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Abstract
[bookmark: _GoBack]The complex number system is a central topic in the advanced mathematics curriculum at the high school level, usually taught in the 12th grade to students who excel in mathematics. Unfortunately, its instruction is based on repeated exercise and problem-solving; that is, the emphasis is on procedural knowledge and less on conceptual knowledge, as is the case for most other mathematical topics taught at school. We believe that the pedagogical method of the subject is critical to its success. In this article we present two instructional approaches – the first is the standard one in common use that focuses on repeated exercise and enrichment of problem-solving skills, while the second, based on the authors' approach to meaningful instruction and learning, presents the topic by linking it to a variety of representations aimed at enriching the interconnections between the subject under study and existing knowledge, thereby contributing to a higher level of understanding.

Introduction
The complex number system is a central topic in the high school math curriculum for students excelling in mathematics. Despite its importance, however, learning is primarily accomplished by repeated exercise, and as with most mathematical topics, emphasis is on application and on skills for solving standard problems (Cuoco, 2001). The focus on problem-solving reinforces procedural knowledge, and less so conceptual knowledge, as is the case with many concepts taught at school (Schoenfeld, 1987). Complex numbers may be introduced using a geometric or an algebraic approach. Findings indicate that students employing the geometric approach did not gain a full understanding of the material, while those using the algebraic approach encountered difficulty with complex number problem-solving (Panaoura, Elia, Gagatsis, & Giatilis, 2006). Studies have shown that students find difficulty in grasping the concept of complex numbers, in particular in identifying the complex number. Results from these identification tasks show that students have a hard time distinguishing among the basic properties of complex numbers; for example, they do not grasp the idea that every number is also a complex number (Norlander & Nordlander, 2012). What must be emphasized in the instruction and learning of complex numbers, therefore, is to ”realize the need to expand the set of real numbers; adopt the notions for complex numbers; conjugate complex number, modulus of a complex number and operations with complex numbers; adopt the geometric interpretation of complex numbers; adopt the notions complex plane and Riemann sphere; solve equations in the set of complex numbers, and  adopt the metric and topology properties of set of complex numbers, which enables students to prepare for the study of complex analysis” (Anevska,  Gogovska,  & Malcheski, 2015, p. 2574).

In this article we present two approaches – the standard one as reflected by student discourse, and one that uses a variety of numerical representations. 

Traditional approach to complex number system instruction:
The traditional approach emphasizes procedural knowledge and ignores the different numerical representations a number can take on. We will present the method by means of a mathematical discourse on complex numbers between (M), a student who has not studied complex numbers and is in the regular math program, and (E), who has studied complex numbers and is in the advanced math program.
The conversation follows traditional instruction emphasizing procedural knowledge.
M: Tell me about what you've learned in your special program. 
E: We learned complex numbers, and became familiar with i, which is equal to [image: ]. 
M: But  doesn't exist! It's not a number at all. 
E: That's right. They told us it's an imaginary number. 
M: You mean it's not logical, so it's not a number. 
E: It's the solution to the equation x2+1=0.
M: But  x2+1 is positive for all x. So the equation has no solution.
E: We'll assume it exists, and denote it as i, and it isn't real.
M: It looks like you're learning things that aren't logical, they're imaginary. I heard that that's how it is in advanced math.
E: Don't you know that most discoveries that we enjoy today were once just thoughts in the imaginations of smart people and were shunned by the people around them, yet today they are solid facts in our world?
M: Yeah, but you guys are just dreaming about a number that isn't really a number. 
E: Why don't you tell me – what is a real number? 
M: It's a number on the number line. It's certainly something tangible.
E: But a point is also something imaginary. It has no length, no width, no height. How were you convinced that it exists?
M: We learned about it and used the real numbers all the time and I understand it. 
E: We also learned about i and understood it, and learned the complex numbers, and it's easy and quite neat. Our teacher told us that advanced math is usually studied with the aid of imaginary tools.
This conversation indicates that the material is being coerced on the students. They are forced to learn imaginary things. There is usually no backlash from the students as long are they are able to carry out the required calculations. They do not respond because they have become accustomed to this method of instruction.

A multi-representational approach to complex number system instruction:
With this approach, complex numbers are presented in a manner that emphasizes rich interconnections, contributing to the conceptual knowledge of the students and their meaningful understanding of the subject under study (Hiebert & Lefevre, 1986). We present the topic in this manner by emphasizing transition of the various representations of the complex number among different semiotic registers (Duval, 1999).
The teacher stressed to the students that , and not  and  and not , and for every 0<a,  is a positive number whose square equals a; that is, the positive square root of the equation . Because of student errors, the teacher asked one of them to hang the following on the wall:
If a<0 then  is undefined. 
If a>0 then  is the positive square root of .
He stressed that  is a function whose domain is x  0 . For every non-negative number there must exist one and only one value in the range, and it is non-negative. 
In the same lesson in which that remark was made by the teacher, he began to teach the students complex numbers. He opened with a history of the number system; what follows is a summary of that survey:
Man has been familiar with the natural numbers for ages and has studied them extensively. Mathematicians believed that numbers were born with mankind, and thus called them the "natural numbers". 
Integers were defined so that there could be a solution to every equation of the form  (for all natural numbers x). The rational numbers were defined so there could be a solution to every equation of the form , for all integers b, a  0. The real numbers were defined after they discovered that  is irrational, so that there could be a solution to every equation of the form  for all 0<a. 
Teacher: Does there exist a solution to the equation ? 
The students answer: The equation has no solution. They explain their answer appropriately. 
Teacher: Now let's expand our number system so that the equation  has a solution. This equation is equivalent to the equation . Let us denote the number whose square is -1 by . That is, . The students begin arguing with him. 
Student: How can you call it a "number" if it doesn't exist? 
Teacher: It's an imaginary number, it is not real, and it satisfies . 
Student: If we assume it has a solution then the opposite is a solution as well.
Teacher (happy): That's right, and we'll call one of them i. That is, . 
Student: Oh... I see. You mean that i is the positive root of -1. 
Teacher: No, i is not positive. 
Student: So it's negative. Or  is positive. So why shouldn't we denote  as i? 
Teacher: i is neither positive nor negative. It is not a real number. 
Student: So which should we denote as i –  or its inverse?
Teacher (becoming annoyed): One of them. Now let's define the complex numbers..................... 

The complex numbers
This topic should be taught after students have been taught vectors in the  plane. What we know about vector (a,b) is that it is a directed line segment beginning at point (0,0) and ending at point (a,b). (To distinguish between the vector (a,b) and the point (a,b), consider the difference between the number +5 and the point +5). In this article we suggest teaching the topic stepwise as follows:
A. Definition: The vector (a,b) is equal to the sum of the two vectors (0,a) and (b,0). That is, (a,b) = (a,0) + (0,b). The vector (a,0) is the vector on the horizontal axis beginning at the point O on the horizontal axis in the direction of the point a on the horizontal axis, and terminates there. We can replace (a,0) by a for simplicity. We can also explain this differently – vector (0 ,5) is equivalent to vector 5(0 ,1). If we denote (0 ,1) by the arrow  then 
(5, 0)=5  ; for simplicity we denote it by +5. That is, (5, 0) = +5,
while the vector (-5, 0)  may be denoted (-5, 0) = 5(-1, 0) . 
We denote the vector (-1, 0) by . Therefore (-5, 0)=5  . For simplicity we denote it by -5, that is (-5, 0) = -5. To state it generally, we substitute (a,0) by a. 
Now let's try to change the notation (0,b) by some other notation. For example, the vector (5, 0) is equivalent to 5(0, 1). The vector (0, 1) is the vector on the vertical axis beginning at O and ending at the point (0, 1). We denote it by . Therefore . We cannot substitute it by +5 because +5 has already been defined to mean something else. Let's substitute  by i for simplicity (since i looks like ). So, we can now substitute "the vector (0, 5)" by 5i. (Note: we do not need to say "the vector 5i"). 
So, what is i? It is the vector (0,1). Since we are used to calling vectors on the horizontal axis "real numbers", let's call the vectors on the vertical axis "imaginary numbers". Just a use of opposites for terminology.
Thus, we could write:


We could now substitute the expression "vector (a,b)" by  (we do not need to say the word 'vector' here. But note that (a,b) would be meaningless without saying 'vector' or 'point',  since (a,b) has two meanings). 
The number  is composed of two parts: a is the real part (the horizontal component), while  is the imaginary part (the vertical component). We call this a complex number. 
A complex number is a vector in 

Every real number a can be expressed in the form . Therefore every real number is a complex number (with its imaginary component equal to 0), and the set of real numbers is a subset of the set of complex numbers. 
As far as our story on the expansion of the world of numbers goes – while defining mathematical operations and maintaining certain algebraic rules, we can continue the story as follows:
The world of numbers expanded from the natural numbers to the integers to the rational numbers to the real numbers by means of the number line. The real numbers cover the entire number line. We now want to expand the world of numbers, so we'll move out to the plane, obtaining the world of complex numbers. If we want to expand even further, we'll move out to three-dimensional space, where we find an even more intricate world of numbers). 

 B. Absolute value
The absolute value of a real number is the measurement of its length – its magnitude. We can similarly define the absolute value of a complex number. The absolute value of , denoted by │a+bi│, equals the magnitude of the vector (a ,b) , which is equal to [image: ] . 


C. The inverse of a complex number: The inverse vector of (a ,b) is the vector (-a , -b); the inverse of  is therefore -a-bi. That is the geometric interpretation of the inverse operation. 

D. Addition: The sum of the two numbers (a + bi)  and ( c + di) is equal to the sum of the two vectors (a, b)  and (c, d).
Thus, (a + bi) + ( c + di) = (a+c) + (b+d)i, representing the diagonal of a parallelogram that begins at the origin (0,0), and two of whose sides are the two vectors (a + bi) and ( c + di).
We have now demonstrated a geometric interpretation of the addition operation. 
Now we'll define multiplication of complex numbers. This operation, too, has a geometric interpretation.
But first we'll need to learn polar coordinate representation of complex numbers.


E. Polar coordinate representation of complex numbers:
Let a>0. When we rotate the vector a (a is a real number so it is a vector) counterclockwise around the origin O by angle , 


(c, d)
  + a

we obtain a new vector with magnitude a that forms an angle  with a (or that forms an angle  with the positive direction of the x axis, as the textbooks indicate). The intersection of this vector with the unit circle is (cos , sin) . This vector therefore equals a(cos , sin) , or (acos , asin). 
Conversely, every vector (c, d) formed by rotation of vector  around the origin O by the angle . Thus, (c, d)= (cos , sin ) and .
 is called the argument of c + di. 
The angle  , , is the angle that satisfies the following two constraints:
    and    
For example:
)1( 
)2( 
)3( 
We see that the argument of every positive number is 0 while the argument of every negative number is 180 . 
Every complex number has a polar coordinate representation of the form r(cos + sini), where r is the absolute value of the number and  is its argument (). To define the product of two complex numbers let us recall the product of two real numbers.
 1) 6= 23. The argument of each of the numbers +2,+3,+6 is 0. 
|
|
|
|
0                   2         3                                                6

2)  (-2) 3 = (-1)  (23) = -6. What we did was we calculated the product of the magnitudes -2 and +3 of the two vectors, obtaining . We then rotated the vector +6 at an angle of 180 degrees and obtained -6. Note that 180 degrees is the argument of -2. 
|                                                   |                    |                   |                                        |
-6                                                -2                   0                  2                                       6


3) (-2)  (-3) = (-1)  (2)  (-3)=(-1)  (-6)=+6. What have we done here? We multiplied the vector -3 by the magnitude of the vector -2, and obtained -6, and rotated it by 180 degrees in the counterclockwise direction; that is, we rotated it by an argument of -2. 
|                                        |          |                         |                                                |
-6                                     -3        -2                        0                                              6

Now let's apply that to complex numbers.
F. Multiplication of complex numbers
The magnitude of the vector cos + sini equals 1 because .
Let us define  as the vector obtained by rotating a + bi by the angle  in the counterclockwise direction. 
If we assume that the polar coordinate representation of a + bi is ,
then  is the vector formed by rotating +r by the angle  and then by angle ; that is, the vector formed by rotating r by the angle  (counterclockwise). 
  That is, 
             
and in particular 
Now let's assume that  
                        
We therefore define 
That is, the product equals the complex number formed by multiplying one of the numbers by the magnitude of the second, and the rotation of the result by the argument of the second. It is equal to the rotation of  by the sum of the two arguments. 
Just as we have seen a geometric interpretation of addition, absolute value and inverse, we now see it with multiplication as well. 
What is the value of i2? 
Clearly the argument of i is . Therefore 
 ( rotating i by the argument of i we obtain -1). 
i
-1

Since i2 = -1,  i is one of the solutions of the equation x2 = -1 where the target set is the set of complex numbers. (The vectors  i and -i are the two vectors both of whose squares equal the vector -1). 

G. Multiplying complex numbers without calculating arguments
Let's assume that , 
and that , 

                        , 
By definition of 

we obtain:
(a+bi)(c+di) = ac –bd +(bc+ad)i

We'll now show that opening parentheses is a permissible operation:
(a+bi)(c+di) = ac+adi +bci + bdi2
                      = ac + (ad+bc)i –bd
                      =  (ac –bd) + (ad +bc)i           

[bookmark: _Hlk9603612]By opening the parentheses, we obtained the same result, indicating that it is permissible to open parentheses in complex numbers. 
De Moivre's theorem: 

It is easy to prove by induction that the product of n complex numbers is the number obtained by rotating the product of their dimensions by the angle equal to the sum of their arguments. 
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