Developing B&B-Based Algorithms to Solve the Resource-Sharing and Scheduling Problem (RSSP)


Introduction
In 1999, the first B&B-based algorithm was developed to find an optimal solution for the resource-sharing and scheduling problem (RSSP) (Samaddar et al., 1999). In the present work, a new B&B algorithm was developed to find an optimal solution for the RSSP. This chapter first reviews the general principles for B&B algorithms and the criteria for evaluating their performance according to Ibaraki (1987). Next, several options for implementing the principles to solve the RSSP are discussed. Finally, a theoretical and empirical comparison is made between the algorithms discussed in the RSSP literature and the proposed algorithms.	Comment by Susan Treister: Since there is almost never a “ה” anywhere, I did not feel at liberty to put in “the” anywhere.

If the belief is that there is one optimal solution, then it should say the. If there could be more than one, then leave it a / an.

Even if something is “first” or “optimal”, the case could be made that there might be more than one.

This goes for first solutions, optimal solutions, other things.

There is even a sentence later on where it says something like:
פתרון אופתימלי אחד
Which clearly shows there could be more than one and supports my case that I cannot put in “the” on my own accord.
	Comment by Susan Treister: Here the word algorithm as related to the literature was in the singular, as it was in another place. One time it was in the plural as relates to the or
1.	Principles and Performance Evaluation of a B&B Algorithm
One way of finding an optimal solution for a problem is to lay out all possible solutions, and select a solution with an optimal value (a minimal value for a minimization problem, or a maximal value for a maximization problem). This method is called the Enumeration Method, and it is usually considered inefficient, as in most situations, problems have tremendously large solution spaces. For this reason, there is great interest in developing more efficient methods that allow reduction of the solution spaces in which the optional solution to the problem lies. A B&B algorithm represents a collection of methods intended to achieve this objective. Without limiting generality, we'll assume that from now on, we are solving a minimization problem. 
1.1.	Principles of B&B Algorithms
In developing a B&B algorithm to solve the problem, it is important to focus on the following three principles:	Comment by Susan Treister: The principles should all be listed right here.


Branch Decomposition
Pruning and Bounding Options
Search Strategy

( 
Methods for Branching / Decomposition 



Optimization problem   is in most cases a giant problem that can be represented as a finite set of smaller partial sub-problems , where each sub-problem in the set can be represented as another set of sub-problems, . In B&B, each partial sub-problem is considered a branch, and the process by which the problem is broken down into sub-problems and the hierarchical relation between them determined, is called decomposition. 	Comment by Susan Treister: Delete the word partial?	Comment by Susan Treister: Delete the word partial?









Using decomposition, a tree of all  solution options can be obtained; or in other words, a directed tree , where  is a set of nodes and  is a set of directed arcs with .  Each node   represents a sub-problem, and arc  indicates that sub-problem  is created as a result of branching from sub-problem . In order for a search algorithm to find an optimal solution by examining a small portion of the branches, each sub-problem must have the following two properties: 
· 

If an optimal solution is attained for  , then there is no need to continue to decompose  into additional sub-problems.
· 


If the conclusion is reached that  does not contain an optimal solution for  , then can be bounded (truncated).
The more sub-problems that have both these properties, the more efficient the search is. The bounding operations performed during the search use the principles of these properties. 
Methods for Pruning and Bounding Options 
As previously stated, bounding operations are performed to prune or reduce search options in a tree. There are two basic methods for implementing the bounding operations: the lower bound test and the dominance test.

















The lower bound test is designed to check whether the optional solution value of a sub-problem  is greater than or equal to the best value of  obtained in the search process up to the test point, i.e. . A sub-problem that meets this condition is bounded, meaning there is no need to continue decomposing it into additional sub-problems. Since during the search the value of   is unknown and the number of sub-problems to be examined could be considerable, instead of calculating , the lower bound value  of  , is calculated (which is a calculation of much lower complexity).    Function  must have a value that is lower than or equal to the value of the optimal solution of a sub-problem, that is, , , and exactly equal to the value of the optimal solution on leaves, , . When  is a set of sub-problems that could not be decomposed, and were fully solved, it means they are leaves on the search tree. We also define that if there are two bounds such that ,  then bound  is considered tighter to the solution than .	Comment by Susan Treister: Liron – author asked to keep the word complexity in the translation.	Comment by Susan Treister: Maybe it should just say: g(Pi) must be lower than…	Comment by Susan Treister: Maybe: that cannot be further decomposed   

And I’m not sure about the “fully solved” part. Maybe it should be “not fully solved”.
The dominance test checks whether there is a (dominated) sub-problem that necessarily does not contain a better solution than another (dominating) sub-problem. Dominated problems can be bounded during the search process.












Domination ratio  is a binary ratio defined on a set of sub-problems. Ratio  means that sub-problem   dominates sub-problem . Domination ratio  means that  and  for , it means that for every offspring of  which is  there is an offspring of ,  such that  exists.	Comment by Susan Treister: This was when כאשר
Author asked to change it to for

Though in my math memory, I think both may be okay.

The word when appears a few more times, maybe one or two of them should be changed to for.	Comment by Susan Treister: Okay?


It is important to note that in order for a tighter lower bound to result in more effective search results, it must be consistent with domination ratios. That is, if exists, then . Otherwise, it  cannot be said regarding algorithm performance with respect to tightening the lower bound. 	Comment by Susan Treister: Okay?	Comment by Susan Treister:  Is this sentence okay 
For the purposes of a general description of B&B algorithms, let us define: 

- A set of sub-problems formulated to the current stage of the search. 


- A set of active sub-problems, where sub-problem  which was not formulated, or not tested, is called an active sub-problem.

 - Lowest upper bound.


 - Solution with upper bound .







  - Upper bound function for which , .  , .  is the value of a possible solution for sub-problem .


Examination of the next active sub-problem is performed according to search strategy  such that  . Figure 1 illustrates the general structure of a B&B algorithm. 

[image: ]
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	התחל – Start
כאשר – Where / for
A9 
כן  (right branch)- Yes – There is no solution possible for Po
 (לא (left branch) – No – The optimal solution is at Z. The value of the optimal solution is z.




Search Strategy


B&B algorithms always find an optimal solution in a finite number of steps regardless of the search strategy . But the effectiveness of the algorithm and the memory space required to execute it, are very much dependent on . Following is an overview of several of the most common search strategies.
Heuristic Search








We'll define  a heuristic value that can be calculated for . The value of  represents an estimate of the true value , and it can be calculated quickly. The heuristic search function   is  , i.e. each time, a node  is selected with the lowest value of .


When it is possible to calculate a lower bound and an upper bound of a sub-problem, then it is possible to use a heuristic function of the following form  , . 



Heuristic function  is called non-misleading when for every pair of nodes   and  the following is true:


If  then .


If then .
Best Bound Search





With this search, it is possible to see a heuristic search, where the heuristic function in this case is . The search function by lower bound  is , that is, a node  is selected each time with the value of the lowest .	Comment by Susan Treister: Not sure what to do with this. Maybe something like:

This is a heuristic search, where the heuristic function is g…
…??
Depth First Search


Given a set of nodes , it is possible to define a subset of these nodes with maximum depth,   .  




Depth first search function  is  , i.e. each time a node  is selected with the value of the lowest .
Breadth First Search


Given a set of nodes , it is possible to define a subset of nodes with the lowest depth,  .	Comment by Susan Treister: Smallest? Shallow? Something else?




The depth first search function    is   , that is, a node  is selected each time with the value of the lowest .
1.2.	Evaluating B&B Algorithm Performance

B&B-based algorithm performance can be evaluated according to the amount of work invested until the first possible solution to the problem is found, the amount of work invested until an optimal solution is found, and the total amount of work invested until the end of the algorithm run. Since the search process uses a strategy based on node classification, another index that can be used to evaluate algorithm performance is the maximum value of . In view of this, it is possible to define the following performance indices: 


 - Number of   that were decomposed before finding the first possible solution.


 - Number of  that were decomposed before finding an optimal solution. 


 - Maximal value of  throughout the algorithm run.



 - Total number of  that were decomposed during the algorithm run.  The total time required to run a search strategy is equal to  .
Table 1 shows a comparison of performance indices for each search strategy. It indicates that the heuristic and best lower bound strategies have the advantage in two performance indices: amount of work invested until an optimal solution is found, and total work invested until the end of the algorithm run. The depth first search strategy has the advantage in two other indices, amount of work invested to find the first solution to the problem, and the maximum number of active nodes during the algorithm run. The breadth first search strategy has no advantages in performance indices in comparison with other strategies, but Ibaraki (1987) stresses that this strategy could have advantages like those of other strategies if there were good domination ratios.
Table 1 - Comparison of Search Strategies with Respect to Performance Indices
	Search Strategy
	Performance Indices

	
	

	

	

	


	Heuristic
	+
	-
	+
	-

	Best  lower bound
	+
	-
	+
	-

	Depth  first
	-
	+
	-
	+

	Breadth  first
	-
	-
	-
	-



















The value of  depends on the value of the lower bound . It has been proven that  when . It is important to choose a suitable representation of the tree to cause the lower bound  to be as precise as possible. In addition, based on simulation runs conducted by Ibaraki (1987), it is possible to see the effect of  and  on values  and  in the heuristic search. If it is desired to reach good results quickly, effort must be invested in development of  .  On the other hand, if we are interested in finding an optimal solution to a problem, most efforts should be spent in developing . In a depth first search,  and  have a similar effect on values  and .
2.	B&B Principle Implementation Options for Solving an RSSP
The objective of this section is to show the development of an algorithm for finding the first optimal solution for an RSSP (which we assumed to be a minimization problem). This algorithm would take full advantage of what is known about B&B algorithm performance from the literature and acquaintance with RSSP; and thus reach several application possibilities to be examined in an empirical experiment. Therefore, fundamental decisions for the purpose of implementing B&B algorithms are based on the following decision criteria:	Comment by Susan Treister: להגיע
Maybe there is a better translation for this word/sentence (elsewhere too).
· Required memory space - Although increasing computer memory is not a significant problem nowadays, we would still like the search algorithm to use as little computer memory as possible. A large problem that requires much running time consumes a lot of computer memory, and this can be a limitation to finding an optimal solution to the problem.
· The amount of work required to obtain a first solution--- Obtaining a first solution is a very important point in the search process since starting from that point, other options can be bounded.
· First Solution Quality -- The closer the first solution is to an optimal solution, the greater the chances of bounding more options.
· Maximal use of a lower bound - Lower bound properties must be considered in order to achieve a tighter lower bound for a solution that enables bounding off more options.
· Implementation Complexity - The level of implementation complexity affects not only the amount of work required for computation, but also the complexity of programming and testing required for it; as well as the reliability of the system that executes the algorithm.
· The amount of work required to the end of the algorithm run -- Only at the end of the algorithm run is it possible to determine that the solution found is an optimal solution.
2.1.	Branch Decomposition
The problem in question involves three main levels of decision-making:
· •Resource allocation - This level deals with making a decision on how to execute the operations, i.e., which resources are to carry out the operations.
· Operation ordering - This decision relates to the position [in the schedule of the resource]  that the operation is executed on, or in other words, the order of execution of the operations on the resources.	Comment by Susan Treister: In Hebrew, it says מיקום.
סידור only refers to ordering, based on the rest of the paragraph.
So this was the only way I could translate מיקום to make sense to me.


But if that is correct, I’m not sure that part of the sentence is necessary, and the whole thing could be reduced to something like:
This decision refers to the order of execution of operations on the resources.
· Operation Scheduling - Determining the starting time for executing an operation on the executing resources.
A solution for an RSSP must include a decision on the three levels listed above. The process of decomposing the problem to sub-problems on the B&B tree structure defines in practice in which order and by which method these decisions are made. Following is a discussion of the various options for decomposing the problem.
Types of Tree Nodes and the Order of Decision-Making
It is not possible to determine the order of operations on a resource without simultaneously (or previously) determining the assignment of operations for a resource. Any attempt to determine the timing of operations, and only afterwards search for suitable assignment and ordering solutions for the determined scheduling, would pose an extremely complex challenge, as scheduling without making advance allocation decisions would be largely arbitrary. Making an allocation decision, next an attempt to determine scheduling, and only then the ordering, would not be possible because with the very determination of the scheduling, the ordering is also determined. Therefore, three types of nodes were decided upon (in addition to the problem root node), and at each type of node, a decision is made on only one level. The following are the node types and their serial location on the tree.	Comment by Susan Treister: Ok?
· Allocation node - At nodes of this type a decision is made regarding the allocation of resources for operations (what resources are assigned to execute the operations in the problem). This node appears as the first one under the problem root node.
· Ordering node - At nodes of this type, a decision is made on the ordering of operations on the resources (In what order the operations are to be executed on the resources). This node appears under the allocation nodes.
· Scheduling node - At nodes of this type, a decision is made on the scheduling of operations on the resources (at what times operation execution begins on the assigned resources). This node appears under an ordering node.
In other words, while searching for a solution, a decision on allocation of resources for operations is made, and only after that in accordance with the selected allocation is the order of executing operations on the resources be determined; and at the bottom of the tree, the exact times of the operations on the allocated resources are determined by the predetermined order of operation execution.  It should be noted that this order matches the order in Samaddar et al. (1999) though it was not explained as was done here. 
Decision Options at Every Node
At every type of node, a decision is made related to a resource, as is a decision related to an operation which is performed on that resource. Since there are usually several resources and several operations, there are in principle four decision options at each node:
· A decision made on one resource and one operation, 1:1 ratio.
· A decision made on several resources and one operation, Many to 1 ratio.
· A decision made on one resource and several operations, 1 to Many ratio.
· A decision made on several resources and several operations, Many to Many ratio.
Later in this section are discussions and comparisons relating to the type of ratio that it is best to implement at allocation and ordering nodes.
Allocation Nodes
Table 2 shows the calculation of the total number of nodes that can be obtained as the result of each type of decision regarding allocation of resources. The maximum number of nodes on a tree depends on the number of levels, and the number of branches at each level. 
Table 2 - Decision Options at an Allocation Node Based on the Criterion of Required Memory Space
	Number
Ratio
	Levels
	Branching per level
	Nodes

	1:1
	

	

- At each node a decision is made on the method of performing an operation 
	


	1:Many
	

	

 - Number of possible sequences of operation methods that can be performed on resource . 
	


 where   and therefore several nodes are bounded by 

	Many:1
	

	

 - At each node, a decision is made on the way an operation is performed.
	


	Many:Many
	1
	

 - Number of possible sequences of methods of operations. Number of sequences bounded by  
	




Table 3 shows the considerations regarding the rest of the decision criteria for each of the decision options.

Table 3 – Decision Options at an Allocation Node Based on the Decision Criteria (excluding the required memory space criterion)
	Decision Criterion
	Considerations

	Amount of work required before obtaining a first solution 
	Amount of work required until the first solution is obtained depends on the search strategy, size of the tree, and quality of the first solution. For the present discussion, we’ll refer only to the element of tree size as a property that affects the criterion being tested.
As stated in Table 2, the size of the shortest tree (total number of nodes) is of ratio Many:Many.

	Quality of the first solution
	The quality of the first solution depends on the search strategy. Regarding the current discussion, it is a possible solution for the problem that includes information on timing of each of the operations on each of the resources allocated to perform them, and therefore there is no difference between the decision options. 	Comment by Susan Treister: Does this need to be said? Here and in other places…

	Maximum exploitation of the lower bound
	1:1 Ratio – At this ratio, a resource is selected to perform one operation. This choice does not add a great deal of information to the value of the calculated lower bound based on the critical path length of the operations, and/or the lower bound based on the calculation of work load on the resource, as from the choice itself, it is not certain that it would be clear how long these operations would take.

1:Many Ratio -  At this ratio, for one resource, all operations that can be performed on it are selected. With this choice, there would be a greater addition of information for the value of the bound based on the length of the critical path and the work load on the resource in comparison with Ratio 1:1, because several operations would be selected.

Many:1 Ratio – With this ratio, for one operation, all resources that would execute it are selected. With this choice, there would be more additional information for the lower bound based on the calculation of critical path length in comparison with the 1:1 Ratio, and there would be a smaller addition of information for the lower bound based on the work load on the resource, in comparison to the 1:Many ratio. From the choice itself, we would know the length of time it takes for one operation.

Many:Many ratio – At this ratio, for each resource the operations it is to execute are known. With this choice, we would know the duration of executing an operation, and what operations are to be executed on each of the resources.  In terms of the lower bound based on the length of the critical path and/or the work load on the resource, at this ratio there is the greatest addition of information in comparison with the rest of the ratios.

	Implementation complexity
	There is no difference between the options.

	Amount of work required to the end of the algorithm run
	It can be assessed that better exploitation of the lower bound and a smaller tree would lead on the whole to less work required to complete the algorithm run.



To summarize what has been raised thus far, for the decision options at allocation nodes, it can be seen that there is preference for the Many:Many ratio for the following four decision criteria: required memory space, amount of work required until the first solution is obtained, maximum exploitation of the lower bound, and the amount of work required until the algorithm run is completed. For the rest of the decision criteria, there is no difference between these four options in implementing the decision.

Ordering Nodes
Table 4 shows the calculation of the total number of nodes that can be obtained as a result of each type of decision regarding the ordering of operations on the resources. The maximum number of nodes on the tree depends on the number of levels and the number of branches on each level.

Table 4 – Decision Options at an Ordering Node Based on the Criterion of Required Computer Memory
	Number
Ratio
	Levels
	Branches per level
	Nodes

	1:1
	

 - for each resource , the number of levels is the number of tasks on the resource 

()
	
The number of branches on a resource level becomes smaller than the maximum number equal to for a minimal number equal to 1.
	


	1:Many
	

	


 - Number of possible orderings of the operations that can be carried out on resource . The number of orderings is bounded by .
	


	Many:1
	

	

 The number of branches for a level is equal to the number of possible sequences of the operation as a task on the resource . This number is bounded by .-
	


	Many:Many
	1
	 All solutions are possible
	




Table 5 shows the considerations for the rest of the decision criteria that were previously defined.

Table 5 – Decision Options at an Allocation Node Based on the Decision Criteria (except required memory space)
	Decision Criterion
	Considerations

	Amount of work required until the first solution is obtained
	Amount of work required until the first solution is obtained depends on the search strategy, size of the tree, and quality of the first solution. For the present discussion, we’ll refer only to the element of tree size as a property that affects the criterion being tested.
As previously stated,  the shortest tree size (total number of nodes) is of a Many:Many ratio.

	Quality of the first solution
	The quality of the first solution depends on the search strategy. With respect to the current discussion, this is a possible solution to the problem that includes information on the scheduling of all the operations on all the resources assigned to execute them, and so there is no difference between the decision options.

	Maximum exploitation of the lower bound
	Ratio 1:1 - At this ratio, one operation is selected to be executed as a task on the resource. With this selection, a large addition of information is obtained for the value of the lower bound calculated based on the critical path of the operations and/or the lower bound based on the calculation of work load on the resource, as we advance to the lower level of the resource.	Comment by Susan Treister: With?

1:Many Ratio - At this ratio, for one resource all the operations are selected that can be executed on the resource in a possible execution order.  With this selection, there is a maximum addition of information for the value of the bound based on the critical path length and the work load on the resource.

Many:1 Ratio - At this ratio, one operation obtains a spot on each of the resources executing it. With this selection, there is a small addition of information both for the lower bound based on the length of the critical path and for the lower bound based on the work load on the resource. The bound will have a larger addition of information as we advance to the last level of the ordering nodes.

Many:Many Ratio - At this ratio, it is known for each resource which operations it is to execute. With this selection, we'll know the duration of the operation and what operations are to be executed by each of the resources. In terms of the lower bound based on the length of the critical path and/or the work load on the resource, at this ratio there is the greatest addition of information in comparison with the rest of the ratios.

	Implementation Complexity 
	The most complex implementation is the Many:Many ratio because of the complexity of formulating a possible ordering for each resource..

	Amount of work required to the end of the algorithm run
	It can be assessed that better exploitation of the lower bound and a smaller tree would lead on the whole to less work required to complete the algorithm run.



To summarize thus far, regarding the decision options at an ordering node, it can be seen that the Many:Many ratio is preferable, based on the following four decision criteria: required memory space, amount of work required until obtaining a first solution, maximum exploitation of a lower bound, and the amount of work required until the end of the algorithm run. For the quality of the first solution criterion, there is no difference in the implementation options; and for the implementation complexity criterion, the Many:Many ratio is the most problematic.  In order to implement this ratio, a complex data structure must be managed, and searching conducted using an additional tree. For this reason, it can be said that it is preferable to use the next most preferable ratio based on the decision criteria, which is 1:Many. 

As previously stated, the order of executing decisions is allocation of resources, ordering operations in accordance with the allocation, and finally, scheduling operations on the resources in accordance with the determined order. At the scheduling nodes are decision options of ratios 1:1, 1:Many, and Many:1, which lead to greater computational complexity than with the Many:Many ratio, which leads to one level of nodes of this type and allows finding the length of the critical path of operations which is actually a solution to the problem. 

To summarize what has been said regarding the decision options at each type of node, it can be seen that there is an advantage in the following implementation option: allocation node - Many:Many ratio. As a result of this, one level of nodes of this type is obtained. Ordering Node - 1:Many ratio. As a result of this, several levels of nodes of this type are obtained. The number of levels is the same as the number of resources in the problem (). Scheduling node - Many:Many ratio. As a result of this, one level of nodes of this type is received. 
Figure 2 illustrates the general structure of the tree.

[image: ]
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Figure 2 - Tree Structure of the B&B Algorithm for Solving an RSSP
Arrangement of the Nodes on the Operation Order on the Resource Decision Level:
Since at the ordering nodes there are several levels (the same as the number of resources), the question is asked, how should they be ordered during the search for the solution? Among the options for ordering the resources under a given resource allocation, we can consider the following:
· Arbitrary - Resources ordered arbitrarily.
· By resource workload - Resources ordered by workload, from high to low.
· By the number of critical operations - Resources arranged by the number of critical operations from high to low, i.e. a resource that executes more operations that are located on the critical path, is positioned closer to the root of the tree than another resource that executes fewer critical operations.
· By frequency of operations - Resources ordered by frequency of operations from high to low, i.e. a resource executing more operations that are also executed on more additional resources is positioned closer to the tree root.




Table 6 shows the considerations in selecting different options for ordering resources under a given allocation of resources, for all operations, with respect to decision criteria. In light of this discussion, we'll order the resources taking into account: work load on the resource, critical operations carried out on the resource, and frequency of operations executed on the resources. In addition, to ease implementation complexity, resource ordering could be performed once per given resource allocation. For this purpose, an index was defined to classify the resources into tree levels as follows: where  is the weight vector and  the workload vector for all the resources that are common to the resource (resources that execute operations that resource    executes).  This arrangement aims to have those decisions that are related to operations located on the critical path of the solution and resources that are busy and/or involved in executing many operations come earlier in the order of ordering decisions. 	Comment by Susan Treister: Not sure how to say in this work
משאבים אשר שותפים לשמאב
Table 6 - Methods for Arranging Resources Under a Given Resource Allocation
	Decision Criterion
	Considerations

	Required memory space
	All options require the same memory space.

	Amount of work required before obtaining a first solution
	Quantity of work required to arrange resources from the lowest to the highest is in the following order: Arbitrarily By workload; by frequency of operations   By number of critical operations.

	Quality of the first solution
	The earlier we consider the workload on the resources and the critical operations, the earlier we would obtain a solution that approaches an optimal solution.

	Maximum exploitation of a lower bound
	Ordering resources by load and by number of critical operations are two orderings that influence the value of the lower bound based on the length of the critical path, and on the lower bound based on the work load of the resource. 

	Implementation Complexity
	Putting resources in an arbitrary order with the least complex implementation. Ordering resources by load or by frequency of operations are orderings that can be executed the moment the allocation of resources for all operations is known. On the other hand, ordering by number of critical operations is an arrangement that must be updated as advancement is made to the bottom of the tree (the critical path of operations changes in accordance with the scheduling of operations on the resources) and therefore it is an ordering with a higher complexity of implementation.

	Amount of work required to the end of the algorithm run
	In accordance with what is stated in the maximal exploitation of lower bound criterion, for the present criterion, there is preference for ordering the resources by load and critical operations. 




Ways to Implement the Decision:
Every decision type can be implemented in two ways: by generating all the possible solutions simultaneously and selecting the preferred, or generating one or some of the solutions in the hope that we do not need all the solutions later in the process.


Formulation of all the options for allocating resources for all operations with exponential complexity bounded by. Formulation of all possible sequences of operations on the resource having exponential complexity bounded by . For this reason, it could be worthwhile each time to generate one solution of resource allocation and one solution of operation sequencing operations on the resource (depth first approach).
2.2.	Methods of Pruning and Bounding Options
As mentioned earlier, there are two methods of bounding options on a tree: use of the lower bound, and maintaining a dominance ratio.
In the present study, no good dominance ratios were found for the purpose of bounding options. The following example demonstrates a possible dominance ratio between two allocations of resources. 
















Let's assume a problem with the following properties: , , , , , , , , , , , , , , , 


This problem has two possible resource allocations: , . It can be seen that the two allocation alternatives are not fundamentally different, that there is a dominance ratio between them and therefore if necessary, it is sufficient to study just one of them. Dominance ratios like these can exist in RSSP, but they are rare cases and much computational work is required to test for their existence during the running of an algorithm.

In light of the findings of Ainbinder et al. (2018), options can be bounded using any of seven methods for calculating a lower bound for an RSSP, but it is more useful to use bound    since it has been proven to be tighter than the rest of the bounds.
2.3.	Search Strategy
In Section 1, four main search strategies were mentioned: Heuristic, Best lower bound, Depth first and Breadth first. Likewise, the advantages of each of the strategies were presented in relation to the performance indices according to theoretical and/or empirical research of Ibaraki (1987).   For the present study, we'll propose several search strategies:
· Depth first - as was described in the previous sub-section. 	Comment by Susan Treister: Where? This isn’t a good reference.
· A combination of depth first and best lower bound search strategies - finding a first solution by depth first, and then the search process continues to examine the nodes with the lowest lower bound until the algorithm is stopped.
· Combination of depth first and heuristic search strategies - finding a first solution by depth first and then the search process continues to examine the nodes with the lowest heuristic value until the algorithm is stopped.

In the study, an effort was made to develop good (not misleading) heuristics to navigate the tree, but this attempt failed and therefore a search strategy combining depth first and heuristic strategies was not considered in the present study. In view of the findings of Ainbinder et al. (2018) on the bounds, it can be seen that bound   , has a high correlation with the target and therefore, in our opinion, it can be used not only as a bound but also as a heuristic.	Comment by Susan Treister: מטרה?
Due to considerations of memory size, implementation complexity, and amount of work invested until a first solution is found, each time a search is made for an optimal solution under a given resource allocation, and at the end of its examination, a switch is made to study a new resource allocation that has not yet been bounded. Table 7 presents the considerations for selecting search strategies that were presented in relation to decision criteria. In view of the considerations raised in Table 7 regarding tree search strategies, it can be seen that it is useful to combine depth first and best lower bound search strategies.

 
Table 7 – Search Strategy on a B&B Tree
	Decision Criterion
	Considerations

	Required Memory Space
	From small to large memory space in the following order: depth first, combination of depth first and best lower bound search strategies/ combination of depth first and heuristic search strategies.

	Amount of work required before obtaining a first solution.
	A depth first search strategy is faster than [the??] two other strategies until a first solution is found.	Comment by Susan Treister: Not clear to me what this is supposed to be referring to exactly.

	Quality of the first solution
	The first solution is closer to the optimal solution with the best lower bound search strategy.

	Maximum exploitation of a lower bound
	The value of the lower bound does not depend on the search strategy.

	Implementation Complexity
	There is no difference.

	Amount of work required to the end of the algorithm run
	It cannot be determined in advance as this criterion is also affected by other properties such as the lower bound.




3.	Properties of B&B Algorithm for Solving an RSSP
The objective of the present section is to examine the new search strategies vis-a-vis a search strategy from the literature (Samaddar et al., 1999).  For this reason, we’ll provide a summary of what is the same in all the algorithms, and state the properties in which the algorithms differ.
Identical Properties in the Algorithms:
· How to decompose the problem - In all the algorithms, there are three types of nodes as described previously (i.e. allocation node, ordering node, and scheduling node). At an allocation node, a decision is made on the allocation of all the resources for all the operations. At an ordering node, a decision is made on the possible ordering of all the operations performed on the resource presented by the node. At a scheduling node, a decision is made on the execution times of all the operations on all the resources. In terms of the order of making the decisions, first of all a decision is made on the allocation of resources, after that on the order of operations under the allocation that was decided on, and finally, a decision is made on the execution times of the operations, according to the pre-determined order.
· 
How to Bound Options - All the algorithms use the lower bound    .
Different Properties between the Algorithms:
· How allocation decisions are implemented - Two ways are examined, the first - advance formulation of all the allocation options, the second -formulating one resource allocation option (and going to depth).  
· 
Order of the resources at ordering nodes - Two ways are examined, one - arbitrary ordering; the second - ordering by descending value of index    .
· How to implement ordering decisions for a given resource - Two ways are examined, one - formulating possible orderings of operations on the resource; the second - selecting one possible ordering of operations (and going to depth).
· Search strategy - Two search strategies are examined, one - by depth, and the second - combined search by depth and best lower bound (explained below).
Table 8 summarizes the combinations of strategies in the algorithms whose performance is compared empirically.
Formulation of Resource Allocations for All the Operations:
As was stated, resource allocation is determined by selecting a way to execute each operation. Formulation of all the allocation options means determining all the possible combinations of ways to perform all the operations. On the other hand, formulation of one allocation option (as needed) means determining one possible combination for how to perform all the operations. Every such option defines a sub-problem SP of the RSSP. Appendix A provides a description of the algorithm according to which one resource allocation is formulated each time as needed. 
The analysis below is based on the allocation decision process in the structure of the "methods tree" (Definition 1) in which at each level a method is determined for execution of one of the operations.  The conclusion of the analysis indicates a combination of execution methods leading to sub-problem SP with the lowest bound.  The proofs for Propositions 1 and 2 are provided in Appendix B.
Definition 1: 
The methods tree is a layout of resource allocation options (selecting ways to perform operations) according to the option of implementing the allocation decision with the 1:Many ratio (meaning, for one operation an allocation is selected on several resources.)
Definition 2


is a set of operations for which the method of execution was determined to be . 
Definition 3


 is a node on the methods tree at which were determined methods of execution for a set of operations  .
Proposition 1 




In order to move in an RSSP problem   from node    to a sequence of methods with a minimal critical path, from among all the possible method sequences branching from  , for every operation    the method of execution with the minimum execution time should be selected. 

From Proposition 1, it can be seen that the bounds  that were proposed by Ainbinder et al. (2018) are based on durations of operations in accordance with the selection of execution methods and ordering constraints between the operations are a lower bound for the value of the solution in the root of the methods tree or at any of its nodes.  It is important to mention that the rest of the bounds proposed by Ainbinder et al. (2018) are not a lower bound for the methods tree since they are based on selection of an execution method for all the operations in the problem.
Proposition 2 

An algorithm for formulating resource allocations for all the operations (Appendix A) lays out the sequences of methods of the operations in a non-descending order of their bound value () (i.e. of lengths of critical paths in accordance with the formulation of the method sequences.)

General algorithm for finding an optimal solution for an RSSP (   ):
1.	Formulation of a first resource allocation by selecting the execution method with the shortest execution time.
2.	Examine the given resource allocation using B&B.
3.	If the stop condition is true, go to 7.  
4.	Obtain a new resource allocation using an algorithm for formulating resource allocations for all operations.
5.	If the stop condition is true, go to 7. 
6.	Go to 2.
7.	End. The best solution found is the optimal solution.
Stop condition: The best solution value found thus far that is smaller than or equal to the value of the lower bound of the solution under the given resource allocation (which defines a specific sub-problem SP.) 
4.	Comparison of B&B Algorithms 

Based on the considerations raised regarding the way to decompose the problem and search strategies, it was decided to focus on the six algorithms described in Table 8. The bounding strategy selected in all the algorithms is use of bound    (which was proven to have the best performance of all of those developed and examined by Ainbinder et al. (2018). 
Table 8 - B&B Algorithm Properties
	Algorithm
	1
	2
	3
	4
	5
	6

	Method to implement the decision at ordering nodes
	Method to implement the decision at allocation nodes
	All options
	X
	X
	X
	X
	
	

	
	
	One option
	
	
	
	
	X
	X

	
	Order of ordering nodes
	Arbitrarily
	X
	
	
	
	
	

	
	
	By load
	
	X
	X
	X
	X
	X

	
	Method to implement the decision at ordering nodes
	All options
	
	
	X
	X
	X
	X

	
	
	One option
	X
	X
	
	
	
	

	Search strategy
	By depth
	X
	X
	X
	
	X
	

	
	Depth and bound
	
	
	
	X
	
	X



For empirical comparison of the six algorithms, 105 problems were run, of which 16 were from Samaddar et al. (1999) and the rest were random problems.  

Figure 3 - Division of Problems into Complexity Quintiles, By Median Run Time of Algorithms 1 through 6

Before comparing the performance of the algorithms, all the problems were divided into quintiles in increasing order of complexity, where the complexity of the problem was equal to the median value of the running durations of the different algorithms. In Figure 3, on the horizontal axis of the graph are quintiles by the median value of total run time, and on the vertical axis of the graph is the logarithm of the average total run time of each of the quintiles. In Algorithms 4 and 6 there were four problems included in the last quintile, and no optimal solution was achieved for them due to the memory limitation of the calculation means. For this reason, the two curves representing the total run time of these two algorithms do not reach the last quintile. In other words, it can be said that in the last quintile, Algorithms 4 and 6 reach a much higher run time than the rest of the algorithms. Figure 4 shows the complexity of the problems included in each of the quintiles by the average of several binary variables, several continuous variables, several constraint equations in representing the problem as MILP, and a total number of possible sequences of methods for the problem. It can be seen that the problem sets as divided indeed present problems in rising complexity (the first set is a set of problems with low complexity and the fifth set is the most complex.
[image: ]
Figure 4 - Problem Properties by Complexity Sets
The algorithms were compared on three main levels:
1.	The amount of work invested until finding the first solution, and quality of the first solution relative to the optimal solution
2.	The amount of work invested until finding an optimal solution to the problem
3.	The total amount of work invested 
Following is a description and findings of the indices taken into account in comparing performance of the algorithms.
· Average relative number of nodes decomposed until a first solution was found. 



Method for calculating the index was , where  is the number of nodes decomposed until a first solution was found using the algorithm .. Table 4 shows the average and standard deviation of the index calculated for the problems in each quintile by each of the algorithms. It can be seen that two algorithms that on average require the least investment until finding a first solution are Algorithms 5 and 6, which combine the implementation of one option at the allocation stage, ordering resources by work load on the resource and the shared resources (Index Hr) and implementation of all the options at the ordering nodes. The two algorithms that invest the most work until a first solution is found are Algorithms 3 and 4, which implement all the options at an allocation node, ordering resources by Hr and implementation of all the options at ordering nodes.  The two remaining Algorithms 1 and 2 that invest work at an intermediate level until finding a first solution to the problem, differ from each other in the order of resources. 
Table 9 - Average Number of Relative Nodes Decomposed until Finding a First Solution Using a B&B Algorithm

	Problem Set No.
	Algorithms

	
	1
	2
	3
	4
	5
	6

	
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation

	1
	0.78
	0.25
	0.80
	0.25
	0.93
	0.18
	0.93
	0.18
	0.52
	0.40
	0.52
	0.40

	2
	0.77
	0.22
	0.78
	0.22
	0.82
	0.24
	0.82
	0.24
	0.51
	0.42
	0.51
	0.42

	3
	0.72
	0.33
	0.72
	0.33
	0.94
	0.16
	0.94
	0.16
	0.45
	0.41
	0.45
	0.41

	4
	0.90
	0.18
	0.90
	0.18
	0.93
	0.18
	0.93
	0.18
	0.20
	0.35
	0.20
	0.35

	5
	0.85
	0.35
	0.85
	0.35
	1.00
	0.00
	1.00
	0.00
	0.16
	0.35
	0.16
	0.35



· Average relative running time until a first solution is found. 



Method to calculate the index is , where  is the running time until a first solution is found using Algorithm   . Table 10 shows the average and standard deviation of the index calculated for the problems in each quintile according to each of the algorithms. It can be seen that the fastest algorithms are 5 and 6, and accordingly the execution order of the other algorithms is maintained --in keeping with the number of nodes that were decomposed.
Table 10 - Relative Average Run Time Until Finding a First Solution with a B&B Algorithm
	Problem Set No.
	Algorithms

	
	1
	2
	3
	4
	5
	6

	
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation

	1
	0.85
	0.33
	0.89
	0.28
	0.98
	0.11
	0.96
	0.20
	0.78
	0.40
	0.78
	0.40

	2
	0.79
	0.27
	0.81
	0.29
	0.85
	0.26
	0.98
	0.07
	0.50
	0.49
	0.50
	0.49

	3
	0.61
	0.30
	0.56
	0.30
	0.69
	0.19
	0.98
	0.08
	0.29
	0.39
	0.27
	0.38

	4
	0.77
	0.18
	0.71
	0.17
	0.79
	0.12
	0.96
	0.09
	0.04
	0.07
	0.04
	0.08

	5
	0.59
	0.33
	0.74
	0.35
	0.92
	0.11
	0.78
	0.14
	0.12
	0.27
	0.16
	0.35



· Average relative value of first solution from the optimal solution value. 




The method for calculating the index is  , where  is the first solution value found for problem , and  is the optimal solution value for the problem.  Table 11 shows the average and standard deviation of the index calculated for the problems in each quintile according to each of the algorithms. It can be seen that also here the two algorithms with the best performances are Algorithms 5 and 6. Accordingly the order of the execution of the other algorithms was maintained as with the two previous indices.
Table 11 - Average Relative Value of the First Solution Found with a B&B Algorithm from an Optimal Solution
	Problem Set No.
	Algorithms

	
	1
	2
	3
	4
	5
	6

	
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation

	1
	1.09
	0.16
	1.09
	0.16
	1.04
	0.06
	1.04
	0.06
	1.04
	0.06
	1.04
	0.06

	2
	1.27
	0.23
	1.27
	0.23
	1.22
	0.24
	1.22
	0.24
	1.05
	0.09
	1.05
	0.09

	3
	1.35
	0.28
	1.35
	0.28
	1.13
	0.12
	1.13
	0.12
	1.06
	0.10
	1.06
	0.10

	4
	1.42
	0.33
	1.42
	0.33
	1.19
	0.23
	1.19
	0.23
	1.08
	0.14
	1.08
	0.14

	5
	1.39
	0.37
	1.39
	0.37
	1.16
	0.14
	1.16
	0.14
	1.25
	0.46
	1.25
	0.46



· Average relative number of nodes decomposed until an optimal solution was found. 



The method of calculating the index is , where  is the number of nodes decomposed until an optimal solution was found using Algorithm . Table 12 presents the average and standard deviation of the index calculated for the problems in every quintile by each of the algorithms. According to the results, the most efficient algorithm for this index is Algorithm 5 which implements one option at the allocation nodes, resource ordering by work load on the resource and the shared resources, implementation of all the options at ordering nodes, and search by depth.  Algorithm 6 produced a somewhat poorer result, with a different search strategy than Algorithm 5. The algorithm that invested the most work among all the algorithms is Algorithm 4 which implements all the options at allocation nodes, all the options at ordering nodes and the depth first search strategy with a lower bound. Among the remaining algorithms, there did not appear to be a significant difference in the mediocre results obtained. 
Table 12 - Average Relative Number of Nodes Decomposed before Finding an Optimal Solution with a B&B Algorithm
	Problem Set No.
	Algorithms

	
	1
	2
	3
	4
	5
	6

	
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation

	1
	0.64
	0.36
	0.65
	0.36
	0.69
	0.35
	0.78
	0.33
	0.36
	0.34
	0.59
	0.44

	2
	0.89
	0.24
	0.88
	0.24
	0.85
	0.27
	0.95
	0.11
	0.13
	0.14
	0.23
	0.34

	3
	0.69
	0.36
	0.69
	0.36
	0.63
	0.39
	0.97
	0.12
	0.15
	0.23
	0.37
	0.43

	4
	0.87
	0.25
	0.87
	0.25
	0.85
	0.25
	0.93
	0.21
	0.10
	0.16
	0.28
	0.37

	5
	0.60
	0.40
	0.60
	0.39
	0.60
	0.40
	-
	-
	0.23
	0.32
	-
	-



· Average relative run time until an optimal solution was found. 



Method to calculate the index is  , where   is the running time until an optimal solution was found using Algorithm   . Table 13 shows the average and standard deviation of the index calculated for the problems in each quintile according to each of the algorithms. According to the results, the most efficient algorithm for this index is Algorithm 5, and accordingly the performance of the rest of the algorithms is also in line with the results of the previous index (Table 6). 
Table 13 - Average Relative Run Time before Finding an Optimal Solution with a B&B algorithm
	Problem Set No.
	Algorithms

	
	1
	2
	3
	4
	5
	6

	
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation

	1
	0.76
	0.41
	0.71
	0.43
	0.77
	0.39
	0.81
	0.37
	0.61
	0.47
	0.74
	0.42

	2
	0.66
	0.31
	0.61
	0.34
	0.66
	0.35
	0.90
	0.27
	0.16
	0.30
	0.27
	0.42

	3
	0.52
	0.24
	0.43
	0.25
	0.43
	0.28
	0.96
	0.14
	0.12
	0.22
	0.33
	0.44

	4
	0.71
	0.24
	0.65
	0.22
	0.69
	0.22
	0.90
	0.21
	0.06
	0.12
	0.24
	0.37

	5
	0.47
	0.35
	0.52
	0.39
	0.49
	0.36
	0.76
	-
	0.16
	0.24
	0.49
	-



· Average total relative number of decomposed nodes. 


The method of calculating the index is  , where  is the total number of nodes decomposed using algorithm i. Table 14 shows the average and standard deviation of the index calculated for the problems in every quintile according to each of the algorithms. The results of this index are also in line with the two previous indices (Table 6).
Table 14 - Average Total Relative Number of Nodes Decomposed Using a B&B Algorithm
	Problem Set No.
	Algorithms

	
	1
	2
	3
	4
	5
	6

	
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation

	1
	0.54
	0.31
	0.55
	0.31
	0.54
	0.30
	0.85
	0.24
	0.30
	0.18
	0.77
	0.29

	2
	0.75
	0.31
	0.74
	0.31
	0.72
	0.33
	0.93
	0.21
	0.10
	0.12
	0.33
	0.37

	3
	0.63
	0.36
	0.63
	0.36
	0.61
	0.37
	0.90
	0.22
	0.22
	0.33
	0.55
	0.42

	4
	0.72
	0.39
	0.72
	0.38
	0.69
	0.39
	0.96
	0.14
	0.05
	0.08
	0.35
	0.43

	5
	0.57
	0.42
	0.57
	0.41
	0.62
	0.43
	-
	-
	0.32
	0.41
	-
	-



· Average total relative run time. 



Method of calculating the index is , where    is the total run time using Algorithm . Table 15 shows the average and standard deviation of the index calculated for the problems in each quintile according to each of the algorithms. These results are also in line with the three previous indices and Algorithm 5 has on average significantly better performance in each of the quintiles. 
Table 15 - Average Total Relative Run Time Using a B&B Algorithm
	Problem Set No.
	Algorithms

	
	1
	2
	3
	4
	5
	6

	
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation
	Average
	Standard deviation

	1
	0.60
	0.45
	0.57
	0.44
	0.57
	0.44
	0.66
	0.43
	0.48
	0.46
	0.80
	0.37

	2
	0.52
	0.27
	0.50
	0.26
	0.57
	0.33
	0.89
	0.28
	0.06
	0.12
	0.24
	0.36

	3
	0.50
	0.26
	0.42
	0.21
	0.42
	0.24
	0.89
	0.23
	0.17
	0.27
	0.50
	0.41

	4
	0.55
	0.29
	0.51
	0.26
	0.56
	0.33
	0.92
	0.14
	0.05
	0.09
	0.34
	0.44

	5
	0.42
	0.34
	0.47
	0.39
	0.48
	0.38
	-
	-
	0.23
	0.32
	-
	-






Theoretically, the algorithms are different from each other only in the way the decision is implemented at the allocation nodes. The theoretical complexity of examining a problem under a given resource allocation is identical for all the algorithms and is bounded by   . The theoretical complexity of the formulation of all possible resource allocations is bounded by  . The theoretical complexity of formulating resource allocations as needed is bounded by  . In other words, Algorithms 5 and 6 theoretically have greater computational complexity than the rest of the algorithms, but empirically, Algorithm 5 performance was faster than the rest of the algorithms. 
5.	Discussion and Conclusions
Section 2 dealt with various implementation options for B&B principles in algorithms for finding one optimal solution for an RSSP. Based on a mapping and evaluation of the various alternatives, the combinations chosen for implementation and comparison were presented. To summarize the chapter, a theoretical and empirical comparison was made between the algorithms in the literature and new algorithms outlined in that section. 	Comment by Susan Treister: Aha!
Here it says specifically:
למציאת פתרון אופטימאלי אחד

So that would possibly support the use of “an” in other places…

Comparing the average performance for each of the five quintiles for every algorithm and every index, collected in Table 16 below, focused on three aspects: (1) amount of work and time until finding a first solution, and its distance from the optimal solution; (2) amount of work and time until finding an optimal solution; (3) amount of work and time until the algorithm's work was finished. 
Table 16 - Properties and Average Relative Performance Indices, of B&B algorithms
	Algorithm
	1
	2
	3
	4
	5
	6

	Method to implement the decision at ordering nodes
	Method to implement the decision at allocation nodes
	All options
	X
	X
	X
	X
	
	

	
	
	One option
	
	
	
	
	X
	X

	
	Order of ordering nodes
	Arbitrarily
	X
	
	
	
	
	

	
	
	By load
	
	X
	X
	X
	X
	X

	
	Method to implement the decision at ordering nodes
	All options
	
	
	X
	X
	X
	X

	
	
	One option
	X
	X
	
	
	
	

	Search strategy
	By depth
	X
	X
	X
	
	X
	

	
	Depth and bound
	
	
	
	X
	
	X

	Until the first solution
	 Nodes that were decomposed
	0.80
	0.81
	0.92
	0.92
	0.37
	0.37

	
	Duration of run
	0.72
	0.74
	0.85
	0.93
	0.35
	0.35

	
	Relation to optimum
	1.30
	1.30
	1.15
	1.15
	1.09
	1.09

	Until the optimal solution
	Nodes that were decomposed
	0.74
	0.74
	0.73
	0.89
	0.19
	0.38

	
	Duration of run
	0.62
	0.59
	0.61
	0.87
	0.22
	0.42

	Until workis  completed
	Nodes that were decomposed
	0.64
	0.64
	0.64
	0.91*
	0.20
	0.50*

	
	Duration of run
	0.52
	0.49
	0.52
	0.84*
	0.20
	0.47*


*-Average calculated based on four out of five quintiles 
It was found that Algorithms 5 and 6 which combine an implementation for one option at the allocation stage, ordering resources by work load on the resource and the shared resources, and implementation of all the options at the ordering nodes, performed better for each of the indices and for all the complexity sets of problems that were solved. For indices work load and performance time until the end of the search, Algorithm 5 performed significantly better than Algorithm 6. The difference between the two algorithms is the search strategy; Algorithm 5 uses depth first while Algorithm 6 combines depth first and bound value. Since until a first solution for a problem is found, both examined search strategies are the same, their performance is similar for finding a first solution. 

The difference between the two fastest algorithms until finding a first solution (5, 6) and between the two slowest algorithms (3, 4) is the way the decision is implemented at an allocation node. It can be seen that when all the options at an allocation node are implemented as expected, it takes more time until the first solution is found than implementing one option.  This is because every  contains at least one possible solution to the problem, and an algorithm that implements one option at the allocation nodes invests less work until a first solution is found, and therefore it finds it faster. 



In terms of the distance of the first solution from the optimal solution, the two best algorithms (6, 5) are also the fastest algorithms until a first solution is found. Algorithms that produced the greatest distance between the first solution and the optimal solution (2, 1) implement all the options at the allocation nodes and one possibility at ordering nodes. The only difference between them in the method of ordering the resources did not produce a significant difference in their performance. Algorithms that implement all the options at allocation nodes investigate   in the same order, therefore the difference in the index results between these algorithms is due to the way the decision is implemented at the ordering nodes.  With algorithms that implement all the options at ordering nodes (3-6), the chances increased that a solution be found closer to the optimal solution since each time a branch is selected with a better lower bound; compared to the algorithms that implement one option at ordering nodes (2, 1) where this option is selected randomly from among all the options that were not yet investigated. The difference in the index results between the algorithms that implement all the options at the allocation nodes and the algorithms that implement one option at allocation nodes is due to the fact that in the problem there could be several   with a minimal lower bound. This would cause the examination order of   in these algorithms to be different.
At the second level where the amount of work invested until the optimal solution to the problem is found, and the speed of the work by each of the algorithms are examined, it can be seen that results were obtained that were very close in terms of the amount of work invested and in terms of the running speed. According to the results, the best algorithms are the two algorithms that implement one option at the allocation nodes (6, 5). The most effective algorithm at this level is an algorithm that implements one option at allocation nodes, ordering resources according to workload on the resource and the shared resources, implementation of every option at ordering nodes, and depth first searching (5). The conclusion obtained from these results is that the method of implementation of all the options at allocation nodes is wasteful and not worthwhile, despite the theoretical complexity of the method.
At the last level, in which the total amount of work invested until the end of the algorithm run (and the speed of the work) are examined, it can be seen that the best algorithm is the one that performed best at the previous levels, Algorithm 5. Algorithms that implement a search strategy of depth first and lower bound (6, 4) cannot be compared since the most complex problems in the set did not manage to complete the algorithm run due to memory limitation.
[bookmark: _GoBack]An algorithm that had the best performance at all the levels is the algorithm that implements one option at allocation nodes, arranging ordering nodes by workload on the resource and the shared resources, implementation of all the options at ordering nodes, and depth first search strategy (5).


Appendices
Appendix A - Algorithm for Formulating Resource Allocations for All the Operations as Needed

Algorithm for formulating resource allocations for all the operations ():
OperList - List of operations with execution method with minimal performance time for each one
Node, PreNode - Node: List of operations with the chosen performance method, depth of the node and lower bound value of the node
NodeList - List of nodes that have not been examined
SPList  - List of SP that have been examined
ObjFunT - Value of the best solution found by B&B
1.	OperList composition	Comment by Susan Treister: Formulation?
2.	Preliminary Node composition based on OperList  NodeList	Comment by Susan Treister: Formulation?
3.	As long as NodeList is not empty:
a.	Remove node in advance NodeList   Node
b.	Calculate lower bound of the Node
c.	If the value of the lower bound of Node is lower than ObjFunT, or ObFunT is equal to zero then
•	Formulation of SP based on the performance method of the Node	Comment by Susan Treister: ?
•	If SP has not yet been examined, then send SP for solution via B&B. 
d.	Node  PreNode
•	Delete Node from NodeList and formulate a new Node:	Comment by Susan Treister: ?
1.	Find the depth first operation of node PreNode with more than one execution method.
2.	For every execution method of the operation, formulate a new Node
3.	Calculate a lower bound for Node
4.	Add Node to NodeList
4.	Sort NodeList in increasing order of the lower bound


Appendix B - Propositions and Proofs for the Methods Tree




Proposition 1: In order to get, in RSSP problem , from node  to a sequence of methods with a minimal critical path, from among all possible method sequences branching from    , for every operation   , the performance method must be selected with the minimal performance duration.



















Proof 1: We'll construct a new problem    equivalent to , which has for every    only one performance method, and it is the one that is determined on the methods tree of  from the root until   .  It is obvious that a set of method sequences for the problem   is identical to a set of method sequences laid out from   in problem    .  Since in    for every   there is a single execution method, then it is also the minimal execution method of  .  Therefore, selecting a minimal execution  method for every    in problem    leads to the same sequence of methods as in selecting the minimal execution method in     for     in problem   . And since according to Proposition 22-4 thus is obtained in    , a sequence of  methods with a minimal critical path, and therefore necessarily also from     in problem    is obtained in the same way a sequence of methods with a minimal critical path.	Comment by Susan Treister:  Is this correct?	Comment by Susan Treister: Where is this? We only have 1 and 2.


Proposition 2: An algorithm for formulating a resource allocation for all operations (  ) lays out the sequences of methods for the operations in a non-descending order of their bound value  ( ) . (I.e. of the critical lengths of paths of the method sequences.)







Proof 2: At any stage in the work process of an algorithm   , there is a set of nodes (where    is a typical node) that for them the bound was calculated. According to the definition of a bound, it is equal to the length of the minimal critical path of any sequence of methods laid out from   . If we select to lay out from ,  then algorithm    leads first to a sequence of methods with an identical bound to the value of the bound in .  Since in the process of descending the method tree, a bound cannot descend, and because with a minimal bound is selected, then the sequence of methods that we would reach would be with the minimal bond from those that have not yet been laid out	Comment by Susan Treister: ??
Extended from…?	Comment by Susan Treister: ?? להגיע...	Comment by Susan Treister: Extended?
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