similar to the onethat observed in the D-TLB. Only a small number of cache lines have a heavy stress of writes high write ratio (above 90% relative to the maximal data cache line) while), whereas the majority of cache lines experience much lower write stressratios. In most of the benchmarks, the ratio of the average to max number to the maximum number of writes is less thatthan 30% while%, whereas the average ratio is 33%.
	Figure 7 shows thehistogram cache writes histogram offor the L2 cache data lines. The observations, in this case, are similar to those for the L1-D cache. For both data blocks and tags, we observe that only a small portion of cache entries (data and tags) experience the highest write ratio of write (above (>90% relative to the entry with the maximum number of writes) and, as a result, they dictateindicate severe EM conditions tofor all cache entries. On average weWe observe that the ratio of the average number of writes per entry to the entry with maximum number of writes of all entries is approximately 50%. Similar behavior ofA similar result for write operations on cache lines was also observedobtained by Valero et al. in their study onof the different aspects of cache reliability ([[19]).].
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[bookmark: _Ref35272190]Figure 6 - Distribution of L1-D cache block writes distribution

	When examining	Examination of Figures 6 and 7, we observe shows that 2two benchmarks, 623.deepsjeng-init and 649.fotonik3d-main, show a different behavior relative tobehave differently than all other benchmarks. This is explained by the fact that the initialization phase of 623.deepsjeng and the main execution phase of 649.fotonik3d hashave write distributiondistributions that isare spread uniformly throughover most of all cache lines. 
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[bookmark: _Ref35272199]Figure 7 - Distribution of L2 cache block writes distribution

	Figure 8 illustrates L3 writes shows a histogram for L3 writes for cache data lines. It can be observed inFor most of the benchmarks that, the number of writes is very small for the majority of cache data lines, where almost all of them experience 25% or less write operationoperations relative to a very small portion of cache lines with the maximum number of writes. Overall, the ratio of the average number of write operations to the maximum number of writes in cache data lines is 8%. The benchmark 631.deepsjeng-init exhibits a similar behavior offor writes that are spread uniformly across all cache lines. This, which is a similar behavior to the behavior of the L2 cache behavior due to the relatively high store instruction count that peculates to the L3 cache as well. 
Figures 9,  and  illustrates–11 illustrate the write histograms of L1-D, L2, and L3 tag writes, respectively. It is observed that The writes spread more uniformly relativeover data lines, and that the majority of cache tags experience smallerless variance in the number of writes. The ratio of the average number of tag writes to the maximum number of tag writewrites is nearly 70% on average (over all benchmarks) for the L1-D cache and approximately 50% for L2 and L3 tags.
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[bookmark: _Ref35272206]Figure 8 - Distribution of L3 cache block writes distribution

To conclude the discussion on the impact of how EM onaffects the memory hierarchy, we can determineshow that cache data lines experience a write distribution with high variance distribution of writes accesses whereand with a minority of cache data lines experience high stress of write inbeing highly stressed by the maximum number of write operations and, as a result, dictate, much more severe EM conditions of EM for the entire cache. Similar conclusions are obtained from our observation onof register file write access and ALUs utilizationALU use where, in both casecases, the EM stress that induced by the workload is not uniformlynonuniformly distributed. Such behavior leads to an over-design condition for EM conditions that can result indegrade overall performance degradation and IC area increase IC area. In the next section, we will propose novel architectural mechanisms that take EM considerations into account and smoothento smooth EM stress uniformly. As. This approach results in a result,dramatic relaxation of the overall EM sign-off design conditions are relaxed dramatically.
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[bookmark: _Ref35272197]Figure 9 - Distribution of L1-D cache tag writes distribution
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[bookmark: _Ref35272202]Figure 10 - Distribution of L2 cache tag writes distribution
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[bookmark: _Ref35272209]Figure 11 - Distribution of L3 cache tag writes distribution
4. Our New EM Proposed Electromigration-Aware Resource-Allocation Mechanism 
	In thisThis section, we introduce our novel introduces architecture solutions to reduce EM stress. The principal of allthe solutions is based on an EM-aware resource allocation that smoothenssmoothly distributes write operationoperations and the use of computational elements utilization over all available resources. As a result, it reduces the EM stress is significantly. This section is divides into  reduced. Subsections 4.1–4.3 sub-sections that introduce EM-aware architectures for dealing with EM stress on: ALU execution units, register files, and cache memories, respectively.	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
4.1 EMElectromigration-Aware ALU Allocation
	In the previous section, we observed that ALUs are not utilizedused in an EM-aware manner, and as a result, which means that the maximum EM stress is dictated by a small, over-used subset of ALUs that are over-utilized. Our new . The proposed EM-aware scheme, assumes that all pending ALU instructions are allocated to a centralized instruction queue, and in each cycle a scheduler allocates ALUs to execution-ready instructions which are ready for execution. The. Although the proposed scheme is presenteddescribed for ALUs, but it can also be applied to any type of multi-execution units beingunit employed by the microprocessor.
	We present two alternatives that implement the same basic principle in different ways. The aim of both solutions is to start allocating the resources from a different leading point each time. The first simple solution is to have a counter that will beis incremented everyeach clock cycle and wrapwraps around when expired so that athe leading resource number to be used will be calcudlateduse is calculated as:
Resource# = counter mod N
Equation 3 - Leading resource allocation

Wherewhere N is the number of the physical resourcesresource. Thus, for our simulated environment, we assume N= = 3. When the counter expiredexpires, we stop allocating resources for that cycle, reset its content, and continue with the allocation in the next cycle.
	The second solution is illustrated in Figure 12; here, we extend each resource with a single bit and add a single global bit for the overall management of the allocation. All counters are initialized to 0zero upon reset.
[image: ]
[bookmark: _Ref35543352]Figure 12 - EMElectromigration-aware ALU allocation scheme
	
The allocation algorithm is specified as follows:

	Algorithm 1 – EM-aware execution-unit allocation:

	Input: k<N number of execution units to be allocated.

	Output: Vector E=(e0, e1, …, en-1), for every 0 i  n−1, if ei=1 execution unit i to be allocated, otherwise execution unit i is not allocated.

	Initialization: Ex_counter[i]=0 for every 0 i  n−1, Global_counter=0

	1. M = {0 i  n−1 | Ex_counter[i]= Global_counter}
2. if k< |M| then

	3. 	let PM such that |P| = k

	4. 	ei=1 for every iP, otherwise ei=0

	5. 	Ex_counter[i]++ for every iP

	6. end if

	7. else // k |M|

	8. 	let P  U\M such that |P|= k-|M| 

	9. 	ei=1 for every iPM, otherwise ei=0

	10. 	Ex_counter[i]++ for every i PM

	11. 	Global_counter++

	12. end else

	13. return E



	We suggest that the EM-aware allocation algorithm to selectselects execution units in which theirwhose corresponding counter state is equal toequals the global counter. If the number of available execution units that satisfy this condition is greater thanexceeds the required number of instructions to be issued, then a subset (based on the required number of instructions to be issued) of those execution units will beis selected, and all their corresponding counters will beare switched (between 0’szero and 1’sone). Otherwise, all execution units whichwith their counter state equal to the global counter will be theare selected while the rest of the execution units needed to satisfy the required instruction to be issued will beare selected from the from the other pool of ALUs which theirwhose counter value is not equal to the global counter. Only in the latter case is the global counter is incremented. In addition, the counters corresponding to the selected execution units will beare incremented. The following table illustratesTable 2 shows an example of the algorithm operationoutput for 3three ALUs:.

	Clock cycle
	ALU instructions to be issued
	ALU 
2, 1, 0
counters
	Global counter
	Selected ALU

	0
	0
	0, 0, 0
	0
	None

	1
	2
	0, 1, 1
	0
	0, 1

	2
	2
	1, 1, 0
	1
	2, 0

	3
	3
	0, 0, 1
	0
	1, 2, 0


Table 2 - Example of EM-Awareaware ALU scheduling example

	As it can be observed, upon every seen in Table 2, for each instruction issueissued, both algorithms balance the utilizationuse of all execution units and so, prevent anythereby protect all execution unit to be over utilizedunits from overuse. The implementation of the first solution is straight forwardstraightforward and may well perform when there iswell given a large number of execution unit resources.units. The implementation of the second solution canis more complicated, but ourthis implementation trial indicates that it can be achieveddone with a negligible overhead in terms of logical area, and computation time for both ALUs the ALU-selection logic and the counter-incrementation logic. 
4.2 EM-Aware Register Allocation of Electromigration-Aware Registers 
	Our experimental 	The results of the measurements presented in the previous section clearly indicatedindicate that writes operationwrite operations to registers are not uniformly distributed. Moreover, specific registers,  (e.g., RAX, exhibited ) experienced an excessive number of writes. Such behavior by a small number of registers will dictate toughdictates difficult EM conditions onfor all registers and may result in reliability concerns. It should be notedNote that this section deals mainly deals with archtitectural architectural registers which are assigned by the compiler rather than thewith physical registers as implemented by the out-of-order (OoO) microprocessors. For the latter, physical registers (implemented within the reorder -buffer) are usually implemented as a cyclic bufferbuffers and, as a result, all writes are spread uniformly over time. 
	Our newThe proposed architectural solution, illustrated in Figure 13, can overcome the avoids hotspots in register writes hotspot by periodically changing the mapping of registers to their corresponding architectural hosting locations. The principal of the schemesscheme is based on modulo rotation of the mapping between the architectural register identifier toand their physical locations. As illustrated in Figure 13, a pulse trigger is asserted to shift the register mapping of registers either periodically,  (or each time when we change CR3) or as part of the ROI (return form Interrupt)-from-interrupt procedure before saving back the values of the user-level process. A modulo-counter (RF rotator) is employedserves to map the architectural register number to the physical register location by modulo addition. Upon every After each assertion of the rotation trigger assertion (in(at any arbitrary time point), the counter is incremented, and the register values needs to beare shifted between registers, as illustrated in Figure 13. 	Comment by ACL: 
Abbreviations and acronyms are often defined the first time they are used within the main text and then used throughout the remainder of the manuscript. You may consider adhering to this convention.
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[bookmark: _Ref35551323]Figure 13 – EM-Aware RF mapping Scheme for electromigration-aware RF mapping 
4.3 EM Electromigration-Aware Cache 
	EM in cache structures involvesgenerates hot sportsspots in various cache lines that are spread in a non-uniform manner. It should be notednonuniformly. Note that, in this subsection, the term “cache will refer” refers to any architectural structure that employsuses a cache organization,  (e.g., TLBs, L1 cache etc.). As a result, a small portionfraction of cache lines will enforcedictates the worst EM scenario onfor the entire cache. The principal of our newthe proposed EM-aware cache memory scheme, illustrated in Figure 14, is similar to the register file solution. It can overcome theavoids hotspots of cache writes hotspots by periodically changing the cache set mapping of memory addresses to their corresponding physical cache lines. Similar toAs with the RF solution, the principal of this schemesscheme is based on modulo rotation of the mapping between the set field (taken from the memory address) toand its physical set location. A pulse trigger is periodically asserted to shift the mapping of the set. A modulo-counter (cache rotator) is employed to mapmaps the address set field to the physical set location by modulo addition. Upon everyAfter each assertion of the rotation trigger assertion, the counter is incremented, and all cache lines are invalidated, as illustrated in Figure 14.  In order toTo avoid the potential overhead incur as a result ofincurred by flushing the content of the caches (and by the write-back of all of itsthe dirty lines), we suggest doing the operation either in a very infrequent way or taking advantage ofinfrequently or by exploiting events that requites to flushrequire flushing these structures;  (e.g,., after a sleep mode wherewhen all caches were cleaned. ). 
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[bookmark: _Ref35589395]Figure 14 - EMElectromigration-aware Cache Memory Mappingcache memory mapping
5. EMExperimental Study of Electromigration-Aware Architecture Experimental Study 
	In thisThis section we present outpresents the experimental results for our novelthe proposed architecture solution, that were  (presented in the previous section,) to relax EMreduce the impact. It should be noted of EM. Note that for allpreviously proposed techniques, no  did not report performance overhead was reported, so this section will focusfocuses on how the impact of the new algorithms overproposed herein affect the EM stress. 
	We first examine an EM-aware solution for ALU execution units. Figure 15 show the impact ofshows how the second method solution presented in the previous section (refer tosee Algorithm 1) onaffects the EM stress overfor the SPEC2017 benchmarks. We examinedExamination of the 2two solutions and our observations indicateindicates that they exhibitbehave very similar behavior with negligible differences. As it can be observed, the newsimilarly. The results show that the proposed algorithm achieves a significantsignificantly reduces EM stress reduction ofby 50% over all benchmarks. The results vary from nearly 25% reduction up to 65% reduction. This result is accomplished due to the fact that ourthe proposed scheme distributes the ALU utilizationuse uniformly and as a result, which spreads the maximum EM stress is smoothensmoothly over all ALUs. 
	As part of ourthis study, we also compare the IPC (instructioninstructions per clock) versus EM stress reduction, as illustratedshown in Figure 16. It can be observed that benchmarks with small IPC hasBenchmarks with few instructions per clock have a greater potential for EM stress utilization and this is due to the underutilizedbecause of the underused ALUs that could potentially help relaxingreduce the maximum EM stress and distribute by distributing it uniformly.	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
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[bookmark: _Ref35592142]Figure 15 - Distribution of ALU Executionexecution count distribution with EMelectromigration-aware allocation
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[bookmark: _Ref35594468]Figure 16 - ALU EMelectromigration stress reduction vs. IPCinstructions per clock

	OurThe next results presentshow the EM stress reduction that is accomplishedobtained by ourthe proposed architectural solution for both the GPR register file and FP register file. These results are illustrated in (see Figures 17 and 18, respectively.). For both register files it can be observed that, the number of writes is distributed uniformly over all registers, and there are no longer hotspots observedexist (e.g.., RAX or ZMM0). In addition, we observed a dramatic reduction in the write stress ofdecreases dramatically by nearly 80% on average for the GPR register file and 90% for the FP register file. The rotation trigger in ourthe simulation was asserted every 10, 000, 000 clock cycles. In ourthe experiment, we examined different rotation trigger rates value and found that this value yields an unnoticeable does not impact performance impact. 
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[bookmark: _Ref35594951]Figure 17 – GeneralDistribution of general purpose register writes distribution with EMelectromigration-aware allocation
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[bookmark: _Ref36946044][bookmark: _Ref36946022]Figure 18 - Distribution of FP Registerregister writes distribution with EMelectromigration-aware allocation
 	
	As part of ourthe EM study, we also observed that the flags and stack-pointer registers experienced excessive stress of write operations and therefore they can be , which makes them highly susceptible to EM stress. Figure 19 illustrates the number of write operations to the flags register, and stack-pointer register and compares them towith the maximum number of writes per register in the GPR register file. It can be observed thatFor almost in all benchmarks the flags register has a significantly greater , the number of writes in respectto the flags register significantly exceeds those to the GPR and stack-pointer registers. This result is due to the fact that almost every computation instruction involves implicit write operationoperations to the flag register. This observation, which motivates us to extend the EM-aware scheme that was proposed for the GPR register file and alsoto include both the flag and stack-pointer registers. It can be observed in this figureFigure 19 shows that, in this case we can accomplish even a higher reduction in, the maximum number of write operations (EM stress) which variesis reduced even more (varying from 80% till to >90% and above.%). 

[image: ]
[bookmark: _Ref35600667]Figure 19 - GeneralDistribution of general purpose registers, flags, and stack pointer write distributionwrites with EM electromigration-aware allocation

	The last part of this section is devoted to examining the reduced write stress reduction obtained for the TLBs and cache memoriesmemory data lines and tags. OurThe experimental results are illustrated in Figures 20,  and ,–22, respectively. In most cases, we observe a significant reduction in the EM write stress. This reduction is obtainedsignificantly reduced as a result of the repetitive rotation of the set mapping and the cache invalidation. Such rotation and invalidation actions contributehelp to distributingdistribute write operations uniformly over all sets and waysvias. For the D-TLB, we suggest triggerringtriggering the rotation either when the TLB is flushed by the system, or by performing a period rotation;  (e.g., every 10M TLB accesses. As for and). For the L1-D cache, we suggest a similar periodic rotation trigger of every 10M accesses. For all these options, we found that the performance overhead is minimal while the reduction of, and the EM stress is reduced, as indicated byin Figure 20. As previously discussed, for both L2 and L3, we suggest triggering the set rotation upon everyeach system wakeup from sleep mode. In this case, no performance overhead will be required.is incurred. In ourthe simulation, we use an interval of 10M cache accesses, and the same trigger duration of the L1-D cache for both the L2 and L3 caches. 	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
	Figure 20 illustrates the writes write-stress reduction for DTLB. On average, over all benchmarks the write stress is reduced by 44%. % over all benchmarks. Figure 21 summarizes the reduction in EM write stress reduction for L1-D, L2, and L3 caches. For L1-D, L2, and L3 caches an average reduction in the maximum number of writes is 69%, 46%%, and 92%%, respectively. Figure 22Cache summarizes the EM stress reduction in cache tags EM stress reduction is summarized in .. In this case, the EM stress reduction is 28%, 46%, and 46% for L1-D, L2, and L3 caches, respectively.  It should be notedNote that the experimental results of ourthe EM-aware architectural solution are correlated toconsistent with the results presented in sub-sectionsubsection 4.3. These figures suggest that the lower thea smaller ratio of the average number of write operations to the maximum number of writes the highercorresponds to greater EM stress reduction. This is explained by the fact that when the , given a small ratio of the average number of write operations to the cache entry with the maximum number of writes is low, thenin the potential ofcache entry, EM stress reduction is higherincreases.	Comment by ACL: 
Please ensure that this edit maintains the intended meaning.
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[bookmark: _Ref35615840]Figure 20 - DTLB EMelectromigration stress reduction
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[bookmark: _Ref35615849]Figure 21 - Cache Lines EMlines electromigration stress reduction
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[bookmark: _Ref35615859]Figure 22 - Cache tags EMelectromigration stress reduction

6. Conclusions
	Based on ourthe experimental results, we conclude that a significant reduction EM stress can be accomplishedsignificantly reduced in various microprocess building blocks that are highly susceptible to EM:, namely, execution units, register files, and the memory hierarchy. OurThe observations exhibitdetailed herein reveal an average reduction in EM stress of 50% for ALUs, 80-%–90% for the register files, and 46-%–92% in the for cache-memory data blocks of cache memories.. These results indicate that with ourthe proposed EM-aware solution, microprocessors should allow microprocessor designers mayto significantly relax the sign-toggling rate, and, as a result, to avoid a significant number of potential EM violations are avoided. . 
	Alternatively, sincebecause EM is an accumulative phenomenon, the reduction in the total number of switching be translated to a number translates into an extended device lifetime extension of the device. . As it was indicated in sectionSection 2, the MTTF is proportional to the switching rate and therefore, so a reduction of 50% in the switching rate will extendshould double the lifetime by a factor of 2.. These numbers, of course, dependsdepend on the workload being run by the microprocessor, and as it can be observed there are benchmarks exist where the reduction of EM stress is reduced even much higher, more (e.g.., in 600.perlbench the write reduction in the memory hierarchy is more thatexceeds 70% where this%, which may extendmore than triple the overall lifetime by more than 3x.). Still there are, a small number of benchmarks,  exist with less EM stress reduction (e.g.., 628.pop2, for which exhibit smaller potential the EM stress reduction in the range ofis 5-%–25% and as%). As a resultsresult, the overall gain in lifetime extension that is gained is 5-%–33%.
	Microprocessors	Microprocessor reliability is a crucial requirement that introduces major micro-architectural and design challenges in advanced process nodes. In this study, we observed that microprocessors are highly suspectablesusceptible to EM due to their nature of processingbecause they process highly variable dynamic workloads while employingon non-EM-aware micro-architectures. We introduced a novelintroduce herein an architectural solution that takes into account the EM effect and reduced excessing utilizationreduces excess use of execution units and write operations to register files and the memory-hierarchy elements. The principal of ourthe proposed solution is based on EM-aware resource-allocation mechanisms that smoothensmoothly distribute write operationoperations and the use of computational elements utilization over all available resources. OurThe experimental resultresults indicate that our novelthe proposed architecture solution can significantly relaxrelaxes the EM sign-off conditions by 50% for ALUs, 80-%–90% for the register files, and 46-%–92% infor the data blocks of cache memories. In addition, we indicated since because the MTTF is proportional to the switching rate, we canthese results translate these number to at least x2 lifetimea twofold extension. This, of in lifetime. Of course, this result depends on the behavior of thespecific workload and there are; for certain benchmarks where, the lifetime extension canmay be in a factor of 3threefold or even higher.
	As EM has become a major challenge in advanced technologies, weand further studies are required to continue exploring new architectures and studies to identify potentialother avenues to reduce EM reduction and extend device lifetime extension. In this study, we examined thehow EM stress effect onaffects modern micro-processors, though this work shouldmicroprocessors, although the approach used herein may be further extended to other processing elements likesuch as VLIW machines, DSPs, Networknetwork processors, Securitysecurity engines, GPUs, and TPUs and others.
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