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Abstract
Are photons either bunched or unbunched, or do these representare these particular cases of a wider	 phenomenon? This studyHere we will show that bunched and unbunched photons are indeed two extreme cases of a process parameterized by a continuous parameter, called the bunching parameter. This research indicates primarily, and (mainly) we will suggest that the state orthogonality interferometer that can be used for the construction and measurement of the full range of values of the above bunching parameter. Finally, this paper will demonstrate how the HOM effect is generalized as an application of the bunching parameter, we will show how the HOM effect is generalized. Unlike thein  HOM effectת effect, where the interferences is only between the two photons, the states produces produced by the states orthogonalitly interferometer exhibit both single photon interferences and two indistinguishable photon interferences, . Aa  property that Fermions fermions does not seen seem to have.  
Introduction
The exchange degeneracy symmetysymmetry of identical particles gives rise to a new kind of interference, the interferenceinterference: that between the particles’ wave functions. This interference plays a role in several important quantum physics effects, such as, e.g. the electron configuration of atoms, the behavior of light, Fermi-Dirac and Boss- Einstein statistics, and many more. Among these effectsthose is the bosons bunching of indistinguishing indistinguishable bosons (also named called bosons enhancements). Bunching refers to the preference of indistinguishing indistinguishable bosons to be found in the same state in contrast to the preference ofcompared to distinguishing distinguishable particles under the same scenario. 
The footprint of bosons bunching is found in a variety of cases, including: the Hanbury Brown-Twiss effect [1], Hong, Ou, and Mandel [2], Ghosh and Mandel [3], and atomic optics (Jeltes [4]).
The footprint of bosons bunching is found in a variety of cases. To mention a few: 
Hanbury Brown-Twiss effect [1], HOM [2], Gיhosh Mandel [3], atomic optics [4].



Feynman [5] gave a quantified measure of the bosons bunching, showing. He showed that the probability of finding  indistinguishing indistinguishable bosons in the same state is  higher than for  distinguishing distinguishable bosons (see  also Fano [6])	Comment by Susan: Please write out the name for the reference

However, it has been shown that the realitythis picture is actually more complex and more subtle. I, and in fact, Feynman's claim does not hold in general. For example, in Marchewka and Granot [7] it is shown that the measure of a spatial probability of indistinguishing indistinguishable bosons is equal to those of distinguishing distinguishable bosons. That is, the  rule doesn't hold, and in fact, it is not well defined in the limiting case where the detector size goes to zero (Marchewka, Granot, and Schuss [8]).[8].	Comment by Susan: Please write out the name for the reference.
It is very tempting, as is often done, to ascribedescribe the bunching of indistinguishing indistinguishable bosons as being due to “attractive forces” between the indistinguishing indistinguishable bosons [9]. However, this view is also only a partial truthpartially true. It has been shown [10-12] that when two bosons are released from a trap, the bosons behave as if they have “repelling forces” which govern their behavior.
Finally, onea way to generalize the bosons bunching for Schrödinger particles has been suggestedgiven at in Mousavi and Miret-Artés [12]. This generalization defines a "bunching parameter,", which is equal to N! in the special case considered by Feynman. 	Comment by Susan: Please provide a name for the reference.
The aim of this paperletter is threefold. The first oneFirst, in section Section 2, is to  formulate the bosons parameter for the two photons’ fields will be formulated by reformulating. To do this, the bunching parameter will be reformulated in the second quantization language. Then, in section Section 3, the state orthogonality interferometer will be represented with different realizations of the photons’ state  orthogonality. This interferometer enables "tailor-made" states of arbitrary state orthogonality of photons and theirits corresponding bunching parameters, . In particular soin particular,  a “tailor-made" state that is not produced in natural light. Finally, in section Section 4, we use theose "tailor-made" states are employed in the HOM experiment, and it is then shown. Then, we show that such states generalize the HOM effect. 
The notation of the “first quantization” follows Cohen-Tannoudji and Laloe [14], and in the “second quantization” we follow Gerry and Knight [15].	Comment by Susan: Please give the name for the source	Comment by Susan: Please give a name for the source.
2. Bunching Parameter for Two Photons.  

[image: ][image: ]
Figure 1: SCHEMA OF THE HOM EXPERIMENT


The HOM (=Hong-Ou-Mandel, [2]) [2] effect clearly demonstrates clearly the bunching of two photons. In Fig 1(a), theThe schema of the HOM experiment is represented in Fig.1(a). T: two photons enter simultaneously from different legs onto a symmetric beam splitter. The notation is as employed byin Gerry and Knight [15]. F,  for example, , refers tomeans one particle in leg 2. The photons’ probability to be found on the outcoming legs, is given at in fig Fig. 1 (b) for indistinguishingdistinguishable photons and in figFig.1(c) for distinguishing distinguishable photons (say for example, by their polarization degree of freedom) photons. As seen in figFig. 1(b), the indistinguishing indistinguishable photons are always emitted together, whereas, as seen by in fig1Fig. 1(c), distinguishing distinguishable photons are emitted together only half of the time, and half of the time they are emitted to different legs. This preference of the indistinguishing indistinguishable bosons to be emitted together is a manifestation of the bosons bunching.	Comment by Susan: Please use the name of the source.	Comment by yehudah: Figure 1 includes (a), the photon interation, (b) Probabilities for indistinguishable photons, and (c) Probabilities for distinguishable photons	Comment by Susan: Why is there no Fig. 1 (a)? Why does Fig. 1 (c) precede Fig. 1 (b).Figure 21: schema of the HOM experiment
Figure 2: two photons enter simultaneously on the same leg

[image: ]
Figure 2: TWO PHOTONS ENTERING SIMULTANEOUSLY ON THE SAME LEG
 In Fig. 2, two photons enter simultaneously on the same leg of the beam splitter. In fig Fig. 2 (b), shows the probability of finding the emitted photons. It appears is given. It turns out that the probability of finding the emitted photons is independent of the photons being distinguishing distinguishable or not: the difference between the indistinguishing indistinguishable and distinguishing distinguishable photons disappears. These examples illustrateFrom these examples we can see that the distinguishability of the photons is not the only condition that plays a roll role in whether to bethey are bunched or not.	Comment by yehudah: I added “finding”	Comment by Susan: Is material missing here? Just probability of the emitted photons means something? 
2.1  The Bunching Parameter-- fFirst qQuantization 

Consider two particles in a two-dimensional space with an orthonormal base of two states  :

[bookmark: ZEqnNum969125]	 	
wWith 

[bookmark: ZEqnNum868678]	 	
The scalar product of the two states is (by Equation ):

[bookmark: ZEqnNum501780]	 	

Here we follow the notation of Gerry and Knight [15]. The index inside the ket  represents the particle, and the Greek later letter is the state the particle is in. 	Comment by Susan: Please add the name of the source.


If the two particles are distinguishing distinguishable bosons, where one of the bosons is in the state  and the other is in the state ,  their joined wave function is:,  

[bookmark: ZEqnNum927728]	 	



Where where and is the normalization constant given by the condition.
From Equation  	Comment by yehudah: I added “Equation”	Comment by Susan: Why has 1.5 been deleted? What does from 1.2 mean?

	 	 	Comment by yehudah: I undeleted it. (I probably pressed the space bar while the equation was selected.)

From Equations  , the probability for the two distinguishing distinguishable bosons to be in the same state, say for example, , is, 

[bookmark: ZEqnNum792062]	 	
However, the joined wave function of two indistinguishing indistinguishable bosons has to have symmetriesbe symmetrical (Cohen-Tannoudji, Diu, and Laloe, [14]). That is, 

[bookmark: ZEqnNum860250]	 	

Where where is the symmetric operator defined for two particles as 

	 	


With  with  and  is the permutation operator.   

Normalization of the joined bosonic wave function  gives, from Equation , 

	 	
That is, Equation  becomes

[bookmark: ZEqnNum890869]	 	

The probability of finding the two indistinguishing indistinguishable bosons in the same state, say for example,  , is

[bookmark: ZEqnNum339590]	 	
Using Equations  and , the bunching parameter is defined by the ration 

[bookmark: ZEqnNum857553]	 	
Before discussing the bunching parameter, we derive it in the formalism of the second quantization.  
2.2 Bunching Parameter for Photons: Second Quantization
 In the second quantization, the initial state (Equations  ) for distinguishing distinguishable photons  becomes, 

[bookmark: ZEqnNum361962]	 	


Where where the first photon is denoted by operator , the second photon is denoted by the operator ,and the normalization is given by Equation . 
With the following bosonic commutation relations 

[bookmark: ZEqnNum924653]	 	
It is convenient to define  

[bookmark: ZEqnNum999914]	 	
The following commutation relation follows:   

	 	




The number- like operators of the states in Equation  are  with, and with. 
The joined wave function of the two distinguishing distinguishable photons is 

	 	

 By the normalization ,we have: . 

	 	

The probability of finding both particles in the same state, say for example,  is

[bookmark: ZEqnNum518356]	 	
If, instead of the two distinguishing distinguishable bosons, the bosons are indistinguishing indistinguishable, the wave function became becomes 

	 	
Whithwith the bosonic commutation relation 

[bookmark: ZEqnNum743342]	 	
Accordingly, we use the definition  

[bookmark: ZEqnNum731361]	 	
The following commutation relation follows   

[bookmark: ZEqnNum852999]	 	


The number- like operator for the particles generated by  are  is   , with with. 
The joined indistinguishing indistinguishable wave function is  

	 	

 Where where  is the normalization of the joined indistinguishing indistinguishable bosons. 

Imposing the normalization  gives

[bookmark: ZEqnNum303806]	 	


The probability to find both indistinguishing indistinguishable bosons to be in the same state, say  with the normalization  , is

[bookmark: ZEqnNum471234]	 	
Using Equations  and ,  the bunching parameter is 

[bookmark: ZEqnNum518163]	 	
Equations  and  are clearly the same. 


Since,  , it follows that the bunching parameter is  . 


It is instructive to compare this with the examples described at in fig Fig.(1) and fig Fig.(2). In fig Fig.(1), the two photons have an orthogonal wave function, that is, . It follows from equation Equation  that  and thus  

	 	
That is, the probability to findof finding the two indistinguishing indistinguishable bosons is twice as much as if the two bosons were indistinguishingindistinguishable, indeed as can indeed be seen in fig Fig.1(b) and Fig. 1 (c). 	Comment by yehudah: Distinguishable?


However,  if the two bosons entering in the same leg, as in figFig. (2), then . Then equation Equation  gives   . Thus, 

	 	
That is, the probability to find the two distinguishingdistinguishable bosons is the same as two indistinguishingdistinguishable bosons, indeed as can indeed be seen in fig Fig. 2(b). 
As usual, the quantity that is invariant under a unitary transformation plays an important role. Let us show that the bunching parameter is indeed invariant under a unitary transformation. 


Consider two different two-dimensional spaces, with bases  and and. 

The bunching parameter for the base is  

[bookmark: ZEqnNum376905]	 	 

Similarly, Likewise the bunching parameter for the base is

[bookmark: ZEqnNum384886]	 	
These bases are related by a unitary transformation 

	 	


under which the scalar product is invariant, so . Thus, by Equations  , we have--, that is, the bunching parameter is invariant under a unitary transformation.


For typical cases of emitting photons being emitted from separate sources, e.g.such as atoms, the photons are in orthogonal states, with  . Since the bunching parameter is invariant under a unitary transformations, it follows that, to change the bunching parameter, one needs an a non-unitary transformation. This will be discussed in the next section.


The State Orthogonality Interferometer 

[image: ]Figure 3: the state orthogonality
 interferometry

Figure 3: THE STATE ORTHOGONALITY INTERFEROMETER






Due to the separate nature of atoms, two indistinguishingdistinguishable photons emitted by the atoms are orthogonal, with. ThenTherefore, their bunching parameter is  . Indeed, since the original HOM [2] experiment (Hong, Ou, and Mandel, [2]), the bosons bunching with has been demonstrated in many variations, e.g.as in, for example, Jeltes et. al [4]. This gives rise to the question of how to realize achieve other values of the state orthogonality , and accordingly, the a bunching parameter with  . The interferometer described in Fig. (3) can be used to tail photons to have a state orthogonality . 








In Fig. 3, there are t. Two incoming photons, one at on the incoming legs of beam splitter, and one on the incoming legs of beam splitter.. Setting tThe delays at  and at such are set in such a way that the photons that come from beam splitter and reach the beam  splitter and beam splitter simultaneously.                

The photons will be detected eventually in one of the four detectors detectors. Each of the beam splitters is unitary:

	 	



Where  where  . The phase shifter at each legs will be denoted according by the leg it is atwhere it is--, that is, ,  where  . To keep the writing cleannotation simple, we first consider the case 

	 	
Later we plug it in backWe will plug it back in later, as necessaryeded. 

The amplitude of the photons entering the beam splitter  is given by 

[bookmark: ZEqnNum295494]	 	


Where where the subscript notation is as in Gerry and Knight [15] and above. The letter  above and or below the arrow denotes theindicates that the photon passes through the  beam splitter.

The amplitude of the photons entering the beam splitter  is given by 

[bookmark: ZEqnNum190834]	 	




Now if the detectors both have zero readingread zero, we are left with the states at legs  and . Such conditional processes of condition on at detectors are known as “post selected measurements”, e.g.as stated by Aharonov, Bergmann, and Lebowitz [16].

Then the photons’ state at  is given by

  	 	

And the photons’ state at   is given by

	 	
Accordingly, tThe respective wave functions of the photons are

[bookmark: ZEqnNum752001]	 	



 Where where  and  are the normalization constants determined by the condition.. using Using the commutation relations in Equations , we find  

[bookmark: ZEqnNum661627]	 	
Defining

	 	
 
The the joined wave function is as follows 

[bookmark: ZEqnNum529905]	 .	

we We can use Equation  to read outcalculate the overall normalization  

	 	
And also, from Equation  , read outwe calculate

[bookmark: ZEqnNum800100]	 	
If, however, the two photons are distinguishingdistinguishable photons (say, by their respective polarization),  Eq.  is unchanged: 

	 	

But because the photons are distinguishingdistinguishable, the creation operator in  is set to  

	 	
with by means of the commutation relations in Equations .
The single-photon wave functions are, 

[bookmark: ZEqnNum754438]	 	





 Where where  and  are the normalization constants determined by the condition. Using Equations  gives  and .
Defining

	 	
 Then the joined wave function of the distinguishingdistinguishable photons ןs   is   

[bookmark: ZEqnNum649279]  	 	


And the normalization,  gives  . 
Using Equations  and   for the state orthogonalitiy (Equations  and  ), the bunching parameter became becomes, by ,

[bookmark: ZEqnNum932289]	 	

In the case where the phase of the interferometers in Fig. 3. are is not zero, that is, , the  output amplitude will be modifymodified.  


The modification at arm legs  and  is 

	 	


And the modification at arm legs  and  

	 	


Since   for all , the normalization in Equation  is unchanged.
The bunching parameter whit with a non-zero phase (Equation ) now became becomes

	 	
The representations of the reflection reflected and transmitted coefficients of the beam splitter is the general matrix for a beam splitter 

	 	


Such such as that  and . 
In particular, we chooses select

	 	

Where where  is the indexing of the beam splitter. 
It is important to keep in mind that the states orthogonality interferometer may be used in three deferent different ways:
· As an interferometer to tallied track two distinguishable photons
· 
As an interferometer to tallied track the two indistinguishable photons. In pratcule practice, we will receivegot non- trivial states orthogonality,  
· And, as herein this paper, to combine the two above ways to fine find the bunching parameter.  
Now we will focus in on tree three cases of the states orthogonalityltey interferometer: 
· 
The case when where all phases are zero: , 
· The case where all output phases give real value output amplitudes, and 
· Lastly, the finally case where each photons holed deferent conditionsdifferent conditions hold for each photon (see below). 

3.1 Case of Zero Phases
To see the range of values for the bunching parameter that this interferometer realizes, we will consider the simplified version of that interferometer. 	Comment by yehudah: achieves?



If we choose the beam splitters  and  to be symmetrical,  , the range of the bunching parameter is given by Equation , as shown in fig4Fig. 4.
[image: ]
Figure 4 the bunching parameter range

  



That is, for a simple setup, when where the bean beam splitters  and  are symmetrical, the range of the bunching parameter range is more then than 70% to of its full range (see Fig. 4). However, it is not hard to get a full- range parameter. For example, setting  gives a full- range bunching parameter. 
3.2 Real Value Output Amplitudes.

To produces aProducing real value amplitudes can be done by adding phase shifters at the legs , as, f. For example, with the following phases

[bookmark: ZEqnNum972032]	 	
And and the amplitude modification is, 

	 	


As as can be checked directly at by Equations , to see that all amplitudes at the legs  and  will have real values.  
Then In this case, the bunching parameter became becomes 

	 	


Where where the normalization is unchanged. The range of  is  . 
3.3  An Important Case (see below )	Comment by yehudah: Where below?
The resent and the title for this setup will became clear in the next section. 	Comment by yehudah: What should this word be? Presentation?
For the last setup, consider the following conditions:
A. 

all All modulus amplitudes a t legs  and  are equals 	Comment by yehudah: Modulated? Modified?
B. 



The phase between the wave function at leg  to theas compared to leg   of one of the photons (for example, , say ,)  is 
C. 
There is nNo phase difference between the amplitude of the second photons (for example,, say). 


Condition 1A.  can be met meet by setting  . Then, the amplitude is, . 





Condition 2B can be achieved . Bby adding phase shifts and to the amplitudes of photons  at amplitudes leg  to theand  leg   . The wavefunction is given by

	 	
Accordingly, we have  

[bookmark: ZEqnNum174190]	 	



Condition 3C. To produces the same amplitude for a photon in leg  to theas in leg   for photons , we have 

[bookmark: ZEqnNum547839]	 	
One way to meet condition Conditions  and  is 

[bookmark: ZEqnNum628356]	 	

Use Using Equation , the stats orthogonal state is  , and thus 

	 	
Next, we will use the results of section Section 3.2 and 3.3 to show the generalization of the HOM effect. 
3.4 Generalization of the HOME effectEffect
[image: ]Figure 5 the stats orthogonal in HOM set up

Figure 5: state orthogonality in the HOM setup
 
As an application of the stats state orthogonal interferometer, let us see how it changes the bunching behavior of in the HOM effect. The results of home HOM effect has yields results with the following two propertyproperties: 
a) 
Fig 1(a), the coincidence probability of the outgoing indistinguishable photons at different legs is measured to giveas, 
b) Fig 1(b), the joined photons will appear half of the time on the upper leg, and half of the time on the lower leg.
 Our intention goal here is to show how both of theose property properties can be generalized. 
To do that, let us consider the following steps:   
I. 
Remove the detectors  .
II. 

The wave functions at the legs  and .are the input of the symmetric beam splitter, as shown in Fig. 5.
III. 

Set the wave function amplitude at  and  , according toas in Cases 3.2 and 3.3 above.

3.5 4.1 Case 3.2 as the input Input of the HOM eExperimented--. A generalization Generalization of Property A.
One may directly calculate directly the results of this case in the HOM setup as in Fig. 5. Here we chose to do that via the bunching parameter. First, run two distinguishable photons in the interferometer. As a results result, their amplitudes are a real value: the probability to fined themn together at the output is given by (see the A appendix for details): 

[bookmark: ZEqnNum272083]	 	
Now, running two indistinguishable photons in the same setup, but for distinguishable photons, the probability to fine find then them together is as in Equation 

	 	
By probability conservation, the probability to find the indistinguishable photons in deferent different legs is  

[bookmark: ZEqnNum209978]	 	

wWhich equals zero only for  --that is,, the HOM Effect cases. Thus, this is a generalized the results of the HOM effect. 
4.23.6 Case 3.3 as an Iinput of the HOM Eexperiment, a Ggeneralization of Property B.
First, we will run two distinguishable photons in the interferometer. As a results result, by their amplitude set up l (see the appendix Appendix for details) we have

[bookmark: ZEqnNum917745]	 	


Note that since the construct of distinguishable photons  has have a phase relation, it will only be omitted emitted in giving each leg, while the distinguishable photons  has have equal probability too to  be omitted emitted at in either legs.
Now, running two indistinguishable photons in the interferometer, the probability to finde themn together is given by Equation 	Comment by yehudah: Should this be (1.67)? (1.27) is the bunching parameter.

[bookmark: ZEqnNum512845]	 	

And and thus . That is, all of the indistinguishable photons are emitted together, but in the same leg. 
Whereas iIn the HOM cases , with pProperty b.B above, the indistinguishable photons will be emitted half of the time in the lower leg, and half of the time in the upper leg. Thus, aThis is a generalization ofed the b. pProperty B of the HOM effect. 

Discussion and Summary:




In section Section 2, the theoretical bunching parameter has was derived for two photons (Equation ). It give yields the rollrule that indistinguishable photons appear at times as distinguishable photons, with a bunching parameter such that, , times a distinguish photons. The underlyingine property is that the bunching parameter depends on in is the states orthogonality of the two indistinguishable photons photons, such as that . 





The HOM effect (as in Jeltes [4]) , illustrated in Fig. 1, is then understood as a special case with  and thus . However, in natural circumstances, photons are produced from separate atoms. , tThen their initial states are orthogonal, i.e., . Thus, a bunching parameter of  is not an everyday phenomenon. This posits a question, and a challenge, of how to produces states whit with a bunching parameter others thaen 2. 





Therefore, in sSecation 3, using the post selected measurements [16?]  we introduced the states orthogonality interferometer  (Fig. 5). This interferometer exhibits of states orthogonality, and accordinglyby extension, thy the bunching parameter. In order to see further application of the interferometer, we considered  tree three specific interferometer set ups of the interferometer consider. In Section 3.1, we used the setup of where and  for all  has taken. Those set up over the range  production produced a full bunching range, i.e., full stats orthogonality of the states, as in Fig. 	Comment by yehudah: Which source is this? Is it [16]?	Comment by yehudah: Which Figure? Figure 4?

In order Aiming to show an examples that constitutesd a generalization of the HOM effect,  two further set ups of the interferometer were has given inat Sections 3.2 and 3.23. 

Finallyley, in sSection 4, we categorize the HOM effect by two propertiesy:
A.  a  two Two indistinguishable photons emitted together, and 
B. b. tTwo indistinguishable photons emitted half of the time to the one leg and half of the time to the other leg together. 
Then by Equation  we show that the setup of Section 3.2 for indistinguishable photons that enter in deferent different legs in the HOM experiments violet  violates   Pproperty aA.

 Put it in another wayIn other words, the HOM effect of two photons interferes with . The generalization of Pproperty b B is given via by means of the the ssetup in Section 3.3. Equation.   shows that indistinguishable photons will be emitted to a single leg. This which clearly generalizes Pproperty b B of the HOM effect.  


Another way to categorize the generalization of the HOM effect that we represented hear here is as follows: while Whereas in the HOM effect, the interferences is only between the two photons, in the case of states orthogonality, where  , both type of interference , single photons interference and two photons interferences, take place occurs. 

Or, stated in a more general way, states orthogonality for photons combine interferences of a single photon whit with itself, and of two indistinguishable photons whit with one another. It seems that this property is unique to photons (bosons).Indeed the states orthogonality for fermiums fermions is always . The And, hunch is that, according to the states orthogonality, fermiums fermions doesn’t exhibit in the same process of single fermionum interferences and two fermions interferences at the same time.
More details about the HOM dip for the states orthogonality interferometer, e.g.for example, the modification of HOM dip and other applications will be discusseds  elsewhere.	Comment by yehudah: What word should this be?	Comment by yehudah: What word should this be?


I wish to thank Dr. Oskar Pelc and Dr. Oded Kenneth for their helpful comments on the this paper.
Appendix 
1. Derivation of Equation —Probability of Two Distinguishable Photons

Consider one photons on superimposed on two incoming legs of a symmetric beam splitter  . Then,

	 	

Where with the normalization  . 

In the case where  the probability to fine find the photons at the at the output legs is 

	 	

Thus, the probability of two distinguishable photons to be together in one les leg is  -- that is, as shown in Eq. .  
2. Derivation of Equation 
Consider the case 

	 	
Which which gives .
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Abstract


 


Are photons either bunched or unbunched, or 


do these represent


 


particular case


s


 


of a 


wider


 


phenomenon? 


This study


 


will show that bunched and unbunched photons are 


indeed two extreme cases of a 


process parameterized by a 


continuous parameter, 


called the bunching parameter


. This research indicates primari


l


y


 


that 


the state 


orthogonality interferometer 


can be use


d


 


for the construction and measurement of the 


full range of 


values of 


the


 


bunching parameter.


 


Fi


nall


y, 


this paper will demonstrate


 


how 


the HOM effect is generalized 


a


s an application of the 


bunching parameter


,


.


 


Unlike 


the


 


HOM 


effect, 


where the 


interference


 


is only between the two photons, the stat


e


s 


produced 


by the 


state


 


orthogonal


it


y


 


interferometer


 


exhibit


 


both


 


single photon 


interferences


 


and two 


indistinguish


able


 


photon 


interferences


,


 


a


 


property that 


fermions 


do


 


not 


seem 


to have. 


 


 


1.


 


Introduction


 


The exchange degeneracy 


symmet


ry


 


of identical particles gives rise to a new kind of 


interference


:


 


that


 


between the particles’ wave functions. 


Th


is


 


interference play


s


 


a 


role in 


several importan


t


 


quantum physics effect


s


, such as


 


the electron configuration of atoms, 


the 


behav


ior


 


of light, Fermi


-


Dirac and Boss


-


Einstein statistic


s


, and many more. Among 


these effects


 


is the bosons bunching 


of 


indistinguish


able


 


bosons


 


(also


 


called


 


boson


 


enhancements


)


. Bunching refers to the 


preference


 


of 


indistinguish


able


 


bosons to be 


found in the same stat


e


 


in contrast to the 


preference of


 


distinguish


able


 


particle


s


 


under 


the same scenario. 


 


The footprint of bos


ons bunching is found in a v


a


ri


e


ty of cases


, including:


 


t


he


 


Hanbury 


Brown


-


Twiss effect


 


[1], H


ong, Ou, and Mandel


 


[2], Ghosh 


and 


Mandel [3], 


and 


atomic 


optics 


(Jeltes 


[4]


)


.


 


Feynman [5] gave a quantified measure of 


bosons bunching


, showing


 


that


 


the 


probability 


of


 


find


ing


 


N


 


indistinguish


able


 


bosons in the same state is 


!


N


 


higher 


th


a


n 


for 


N


 


distinguish


able


 


bosons (see


 


also


 


Fano


 


[6])


 


However, it has been shown that 


the reality


 


is 


actually more complex and 


 


subtle


. I


n 


fact, Feynman's claim does not


 


hold in general. For example, 


in


 


Marchewka


 


and


 


Granot


 


[7] it is shown that the measure of a spatial probability of 


indistinguish


able


 


bosons is 


equal to those of 


distin


guishable 


bosons. That is, the 


!


N


 


rule 


doesn't hold, and in fact, it 


is not well defined in the limit


ing


 


case where the detector size go


es


 


to zero 


(


Marchewka,


 


Granot


, 


and


 


Schuss


 


[8]


)


.
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