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Abstract
Most studies investigating Multi-Agent Optimization (MAO) assume that messages arrive

instantaneously and are never lost. Distributed Constraint Optimization Problems (DCOPs)
and General Task Allocation Problems (GTAPs) are examples of models used to solve real-
life MAO problems; however, they do not consider the effects of imperfect communication.
In distributed systems, in which communication is a key factor, agents rely on message de-
livery to achieve mutual goals. However, the assumption of seamless communication is not
always practical because it can be subject to delays and failures. To address this gap in the
existing models, we introduce Communication Aware Multi-agent Optimization (CA-MAO)
models. These models were specifically designed to incorporate dynamic uncertainties in com-
munication within distributed systems. By extending the models to their communication-aware
versions, we enhance their ability to represent real-world distributed settings where communi-
cation challenges are accounted for.

Many state-of-the-art MAO algorithms have been designed synchronously, despite running
in asynchronous environments. These algorithms rely on synchronous iterations, wherein each
agent interacts with every neighbor in each cycle, the challenge arises from the uncertainty of
message delivery. The reliance on message delivery creates a significant challenge for such
synchronous algorithmic design. Uncertainty in message delivery can cause delays or even
deadlocks, as agents may become stuck waiting for messages that will never arrive. These
issues can significantly impact the efficiency and effectiveness of the algorithm.

In addition, some of these algorithms and mechanisms take advantage of common sim-
plistic communication assumptions to achieve desirable properties, such as monotonicity and
convergence. To address the limitations of current algorithms that fail to consider the effects of
imperfect communication, we propose communication-aware algorithms.

This study advances the field of MAO research in four ways:

1. First we explore distributed local search algorithms for CA-DCOPs. We evaluated the
performance of the existing synchronous algorithms and developed their asynchronous
counterparts. We also propose a novel asynchronous anytime framework to enhance ex-
ploration in nonmonotonic asynchronous algorithms. Our results demonstrate that imper-
fect communication can surprisingly improve distributed local search algorithms, leading
to increased exploration.

2. Our second contribution is focused on distributed local search algorithms that guarantee
solutions that cannot be improved by a group of k agents, known as k-opt solutions.
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We present the Latency-Aware Monotonic Distributed Local Search (LAMDLS) and
LAMDLS-2 algorithms: latency aware search algorithms for solving DCOPs. These
algorithms are monotonic and guarantee 1-opt and 2-opt convergence, respectively. Ad-
ditionally, they exhibit resilience to message latency.

3. In our third contribution, we explored inference algorithms for CA-DCOPs, with a par-
ticular focus on the Max-sum algorithm and its variants. We aimed to assess the perfor-
mance of synchronous and asynchronous versions of the algorithm in various communi-
cation scenarios through both empirical and theoretical analyses. Our findings indicate
that the damped Max-sum algorithm exhibits remarkable robustness when faced with
imperfect communication.

4. The fourth contribution introduces the CA-GTAPs. We focus on the Fisher Market Clear-
ing Task Allocation (FMC_TA) algorithm, which outperforms centralized and distributed
optimization algorithms but is not suitable for imperfect communication scenarios. We
propose an asynchronous FMC_ATA algorithm that demonstrates resistance to imperfect
communication without compromising solution quality. Our investigation also shows
that the distributed version of the algorithm is preferred over the centralized version when
communication is extremely poor and produces consistent results.

Keywords: Multi-Agent Optimization, Communication-Awareness, Distributed Constraint
Optimization, Task Allocation, Asynchronous Algorithms, Imperfect Communication
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 תקציר 

( סוכנים  מרובת  אופטימיזציה  בתחום  המחקרים  ולא  MAOרוב  מיידית  מגיעות  שהודעות  מניחים   )

( ובעיות הקצאת משימות כלליות DCOPsהולכות לאיבוד. בעיות אופטימיזציה מבוזרות של אילוצים )

(GTAPs  הן דוגמאות למודלים המשמשים לפתרון בעיות  )MAO    מציאותיות. עם זאת, מודלים אלו

לא מתחשבים בהשפעות של הפרעות בתקשורת. במערכות מבוזרות, בהן תקשורת היא גורם מפתח,  

סוכנים מסתמכים על העברת הודעות כדי להשיג מטרות משותפות. עם זאת, ההנחה של תקשורת  

ים. כדי להתמודד עם פער  מושלמת לא תמיד מציאותית, שכן היא עלולה להיות נתונה לעיכובים וכשל

מודלים     עם מודעות תקשורתאופטימיזציה מרובת סוכנים  זה במודלים הקיימים, אנו מציגים מודלים של  

בתקשו דינמית  ודאות  חוסר  לשלב  כדי  במיוחד  תוכננו  מבוזרות.    רת,אלה  מערכות  הרחבת  בתוך 

באתגרי  המתחשבות  האמיתי  בעולם  מבוזרות  בעיות  לייצג  יכולתם  של  שיפור  מאפשרת  המודלים 

 תקשורת.

תוכננו באופן סינכרוני, למרות שהם פועלים בסביבה    MAOרבים מהאלגוריתמים עבור פתרון בעיות

האלגוריתמים הללו מסתמכים על איטרציות סינכרוניות, בהן סוכן מתקשר עם כל שכן בכל   אסינכרונית.

מחזור. הסתמכות על העברת הודעות יוצרת אתגר משמעותי עבור עיצוב סינכרוני. אי ודאות בהעברת  

הודעות עלולה לגרום לעיכובים ואף למבוי סתום, שכן סוכנים עלולים להיתקע בהמתנה להודעות שלא  

 עו לעולם. בעיות אלו יכולות להשפיע באופן משמעותי על היעילות והאפקטיביות של האלגוריתם.יגי

 בארבע דרכים: MAO-מחקר זה מקדם את תחום חקר ה

אילוצי .1 עם  מבוזרות  אופטימיזציה  בעיות  עבור  מבוזרים  מקומיים  חיפוש  אלגוריתמי  :  םחקר 

גרסאותיהם   את  ופיתחנו  הקיימים  הסינכרוניים  האלגוריתמים  של  הביצועים  את  הערכנו 

על   ,anytimeהאסינכרוניות. בנוסף, אנו מציעים מסגרת חדשה, אסינכרונית, לקבלת תכונת ה 

( הפתרונות  במרחב  חקירה  לאפשר  לא explorationמנת  אסינכרוניים  אלגוריתמים  עבור   )

מפתיע   באופן  לשפר  יכולה  מושלמת  לא  שתקשורת  מראות  שלנו  התוצאות  מונוטוניים. 

 אלגוריתמי חיפוש מקומיים מבוזרים באמצעות הגברת החקירה של מרחב הפתרונות.

המבטיחים פתרונות    ,השנייה שלנו מתמקדת באלגוריתמי חיפוש מקומיים מבוזריםהתרומה   .2

. אנו מציגים  K-OPTסוכנים, הידועים כפתרונות    Kשאינם ניתנים לשיפור על ידי קבוצה של  

ה   ואת Latency-Aware Monotonic Distributed Local Search (LAMDLSאת   )

LAMDLS-2    עבור חיפוש  ותקשורת  אלגוריתמי  אילוצים  עם  מבוזרות  אופטימיזציה  בעיות 

 בהתאמה.  opt-2ו   opt-1. אלגוריתמים אלו מבטיחים התכנסות של מודעת

x



 

 

 Maxהתרומה השלישית שלנו מתמקדת בחקר אלגוריתמי הסקה עם דגש על אלגוריתם ה .3

sum   עם בסביבה  אילוצים  עם  מבוזרות  אופטימיזציה  בעיות  עבור  שלו,  השונות  והגרסאות 

גרסאות  ותיאורטיים, בחנו את הביצועים של  ניתוחים אמפיריים  בעיות תקשורת. באמצעות 

סינכרוניות ואסינכרוניות של האלגוריתם בתרחישי תקשורת שונים. הממצאים שלנו מצביעים 

  מפגין עמידות יוצאת דופן. damp Max sumעל כך שאלגוריתם ה

הצגנו .4 בעיות   לבסוף  משימות  את  תקשורת  הקצאת  בעיות  עם  אנו  הכללית   התמקדנו . 

יותר    Fisher Market Clearing Task Allocationבאלגוריתם   טובים  ביצועים  המפגין 

לא   תקשורת  לתרחישי  מתאים  אינו  אך  רבים  ומבוזרים  ריכוזיים  אופטימיזציה  מאלגוריתמי 

  FMC_ATAמושלמת. לצורך התמודדות עם אתגר זה, אנו מציעים אלגוריתם אסינכרוני בשם  

המפגין חסינות לבעיות תקשורת ללא התפשרות על איכות הפתרון. המחקר שלנו גם  מראה  

הריכוזית הגרסה  על  עדיפה  האלגוריתם  של  המבוזרת  גרועה    ,שהגרסה  התקשורת  כאשר 

 .מאוד, והיא מפיקה תוצאות עקביות

 

סוכנים, מודעות לתקשורת, אופטימיזציה של אילוצים מבוזרים,   תמילות מפתח: אופטימיזציה מרוב

 . הקצאת משימות, אלגוריתמים אסינכרוניים, תקשורת לא מושלמת
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Chapter 1

Introduction

Recent advancements in computation and communication have resulted in realistic distributed
applications in which humans and technology interact and aim to optimize mutual goals(e.g.,
IoT applications). Thus, there is a growing need for optimization methods to support decen-
tralized decision-making in complex Multi-Agent Systems (MAS), which find applications in
various domains, including device scheduling in smart homes, target tracking in sensor net-
works, mission planning for unmanned autonomous vehicles, and coordination of rescue units
in disaster scenarios, as noted in [10, 22, 32].

To comprehend the complexities and challenges associated with MAS, we considered the
disaster management domain. In such scenarios, diverse rescue units such as medical staff,
firefighters, and law enforcement must coordinate their actions to save as many victims as
possible. Such a multi-agent task coordination problem is challenging due to the following
characteristics.

• Optimization of a Global Objective: The various rescue units need to work together to-
wards a common goal (e.g., maximizing the number of victims saved). One such instance
is when police units are required to facilitate the safe passage of ambulances carrying vic-
tims out of a disaster area.

• Decentralized Coordination: There is often not a centralized entity that manages the
coordination problem. For example, a hospital administrator will want to manage its
medical personnel, a fire chief will want to manage its firefighters, and a police chief
will want to manage its police units. If there is a larger incident that requires units from
multiple hospitals, fire stations, and police stations, then more decision-makers will need
to coordinate with each other to identify the best way to deploy the combined rescue
units.

• Imperfect Communication: Finally, the quality of communication in such scenarios can
significantly deteriorate. For instance, a disaster may damage the cell transmission towers
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2 Chapter 1. Introduction

that various rescue units rely on for communication. Consequently, standard algorithms
for coordination problems that rely on perfect communication may be impractical.

Although we use the disaster rescue scenario as the motivating domain, each of these factors
is also present in a larger class of other Multi-Agent Optimization (MAO) problems.

Well-known multi-agent approaches, such as Distributed Constraint Optimization Problems
(DCOPs)[8, 16, 23] and the General Task Allocation Problem (GTAP)[24, 25] effectively ad-
dress key aspects of decentralized decision-making. Both models utilize agents to represent
decision-makers, i.e., rescue units. In DCOPs, agents assign values to their variables, as the
rescue unit chief assigns duties to the personnel. GTAP is similar to DCOPs in that it assigns
agents to tasks. However, GTAP introduces additional challenges imposed by realistic applica-
tions, including spatial and temporal constraints. Consequently, in this context, the rescue unit
chief must create schedules for each personnel and establish ad hoc coalitions to ensure that the
tasks are completed efficiently.

Both the multi-agent optimization problems mentioned above aim to optimize a global ob-
jective through decentralized coordination, thereby capturing the first two characteristics (i.e.,
global optimization and decentralized coordination). To achieve this coordination, agents com-
municate and coordinate their actions through a message exchange. Unfortunately, the commu-
nication assumptions of these models are overly simplistic and often unrealistic: (1) messages
are never lost, (2) all messages have very small and bounded delays, and (3) the messages sent
arrive in the order that they were sent. These assumptions do not reflect real-world character-
istics, where messages may be disproportionally delayed or dropped because of congestion or
different bandwidths in different communication channels.

Because such multi-agent optimization problems are NP-hard [16, 17], considerable re-
search effort has been devoted to developing algorithms to find good solutions quickly. This
class of algorithms, known as incomplete algorithms, has been the focus of numerous stud-
ies [1, 5, 11, 15, 18, 34, 39, 40, 6, 12, 17, 30, 33, 36]. Despite offering little or no quality
guarantees, these algorithms have been empirically found to produce high-quality solutions.
Examples of such algorithms include the Distributed Stochastic Algorithm (DSA), Maximum
Gain Messages (MGM), and Max-Sum [15, 39, 40, 2, 3] for solving DCOPs and Fisher Market
Clearing Task Allocation (FMC_TA) [17] for solving GTAPs.

The presence of imperfect communication can have a significant impact on the quality
guarantees and desirable properties of such algorithms. Some of these algorithms do guarantee
other desirable properties, for example, MGM-k guarantees monotonicity and convergence to
a k-opt solution (i.e, a solution that cannot be improved by an action of a single agent [15, 20]).
Another property that can be guaranteed is the anytime property. This property can be achieved
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using the anytime framework proposed in Zivan, Okamoto, and Peled [41]. Unfortunately, al-
gorithms and the anytime framework take advantage of the common simplistic communication
assumptions discussed above. Consequently, the guarantees for achieving these properties may
no longer hold when communication is unreliable.

The general design of most state-of-the-art MAO algorithms is synchronous. However, the
settings in which agents are expected to perform are asynchronous [14] because the environ-
ment in which they perform is distributed, and the agents do not hold a mutual clock. Therefore,
synchronization was achieved by exchanging the messages in each iteration of the algorithm.
In each iteration, an agent receives messages from its neighbors in the previous iteration, com-
putes, and sends messages to all of its neighbors [40, 41]. Unfortunately, such a synchronous
algorithmic design has several drawbacks when imperfect communication is considered. In the
presence of message latency, every synchronous iteration is completed only after all messages
sent in the previous iteration arrive. Therefore, the advancement of the algorithm from one
iteration to the next depends on the longest message delay in that iteration. When messages
can be lost, an agent may expect to receive a message from its neighbor, while the neighbor
is unaware that the message it sends does not arrive. Thus, these agents are deadlocked, with
each waiting for a message from the other.

This thesis seeks to address the challenges posed by Communication Aware Multi-Agent
Optimization (CA-MAO) problems by developing incomplete algorithms that can adapt to
varying communication reliabilities. Specifically, we focus on two approaches that represent
such problems: DCOPs, which provide an abstract representation of multi-agent coordina-
tion, and GTAPs, which address a broader range of challenges typically encountered in real-
life applications. The main tasks of this thesis are 1) Model Design, which involves creating
communication-aware multi-agent optimization models that can represent dynamic commu-
nication uncertainties; thus, we introduce CA-DCOP and CA-GTAP; 2) Algorithm Design,
which includes developing communication-aware algorithms that can address communication
characteristics; and 3) Analytical and Empirical Evaluations, which assess the efficiency of the
algorithms in terms of computational requirements, communication costs, solution quality, and
convergence.

Chapter 2 provides the foundation for the DCOP and GTAP models, detailing their back-
ground and relevant information. In addition, the chapter outlines the benchmark algorithms
and methods used for problem-solving, as well as related work on imperfect communication in
multi-agent systems.

In Chapter 3, we address the limitations of DCOPs when communication is imperfect by
presenting the Communication-Aware DCOP model (CA-DCOP), investigate the consequences
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of message latency and loss on synchronous benchmark local search algorithms, and propose
an asynchronous approach for these algorithms. In addition, we developed an asynchronous
anytime framework that allows for the best solution explored in non-monotonic asynchronous
local search DCOP algorithms.

Chapter 4 examines the susceptibility of message latency to properties ensured by the
MGM-k algorithm. We introduce Latency-Aware Monotonic Distributed Local Search (LAMDLS)
and LAMDLS-2, which are algorithms that guarantee monotonicity and 1-opt and 2-opt solu-
tions, respectively, upon convergence.

In 5, the focus was on examining inference algorithms in the context of CA-DCOPs. This
study provided a comprehensive analysis of both the synchronous and alternative asynchronous
designs, taking into account the presence of imperfect communication in the max-sum algo-
rithm and its variants.

Chapter 6 provides an evaluation of the influence of message latency and loss on a real-
world domain (i.e., GTAP) by introducing the Communication-Aware GTAP model (CA-GTAP).
We focused on the FMC_TA algorithm and addressed its limitations. We propose FMC_ATA,
an asynchronous version of FMC_TA, which is robust to message latency and loss and is more
applicable in such scenarios. Finally, we investigated the conditions under which the distributed
version of the algorithm was preferred to the centralized version.

Chapter 7 summarizes this dissertation, indicating its contributions and future work.



Chapter 2

Background

In the background chapter, we provide details of existing Multi-Agent Optimization (MAO)
models and algorithms that presume perfect communication. This chapter delves into the fol-
lowing models: DCOPs and GTAPs. In addition, we review prior research on communication
awareness in Multi-Agent Systems and the methodologies used to evaluate the performance of
algorithms in scenarios with imperfect communication.

Within the realm of DCOP algorithms, we delve into their classification, with a particular
focus on local search and inference as solution strategies [9]. In the context of local search
algorithms, we delve into the Distributed Stochastic Algorithm (DSA) [40] and its variant, DSA
with Slope-Dependent Probability (DSA-SDP), which moderately improves DSA’s exploratory
capabilities [41]. Additionally, we address an existing anytime mechanism that can be utilized
in conjunction with distributed synchronous local search algorithms to maintain a record of the
best solutions [41].

Subsequently, we delve into k-opt and Region-opt Algorithms [19, 35]. Specifically, we
focus on Maximum Gain Messages-k (MGM-K) [15] and Distributed Asynchronous Local
Optimization-k (DALO-k). These algorithms guarantee that the solutions obtained are k-
opt [13], implying that they cannot be improved by a group of k agents. MGM-K is designed
as a synchronous algorithm, whereas DALO-K operates asynchronously.

For inference algorithms, we focused on adaptations of belief propagation [21, 38] for
DCOPs [2, 3]. These include the Max-sum algorithm and its variants, such as Damped Max-
sum and Max-sum with Split Constraint Factor Graph [3]. In addition, we provide details of
the backtrack cost tree (BCT) to evaluate the performance of these algorithms [42].

For the GTAP model (an abstraction of the Law Enforcement Problem (LEP), which serves
as a specific instance of GTAP as detailed in [17]), we shifted our focus to methodologies aimed
at task allocation and optimization within complex real-world scenarios. We provide details of
both the static and dynamic versions of the model and introduce the FMC_TA algorithm, as
proposed in [17], highlighting its effectiveness in addressing such problems.
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Chapter 3

Communication-Aware Local Search for
Distributed Constraint Optimization

The impact of the synchronous design on the performance of distributed local-search algo-
rithms for DCOPs in the face of imperfect communication is substantial. In the presence of
message latency, every synchronous iteration is completed only after all the messages sent in
the previous iteration arrive, and, therefore, the advancement of the algorithm from one itera-
tion to the next is dependent on the longest message delay in that iteration. When messages can
be lost, an agent may expect to receive a message from its neighbor while the neighbor is not
aware that the message it sent did not arrive. Thus, these agents are deadlocked, each waiting
for the message from the other.

In this chapter, we make the following contributions:1

1. We propose Communication-Aware DCOP (CA-DCOP),2 an extension of the DCOP
model, in which patterns of communication disturbances (e.g., message latency and mes-
sage loss) can be represented.

2. We demonstrate that existing distributed local search DCOP algorithms are not robust to
imperfect communication. Thus, we analyze the performance and properties of standard
local search algorithms after they are adjusted to perform asynchronously in scenarios
that include message latency and loss.

3. We propose an asynchronous anytime mechanism that allows any local search algorithm
running in an environment with imperfect communication to report the best solution it
was able to generate during its run.

1This chapter is based on our published papers in The 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2021) [29] and its extended version in the Journal of Artificial Intelligence
Research (JAIR) [27].

2When referring to communication awareness, we do not mean that agents are aware of the communication
pattern, but rather that the algorithms were designed such that they can overcome communication limitations.

7



8 Chapter 3. Communication-Aware Local Search for Distributed Constraint Optimization

4. We show that the presence of imperfect communication can have a positive impact on
exploitative asynchronous local search algorithms. Our empirical results reveal that so-
lution quality may improve as the quality of communication degrades (in terms of both
message latency and message loss).

Our analysis and evaluation indicate that imperfect communication generates a discrepancy
between the knowledge that agents hold and the actual state of the system. Thus, an agent
may perform an action that is exploitative with respect to the information it holds, expecting to
improve its state and the global state as well. However, in reality, its action degrades its state,
and possibly the global state, and it unknowingly explores an unexpected part of the search
space. Such explorative actions often expose agents to higher-quality solutions, allowing them
to converge to better solutions.



Chapter 4

Latency-Aware K-Opt Monotonic Local
Search for Distributed Constraint
Optimization

Considering the potential negative impact of message latency on the performance of distributed
algorithms, we examined a class of local-search DCOP algorithms. These algorithms are de-
signed to provide k-opt guarantees, thereby ensuring that the solutions they generate cannot be
improved by a group of k agents [19]. One such example is MGM, a 1-opt algorithm, and its
extension, MGM-2, a 2-opt algorithm. Unfortunately, their synchronous designs take advan-
tage of the overly simplistic communication assumptions in the DCOP model that do not reflect
real-world scenarios. To address these limitations, researchers introduced an asynchronous k-
opt algorithm called Distributed Asynchronous Local Optimization (DALO) to solve DCOPs.
However, as we show in this chapter, DALO’s design lacks robustness in scenarios with mes-
sage delays, restricting its applicability.

In this chapter, we propose Latency-Aware algorithms that guarantee 1-opt and 2-opt solu-
tions and are robust to message latency. 1

1. We introduce Latency-Aware Monotonic Distributed Local Search (LAMDLS), a novel
local search algorithm that exhibits resilience to message latency. It is guaranteed to be
monotonic and converges to a 1-opt solution, which is similar to the properties of the
MGM algorithm mentioned in [15]. The algorithm utilizes an ordered coloring scheme
to prevent neighboring agents from simultaneously replacing assignments and preventing
agents from waiting for messages, which is a feature of MGM.

1This chapter is based on our novel algorithms, which have already been presented in the Journal of Artificial
Intelligence Research (JAIR) [27] and are currently being developed further for submission to the 33rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2024) [28].

9



10
Chapter 4. Latency-Aware K-Opt Monotonic Local Search for Distributed Constraint

Optimization

2. We present an extended version of LAMDLS termed LAMDLS-2. This algorithm al-
lows agents to collaborate in pairs and coordinate the selection of their value assign-
ments while ensuring that monotonicity is preserved, and a 2-opt solution is achieved.
LAMDLS-2 facilitates sequential adjustments to the values among partnering agents. By
employing a unique pairing-selection process and an ordered coloring scheme, agents
can modify the values concurrently for unconstrained pairs.

3. Our work includes proofs of the theoretical properties and empirical evaluation of the pro-
posed algorithms. Specifically, we present theoretical evidence that supports the mono-
tonicity and convergence of the 1 and 2 opt solutions for LAMDLS and LAMDLS-2,
respectively. To validate our findings, we conduct empirical evaluations in diverse en-
vironments with varying latency patterns. The performance of our algorithms was com-
pared to that of MGM and MGM-2, and the results demonstrated that LAMDLS and
LAMDLS-2 achieved convergence at significantly faster rates.



Chapter 5

The Effect of Asynchronous Execution
and Imperfect Communication on
Max-sum Belief Propagation

In Chapter 3 we investigate the effect of message latency and loss on standard distributed local
search algorithms (e.g.,MGM and DSA) and show that imperfect communication has a signif-
icant positive effect on the performance of the asynchronous versions of these algorithms [27,
29]. Imperfect communication generates an exploration effect that significantly improves the
quality of the solutions found. This chapter focuses on the investigation of the effect of im-
perfect communication on distributed incomplete inference algorithms (e.g., Max-sum), which
have been shown to be very successful [2, 3].

Max-sum has been presented both as an asynchronous and as a synchronous algorithm [4,
6, 43]. To the best of our knowledge, the implications of this difference in the execution of
the algorithm on its performance have not yet been studied. Moreover, when message loss
is considered, the synchronous version is not applicable, because an agent may remain idle
while waiting for the arrival of a message that is lost. While message latency does not affect
the actions that agents perform (it only delays them) in the synchronous version, intuitively,
it is expected to have a major effect on the performance of the asynchronous version. This is
because the beliefs included in the messages are used by agents in the construction of beliefs
that they propagate to others and in their assignment selection. In asynchronous execution,
belief construction and assignment selection may be performed while considering imbalanced
and inconsistent information.

In this chapter, we make the following contributions1:

1This chapter is based on our published papers in The 27th International Conference on Principles and Prac-
tice of Constraint Programming (CP 2021) [45] and its extended version in the Artificial Intelligence Journal
(AIJ) [44].
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1. We analyze the properties of the two execution versions of Max-sum, synchronous and
asynchronous. More specifically, using backtrack cost trees [42], we investigate the pos-
sible differences between propagated beliefs in synchronous and asynchronous execu-
tions of Max-sum.

2. We investigate the effect of damping on asynchronous Max-sum. Although there are clear
indications (both empirical and theoretical) that damping improves the performance of
the synchronous version of the Max-sum [3, 42], to the best of our knowledge, the effect
of damping on the asynchronous version of the Max-sum has not been studied before.
We analyzed this effect both theoretically and empirically. Both indicate that damping
reduces the differences between synchronous and asynchronous executions.

3. We investigate the performance of the different versions of the algorithm in the presence
of message latency and message loss. While the beliefs propagated and the computa-
tions that agents perform are not affected by message latency in the synchronous version
(only delayed), this is not true for the asynchronous version. Our empirical results reveal
that damping reduces these differences. Moreover, the version of Max-sum proposed by
Cohen et al. [3] that includes both damping and splitting maintains its fast convergence
properties and the quality of solutions, even in asynchronous execution with message
delays and when many messages are lost.



Chapter 6

Asynchronous Communication Aware
Multi-Agent Task Allocation

In this chapter, we focus on task allocation problems, which present significant challenges in
realistic scenarios. These challenges extend beyond the coordination of agents with degradation
and unreliability of communication. Moreover, these scenarios are often highly dynamic and
characterized by the emergence of new events or changes in the status of existing events [37].
The identification of dynamic events is most likely due to the agents performing in the environ-
ment. Thus, we expect agents to be able to reinitialize the solving process when necessary [7,
9].

Fisher Market Clearing Task Allocation (FMC_TA) [17] is an algorithm that was proposed
for solving problems where a team of heterogeneous agents needs to cooperate in an environ-
ment that includes multiple tasks, which require ad-hoc coalitions of agents with different skills
in order to properly handle them , for more details see...in the background chapter . FMC_TA
was shown to dominate state-of-the-art centralized and distributed task allocation algorithms.
These included general optimization algorithms such as Simulated annealing and designated
algorithms such as Coalition formation with a look ahead (CFLA) [6, 17, 31].

However, similar to the observations made for DCOP algorithms in previous chapters,
FMC_TA as proposed in [17] is synchronous [15, 40, 41]. Moreover, the algorithm presented
in [17] is dependent on the assumption that agents hold regarding the existence and importance
of tasks that need to be performed. Thus, the team of agents was not independent and relied on
updates from a centralized system.

To overcome these limitations of FMC_TA when facing realistic dynamic scenarios and
scenarios in which communication is imperfect, we follow the approach presented in previous

13
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chapters and make the following contributions1.

1. We propose FMC_ATA, an asynchronous version of the algorithm that was designed
while taking into consideration the possibility that messages can be delayed or lost (i.e.,
communication aware design). In FMC_ATA, agents perform computations upon receiv-
ing a message, considering the last message that arrives from each of their neighbors. The
algorithm is performed in a single distributed asynchronous phase, in which agents de-
termine both the allocation of tasks and their schedules. Moreover, agents in FMC_ATA
can detect dynamic events, such as new tasks that need to be performed or a change
in the importance of a task that is currently being handled, and trigger execution of the
algorithm, to allow the team to adapt to the evolved scenario.

2. We demonstrate empirically that, not only does the asynchronous version (FMC_ATA)
converge to the same solution as FMC_TA, but that it is also robust to message delays
and to message loss up to some extent.

3. We further investigated the properties of scenarios in which a distributed implementation
of FMC_ATA is preferred over a centralized implementation in which a central system
is updated by the agents regarding dynamic events, calculates and updates allocation and
updates the agents. Our results show that, in the presence of message latency, a clear
threshold exists for distributed performance to be motivated, and when message loss
cannot be avoided, distributed performance is always preferred.

1This chapter is based on our published papers in The 32nd International Joint Conference on Artificial Intel-
ligence (IJCAI 2023) [24] and its extended version is currently being developed for submission to the Artificial
Intelligence Journal (AIJ) [26].



Chapter 7

Summary and Conclusions

7.1 Conclusions

The realm of MAO faces a significant challenge in addressing the difficulties posed by im-
perfect communication environments, which are essential elements in representing real-world
characteristics in practical applications. These difficulties include message latency and message
loss, which can severely affect the performance, reliability, and applicability of distributed al-
gorithms. Our analysis identifies major limitations in the empirical and theoretical properties
of such algorithms. Current MAO methods often assume ideal communication conditions that
are rarely present in real-world applications. This challenge emphasizes the need for a robust
and adaptable algorithmic design that can effectively function within the constraints of imper-
fect communication environments. The objective of this thesis is to address this notable gap in
the existing literature by introducing communication-aware models and novel algorithmic de-
signs. This approach offers a comprehensive suite of solutions that not only advance the field
of MAO but also significantly increase the applicability of MAO algorithms in the real world,
where imperfect communication is an inherent challenge.

In this thesis, our exploration focus was on DCOPs and GTAPs, offering a dual perspec-
tive spanning both abstraction and practical problems. This approach was beneficial in that
it enabled us to thoroughly examine our hypotheses using a controlled, abstract setting, and
provided us with the opportunity to confirm our results in more practical, real-world contexts.

In Chapter 3, we explored the challenges and implications of message latency and loss on
distributed local search algorithms for DCOPs and highlighted the limitations of synchronous
algorithms. Our investigation revealed that asynchronous versions of DSA and MGM algo-
rithms exhibited improved explorative effects and a faster rate of convergence. In light of these
promising results, we designed an Asynchronous Anytime Mechanism to mitigate the limita-
tions of existing anytime mechanisms, which are only applicable to synchronous algorithms,
as proposed by Zivan, Okamoto, and Peled [41]. Although asynchronous versions provide
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improved results in the presence of imperfect communication, they do not preserve certain the-
oretical properties of their synchronous counterparts, necessitating the development of novel
solutions, which led to the focus of Chapter 4.

In the subsequent chapter, we presented the Latency-Aware Monotonic Distributed Local
Search (LAMDLS) algorithm for resolving DCOPs and ensuring convergence to 1-opt solu-
tions. Subsequently, we extended our design to LAMDLS-2, which guarantees convergence
to 2-opt solutions. Our findings reveal that our approach, based on the ordered color scheme,
enables agents to compute their assignments more proactively. This reduces the coordina-
tion effort required and leads to a significantly faster convergence rate compared to MGM and
MGM-2.

In this continuation of our investigation, we delve into the class of inference algorithms,
focusing specifically on the Max-sum algorithm and its variants. Our analysis examines the
differences between synchronous and asynchronous executions and the benefits of employing
damping to mitigate the adverse effects of message latency. Through our theoretical and em-
pirical examinations, we aimed to enhance our understanding of the Max-sum algorithm in
distributed settings where communication challenges are prevalent.

The research also focused on the design of the FMC_ATA algorithm, which is a robust
solution for multi-agent task allocation problems that can provide high-quality results, even
under adverse communication conditions. This algorithm demonstrated a significant improve-
ment over its predecessors in terms of real-world applicability. Additionally, we examined the
performance of distributed algorithms compared to centralizing all information and performing
central solving, and our findings establish the conditions under which distributed algorithms
are justified.

In conclusion, this thesis has challenged the essential drawbacks posed by imperfect com-
munication in Multi-Agent Optimization, presenting creative and adaptable solutions. By de-
veloping new algorithms, our work fills a crucial gap in the existing research and remarkably
improves the practical application of MAO. Our results and analysis established a strong foun-
dation for future advancements in MAO, aiming to inspire further research into creating more
resilient and efficient systems.

7.2 Future Work

This thesis established a solid foundation for exploring numerous potential directions for the
development of applicable MAO algorithms. Promising areas for future exploration are the ex-
amination of additional constrained communication graphs that reflect real-world challenges,
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such as limited bandwidth or unique network topologies, exemplified by the smart home prob-
lem identified by Rust, Picard, and Ramparany [32], where algorithms strive to reduce the
communication costs among agents. The asynchronous algorithmic strategies developed in this
study, designed with communication awareness in mind, may face limitations in these contexts.

Our study revealed a gap in the comprehension of the practical benefits provided by asyn-
chronous variants of distributed algorithms in the context of imperfect communication. It has
become evident that these algorithms either maintain the accuracy of the results in comparison
to their synchronous counterparts or even improve them. A potential avenue for future research
could involve the application of explainable AI techniques to gain a more profound under-
standing of the underlying reasons for the effectiveness of agents that operate with outdated
information in asynchronous settings.

Furthermore, future research could focus on refining the LAMDLS and LAMDLS-2 al-
gorithms introduced in this study. Building upon our initial contributions, we can extend our
methodology to encompass a general k-opt algorithm. Exploration of the DALO-k algorithm,
as discussed by Kiekintveld et al. [13], also presents a valuable avenue. Adapting its design to
include communication-aware features could help to address some of the identified limitations.
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