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Abstract
Most studies investigating multi-agent optimization (MAO) assume that messages arrive

instantaneously and are never lost. Distributed constraint optimization problems (DCOPs) and
general task allocation problems (GTAPs) are examples of models used to solve real-life MAO
problems; however, these models do not consider the effects of imperfect communication. In
distributed systems, in which communication is a key factor, agents rely on message delivery
to achieve mutual goals. However, assuming seamless communication is not always practical
because it may be subject to delays and failures. To address this gap in existing models, we
introduce communication-aware multi-agent optimization (CA-MAO) models. These models
are specifically designed to incorporate dynamic uncertainties in communication within dis-
tributed systems. Extending models to their communication-aware versions enhances their
ability to represent real-world distributed settings where communication challenges are taken
into consideration.

Despite running in asynchronous environments, many state-of-the-art MAO algorithms are
designed synchronously. These algorithms rely on synchronous iterations in which each agent
interacts with each neighbor in each cycle; the challenge arises from the uncertainty in message
delivery. The reliance on message delivery creates a significant challenge for such synchronous
algorithmic designs. Uncertainty in message delivery can cause delays or even deadlocks be-
cause agents can get stuck waiting for messages that never arrive. These issues significantly
affect the efficiency and effectiveness of the algorithm.

In addition, some of these algorithms and mechanisms exploit common simplistic com-
munication assumptions to achieve desirable results, such as monotonicity and convergence.
To address the limitations of current algorithms that do not consider the effects of imperfect
communication, we propose several communication-aware algorithms.

This study advances the field of MAO research in the following four ways:

1. First, we explore distributed local search algorithms for CA-DCOPs. We evaluate the
performance of existing synchronous algorithms and develop their asynchronous counter-
parts. We also propose a novel asynchronous-anytime framework to enhance exploration
by nonmonotonic asynchronous algorithms. The results demonstrate that imperfect com-
munication surprisingly improves distributed local search algorithms, which increases
exploration.

2. The second contribution focuses on distributed local search algorithms that guarantee so-
lutions that cannot be improved by a group of k agents, known as k-opt solutions. We pro-
pose the latency-aware monotonic distributed local search (LAMDLS) and LAMDLS-2
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algorithms, which are latency-aware search algorithms to solve DCOPs. These algo-
rithms are monotonic and guarantee 1- and 2-opt convergence, respectively. In addition,
they are resilient to message latency.

3. Our third contribution consists of investigating inference algorithms for CA-DCOPs,
with a particular focus on the max-sum algorithm and its variants. We assess the per-
formance of synchronous and asynchronous versions of the algorithm in various com-
munication scenarios through empirical and theoretical analyses. The results indicate
that the damped max-sum algorithm is remarkably robust when faced with imperfect
communication.

4. Finally, the fourth contribution is the introduction of the CA-GTAPs. We focus on the
Fisher market-clearing task allocation (FMC_TA) algorithm, which outperforms central-
ized and distributed optimization algorithms but is unsuited for imperfect communication
scenarios. We propose an asynchronous FMC_TA algorithm that demonstrates resistance
to imperfect communication without compromising solution quality. Our investigation
also shows that, when communication is extremely poor, the distributed version of the
algorithm performs better than the centralized version and produces consistent results.

Keywords: Multi-Agent Optimization, Communication-Awareness, Distributed Constraint
Optimization, Task Allocation, Asynchronous Algorithms, Imperfect Communication
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 תקציר 

( סוכנים  מרובת  אופטימיזציה  בתחום  המחקרים  ולא  MAOרוב  מיידית  מגיעות  שהודעות  מניחים   )

( ובעיות הקצאת משימות כלליות DCOPsהולכות לאיבוד. בעיות אופטימיזציה מבוזרות של אילוצים )

(GTAPs  הן דוגמאות למודלים המשמשים לפתרון בעיות  )MAO    מציאותיות. עם זאת, מודלים אלו

לא מתחשבים בהשפעות של הפרעות בתקשורת. במערכות מבוזרות, בהן תקשורת היא גורם מפתח,  

סוכנים מסתמכים על העברת הודעות כדי להשיג מטרות משותפות. עם זאת, ההנחה של תקשורת  

ים. כדי להתמודד עם פער  מושלמת לא תמיד מציאותית, שכן היא עלולה להיות נתונה לעיכובים וכשל

מודלים     עם מודעות תקשורתאופטימיזציה מרובת סוכנים  זה במודלים הקיימים, אנו מציגים מודלים של  

בתקשו דינמית  ודאות  חוסר  לשלב  כדי  במיוחד  תוכננו  מבוזרות.    רת,אלה  מערכות  הרחבת  בתוך 

באתגרי  המתחשבות  האמיתי  בעולם  מבוזרות  בעיות  לייצג  יכולתם  של  שיפור  מאפשרת  המודלים 

 תקשורת.

תוכננו באופן סינכרוני, למרות שהם פועלים בסביבה    MAOרבים מהאלגוריתמים עבור פתרון בעיות

האלגוריתמים הללו מסתמכים על איטרציות סינכרוניות, בהן סוכן מתקשר עם כל שכן בכל   אסינכרונית.

מחזור. הסתמכות על העברת הודעות יוצרת אתגר משמעותי עבור עיצוב סינכרוני. אי ודאות בהעברת  

הודעות עלולה לגרום לעיכובים ואף למבוי סתום, שכן סוכנים עלולים להיתקע בהמתנה להודעות שלא  

 עו לעולם. בעיות אלו יכולות להשפיע באופן משמעותי על היעילות והאפקטיביות של האלגוריתם.יגי

 בארבע דרכים: MAO-מחקר זה מקדם את תחום חקר ה

אילוצי .1 עם  מבוזרות  אופטימיזציה  בעיות  עבור  מבוזרים  מקומיים  חיפוש  אלגוריתמי  :  םחקר 

גרסאותיהם   את  ופיתחנו  הקיימים  הסינכרוניים  האלגוריתמים  של  הביצועים  את  הערכנו 

על   ,anytimeהאסינכרוניות. בנוסף, אנו מציעים מסגרת חדשה, אסינכרונית, לקבלת תכונת ה 

( הפתרונות  במרחב  חקירה  לאפשר  לא explorationמנת  אסינכרוניים  אלגוריתמים  עבור   )

מפתיע   באופן  לשפר  יכולה  מושלמת  לא  שתקשורת  מראות  שלנו  התוצאות  מונוטוניים. 

 אלגוריתמי חיפוש מקומיים מבוזרים באמצעות הגברת החקירה של מרחב הפתרונות.

המבטיחים פתרונות    ,השנייה שלנו מתמקדת באלגוריתמי חיפוש מקומיים מבוזריםהתרומה   .2

. אנו מציגים  K-OPTסוכנים, הידועים כפתרונות    Kשאינם ניתנים לשיפור על ידי קבוצה של  

ה   ואת Latency-Aware Monotonic Distributed Local Search (LAMDLSאת   )

LAMDLS-2    עבור חיפוש  ותקשורת  אלגוריתמי  אילוצים  עם  מבוזרות  אופטימיזציה  בעיות 

 בהתאמה.  opt-2ו   opt-1. אלגוריתמים אלו מבטיחים התכנסות של מודעת

x



 

 

 Maxהתרומה השלישית שלנו מתמקדת בחקר אלגוריתמי הסקה עם דגש על אלגוריתם ה .3

sum   עם בסביבה  אילוצים  עם  מבוזרות  אופטימיזציה  בעיות  עבור  שלו,  השונות  והגרסאות 

גרסאות  ותיאורטיים, בחנו את הביצועים של  ניתוחים אמפיריים  בעיות תקשורת. באמצעות 

סינכרוניות ואסינכרוניות של האלגוריתם בתרחישי תקשורת שונים. הממצאים שלנו מצביעים 

  מפגין עמידות יוצאת דופן. damp Max sumעל כך שאלגוריתם ה

הצגנו .4 בעיות   לבסוף  משימות  את  תקשורת  הקצאת  בעיות  עם  אנו  הכללית   התמקדנו . 

יותר    Fisher Market Clearing Task Allocationבאלגוריתם   טובים  ביצועים  המפגין 

לא   תקשורת  לתרחישי  מתאים  אינו  אך  רבים  ומבוזרים  ריכוזיים  אופטימיזציה  מאלגוריתמי 

  FMC_ATAמושלמת. לצורך התמודדות עם אתגר זה, אנו מציעים אלגוריתם אסינכרוני בשם  

המפגין חסינות לבעיות תקשורת ללא התפשרות על איכות הפתרון. המחקר שלנו גם  מראה  

הריכוזית הגרסה  על  עדיפה  האלגוריתם  של  המבוזרת  גרועה    ,שהגרסה  התקשורת  כאשר 

 .מאוד, והיא מפיקה תוצאות עקביות

 

סוכנים, מודעות לתקשורת, אופטימיזציה של אילוצים מבוזרים,   תמילות מפתח: אופטימיזציה מרוב

 . הקצאת משימות, אלגוריתמים אסינכרוניים, תקשורת לא מושלמת
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Chapter 1

Introduction

Recent advances in computation and communication have resulted in realistic distributed ap-
plications in which humans and technology interact and strive to optimize mutual goals (e.g.,
Internet of Things applications). Thus, the demand is growing for optimization methods to
support decentralized decision-making in complex multi-agent systems (MASs), which find
applications in various domains, including device scheduling in smart homes, target tracking
in sensor networks, mission planning for unmanned autonomous vehicles, and coordination of
rescue units in disaster scenarios, as noted in Refs. [10, 22, 32].

Understanding the complexities and challenges associated with MAS requires understand-
ing the disaster management domain. In disasters, diverse rescue units such as medical staff,
firefighters, and law enforcement must coordinate their actions to save as many victims as
possible. Such a multi-agent task coordination problem is challenging due to the following
characteristics:

• Optimization of a global objective. The various rescue units must work together toward
a common goal (e.g., saving the maximum number of victims). An example is when
police units must ensure the safe passage of ambulances carrying victims out of a disaster
area.

• Decentralized coordination. A centralized entity that manages the coordination prob-
lem is often lacking. For example, hospital administrators want to manage their medical
personnel, fire chiefs want to manage their firefighters, and police chiefs want to manage
their police units. If a larger incident requires units from multiple hospitals, fire sta-
tions, and police stations, then more decision-makers must coordinate with each other to
identify the optimal way to deploy the combined rescue units.

• Imperfect communication. Finally, the quality of communication in such scenarios can
significantly deteriorate. For instance, a disaster may damage the cell transmission tow-
ers on which rescue units rely for communication. Consequently, standard algorithms
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2 Chapter 1. Introduction

that rely on perfect communication for solving coordination problems may become im-
practical.

Although we use the disaster rescue scenario as the motivating domain, each of these char-
acteristics also appears in a larger class of other multi-agent optimization (MAO) problems.

Well-known multi-agent approaches, such as distributed constraint optimization problems
(DCOPs) [8, 16, 23] and the general task-allocation problem (GTAP) [24, 25], effectively
address key aspects of decentralized decision-making. Both models use agents to represent
decision-makers (i.e., rescue units). In DCOPs, agents assign values to their variables much as
the chief of a rescue unit assigns duties to the personnel. The GTAP is similar to DCOPs in
that it assigns agents to tasks. However, the GTAP introduces additional challenges imposed by
realistic applications, including spatial and temporal constraints. Consequently, in this context,
the rescue unit chief must create schedules for all personnel and establish ad hoc coalitions to
ensure that all tasks are completed efficiently.

Both MAO problems mentioned above aim to optimize a global objective through decen-
tralized coordination, thereby capturing the first two characteristics (i.e., global optimization
and decentralized coordination). To achieve this coordination, agents communicate and coor-
dinate their actions by exchanging messages. Unfortunately, the communication assumptions
of these models are overly simplistic and often unrealistic: (1) messages are never lost, (2) all
messages have very small and bounded delays, and (3) the messages sent arrive in the order
that they were sent. These assumptions do not reflect the real world, where messages may be
disproportionally delayed or lost due to congestion or the bandwidths of the various communi-
cation channels.

Because such MAO problems are NP-hard [16, 17], considerable research has been devoted
to developing algorithms to quickly find good solutions. This class of algorithms, known as
incomplete algorithms, has been the focus of numerous studies [1, 5, 6, 11, 12, 15, 17, 18, 30,
33, 34, 36, 39, 40]. Despite offering little or no quality guarantees, these algorithms have been
empirically found to produce high-quality solutions. Examples of such algorithms include the
distributed stochastic algorithm (DSA), maximum gain messages (MGMs), and max-sum [2,
3, 15, 39, 40] for solving DCOPs and Fisher market clearing task allocation (FMC_TA) [17]
for solving the GTAP.

The presence of imperfect communication significantly affects the quality guarantees and
desirable properties of such algorithms. Some of these algorithms also guarantee other desir-
able properties; for example, MGM-k guarantees monotonicity and convergence to a k-opt so-
lution (i.e., a solution that cannot be improved by the action of a single agent [15, 20]). Another
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guaranteed property is the “anytime” property, which is achieved using the anytime frame-
work proposed by Zivan, Okamoto, and Peled [41]. Unfortunately, algorithms and the anytime
framework exploit the common simplistic communication assumptions discussed above. Con-
sequently, the guarantees for achieving these properties may no longer hold when communica-
tion is unreliable.

The general design of most state-of-the-art MAO algorithms is synchronous. However,
agents must operate in asynchronous settings [14] because the environment in which they op-
erate is distributed, and they have no mutual clock. Therefore, synchronization is achieved by
exchanging messages in each iteration of the algorithm. Specifically, in each iteration, an agent
receives messages from its neighbors in the previous iteration. The agent then computes and
sends messages to each of its neighbors [ZivisanOP14, 40]. Unfortunately, such a synchronous
algorithmic design has several drawbacks when imperfect communication is considered. Due
to message latency, each synchronous iteration terminates only after all messages sent in the
previous iteration arrive. Therefore, advancing the algorithm from one iteration to the next
depends on the longest message delay in that iteration. When messages are lost, an agent may
expect to receive a message from its neighbor, whereas the neighbor is unaware that the mes-
sage it sent was lost. Thus, these agents are deadlocked, with each waiting for a message from
the other.

This thesis addresses communication-aware MAO (CA-MAO) problems by developing in-
complete algorithms that adapt to varying communication reliabilities. Specifically, we focus
on two approaches that represent such problems: DCOPs, which provide an abstract represen-
tation of multi-agent coordination, and the GTAP, which addresses a broader range of chal-
lenges typically encountered in real-life scenarios. The main tasks of this thesis are (1) model
design, which involves creating communication-aware MAO models that represent dynamic
communication uncertainties (i.e., CA-DCOP and CA-GTAP); (2) algorithm design, in which
communication-aware algorithms are designed to address communication characteristics; and
(3) analytical and empirical evaluations, which assess the efficiency of the algorithms vis-á-vis
computational requirements, communication costs, solution quality, and convergence.

Chapter 2 provides the foundation for the DCOP and GTAP models, detailing their back-
ground and relevant information. In addition, it outlines the benchmark algorithms and methods
used for problem solving and related work on imperfect communication in multi-agent systems.

Chapter 3 addresses the limitations of DCOPs given imperfect communication by pre-
senting the communication-aware DCOP model (CA-DCOP), investigating how message la-
tency and loss affect synchronous benchmark local search algorithms, and proposing an asyn-
chronous approach for these algorithms. In addition, we develop an asynchronous anytime
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framework that allows for the best solution explored in nonmonotonic asynchronous local
search DCOP algorithms.

Chapter 4 examines the susceptibility of message latency to the properties ensured by the
MGM-k algorithm. We introduce latency-aware monotonic distributed local search (LAMDLS)
and LAMDLS-2 algorithms, which guarantee monotonicity and 1- and 2-opt solutions, respec-
tively, upon convergence.

Chapter 5 examines inference algorithms in the context of CA-DCOPs. This study com-
prehensively analyzes both the synchronous and alternative asynchronous designs, considering
imperfect communication in the max-sum algorithm and its variants.

Chapter 6 evaluates how message latency and loss affect a real-world domain (i.e., the
GTAP) by introducing the communication-aware GTAP model (CA-GTAP). We focus on the
FMC_TA algorithm and address its limitations. We propose FMC_ATA, an asynchronous ver-
sion of FMC_TA that is robust against message latency and loss and is more suitable in such
scenarios. Finally, we investigate the conditions under which the distributed version of the
algorithm should be preferred to the centralized version.

Finally, Chapter 7 summarizes this dissertation, lists its contributions, and proposes future
work.



Chapter 2

Background

This chapter provides details of existing MAO models and algorithms that presume perfect
communication, specifically looking at the two models DCOP and GTAP. In addition, it re-
views previous research on communication awareness in MASs and the methodologies used to
evaluate the performance of algorithms in scenarios with imperfect communication.

We delve into the classification of DCOP algorithms, with a particular focus on local search
and inference as solution strategies [9]. In the context of local search algorithms, we consider
the DSA [40] and its variant, DSA with slope-dependent probability (DSA-SDP), which mod-
erately improves DSA’s exploratory capabilities [41]. Furthermore, we address an existing
anytime mechanism that can be used in conjunction with distributed synchronous local search
algorithms to maintain a record of the best solutions [41].

Subsequently, we investigate the k-opt and region-opt algorithms [19, 35], focusing in par-
ticular on (MGM-k) [15] and distributed asynchronous local optimization-k (DALO-k). These
algorithms guarantee that the solutions obtained are k-opt [13], implying that they cannot be
improved by a group of k agents. MGM-k is a synchronous algorithm, whereas DALO-k is
asynchronous.

For inference algorithms, we focus on adaptations of belief propagation [21, 38] for DCOPs [2,
3]. These include the max-sum algorithm and its variants, such as damped max-sum and max-
sum with split constraint factor graph [3]. In addition, we provide details of the backtrack cost
tree to evaluate the performance of these algorithms [42].

For the GTAP model (an abstraction of the law enforcement problem, which serves as a
specific instance of GTAP, as detailed by Nelke, Okamoto, and Zivan [17]), we shift our fo-
cus to methodologies to deal with task allocation and optimization within complex real-world
scenarios. We provide details of both the static and dynamic versions of the model and intro-
duce the Fisher market-clearing task-allocation (FMC_TA) algorithm, as proposed by Nelke,
Okamoto, and Zivan [17], highlighting its effectiveness in addressing such problems.
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Chapter 3

Communication-Aware Local Search for
Distributed Constraint Optimization

The synchronous design significantly affects the performance of distributed local-search al-
gorithms for DCOPs in the face of imperfect communication. Given message latency, each
synchronous iteration is completed only after the arrival of all messages sent in the previous
iteration, so the advancement of the algorithm from one iteration to the next depends on the
longest message delay in that iteration. When messages can be lost, an agent may expect to
receive a message from its neighbor, while the neighbor is not aware that the message it sent
did not arrive. Thus, these agents are deadlocked, each waiting for the message from the other.

This chapter makes the following contributions to the literature:1

1. We propose communication-aware DCOPs (CA-DCOPs),2 which extend the DCOP model
and in which patterns of communication disturbances (e.g., message latency and message
loss) can be represented.

2. We demonstrate that existing distributed local search DCOP algorithms are not robust
against imperfect communication. Thus, we analyze the performance and properties of
standard local search algorithms after they are adjusted to perform asynchronously in
scenarios that include message latency and loss.

3. We propose an asynchronous anytime mechanism that allows any local search algorithm
running in an environment with imperfect communication to report the best solution it
generates in its run.

1This chapter is based on our papers published in the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2021) [29] and its extended version published in the Journal of Artificial
Intelligence Research (JAIR) [27].

2When referring to communication awareness, we do not mean that agents are aware of the communication
pattern but rather that the algorithms are designed to overcome communication limitations.

7



8 Chapter 3. Communication-Aware Local Search for Distributed Constraint Optimization

4. We show that the presence of imperfect communication can positively affect exploitative
asynchronous local search algorithms. Our empirical results reveal that solution quality
may improve as the quality of communication degrades (in terms of both message latency
and message loss).

Our analysis and evaluation indicate that imperfect communication generates a discrepancy
between the knowledge that agents hold and the actual state of the system. Thus, an agent
may perform an action that is exploitative with respect to the information it holds, expecting
to improve its state and the global state. However, in reality, its action degrades its state,
and possibly the global state, and it unknowingly explores an unexpected part of the search
space. Such explorative actions often expose agents to higher-quality solutions, allowing them
to converge to better solutions.



Chapter 4

Latency-Aware k-Opt Monotonic Local
Search for Distributed Constraint
Optimization

Considering how message latency can negatively affect the performance of distributed algo-
rithms, we examined a class of local-search DCOP algorithms. These algorithms are designed
to provide k-opt guarantees, thereby ensuring that the solutions they generate cannot be im-
proved by a group of k agents [19]. One such example is the MGM algorithm, a 1-opt algo-
rithm, and its extension, MGM-2, a 2-opt algorithm. Unfortunately, their synchronous designs
exploit the overly simplistic communication assumptions in the DCOP model, which do not re-
flect real-world scenarios. To address these limitations, researchers introduced an asynchronous
k-opt algorithm called DALO to solve DCOPs. However, as we show in this chapter, DALO’s
design lacks robustness in scenarios with message delays, restricting its applicability.

This chapter proposes latency-aware algorithms that guarantee 1-opt and 2-opt solutions
and are robust against message latency. 1

1. We introduce latency-aware monotonic distributed local search (LAMDLS), which is a
local search algorithm that is resilient against message latency. It is guaranteed to be
monotonic and converges to a 1-opt solution, which is similar to the properties of the
MGM algorithm mentioned by Maheswaran, Pearce, and Tambe [15]. The algorithm
uses an ordered coloring scheme to prevent neighboring agents from simultaneously re-
placing assignments and preventing agents from waiting for messages, which is a feature
of MGM algorithms.

1This chapter is based on our novel algorithms, which are published in the Journal of Artificial Intelligence
Research (JAIR) [27] and are currently being developed further for submission to the 33rd International Joint
Conference on Artificial Intelligence (IJCAI 2024) [28].
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Optimization

2. We present an extended version of LAMDLS, called LAMDLS-2, which allows agents
to collaborate in pairs and coordinate the selection of their value assignments while pre-
serving monotonicity. The result is a 2-opt solution. LAMDLS-2 facilitates sequential
adjustments of the values among partnering agents. Using a unique pairing-selection
process and an ordered coloring scheme, agents can concurrently modify the values for
unconstrained pairs.

3. This work includes proofs of the theoretical properties and empirical evaluation of the
proposed algorithms. Specifically, we present theoretical evidence supporting the mono-
tonicity and convergence of the 1- and 2-opt solutions for LAMDLS and LAMDLS-2,
respectively. To validate these findings, we empirically evaluate them in diverse environ-
ments with varying latency patterns. We compare the performance of our algorithms with
that of MGM and MGM-2, and the results demonstrate that LAMDLS and LAMDLS-2
converge significantly faster.



Chapter 5

The Effect of Asynchronous Execution
and Imperfect Communication on
Max-Sum Belief Propagation

Chapter 3 investigates how message latency and loss affect standard distributed local search
algorithms (e.g., MGM and DSA) and shows that imperfect communication has a significant
positive effect on the performance of the asynchronous versions of these algorithms [27, 29].
Imperfect communication generates an exploration effect that significantly improves the quality
of the solutions found. The present chapter focuses on investigating how imperfect communi-
cation affects distributed incomplete inference algorithms (e.g., max-sum), which have been
very successful [2, 3].

Max-sum has been presented as both an asynchronous and synchronous algorithm [4, 6,
43]. To the best of our knowledge, no studies have yet focused on how these different execu-
tions of the algorithm affect its performance. Moreover, when message loss is considered, the
synchronous version is not applicable because an agent may remain idle while waiting for a
lost message. Although in the synchronous version message latency does not affect the actions
that agents perform (it only delays them), it is intuitively expected to strongly affect the perfor-
mance of the asynchronous version because the beliefs included in the messages are used by
agents to construct the beliefs that they propagate to others and in their assignment selection. In
asynchronous execution, belief construction and assignment selection may be performed while
considering imbalanced and inconsistent information.

This chapter makes the following contributions:1

1This chapter is based on our papers published in the 27th International Conference on Principles and Practice
of Constraint Programming (CP 2021) [45] and its extended version published in the Artificial Intelligence Journal
(AIJ) [44].
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Max-Sum Belief Propagation

1. We analyze the properties of the two execution versions of the max-sum algorithm, syn-
chronous and asynchronous. More specifically, using backtrack cost trees [42], we in-
vestigate the possible differences between propagated beliefs in synchronous and asyn-
chronous executions of max-sum.

2. We investigate how damping affects the asynchronous max-sum algorithm. Although
clear evidence exists (both empirical and theoretical) that damping improves the per-
formance of the synchronous version of the max-sum algorithm [3, 42], to the best of
our knowledge, no research has yet focused on how damping affects the asynchronous
version of the max-sum algorithm. We therefore analyze this effect both theoretically
and empirically. Both approaches indicate that damping reduces the differences between
synchronous and asynchronous executions of the max-sum algorithm.

3. We investigate how different versions of the max-sum algorithm perform in the presence
of message latency and message loss. Although the beliefs propagated and the computa-
tions performed by agents are not affected by message latency in the synchronous version
of the algorithm (only delayed), such is not the case for the asynchronous version of the
algorithm. The empirical results reveal that damping reduces these differences. More-
over, the version of max-sum proposed by Cohen, Galiki, and Zivan [3], which includes
both damping and splitting, maintains its fast convergence and solution quality, even in
asynchronous execution with message delays and numerous lost messages.



Chapter 6

Asynchronous Communication Aware
Multi-Agent Task Allocation

This chapter focuses on task-allocation problems, which present significant challenges in re-
alistic scenarios. These challenges extend beyond the coordination of agents with degradation
and unreliable communication. Furthermore, such scenarios are often highly dynamic and char-
acterized by the emergence of new events or changes in the status of existing events [37]. The
identification of dynamic events is most likely due to the agents in the environment. Thus, we
expect agents to reinitialize the solving process when necessary [7, 9].

The FMC_TA algorithm [17] was proposed to solve problems involving a team of hetero-
geneous agents who need to cooperate in an environment that includes multiple tasks requiring
agents with different skills ,for more details see ... in the background chapter. FMC_TA dom-
inates state-of-the-art centralized and distributed task-allocation algorithms, including general
optimization algorithms such as simulated annealing and designated algorithms such as coali-
tion formation with a look ahead [6, 17, 31].

However, similar to the observations made in previous chapters for DCOP algorithms,
FMC_TA as proposed by Nelke, Okamoto, and Zivan [17] is synchronous [15, 40, 41]. More-
over, the algorithm presented by Nelke, Okamoto, and Zivan [17] depends on agent assump-
tions regarding the existence and importance of the tasks to be performed. Thus, the team of
agents is not independent and must rely on updates from a centralized system.

To overcome these limitations of FMC_TA when facing realistic dynamic scenarios and
scenarios with imperfect communication, we follow the approach presented in previous chap-
ters and make the following contributions:1

1This chapter is based on our paper published in the 32nd International Joint Conference on Artificial In-
telligence (IJCAI 2023) [24]. Its extended version is currently being developed for submission to the Artificial
Intelligence Journal (AIJ) [26].

13
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1. We propose the Fisher market-clearing asynchronous task-allocation (FMC_ATA) algo-
rithm, an asynchronous version of the algorithm designed to consider the possibility that
messages can be delayed or lost (i.e., communication-aware design). In FMC_ATA,
agents undertake computations upon receiving a message, considering the latest mes-
sage from each of their neighbors. The algorithm is executed in a single distributed
asynchronous phase in which agents determine both task allocation and task schedul-
ing. Moreover, in FMC_ATA, agents can detect dynamic events (e.g., new tasks to be
performed or a change in the importance of a task currently being performed) that may
trigger the algorithm’s execution. This capacity allows the team to adapt to the evolved
scenario.

2. We demonstrate empirically that the asynchronous version (FMC_ATA) not only con-
verges to the same solution as FMC_TA but is also robust, to some extent, against mes-
sage delays and message loss.

3. We further investigate the properties of scenarios in which a distributed implementation
of FMC_ATA is preferred over a centralized implementation. In the latter case, a central
system is updated by the agents regarding dynamic events, calculates and updates allo-
cation, and then updates the agents. The results show that, given message latency, a clear
threshold exists before distributed performance is motivated. When message loss cannot
be avoided, distributed performance is preferred.



Chapter 7

Summary and Conclusions

7.1 Conclusions

The realm of MAO faces a significant challenge in addressing the difficulties posed by imper-
fect communication environments. These difficulties must be overcome to represent real-world
characteristics in practical applications and include message latency and message loss, which
can severely affect the performance, reliability, and applicability of distributed algorithms. Our
analysis identifies major limitations in the empirical and theoretical properties of such algo-
rithms. Current MAO methods often assume ideal communication conditions, which are rarely
present in real-world applications. This challenge emphasizes the need for a robust and adapt-
able algorithmic design that can function within the constraints of imperfect communication
environments. The objective of this thesis is to address this notable gap in the existing liter-
ature by introducing communication-aware models and novel algorithmic designs. This ap-
proach produces a comprehensive suite of solutions that not only advances the field of MAO
but also significantly increases the applicability of MAO algorithms in the real world, where
imperfect communication is an inherent challenge.

This thesis focuses on DCOPs and GTAPs, offering a dual perspective covering both ab-
stract and practical problems. This approach is beneficial because it enables us to thoroughly
examine our hypotheses in a controlled, abstract setting and allows us to confirm our results in
more practical, real-world contexts.

Chapter 3 explores how the challenges and implications of message latency and loss affect
distributed local search algorithms for DCOPs and highlights the limitations of synchronous
algorithms. Our investigation reveals that asynchronous versions of the DSA and MGM al-
gorithms offer improved exploration and faster convergence. Given these promising results,
we design an asynchronous anytime mechanism to mitigate the limitations of existing any-
time mechanisms, which are only applicable to synchronous algorithms, as proposed by Zivan,
Okamoto, and Peled [41]. Although asynchronous versions improve the results in the presence

15
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of imperfect communication, they lose certain theoretical properties of their synchronous coun-
terparts, necessitating the development of novel solutions, which are the focus of Chapter 4.

Chapter 4 presents the LAMDLS algorithm for resolving DCOPs and ensuring convergence
to 1-opt solutions. Next, we extend our design to LAMDLS-2, which guarantees convergence
to 2-opt solutions. The results reveal that our approach, based on the ordered color scheme,
enables agents to compute their assignments more proactively, thereby reducing the coordina-
tion effort required and significantly accelerating the convergence compared with MGM and
MGM-2.

In this continuation of our investigation, we delve into inference algorithms, focusing
specifically on the max-sum algorithm and its variants. Our analysis examines the differ-
ences between synchronous and asynchronous executions and the benefits of using damping
to mitigate the adverse effects of message latency. Our theoretical and empirical examinations
enhance our understanding of the max-sum algorithm in distributed settings where communi-
cation challenges are prevalent.

The research also focuses on the design of the FMC_ATA algorithm, which is a robust so-
lution for multi-agent task-allocation problems that provides high-quality results, even under
adverse communication conditions. This algorithm is a significant improvement over its pre-
decessors in terms of real-world applicability. Furthermore, we compare the performance of
distributed algorithms with that of centralizing all information and applying central solving.
Finally, the results establish the conditions under which distributed algorithms are justified.

In conclusion, this thesis challenges the essential difficulties created by imperfect communi-
cation in MAO by generating creative and adaptable solutions. By developing new algorithms,
this work fills a crucial gap in existing research and substantially improves the practical applica-
tion of MAO. These results and analyses establish a strong foundation for future advancements
in MAO, which should inspire further research to create more resilient and efficient systems.

7.2 Future Work

This thesis establishes a solid foundation for exploring numerous potential directions for the
development of practical MAO algorithms. A promising area for future exploration is the
additional constrained communication graphs that reflect real-world challenges, such as limited
bandwidth or unique network topologies, exemplified by the smart home problem identified by
Rust, Picard, and Ramparany [32], where algorithms reduce the communication costs of agents.
The asynchronous algorithmic strategies developed in this study, designed with communication
awareness in mind, may face limitations in these contexts.
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This study reveals a gap in the comprehension of the practical benefits provided by asyn-
chronous variants of distributed algorithms in the context of imperfect communication. These
algorithms either maintain the accuracy of the results with respect to their synchronous counter-
parts or even improve them. A potential avenue for future research involves applying explain-
able artificial intelligence techniques to improve our understanding of the underlying mecha-
nisms that allow agents to operate effectively with outdated information in asynchronous set-
tings.

Finally, future research may also focus on refining the LAMDLS and LAMDLS-2 al-
gorithms introduced in this study. Building on our initial contributions, we can extend our
methodology to include a general k-opt algorithm. Exploring the DALO-k algorithm, as dis-
cussed by Kiekintveld et al. [13], is another valuable avenue of research. Adapting its design
to include communication-aware features could help address some of the limitations.





Bibliography

[1] M. Basharu, I. Arana, and H. Ahriz. “Solving DisCSPs with penalty driven search”. In:
Proceedings of AAAI. 2005, pp. 47–52.

[2] Ziyu Chen et al. “A class of iterative refined Max-sum algorithms via non-consecutive
value propagation strategies”. In: Auton. Agents Multi Agent Syst. 32.6 (2018), pp. 822–
860.

[3] Liel Cohen, Rotem Galiki, and Roie Zivan. “Governing convergence of Max-sum on
DCOPs through damping and splitting”. In: Artificial Intelligence Journal (AIJ) 279
(2020).

[4] Yanchen Deng and Bo An. “Speeding Up Incomplete GDL-based Algorithms for Multi-
agent Optimization with Dense Local Utilities”. In: Proceedings of the 29th Interna-

tional Joint Conference on Artificial Intelligence, (IJCAI). 2020, pp. 31–38.

[5] A. Farinelli et al. “Decentralised Coordination of Low-Power Embedded Devices Us-
ing the Max-Sum Algorithm”. In: Proceedings of the International Conference on Au-

tonomous Agents and Multiagent Systems. 2008, pp. 639–646.

[6] A. Farinelli et al. “Decentralized Coordination of Low-Power Embedded Devices Us-
ing the Max-Sum Algorithm”. In: Proceedings of the International Conference on Au-

tonomous Agents and Multiagent Systems. 2008, pp. 639–646.

[7] Alessandro Farinelli, Luca Iocchi, and Daniele Nardi. “Distributed on-line dynamic task
assignment for multi-robot patrolling”. In: Autonomous Robots 41.6 (2017), pp. 1321–
1345.

[8] F. Fioretto, E. Pontelli, and W. Yeoh. “Distributed Constraint Optimization Problems
and Applications: A Survey”. In: Journal of Artificial Intelligence Research 61 (2018),
pp. 623–698.

[9] Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. “Distributed constraint opti-
mization problems and applications: A survey”. In: Journal of Artificial Intelligence Re-

search 61 (2018), pp. 623–698.

19



20 Bibliography

[10] Ferdinando Fioretto, William Yeoh, and Enrico Pontelli. “A Multiagent System Ap-
proach to Scheduling Devices in Smart Homes”. In: Proceedings of the 16th Conference

on Autonomous Agents and MultiAgent Systems. 2017, pp. 981–989.

[11] K. D. Hoang et al. “A Large Neighboring Search Schema for Multi-agent Optimization”.
In: Proceedings of CP. 2018, pp. 688–706.

[12] E. G. Jones, M. B. Dias, and A. Stentz. “Learning-enhanced Market-based Task Alloca-
tion for Oversubscribed Domains”. In: Intelligent Robots and Systems, 2007. IROS 2007.

IEEE/RSJ International Conference on. IEEE. San Diego, CA, 2007, pp. 2308–2313.

[13] Christopher Kiekintveld et al. “Asynchronous algorithms for approximate distributed
constraint optimization with quality bounds.” In: Proceedings of the International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS). Vol. 10. 2010, pp. 133–
140.

[14] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.

[15] R. Maheswaran, J. Pearce, and M. Tambe. “Distributed Algorithms for DCOP: A Graph-
ical Game-Based Approach”. In: Proceedings of PDCS. 2004, pp. 432–439.

[16] P. J. Modi et al. “ADOPT: Asynchronous Distributed Constraint Optimization with Qual-
ity Guarantees”. In: Artificial Intelligence 161.1–2 (2005), pp. 149–180.

[17] Sofia Amador Nelke, Steven Okamoto, and Roie Zivan. “Market Clearing-based Dy-
namic Multi-agent Task Allocation”. In: ACM Transactions of Intelligent Systems Tech-

nology. 11.1 (2020), 4:1–4:25.

[18] D. T. Nguyen et al. “Distributed Gibbs: A Linear-Space Sampling-Based DCOP Algo-
rithm”. In: Journal of Artificial Intelligence Research 64 (2019), pp. 705–748.

[19] J. Pearce and M. Tambe. “Quality Guarantees on k-Optimal Solutions for Distributed
Constraint Optimization Problems”. In: Proceedings of the International Joint Confer-

ence on Artificial Intelligence (IJCAI). 2007, pp. 1446–1451.

[20] Jonathan P Pearce and Milind Tambe. “Quality Guarantees on k-Optimal Solutions
for Distributed Constraint Optimization Problems”. In: Proceedings of IJCAI. 2007,
pp. 1446–1451.

[21] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
San Francisco, California: Morgan Kaufmann, 1988.



Bibliography 21

[22] Arseni Pertzovskiy, Roie Zivan, and Noa Agmon. “CAMS: Collision Avoiding Max-
Sum for Mobile Sensor Teams”. In: Proceedings of the 2023 International Conference

on Autonomous Agents and Multiagent Systems. 2023, pp. 104–112.

[23] A. Petcu and B. Faltings. “A Scalable Method for Multiagent Constraint Optimization”.
In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelli-

gence (IJCAI). 2005, pp. 1413–1420.

[24] Ben Rachmut, Sofia Amador Nelke, and Roie Zivan. “Asynchronous Communication
Aware Multi-Agent Task Allocation”. In: Proceedings of the Thirty-Second International

Joint Conference on Artificial Intelligence (IJCAI-23). 2023, pp. 262–270.

[25] Ben Rachmut, Sofia Amador Nelke, and Roie Zivan. “Asynchronous Communication
Aware Multi-Agent Task Allocation (EA)”. In: Proceedings of the 2023 International

Conference on Autonomous Agents and Multiagent Systems. 2023, pp. 2340–2342.

[26] Ben Rachmut, Sofia Amador Nelke, and Roie Zivan. “Asynchronous Communication
Aware Multi-Agent Task Allocation[in progress]”. In: Artificial Intelligence (2024).

[27] Ben Rachmut, Roie Zivan, and William Yeoh. “Communication-Aware Local Search for
Distributed Constraint Optimization”. In: Journal of Artificial Intelligence Research 75
(2022), pp. 637–675.

[28] Ben Rachmut, Roie Zivan, and William Yeoh. “Latency-Aware 2-Opt Monotonic Local
Search for Distributed Constraint Optimization [in progress]”. In: Proceedings of the

Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24). 2024.

[29] Ben Rachmut, Roie Zivan, and William Yeoh. “Latency-aware local search for dis-
tributed constraint optimization”. In: Proceedings of the 2021 International Conference

on Autonomous Agents and Multiagent Systems. 2021, pp. 1019–1027.

[30] S. D. Ramchurn et al. “Coalition formation with spatial and temporal constraints”. In:
Proceedings of the 9th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS-10). Toronto, Canada, 2010, pp. 1181–1188.

[31] Sarvapali D. Ramchurn et al. “Decentralized Coordination in RoboCup Rescue”. In:
Computer 53.9 (2010), pp. 1447–1461.

[32] Pierre Rust, Gauthier Picard, and Fano Ramparany. “Resilient distributed constraint rea-
soning to autonomously configure and adapt IoT environments”. In: ACM Transactions

on Internet Technology 22.4 (2022), pp. 1–31.

[33] A. Schoneveld, J. F. de Ronde, and P. M. A. Sloot. “On the Complexity of Task Alloca-
tion”. In: Journal of Complexity 3 (1997), pp. 52–60.



22 Bibliography

[34] M. Smith and R. Mailler. “Getting What You Pay For: Is Exploration in Distributed Hill
Climbing Really Worth It?” In: Proceedings of IAT. 2010, pp. 319–326.

[35] M. Vinyals et al. “Quality Guarantees for Region Optimal DCOP algorithms”. In: Pro-

ceedings of the International Conference on Autonomous Agents and Multiagent Systems

(AAMAS). 2011, pp. 133–140.

[36] W.E. Walsh and M.P. Wellman. “A market protocol for decentralized task allocation”.
In: Proceedings of the International Conference on Multi-Agent Systems. 1998, pp. 325
–332.

[37] Changyun Wei, Koen V Hindriks, and Catholijn M Jonker. “Dynamic task allocation for
multi-robot search and retrieval tasks”. In: Applied Intelligence 45.2 (2016), pp. 383–
401.

[38] Chen Yanover, Talya Meltzer, and Yair Weiss. “Linear Programming Relaxations and
Belief Propagation - An Empirical Study”. In: Journal of Machine Learning Research 7
(2006), pp. 1887–1907.

[39] M. Yokoo and K. Hirayama. “Distributed breakout algorithm for solving distributed
constraint satisfaction problems”. In: Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems. 1996.

[40] W. Zhang et al. “Distributed Stochastic Search and Distributed Breakout: Properties,
Comparison and Applications to Constraint Optimization Problems in Sensor Networks”.
In: Artificial Intelligence 161.1–2 (2005), pp. 55–87.

[41] R. Zivan, S. Okamoto, and H. Peled. “Explorative anytime local search for distributed
constraint optimization”. In: Artificial Intelligence 211 (2014).

[42] Roie Zivan, Omer Lev, and Rotem Galiki. “Beyond Trees: Analysis and Convergence
of Belief Propagation in Graphs with Multiple Cycles”. In: Proceedings of the 34th In-

ternational Conference of the Association for the Advancement of Artificial Intelligence

(AAAI). 2020, pp. 7333–7340.

[43] Roie Zivan et al. “Balancing exploration and exploitation in incomplete Min/Max-sum
inference for distributed constraint optimization”. In: Journal of Autonomous Agents and

Multi-Agent Systems (JAAMAS) 31.5 (2017), pp. 1165–1207.

[44] Roie Zivan et al. “Effect of asynchronous execution and imperfect communication on
max-sum belief propagation”. In: Autonomous Agents and Multi-Agent Systems 37.2
(2023). ISSN: 1387-2532.



Bibliography 23

[45] Roie Zivan et al. “The effect of asynchronous execution and message latency on Max-
Sum”. In: 27th International Conference on Principles and Practice of Constraint Pro-

gramming (CP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2021.


	Introduction
	Background
	Communication-Aware Local Search for Distributed Constraint Optimization
	Latency-Aware k-Opt Monotonic Local Search for Distributed Constraint Optimization
	The Effect of Asynchronous Execution and Imperfect Communication on Max-Sum Belief Propagation
	Asynchronous Communication Aware Multi-Agent Task Allocation
	Summary and Conclusions
	Conclusions
	Future Work

	Bibliography

