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Abstract
[bookmark: _Hlk524900774]The aim of thisThis paper is outlinesto provide a practical approach of to using a statistical tool proposed by Jin Wang (2001), defined as a mixture of "n" normal distributions—, the “nNormal mMixture”—, capable of dealing with the non-normality issues of modeling financial series as fat -tails. In order to illustrate the potential of this technique, an application to real data is proposed for the daily rates of returns of four financial series (IBOVESPA, VALE5, USDBRL, PRE-DI) from January 2006 to December 2016. To fit the parameters of the normal mixture, it is employed the mMaximum lLikelihood eEstimation (MLE)is employed through the eExpectation mMaximization (EM) algorithm according to Hastie et al. (2001) and Söderlind (2010). Finally, the paper presents aA step-by-step description of the commands in R software used to perform the estimation, goodness-of-fit test, and simulation are presented in the last section of the paper.	Comment by Author: Please use full versions here, unless you are certain readers will be familiar with the abbreviated form.
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1. Introduction

	The assumption of normality for the distribution of financial market returns is a key part ofcentral in the financial modeling research. The For decades, the most common premise for decades has been that financial asset data follows a Ggaussian stationary process. An example of the wide use of this assumption is can be found in the fact that the pParametric VaR developed in by J.P. Morgan (1995), one of the most widespread techniques in financial risk management, is based on the hypothesis that the probability distribution of the returns of individual assets follows a normal distribution.	Comment by Author: Please define at first mention, unless you are certain readers will be familiar with the abbreviated form.

In many situations, this approximation is a justified approach from a practical business standpoint, as it is easy to understand, and produces satisfactory results. However, several studies such as(e.g., Duffie na Pan, (1997);, Venkataraman, (1997;) and Hull and White, (1998) haves shown that financial data exhibits strong skewness and kurtosis (i.e., have fat tails). That is, they are remarkably distinct from a normal bell- shaped curve.	Comment by Author: This does not appear in the reference list. Please correct the citation or add the missing reference to the list.	Comment by Author: Please check whether citations should be presented in a specific order (e.g., alphabetically).

Considering the need that Mmarket players requirecurrently have to implement an easy- to- use framework capable of addressing these issues. Thus,, the aim of this paper is aims to provide evidence on the benefits of employing a flexible statistical tool, proposed by Jin Wang (2001), defined as a mixture of n normal distributions—, the “nNormal mMixture”—, able to deal with the violation of the normality assumption in empirical finance. 

In order to illustrate the potential of this technique, an application to real data is proposed for the daily rates of returns of four financial series (IBOVESPA, VALE5, USDBRL, PRE-DI) from January 2006 to December 2016. To fit the parameters of the normal mixture, it is employed the mMaximum lLikelihood eEstimation (MLE) is employed (MLE) through the eExpectation mMaximization (EM) algorithm according to Hastie et al. (2001) and Söderlind (2010).	Comment by Author: Please define at first mention, unless you are certain readers will be familiar with the abbreviated form.

In summaryThe remainder of the paper proceeds as follows., Ssection 2 of this paper will describes the statistical properties of the normal mixture, followed by a brief discussion in (Ssection 3) on the stylized facts of financial series that can be accommodated by the methodology discussed. In Ssection 4, it is  presentsed an application of the method using real-world financial data to evaluate the goodness-of-fit and simulation power. A description of the computational procedure is presented in Ssection 5 as a “"step-by-step”" guide in software R software.	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).






2. Normal Mixture
2.1 Simple Normal Distribution

The Ssimple normal distribution, also known as the Gaussian or Gaussian distribution, is one of the most important distributions in statistics. Its history is linked to the discovery of probabilities in mathematics, in the 17th century, which initially pertained to solvinge questions related to games of chance. The person most responsible for its the development of simple normal distribution was Abraham de Moivre, a French mathematician who was exiled to England., who de Moivre defined it the term in 1730, continuing the work of Jacob Bernoulli (who posited the tTheorem of lLarge nNumbers) and his nephew Nicolaus Bernoulli. In 1809, when Gauss rigorously demonstrated its the properties of simple normal distribution in studies related to astronomy;, his name was thus came to be directly associated with distribution.	Comment by Author: Please add citations and references.
There seems to be a lack of references throughout the piece. I have not drawn attention to all such instances as there would be too many, but please ensure you provide a reference wherever your information is drawn from a third-party source.	Comment by Author: Consider replacing this with a more descriptive term (e.g., “accurate” or “frequently used”).	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).
	Simple normal distribution This distribution is entirely described by the mean and standard deviation parameters—, that is, by knowing theseonce these values are known, it is possible to determine any probability in a simple nNormal distribution.	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).
The main characteristics of the simple normal distribution are:
· the distribution mean, named µ;
· the distribution standard deviation, named σ;
· the distribution mode, which ocorre emoccurs at x = µ;	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).
· symmetry ic around their mean.	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).
	A continuous random variable  have has nNormal distribution if its probability density function is given by:

	In a symmetrical distribution like such as normal distribution, the way the values are distributed to the left of the mean is in the same way the sameas to the right. The positive and negative deviations have the same preponderance and the tails of the distribution have the same shape. In this case, the third centered moment, the symmetry, is null, .
	Kurtosis is related to the degree of flattening of the distribution., Ooften established in relation to the normal distribution, and it allows for measuring how “fat” the tails of a distribution are. In the case of normal distribution we have, 
It is possible to characterize a distribution, in terms of kurtosis, as: 
· mMesokcurtic –— kurtosis is equal to the normal distribution one;. 
· pPlatykurtic –— kurtosis is lower than the normal distribution one;. 
· lLeptokurtic -— kurtosis is greater than the normal distribution one.

In general, the normalized symmetry and kurtosis of a random variable X are defined by as per the equation set forth by Casella and Berger (1990):  

where and .


2.2 Non-Normality of Market Assets 

	In 2008, 10 years after the financial crisis in Russia and -Asia that led the Long-Term Capital Management (LTCM) to bankruptcy, criticism of the use of risk- assessment models based on the bell-shaped probability distribution increased considerably., This stimulateding the research for into more sophisticated methods, and showing showed that these events continued to surprise negatively impact financial institutions negatively.	Comment by Author: Please note that abbreviations should typically only be introduced if they are then used again.

As previously mentioned above, the return distributions of several market assets are often asymmetric and are substantially leptokurtic (i.e., have “fat tails”). That is, the way the values are not distributed similarly to the left of the mean is not the same to theand right of the mean, and extreme outcomes occur much more frequently than would be expected by avia modeling based on the normal distribution. We see thenThus, that assuming normality is,, in many cases, is far from satisfactory and appropriate.
[image: ] 
Figura 1.1: Função densidade de probabilidade do índice IRF-M[footnoteRef:1] e da normal de mesma média e variância. Foram utilizados retornos mensais no período de Set/2003 até Out/2015.	Comment by Author: Please check whether this should be translated.	Comment by Author: Please check whether footnotes should be translated. [1:  O IRF-M expressa a variação de mercado dos títulos prefixados do governo – LTN e NTN-F – e está exposto ao risco de oscilações nas taxas de juros, em função de, principalmente, reversões de expectativas de juros reais e inflação futuros até o prazo do investimento.
] 

	
Next, we willSection 2.3 discusses the properties of the nNormal mMixture to model asymmetric distributions and distributions with a kurtosis measure different from thethat differs from that used for normal distribution one (platykurtic and leptokurtic).

2.3 Definition and Properties
We can describe the cumulative distribution function of a mixture of n individual normal distributions by using the random variable X, as follows (Jin Wang, [2001]):
    			   ,                                                 (2.1)

Where φ is the cumulative distribution function of N (0,1) and is the weight assigned to each individual normal distribution. In this way, its the probability density function is represented by:	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).
                                                       , 

for j= 1,...,n,                         
			
a. Properties: If X is a mixture of k individual normal distributions with probability density function (2.1), its mean, variance, asymmetry, and kurtosis, respectively, are:	Comment by Author: Please review your article structure, in terms of headings and numbering/lettering used to denote different sections.	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).









3. Accommodation of Stylized Facts

a. Example of “Fat Tail”	Comment by Author: Please check whether this should be “Example of Distribution with a Fat Tail”.

Consider the following three distributions:
· Normal 1 (0.,5%, 1.,5%) with a probability of 80%;	Comment by Author: Please check whether the number of decimal places shown should be made consistent.	Comment by Author: Please confirm changes from commas to decimal points throughout.
· Normal 2 (10% , 4%) with a probability of 10%;
· Normal 3 (–-11%, 3%) with a probability of 10%.

Applying formulas from item 2.a, the moments of the final distribution are:



[image: ]	Comment by Author: Please add a figure number and caption, and ensure this is cross-referenced in the text.

The green line represents the equivalent normal distribution, with the same mean and standard deviation. By Using the numbers generated above with , we were able to obtain a distribution in which the way the values are not similarly distributed to the left and right of the mean— is not the same to the right, that is, it the distribution is asymmetric. In this case, we have negative asymmetry, where the mode is less than the median, which, in turn, is less than the average.	Comment by Author: Once you have added a figure caption, please ensure you use it here to make the referent clear (e.g., “The green line in Figure 2…”).	Comment by Author: It is unclear what this refers to (none of the lines in the above figure appear green?). Consider revising to make the meaning clearer.
We can also verify that, with , the simulated distribution has tails that are "fatter" than the normal. That is, extreme outcomes occur with a higher frequency than would be expected by modeling based only on the normal distribution, where .

a. Example of Discontinuous Marekets (JUMP)	Comment by Author: Please review. At present you have two items labeled “3.a”.	Comment by Author: Please check whether this should be “a. Example of Distributions in Discontinuous Markets (JUMP)”.	Comment by Author: Please define at first mention, unless you are certain readers will be familiar with the abbreviated form.

Consider the following two distributions:
· Normal 1 (0%, 1%) with probability of 80%;
· Normal 2 (20% , 3%) with probability of 20%.;

Applying formulas from item 3.a, the moments of the final distribution are:



[image: ]	Comment by Author: Please add a figure number and caption, and ensure this is cross-referenced in the text.
The green line represents the equivalent normal distribution, with the same mean and standard deviation. By mixing these two normal distributions we can simulate non-continuous markets (JUMP), where asymmetry and kurtosis are evident features. In this case, the modeling is based, for example, on an expectation of asymmetric discontinuity of the quotation pattern of a given currency, originated by an eventual change in the exchange rate regime where a maximum devaluation is expected with some probability.	Comment by Author: Once you have added a figure caption, please ensure you use it here to make the referent clear (e.g., “The green line in Figure 3…”).	Comment by Author: It is unclear what this refers to (none of the lines in the above figure appear green?). Consider revising to make the meaning clearer.	Comment by Author: This is italicized elsewhere. Please review.





b. Example of Bimodal Markets Example 

Consider the following two distributions:
· Normal 1 (10%, 5%) with a probability of 50%;
· Normal 2 (–-10% , 5%) with a probability of 50%.;

Applying formulas from item 2.a, the moments of the final distribution are:



[image: ]	Comment by Author: Please add a figure number and caption, and ensure this is cross-referenced in the text.


A linha verde representa a distribuição normal equivalente, de mesma média e desvio-padrão. A distribuição final acima representa a resultante de dois cenários completamente opostos com probabilidades equivalentes. Tal formato pode ser representado, por exemplo, pela expectativa do mercado em relação a uma notícia onde os impactos serão absorvidos de forma extremamente antagônica. Nesse sentido, adicionando esse parâmetro de incerteza em sua distribuição, se torna possível simular o impacto financeiro em sua carteira baseado neste cenário “binário” esperado.	Comment by Author: Please translate or delete.
The green line represents the equivalent normal distribution, with the same mean and standard deviation. The final distribution above represents the combination of two completely opposite scenarios with equivalent probabilities. Such This shape can be represented, for example, by the market's expectation in relation to a news story where the impacts will be absorbed in an extremely antagonistic way. By adding this parameter of uncertainty in itsto the distribution, it becomes possible to simulate the financial impact on its a firm’s portfolio based on this expected “binary” scenario.	Comment by Author: It is unclear what this refers to (none of the lines in the above figure appear green?). Consider revising to make the meaning clearer.
	Comment by Author: Once you have added a figure caption, please ensure you use it here to make the referent clear (e.g., “The green line in Figure 4…”).	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).	Comment by Author: Should this be “bimodal”, per the section heading?
 4. Application with Real Data

In order to illustrate the potential that theof the technique of combining individual normal distributions has regarding the accommodation of some of the stylized facts and characteristics of financial series, in this section proposes an application of this method is proposed for the series of daily returns of four assets (IBOVESPA, VALE5, USDBRL, PRE-DI) covering the period from January 2007 to December 2016. To calculate the parameters that define the normal mixture distribution, the MLEMaximum Likelihood (MV) estimate is used through the Expectation Maximization (EMEM) algorithm according to Hastie et al (2001) and Söderlind (2010).	Comment by Author: Please review this throughout. Previously you frequently used “maximum likelihood (MV)”, but the correct abbreviation would seem to be “MLE”.
4.1 Estimation

The EM algorithm is a tool widely used to simplify the MLEMaximum Likelihood estimation when the calculation is excessively complex. According to the literature, this method has an excellent performs very wellance in the face of problems involving unobserved variables;, which this is the case of in the present study, since the probability of each observation belonging to a certain distribution is not observed. In the last decade, significant advances have been introduced made in relation to the estimation of models of mixture ofmixed distributions, especially through the Maximum LikelihoodML method by using the algorithm as argued inset forth by Picard (2007). For In the case of mixing two normal distributions (k = 2):	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).	Comment by Author: Please define at first mention, unless you are certain readers will be familiar with the abbreviated form.










wWhere s the probability density function of a normal distribution with mean   and standard-deviation   . And theThe function of the likelihood log is given by:



Given that the direct maximization of this likelihood log function is a complex procedure, it is within this context that the EM algorithm presents itself asbecomes an efficient alternative to solve this problem through numerical optimization. In summary, this method can be divided into two stagessteps: Iin the first stage step (E step), the EM algorithm determines both the expected value and the initial estimates of the parameters. In the second step (M step), the expected value is maximized. By repeating steps 1 and 2, the method converges to a local maximum of the likelihood function. The "nor1mix" package in the R software has offers the norMixEM function, that which performs the MLEMaximum Likelihood (MV) estimate using the EM algorithm. Therefore, the procedure is easy to apply., and the resultsResults will bare presented in the next subsectionSection 4.2.	Comment by Author: Please review.	Comment by Author: Consider deleting this, as it seems redundant.




















4.2 Results

Tabelea 1: Estimated pParameters (%) by using the EM algorithm for n = 2	Comment by Author: Please ensure you refer to all figures and tables in the text.
	
	
	
	
	
	
	

	IBOV
	11.27
	-0–0.14
	3.76
	88.73
	0.03
	1.38

	VALE5
	30.45
	0.01
	4.11
	69.55
	-0–0.05
	1.67

	USDBRL
	77.24
	-0–0.01
	0.72
	22.76
	0.10
	1.89

	PREDI
	87.79
	0.00
	0.13
	12.20
	-0–0.03
	0.47



       Gráfico 1: Normal mMixture n = 2 and associated components  	Comment by Author: Please translate, and ensure that numbering is consecutive and consistent throughout the document (at present you have Figure 1.1, several figures with no captions, then this figure.
[image: ][image: ]
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Tabelea 2: Estimated pParameters (%) by using the EM algorithm for n = 3
	
	
	
	
	
	
	
	
	
	

	IBOV
	4.55
	-0–0.02
	4.83
	37.97
	0.13
	0.95
	57.48
	-0–0.06
	1.80

	VALE5
	61.79
	-0–0.15
	2.10
	18.02
	0.35
	0.91
	20.19
	0.13
	4.56

	USDBRL
	71.07
	0.01
	0.94
	18.18
	-0–0.03
	0.32
	10.75
	0.15
	2.30

	PREDI
	1.95
	-0–0.01
	0.85
	67.55
	0.01
	0.12
	30.50
	-0–0.02
	0.26




                            Grafico 2: Normal mMixture n = 3 and associated components  [image: ][image: ][image: ][image: ]	Comment by Author: Please translate.
                                                                                                                                                    4.3 Goodness-of-Ffit Test

A measure commonly used to verify the quality of the fit of the model (goodness-of-fit) is Tthe cChi-sSquare statistic is commonly used to verify the quality of the model’s fit (goodness-of-fit). , whichIt has involves the following decision rule:










In order to verify the real gain from the use of the normal mixture distribution over the use of a simple normal distribution, a comparative table was constructed with the cChi-sSquare statistics for each asset and for each distribution used.
Tabelea 3: Goodness- of- fit tTest
	
	Normal n = 1
	Normal mMixture n = 2
	Normal mMixture n = 3

	
	CS
	p-value
	CS
	p-value
	CS
	p-value

	IBOV
	87987
	0.0005*	Comment by Author: Please check whether leading zeros should be omitted for p-values under the style guide you are following.
	144.69
	0.0025*
	51.983
	0.4303

	VALE5
	609390
	0.0004*
	128.82
	0.0054*
	72.285
	0.1539

	USDBRL
	54105
	0.0004*
	257.96
	0.0010*
	97.113
	0.0530

	PREDI
	1813120
	0.0000*
	45736
	0.0004*
	65.253
	0.0630


                * Rreject   at 1% significance level. 

The results indicate that, for all assets, the data modeling done conducted with the mixture of normal distributions has a higher quality adjustment than compared to using a single normal distribution. With a 95% confidence level, the null hypothesis is rejected for all assets when the simple normal distribution is used. In the case of the normal mixture adjustment using two components (n = 2), a significant improvement is already observed, but the best adjustment is found when we use the normal mixture with three components (n = 3), because in all cases the null hypothesis null is not rejected at the significance level of 1%, and the lowest value of the cChi-square statistic is also obtained. Overall, the graphs below directly illustrate the quality of the adjustments.	Comment by Author: Once you have verified the numbering in the figure below, please change this to the precise cross reference (e.g., “the graphs in Figure 3”).

Gráfico 3: Normal mMixture and sSimple nNormal distribution 	Comment by Author: Please translate.
[image: ][image: ]
[image: ][image: ]

Another way to show the gain from usingsuperiority of the mixture of normal distributions over compared to the simple normal distributions can be seen in Table 4 below, which shows the values of asymmetry and kurtosis for each asset. In this way, we were able to verify the improvement in the ability to capture, with greater accuracy, the characteristics of the distribution.
Tabelea 4: Asymmetry and kKurtosis
	
	Empirical
	Simple nNormal 
	Normal mMixture n = 3

	
	Asymmetry
	Kurtosis
	Asymmetry
	Kurtosis
	Asymmetry
	Kurtosis

	IBOV
	0.01
	8.63
	0.00
	3.00
	-0–0.04
	8.71

	VALE5
	-0–0.06
	6.04
	0.00
	3.00
	-0–0.10
	5.94

	USDBRL
	0.21
	7.75
	0.00
	3.00
	0.19
	7.26

	PREDI
	-1.09
	18.11
	0.00
	3.00
	-0–0.14
	17.68



4.4 Normal Mixture Simulation

Once the goodness-of-fit test has confirmeds the suitability of using the normal mixture for the series of returns, it may be of interest to the market participant to perform simulations of random samples originatinged from the distributions defined in Table 2 and Table 3. For illustration purposes, we can consider the values obtained from nNormal mMixture for SStock 1 (VALE5).
· Normal mMixture n = 2 – VALE5	Comment by Author: If this is not intended to be a minus sign, please consider deleting and putting “VALE5” in parentheses for clarity.
Normal 1 (-0–0.05%, 1.67%) with a probrability of 69.55%;
Normal 2 (0.01% , 4.11%) with a probrability of 30.45%.;

Generate a random variable U that follows uUniform distribution (0, 1).
If U < 0.6955, then generate a random variable X that follows nNormal distribution (-0–0.35%, 7.30%).
If U ≥ 0.3045, then generate a random variable X that follows nNormal distribution (1.26% , 16.60%).

· Normal mMixture n = 3 – VALE5	Comment by Author: If this is not intended to be a minus sign, please consider deleting and putting “VALE5” in parentheses for clarity.
Normal 1 (-0–0.15%, 2.10%) with a probrability of 61.79%;
Normal 2 (0.35% , 0.91%) with a probrability of 18.02%;
Normal 3 (0.13% , 4.56%) with a probrability of 20.19%.;

Generate a random variable U with uUniform distribution (0, 1).
Set U < 0.3309, then generate a random variable X that follows nNormal distribution (0.84%, 16.40%).	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).
Set 0.3309 ≤ U < 0.4881, then generate a random variable X that follows nNormal distribution (–-3.38%, 4.93%).
Set U ≥ 0.4881, then generate a random variable X that follows nNormal distribution (8.38%, 3.46%).

                                  
Grafico 3: Multiple price trajectories simulation — – VALE5	Comment by Author: Please translate.
[image: ]

Just as the norMixEM function of the "nor1mix" package of the R software was used in the process of estimating the parameters in Ssubsection 4.1, we can use another function, called rnorMix, of this same package that is made available with the objective of carrying outenables simulations of samples extracted from a normal mixture. This calculation will is be detailed in under Step 5 inof the “step-by-step” description in Ssection 5.

5. Step-by-Step Procedure

In thThis section details, the necessary procedures in the R software will be described, in a step-by-step format, for modeling financial data using: the normal mixture distribution with three components (“n” = 3), and the respective goodness-of-fit test and the procedure of simulation procedure. For easy ofTo aid understanding, the steps below will bare based on the procedures performed for Stock 1 (VALE5). The full code for all assets and different numbers of components is provided in the appendix. 
Step 1) Importing Data and Installating the Package: Iit is necessary to initially first install the packages and respective libraries available for the R software that have offer the functions to be used in Steps 2, Step 3 and Step –4. The "nor1mix" package has the norMixEM function that performs the maximum likelihoodMLE (MV) estimation using the EM algorithm;, the "moments" package has the skewness and kurtosis functions;, and the "xlsx" package features the read.xlsx function that is used to import data from an Excel file.	Comment by Author: Please review.
> install.packages("nor1mix", lib="/data/Rpackages/")
> install.packages("moments", lib="/data/Rpackages/")
> install.packages("xlsx", lib="/data/Rpackages/")
> install.packages("zoo", lib="/data/Rpackages/")
> library(nor1mix);library(moments);library(xlsx);library(zoo)

> setwd("E:/Artigo_02/Bases") 
> data <- read.xlsx("valed1.xlsx", sheetIndex = 1)

Step 2) Estimation: Aafter importing the data in its their original format, which is the daily closing price series, the retpct series of returns is created by calculating the logarithm difference multiplied by 100. The norMixEM function allows the use of the MLEMaximum Likelihood (MV) method through the Expectation MaximizationEM algorithm (EM) for the estimation ofestimating the parameters of the normal mixture distribution. Finally, the norMix function stores the parameters estimated for use in the simulation (Step 5).	Comment by Author: Please review.
> attach(data)
> retpct=diff(log(close))*100
> parmixn3 <- norMix(mu=c(EMn3[1],EMn3[2],EMn3[3]),sigma=c(EMn3[4],EMn3[5],EMn3[6]),
+ w=c(EMn3[7],EMn3[8],EMn3[9]))

Step 3) Statistics and Graphs: Iin this step, statistics are generated as for the average, standard deviation, asymmetry, and kurtosis, as well asin addition to a histogram of the returns. This information will be used in Step 4 in the goodness-of-fit test (Step 4).
> mean=mean(retpct); sd=sd(retpct); skewness=skewness(retpct); kurtosis=kurtosis(retpct)
> hist <- hist(retpct, prob=TRUE,breaks=50,xlab="Retorno",ylab="Densidade",main=NULL,          xlim=c(-15,15),ylim=c(0,0.22))
+ plot(parmixn3,p.comp=TRUE,xlim=c(-15,15),xlab="Retorno",ylab="Densidade",main=NULL)

Step 4) Goodness-of-Ffit Test: Tthe chisq.test function requires both the specification of the empirical density of the data (hist$counts), which was obtained by using the hist command in Step 3, as well as the reference distribution specified in the null hypothesis, which for the case of mixing normalsa normal mixture distribution  it is provided by the pnorMix function also available in the "nor1mix" package.	Comment by Author: Please check whether I have retained your intended meaning here (original wording was unclear).
> breaks_cdf_nor <- pnorm(hist$breaks,mean=mean(retpct),sd=sd(retpct))
> null.probs.nor <- rollapply(breaks_cdf_nor, 2, function(x) x[2]-x[1])
> chisq.nor <- chisq.test(hist$counts, p=null.probs.nor, rescale.p=TRUE, simulate.p.value=TRUE)

> breaks_cdf_mix <- pnorMix(hist$breaks,parmixn3)
> null.probs.mix <- rollapply(breaks_cdf_mix, 2, function(x) x[2]-x[1])
> chisq.mix.n3 <- chisq.test(hist$counts, p=null.probs.mix, rescale.p=TRUE, simulate.p.value=TRUE)

Step 5) Simulation: Tthe function called rnorMix function of the "nor1mix" package is a tool made available with the objective of carrying out simulations of samples extracted from a normal mixture distribution. The function only requires as arguments the sample size to be generated and the vector containing the parameter values. that, inIn the case of outlined in this article, the vector was created after following the estimation in Step 1.
> x3 <- rnorMix(500,parmixn3)


6. Conclusion

This article objective was to presents in a practical wayapproach to using a statistical tool proposed by Jin Wang (2001), defined as a mixture of “n” normal distributions—the “, normal mixture”—, in the field of empirical financial modeling. We show that, despite its practicality and wide use by market participants, the useapplication of the simple normal curve as a way to replicate the behavior of financial market assets is far from adequate.
When By applying the technique using the series of daily returns of four important assets in the Brazilian market (IBOVESPA, VALE5, USDBRL, PRE-DI) during a the period from 2007 to 2016, it was possiblewe to demonstrated the real gain in terms goodness-of-fit through comparison of the the cChi-sSquare statistic comparison. The applications embraced modeling bimodal, and asymmetrical and fat- tails distributions so commonly found in financial series. 	Comment by Author: This is the first time the country context has been mentioned. If it is relevant, please mention it early on, when detailing the study. If it is not, please delete.
The use of the NNormal mixture distribution can be of interestutilized for a variety of goals in the field of finance field, such as: 
· Risk Management: Pperforming risk-management simulations to adequately verify possible impacts on the a portfolio when modeling the expected tail events;
· Resampling: Cconducting data resampling using the available data subsets;
· Pricing options with exotic probability distributions;
· Representing the mixture of different future macroeconomic scenarios of members of a committee;
· Portfolio optimization:Optimizing portfolios. Inwhen modeling all moments of the distribution, this technique has great benefitis beneficial when incorporating asymmetry and kurtosis effects, compared to the classic mean--variance model (Markowitz) model;.	Comment by Author: Please add citation and reference.

With this, we presented the greatOur results show the importance of the this technique for different various areas in the field of finance, as welland we provide as a step-by-step guide to its applicability.
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