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Abstract
	Deep nNeural nNetworks (DNNs) introduce offer phenomenal performance in an ever-increasing  continuously growing number of applications, such as computer vision, natural language processing, video analytics, and mission-critical systems. The growing computational complexity of such models has propelled the development of specialized accelerators that offer improved performance and energy efficiency. Advanced VLSI process nodes have further intensified the development of machine learning (ML) accelerators by providing remarkable transistor miniaturization and power efficiency. Nonetheless, these process nodes are vulnerable to transistor aging, which can lead to a gradual decline in the performance of ML accelerators performance and prediction accuracy and introduce significant reliability concerns. In this work, we demonstrate the firstpresent a comprehensive study of how aging aeffects on systolic arrays, which are atin the core of many machine learning (ML) accelerators, such as Google’s Tensor Processing UnitTPU. Our experimental analysis indicates that systolic arrays can incurundergo asymmetric aging, where logical elements can age at unequaldifferent ratesly. In addition, we show that asymmetric aging can produces persistent and transient errors that manifest in the datapath of a systolic array, which in turn may cause major faults in their the overall operation of these arrays and thereby severely degrade thehit resiliency of the ML models resiliency. For example, considering only 3% of the overall transient failure events, the Top1 prediction accuracy of the ResNet-18 model can drops by 40%. We introduce hardware mechanisms and design flow solutions which that mitigate the impact of asymmetric aging reliability impact on ML accelerators and achieve the original Top1 prediction accuracy of the DNN model. 
1. Introduction
	Deep Nneural nNetworks (DNNs) play a major role at the core ofin numerous applications such as recommendation systems, natural language processing, and vision recognition. DNN models demonstrate remarkable capabilities ofcan learning and recognizeing complex patterns and features in large sets of datadata sets. They are also computationally intensive and require significant processing resources for both training and inference. DNNs include consist of multiple layers, where each layer comprises a large-scale matrix multiplication or a convolution operation, which are is usually followed by an activation function. Both matrix multiplications and convolutions entail incur many numerous multiply and accumulate (MAC) operations and are recognizedconstitute as the lion’s share of the machine learning (ML) processing workload. For example, GoogLeNet ([1]) and ResNet-101 ([2]) require approximately 1.5 and 7.8 billion MAC operations, respectively, for a single inference assuming an image resolution of 224x224 224 × 224 pixelss image resolution. 
	The deployment of DNNs in diverse platforms with different processing capabilities, real-time requirements, and energy constraints have has encouraged the development of specialized accelerators. For example, in 2016, Google first introduced the Tensor Processing Unit (TPU) ([3]), which. It  uses a 256 ×x 256 two-dimensional systolic array (SA) architecture dedicated to accelerating matrix multiplication acceleration, and it has achieved remarkabledramatically accelerated performance speedup than with respect to traditional CPUs. A SA ([4]) consists of a two-dimensional mesh array of tightly coupled processing elements (PEs) that can forward data directly between PEs in the same row and column through unidirectional connections. Each PE has a MAC unit and a local storage element that is used to stores intermediate computations. Recently, DNNs have also emerged been used into mission-critical systems such as autonomous vehicles, medical appliances, finance, and security systems ([5]–[8]). All these new applications set a high bar for DNNs resiliency and reliability, which is are enforced by regulatory agencies and industry standards ([9]). 
	Over the last decade, the semiconductor industry has continued to push the boundaries of VLSI technologies, with several notable trends.: New process nodes have continued to keep pace with Moore’s law and miniaturize transistors into nanometric dimensions. New materials and devices which that offer improved performance and reduced power consumption have been developed. However, these latest advances have aggravated exposed the susceptibility of semiconductors to reliability concerns, particularly those induced byconcerns regarding transistor aging. Transistor aging is the gradual degradation over time of a transistor’'s performance over time due to Hot hot cCarrier iInjection (HCI) and the bBias tTemperature iInstability (BTI) ([10]–[12] ) effects that, which are described in Section 2. Our focus in Tthis study focusesis on BTI, as whichit is widely acknowledged as the predominant aging mechanism in modern integrated circuits (ICs).
	Transistor aging can significantly impact affects the reliability of DNN accelerators, resulting not only in substantial performance degradation but also inin substantial performance degradation and serious circuit failures due to setup timingsetup-timing violations. Asymmetric aging ([13), which occurs when the aging degradation is unevenly distributed among logical elements, can result occurs when the aging degradation is unevenly distributed among logical elements, resulting in even more severe reliability issues that can, potentially leading to overall system failure. Asymmetric aging can not only intensify setup violations but alsointensifies setup-timing violations and introduces hold- timing violations, which cannot be mitigated by reducing the clock frequency.
	TThis paper presents the first comprehensive uses SAs as a case study to determineof the impacth ofow asymmetricasymmetric aging on affects DNN accelerators using systolic arrays as a case study. We demonstrate that asymmetric aging can causes transient faults in DNNs, thereby resulting in decreasinged prediction accuracy and confidence levels. In mission-critical systems, such faults can have catastrophic consequences, potentially leading toeven a violatingon of functional safety. Our experimental analysis encompasses uses three frameworks: (i)1. functional simulations that use different workloads to extract the aging profile of systolic arraySAs; 2(ii). detailed timing analysis coupled with aging models that are run on a physical implementation of a systolic arraySA to pinpoint the failure points resulting from asymmetric aging; and (iii)3. an error- injection model that represents asymmetric aging transient errors is used to evaluate the overall impact on DNNs performance. 
	Our The experimental resultss indicate that systolic arraySA DNN accelerators can experience asymmetric aging, which resultsing in persistent and transient errors that propagate in the datapath of the array, which can cause not only causes significant faults in the systolic arraySA but also severely impacts the resiliency of machine learningML models. In addition, our analysis reveals four primary mechanisms that encourage asymmetric aging in systolic arraySAs: (i)1. DNN sparsity, (ii)2. underutilization of the dynamic range for value representation, (iii)3. clock gating, and (iv)4. lack of symmetry between logical cell delays and wire delays. 
	Our study proposes both hardware and design flow approaches to address the impact of asymmetric aging on ML accelerators. We evaluate the effectiveness and overhead of our solutions on an SA. Our area and power analyseis shows that, with nearly 1% logical cell area overhead and 7.85% power overhead, we can fully mitigate the effect of the asymmetric  aging impact onon the prediction accuracy of model Top1 prediction accuracy. AlternativelyIn addition, we also show that a 7% reduction in the SA clock frequency can avoids power overhead.
	The primary contributions of this paper is are as follows:
1. We use SAs as a case study to perform analyzean in-depth analysis of transistor aging in DNN accelerators using systolic arrays as a case-study and demonstrate that asymmetric aging can lead to major faults and reliability concerns.
2. We identify determine that data sparsity, power-saving measures, underutilization of dynamic range of values, and asymmetry in timing delays between wires and cells can promote asymmetric aging.
3. Our analysis shows that the spatial location of PEs can contributes significantly contribute to the likelihood of incurring asymmetric- aging-related faults.
4. We identify the internal elements and logical paths of a PE that are susceptible to asymmetric aging.
5. Our The proposed fault model indicates that asymmetric aging transient errors can accumulate within the PE and spread to neighboring PEs and successive DNN layers.
6. We offer hardware- and design- flow solutions to mitigate asymmetric aging in systolic arraySAs and demonstrate that our techniques can completely avoid degrading the prediction accuracy of the Top1 DNN model Top1 prediction accuracy hit.
	The remainder of this paper is organized as follows: Section 2 presents the background and prior works. Section 3 introduces our experimental analysis procedure for detecting asymmetric- aging-induced faults in systolic arraySAs. Section 4 presents the fault- analysis model and examines the impact on DNN performance in systolic arraySAs. Section 5 presents our asymmetric aging mitigation approaches and experimental analysis. Finally, Section 6 summarizes our the conclusions and suggests future worksresearch.
2. Background and Prior Works
	This section provides an overview on overviews SA architecture, transistor aging, asymmetric aging, and DNN- resiliency- related works.

2.1 Deep Neural Network DNN Accelerators
	
	DNN hardware accelerators are specialized hardware devices designed to accelerate the execution of DNN models. There areS several types of DNN hardware accelerators exist, such as gGraphical pProcessing uUnits (GPUs) [[14]], aApplication-sSpecific iIntegrated cCircuits (ASICs) [[15],] which are custom-designed for specific applications, and TPUs, which use SAs for both ML training and inference. 
	A Systolic Array (SA), which is we use in our case -study offor DNN accelerators, is a homogeneous two-dimensional grid of processing elements (PEs), usually built from multiply and MACs that are work rhythmically coherently working together for the purpose ofto implement matrix multiplication. The inputs are passed from one PE to its neighbors, and every PE conducts a multiply-accumulate operation between the inputs and stores the intermediate result locally, then transmits the inputs for the adjacent PEs for the next cycle. Due toGiven its the well-defined interactions between neighboring PEs, tasks could can be executed efficiently and enables data reuse and scalability is possible [16]. 
	SAs have different forms and shapes and could may be used for various tasks. In our work, we use the state-of-the-art output stationary (OS) SA variant, which is used to accelerate and efficiently execute matrix multiplication in many different DNN- and ML- related applications. Figure 1 depicts shows the state-of-the-art OS-SA architecture.
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Figure 1 – Output-Stationary Systolic Array
	
	Since DNNs are computation and memory intensive, raising,  the demand for DNN hardware acceleration to a critical levelthe demand for DNN hardware acceleration has become crucial. An example of an SA-based DNN hardware accelerator is Google’'s Tensor Processing Unit (TPU). The TPU employs uses a SA of 256 ×x 256 MAC units to accelerate matrix multiplications, which can achieve a significantly increase performance increase compared withto a CPU [3]. MIT Eyeriss is another example of a SA accelerator for convolutional neural networks [17]. Another commercially used SA implementation is Tesla’s fFull sSelf-dDriving (FSD) chip[18]. In addition, SAs have been used in multiple fields, for example, for neurocomputing [19], language recognition [20], and character string manipulation [21].

2.2 Transistors Aging
	Transistor aging is the deterioration over time process of transistors in logical elements. There are two physical mechanisms that govern transistor aging: Hot Carrier Injection (HCI) and Bias Temperature Instability (BTI) [10]–[12]. HCI is inducedoccurs when high kinetic current flows through a transistor, while whereas BTI is inducedoccurs when a static voltage (logical state) is applied to the gate of a transistor without current flow for a long period, typically ranging from 10 seconds s to several weeks [22]. Both BTI and HCI increase the transistor threshold voltage, which leads to an increases thein switching delay. In tThis study, we focuses on BTI becausesince it is recognized as the  most dominant aging mechanism in modern ICs integrated circuits [23], [24]. The BTI aging model we use to represent the increase in threshold voltage increase is based on the reaction-diffusion model, which is the main model considered used byby  the semiconductor industry [24]–[27]. Equation 1 presents The threshold voltage Vth increment, , due to BTI stress is: 


Equation 1 – the Reaction-Diffusion model for increment inVth .increase
 
Where where Ea is a constant, T is the operating temperature, K k is the Boltzmann’s constant, t0 is the time when the BTI stress starts, and t is the overall time. It has been found that p-type transistors are more susceptible to BTI (known as NBTI) than n-type transistors (known as PBTI) [28]. Therefore, logical gates with a constant idle state of logical 0 are most vulnerable to aging. A common method to measure the BTI stress profile on logical elements is the signal probability (SP). The SP represents the likelihood that a signal will have a logical value of 1, and it is measured as the ratio of the time that a signal spends in the logicalis 1 state to the overall time. Lower Decreasing the SP increases the likelihood of BTI in the circuit and degradesd the circuit performance over time or even causes failure over time.	Comment by Brett Kraabel: Please ensure that the intended meaning is maintained.
	BTI can lead to a significantly degradeation the performance of ain logical circuit performance, and if the degradation is symmetric among all logical elements, it can be mitigated by reducing the clock frequency. However, when the degradation is due to asymmetric due to aging, it may produce even more severe reliability concerns. 
	 2.3 Asymmetric Aging
	Asymmetric aging occurs when the transistor degradation of the transistors’ performance is nonuniformly distributed between logical elements such as flip flops, gates, clock tree buffers, and memory cells. Due toThe its high complexity of, asymmetric aging presents significant challenges for integrated circuits in terms of modeling, analysis, prediction, and prevention for ICs, making it a major reliability concern for reliability. Moreover, incorporating detailed timing analysis that takes considers aging into account is non-trivial because it depends on the workload and operating conditions, a capability that is absent from in conventional design tools [22]
	As it will be presented next,In the next three sections, we identify three primary mechanisms that promote asymmetric aging in SAs: clock gating, DNN sparsity, and asymmetrical delay between logical elements and wires. Each of these mechanisms can, could independently lead flead toor  asymmetric aging, eventually causing severe timing violations and both permanent and as well as transient faults. The following discussion provides more insight into each of these mechanisms.  

2.3.1 Clock gGating
	One widely accepted method for dynamic power saving is clock gating [29], which involves selectively stopping blocking the clock signal into currently unused certain parts of the circuit that are not currently in use, thereby reducing dynamic power consumption. By turning off the clock to in idle parts of the circuit, unnecessary switching activity and associated power consumption are eliminated. Clock gating is typically implemented by using a clock gate cell that contains an AND gate or ancontaining an AND or OR gate. When the clock is enabled, the clock signal is allowed to pass through the clock gate cell. When the clock is disabled, the output of the gate is held at a constant logic value, blocking the clock signal from passing through the gate. 
	Clock gating by nature can induces BTI since because it intensifies the idleness on the clock network and on combinational circuits. In addition, it can encourages asymmetric aging, as it is illustrated in Figures. 2( a). and 2(b). In Fig.ure 2(a)2a, the clock gate is used in the launch path, causing greater aging in the launch path than in the capture path. This asymmetry can lead to setup timingsetup-timing violations. On the other handConversely, in Fig.ure 2(b)2b, using the clock gate in the capture path can intensifiesy the aging in that path compared withto the launch path, resulting in hold- timing violations.
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(a)
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(b)
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(c)
Figure 2 – (a) Possible setup violation due to asymmetric aging induced by clock gating launch path., (b) Possible hold violationhold-timing violation due to asymmetric aging induced by clock gating the capture path., and (c) Possible timing violations due to the asymmetry between the accumulated delay of logical cells and wires.

2.3.2 Asymmetry bBetween lLogical cCell dDelays and wWire dDelays
	Another cause of asymmetric aging is the asymmetry between the accumulated delay of logical cells and wires. While Although logical cells are affected by BTI, wires are not impacted by this phenomenon. When launch and capture paths have different accumulated logical cell delays, BTI can induce asymmetric aging, as shown in Fig.ure 2(c). If the accumulated logical cell delay in the launch path is greater than that in the capture path, it may lead to setup-timing violations may occur. On the other handConversely, if the accumulated cell delay in the launch path is smaller than that in the capture path, it may cause hold-timing violations. As illustrated in Fig.ure 2(c), both launch and capture clocks are balanced with 170 ps clock latency. However, the accumulated clock buffer delay in the capture path is 150 ps, while whereas the clock buffer total delay in the launch path is 100 ps. Such asymmetry between the accumulated cell and wire delay is considered in conjunction with BTI may result in hold- timing violations due to the delay shift in the capture clock. Previous works such as [19] have ignored wire delays; however, our experimental analysis shows that this phenomenon can contribute significantly contribute to asymmetric aging.	Comment by Brett Kraabel: Please ensure that the intended meaning is maintained.	Comment by Brett Kraabel: Do you mean "delayed"?

2.3.3 Deep neural networkNN sSparsity
	DNNs can exhibit a high degree of sparsity due forto several reasons, including:
1. tThe usage of certain activation functions, such as ReLU [[30]];.
2. vVarious DNN optimizations to avoid overfitting, such as dropout regularization, pruning, and weight decay [31];.
3. sSparsity in the DNN model [[31];]
4. wWhen the dynamic range for value representation is not fully utilized (e.g., , for example, when the data type used is 16-bit wide, but weights and activations only ustilize 8 bits).
As noted earlier, the constant voltage values bias of the logical 0 state can promote BTI in DNN accelerators, particularly those induced by sparsity. Moreover, since sparsity is not uniformly distributed across all logical elements and paths in the SA, it can cause asymmetric aging may result. For example, if the most significant bits in activations and weights exhibit a high degree of sparsity, it may intensify aging may intensify on those logical paths with respect to other elements in the SA.

2.4 DNN- Resiliency- Related Works
	
	The urge need for reliable DNNs accelerators, hasve motivated numerous researchers to study and explore the resiliency andthe robustness against both permanent and transient faults of SA-based DNN accelerators against faults, both permanent and transient. Permanent faults in data paths were studied in multiple works. For example, in [33] and [34] the authors showed that, even for extremely low fault rates as low as 0.003%, the DNN’s accuracy drops significantly dropped from 74.13% to 39.69%. In addition, the authors proposed two techniques for to enhance fault tolerance enhancement,: fFault-aware pruning  (FAP) and fFault-aware pruning and retraining (FAP+T)., Bboth techniques allow the TPUs to work with fault rates as high as 50%. By using the dDiscrete tTime Markov cChain formalism, the authors ofin [35], have analyzed permanent manufacturing faults showing and revealed an that the accuracy drops from 97.72% to 10.15% infor some cases. 
	On the other handConversely, in [36] [37] explore the impact ofhow transient faults on affect SAs and DNN models’ inference accuracy have is explored, along with proposing, high-performance and, energy-efficient design for fault prediction and mitigation in near-threshold operation mode for TPUs. In Reference [38], examined timing error arising from near-threshold computing has been examined. Additionally, S. Kundu et al. in [39] has provided a comprehensive study of both on permanent and transient faults for quantized DNNs in SA-based accelerators and assessed inconducted a detailed assessment of their performance in the presence of these errors. Moreover, the authors have presented a comparatively analyzedsis of the how the decrease in accuracy drop according todepends on the fault's location (bitwise and layer-wise) and proposedut forward efficient methods for carrying out in-field functional testing. First, they have showedn that stuck-at-1 faults producehave a much larger impact effect on accuracy compared tothan stuck-at-0 faults. Second, faults at in the most significant bits (MSBs) have a larger impact than faults at in the least significant bits (LSBs). Finally, they found that faults in the first two layers have a greater impact than those in lower the other layers. Nevertheless, none of the works mentioned above examined the impact of aging-induced faults. 
	Aging-induced faults in SAs have only been mentioned in only a few prior works. In Reference [40] proposed a new quantization method is proposed for theto elimination ofe aging guard bands, thus minimizing aging-induced frequency degradation. As part of their work in [41] to accelerate timing simulations in SA-based accelerators, S. Holst et al. have proposed a new method to measure DNN accuracy losses caused by arbitrary timing faults. They have also presented discussed how injecting one small-delay random defect in different numbers of PEs can affects the inference accuracy.
	Additional works such as [42]–[44] comprehensively have conducted thorough and comprehensive reviews on the manifestation and mitigation techniques (hardware and software) of soft errors induced from multiple sources, such as radiation, process variations, temperature, and aging, in DNN accelerators, including SA-based acceleratorsones. However, none of these works approached discussed the faults induced from by asymmetric aging.
	To the best of our knowledgeThus, no previous work appears to havehas approached studied the asymmetric- aging-induced timing errors in SAs or studied how they affecttheir impact on DNNs' inference accuracy. Other works have approached the asymmetric- aging phenomenon in from different contextsdirections:. In [13], the authors introducedd an asymmetric- aging-aware microarchitecture to mitigate the phenomenon's impact of asymmetric aging on execution units, register files, and memory hierarchy in microprocessors with minimal overhead. Furthermore,In [32], the authors proposed an algorithm for analyzing the static timing analysis of asymmetric aging in clock networks.
3. Asymmetric- Aging-Induced Faults in Systolic Arrays
	Detecting faults induced by asymmetric aging in SAs involves two experimental phases. In the first phase, we analyze the aging profile of various SA architectures and DNN models by evaluating the signal probabilitySP of the microarchitectural elements in the systolic arraySA. In the second phase, we perform a fully implementation of the systolic arraySA, including synthesis, place, route, and timing analysis, by using aging models that represent BTI timing degradation. Through timing analysis, we can pinpoint the logical paths that suffer from asymmetric-aging-induced timing violations because of asymmetric aging.
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Figure 3 – A Systolic Array Processing Element

	Figure 3 illustrates shows a processing element (PE) cell in the examined SA under examination. The weight and activation inputs are sampled by registers and forwarded to the neighboring PEs. To reduce clock cycle time, the MAC operation of the PE is pipelined such that the multiplier output is sampled by a register and used in the next clock cycle by the accumulator. The illustrated PE employs uses three clock gates to save energy consumption in the following two scenarios:
1. As Given that certain PEs may not be involved in matrix multiplication operations (which will beas described later), a clock gate (clock gate A) is used to disable the clock to f the PE in this case.
2. When either theGiven zero activation or zero the weight is zero, another clock gate (clock gate B) is used to disables the clock of the output multiplier sampling register. A third clock gate (cClock gate C) is used to disables the clock to the accumulator register in the next clock cycle.
3.1 Experimental Environment
Our experimental analysis is based on two environments: a simulation environment that emulates the operation of an OS-SA and extracts the aging profile, and a detailed timing analysis EDA electronic design automation environment which that examines the impact of asymmetric aging based on the aging profile.	Comment by Brett Kraabel: Please ensure that the intended meaning is maintained.
For the aging profile extraction, we have run a co-simulation that consists of a C++ SA simulator which that runs in conjunction with a Pytorch-based DNN model written in Python. Our SA simulator is configured to simulate a 128 × x128 output stationaryOS SA. The DNNs that we have used in Pytorch are uses the DNNs ResNet-18 and ResNet-50 models [[2]]. On the pre-trained DNN models Wwe have performed post-training quantization on the pre-trained DNN models such that weights and activations are represented as 8-bit integers and unsigned -integers, respectively. In addition, we have assumed an 8 × x8- bits integer multiplier and a 32-bit integer accumulator. For the inference process, we have used 100 images chosen randomly from the ImageNet dataset [[14]].
For the timing analysis, we have wroteitten the SA in SystemVerilog and synthesized it for 28 nm processing technology using Cadence® Genus®., and fFor the place-and-route, we have used the Cadence® Innovus® implementation tool. We assumed aThe SA clock frequency assumed isof 340 MHz and. We have adopted as our aging model the reaction-diffusion model as our aging model, which is widely accepted by both industry and re-search communities as the preferred model for BTI aging [25], [27], [45], [46]). The timing analysis with the aging model is similar tolike the method used in [[13], [47]]. The propagation delay of logical elements is derated by their corresponding degradation factorir corresponding degradation factors derate the propagation delay of logical elements, as a function of their SP extracted in Sec.tion 3.2.
Figure 4 illustrates shows the delay shift of gates under different SPs using our aging model. It also presents the absolute delay shift of gates under variable SPs relative to gates that are symmetrically aged with an SP =of 0.5. The comparison demonstrates the asymmetrical delay shift of logical elements under constant BTI stress compared to with other elements within a logical circuit that are symmetrically aged. The results show that gates with constant stress (when SP is = 0 or 1) experience a 2.0%–-2.5% asymmetric delay shift relative to gates with SP = 0.5. These results reveal an interesting observation that gates with a static stress of 1 may also suffer from this phenomenon, despite having a small minor BTI stress. However, when compared to with gates with an SP =of 0.5, the delay shift becomes significant. It's worth noting that tThe observed asymmetric delay shift, even one as small as 2%–-3%, can significantly impact circuit reliability.

[image: ]
Fig. 4.  Frequency degradation and absolute asymmetric delay shift over a ten-year lifetime.

3.2 SA Systolic Array Aging Profile 
The aging profile of the SA is described by the measurements of the SP and idleness of logical elements within every PEmeasured SP and the idleness of logical elements within every PE describe the aging profile of the SA. Figures 5 and 6 illustrate show a sample of heatmaps for activations, weights, multiplier output, and accumulator for ResNet-18 and ResNet-50, respectively, on a subset of ImageNet images. One of our first observations is that matrix multiplications and convolutions within the DNN do not exploit the full spatial dimension of the SA. For example, when the dimensions of a matrix multiplication are smaller than those of the SA dimensions, unused rows and columns are clock- gated due to power power-saving considerations and thereforeby are kept idle. As a result, PEs in the upper rows and columns exhibit are significantly lessower  utilized,ation which can encourage asymmetric aging relative to all other PEs. We partition each SA into four regions: Region A comprises ofcontains the lower 68 lower rows and columns, region B includes contains the 68 lower rows and upper 64 upper columns, regions C encompasses contains the upper 60 upper rows and lower 64 lower columns, and region D spans containsof the remaining rows and columns. 
Our experimental study suggests that logical elements within the SA may experience asymmetric BTI stress, and thereby can age differently while inducing critical timing violations. We summarize in Table 1 the root causes for these potential violations, which we group into the following classes:
1. SA utilization. – Our observations indicate that SA regions B, C, and –D are incur underutilized,ation which incurs idleness and BTI stress. Thereforeby, they can become susceptible to asymmetric aging, which can induce both setup- and hold- timing violations.
2. Dynamic range. – When Not fully using the dynamic range of value representation cannot be fully utilized, it increases the likelihood that certain bits or signals will beare under in a constant logical state and thereby incur asymmetric aging. This can encourages BTI stress on logical computational elements, increases their propagation delay, and results in setup-timing violations.
3. Sparsity. – Exploiting sparsity can save unneeded operations and help reduce power consumption. However, our analysis indicates that sparsity can encourages BTI stress on logical elements and on the SA gated clocks. When the BTI stress is applied to logical elements, itapplied to logical elements, BTI stress may cause setup-timing violations. HoweverIn addition, in the case of gated clocks, BTI stress can promotes also hold-timing violations. 
In the remaining discussion of our experimental analysis, we focus on ResNet-18, although similar behavior can be observedoccurs with in ResNet-50.: 
Activations. – In region A, the SP of activation bits 0-–5 ranges from 15%–-19%, while bits 6 and -7 have a significantly lower SP (<0.25%) due to two reasons:because (i1) lack of utilization of the full dynamic range of the Int8 representation is underused, and (ii2) high sparsity. In regions B, C, and –D, the SP of all activations is even smaller than 5%, which is attributed to the low utilization of these regions. 
Weights. – Unlike the activations, the SP of weights is approximately 50% in region A. However, in regions B, C, and –D, the SP is lower thanis less than 15% due to the low utilization of these regions.
Multiplier output. – The SP of bit 0 and bits 1–-15 of the multiplier output in the SA falls within the range of 2%–-10% and 4%–-20%, respectively. The least significant bit of the multiplication product has a lower SP compared tothan the other higher-order bits because the likelihood of the product of two arbitrary integers being even is 0.75. Our analysis indicates that the low overall low SP of the multiplier can be attributed to the following factors: 1.(i) rRelatively low utilization of regions B, C, and –D, (ii)2. hHigh sparsity of activations, and (iii)3. lLow utilization of the 16-bit value range.
Accumulator –. The SP of the accumulator is distributed over a much broader range than the multiplier output: 13%–-50% and 15%–-72% for bits 0-–15 and bits 16-–31, respectively. The high-order bits have a higher SP for two reasons: (i)1. the accumulator values are spread across a broad dynamic range of values, and (ii)2. the two’2’s complement representation for negative values, both increase the likelihood of one1’s in the most significant bits. In addition, regions B, C and –D have lower SP relative to region A due to their lower utilization.
Gated clock. – Figures 7(a) and 7(b) illustrates show the toggle rate (TR) of the accumulator and multiplier gated clock for ResNet-18 and ResNet-50, respectively. The gated clock toggle rate is governed by the sparsity of weights and activations in the DNN, (i.e., whenever either the weight or activation is zero, the clock is gated). While clock gating can help save reduce energy consumption in by the SA, it intensifies the BTI stress on the gated clock tree branch and may encourage asymmetric aging. Although region A exhibits has the highest toggle rate reaching of nearly 40%, it is significantly lower less than the maximum toggle rate of a free running clock (100%). This is explained due toby the high extremely sparseity of activation, which encourages clock gating. The remaining other regions have toggle rates within the range of 5%–-27% due to bothbecause of lower utilization by the DNN model and the highextremely sparseity of activations.
3.3 Timing Analysis 
	The second phase of our experimental analysis involves detailed timing analysis using aging models. We analyze all logical paths in the SA and partition them into the following groups, as shown in Fig.ure 8:
1. A2A: The logical paths between the sampling register of the input activation and the neighbor cell activation register.
2. W2W: The logical paths between the sampling register of the input weight and the neighbor cell weight register.
3. AW2M: The logical paths that start from the activation sampling register or the weight sampling register, propagate through the multiplier, and end terminate at the multiplier sampling register.
4. M2AC: The logical paths that start from the multiplier sampling register, go through the adder, and end at the accumulator register.
5. AC2AC: The logical paths that start from the accumulator register, go through the adder, and return to the accumulator register.
The design of the SA has been implementedwas designed by using the synthesis and place-and-route tools described in subsection Sec. 3.1. The SA timing analysis have revealsshown no timing violations;, however, when the impact of asymmetric aging is considered, the timing validation tool reports severe timing violations for both setup and hold.
	Tables 2 and 3 summarize the detailed timing analysis results for the SA when consideringwith asymmetric aging. The setup timingsetup-timing analysis indicates that the path group from the 32-bit accumulator output to the accumulator input (AC2AC) is the most susceptible to BTI since it is the critical timing group of the SA. Table 2 shows that the AC2AC group experiences the highest degradation in worst negative slack (WNS) in all regions, dropping from 0 ps down to -−174 ps. Table 3 also shows that the number of setup-timing violations for the AC2AC group is in the range of 14 ,000 to 17 ,000 in every region. The M2AC group also experiences setup violations due to aging, but their its WNS and the number of violating paths are smaller less than those introduced by the AC2AC group. The remaining group paths do not exhibit any setup violations;, however, since their WNS droppeddecreased, their resiliency is degraded.
	Tables 2 and 3 also present the results of the hold- timing analysis of the SA. As opposed to setup-timing violations, which can be mitigated by reducing the SA clock frequency, hold-timing violations do not have anycannot be mitigatedion and thereby they are even more severe than setup-timing violations. In In the hold hold-timing analysis, asymmetric aging affects two opposing mechanisms. The following discussion summarizes our observations with respect tofor each path group:
	A2A. – The A2A group incurs hold- timing violations in all regions with a worst negative slack (WNS) of -−4 ps, with regions B and D having the highest number of hold-timing  violations. Our timing analysis indicates that, despite the high utilization of region A, it also experiences hold-timing violations. This is attributed to the asymmetry between the accumulated wire delay and the logical cell delay (as discussed in subsection 2.3) in certain paths, as discussed in Sec. 2.3. In addition, the timing violations in regions B and D are induced by the low utilization of these regions in conjunction with the asymmetry between the accumulated wire delay and the logical cell delay. Our timing analysis indicates that all activation signals traversing from the boundary of regions A to B and C to D have make additional contributions to the timing violations in these regions. This is due to the capture clock in regions B and D, which incurs a larger greater delay shift than the launch clock in regions A and C, resulting in hold- timing violations. The hold-timing violations in regions C are also contributed bydue to its low utilization and the asymmetry between logical and wire cell delays. Region C presents lower numberhas fewer of violations than region A due to because  its smaller number of has fewer rows. Our setup timingsetup-timing analysis indicates that the A2A group does not incurs no any setup-timing violations due to aging since because it has a significant positive timing slack.
	W2W. – The W2W group also incurs hold-timing violations in all regions with WNS in the range of -−2 to -−1 ps. The asymmetry between the accumulated cell and wire delay causes hold-timing violations in all regions. These hold violations in regions B, C and –D are also attributed due to their low utilization. All weight signal crossing from regions A and B to regions C and D, respectively, encounter hold- timing violations. The low utilization of regions C and D creates a bigger delay shift in the capture clock with respect to the launch clock. The higher more numberous of rows in regions A and B, compared with regionsto C and D, is a contributesing factor to the increased number of hold violationhold-timing violations.
	AW2M. – The AW2M group has a hold WNS of -−3 ps in all regions, where regions A and B have a greater number of hold-timing violations due to their larger more numerous ber of rows. Our timing analysis indicates that hold-timing violations are induced by a combination of factors: (i)1. activation sparsity, and 2.(ii) asymmetry between the accumulated wire delay and cell delay. In both cases, the capture clock incurs a larger delay shift, which results in hold violationhold-timing violations. The AW2M group does not presents any no setup violations due to asymmetric aging, however, its positive timing slack is reduced in approximately 130 ps.
	M2AC. – The M2AC path group has a hold WNS of -−2 ps and the largest number of violating paths. In this group, both the launch clock and the capture clock are governed by the same control logic, and thusso all clock buffers on the launch and capture clock branches age symmetrically. However, our timing analysis indicates that all regions incur hold violationhold-timing violations due to the asymmetry between the accumulated cell and wire delays. This asymmetry is emphasized by the high sparsity, which intensifies the aging on both the launch and capture clocks. In addition, the low utilization in regions B, C, and –D further encourages clock tree aging, resulting in an even higher greater number of violations than in region A. The M2AC group also presents setup timingsetup-timing violations with a WNS of -49 ps. Our timing analysis indicates that this is attributed to the high sparsity on the accumulator path, which accelerates the timing degradation on the logical elements in the M2AC path.
	AC2AC. – The AC2AC path group is the longest path in the SA and therefore incurs the most severe setup violations due to the aging of the 32-bit adder. The setup violations are ascribed to (i)1. the low utilization of regions B, C and –D and 2.(ii) the lack of utilization of the full 32-bit dynamic range in all regions. Additionally, this path group does not presenthas no hold- timing violation even when asymmetric aging is considered. In this case, both launch and capture paths of the clock tree are the same since the path begins and ends in the same register, and as a result they degrade symmetrically. In addition, the aging effect slows down the logical path between the accumulator output to the accumulator input, so  and thereby it contributes to improved hold margins. 
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Figure 5 – ResNet-18 sSignal probability heatmaps measurements for ResNet-18 inference on a sample of ImageNet images: (a) Accumulator accumulator bits 0-–15, (b) Accumulator accumulator bits 16–-31, (c) Weight weight bits 0–-7, (d) Activation activation bits 0–-5, (e) Activation activation bits 6 and -7, (f) Multiplier multiplier bit 0, and (g) Multiplier multiplier bits 1–-15.

	SA Element
	SP
	SA utilization
	Sparsity
	Dynamic range

	Activations in region A
	Bits 5-0
	15-%–19%
	
	+
	+

	
	Bits 7-6
	<0.25%
	
	+
	+

	Activations in regions B, C, D
	Bits 5-0
	<5%
	+
	+
	+

	
	Bits 7-6
	<0.05%
	+
	+
	+

	Weights in region A
	Bits 7-0
	50%
	
	
	

	Weights in region B, C, D
	Bits 7-0
	<15%
	+
	
	

	Multiplier in region A
	Bit 0
	<10%
	
	+
	+

	
	Bit 15-1
	16%–-20%
	
	+
	+

	Multiplier in regions B, C, D
	Bit 0
	<7%
	+
	+
	+

	
	Bit 15-1
	<12%
	+
	+
	+

	Accumulator in region A
	Bits 15-0
	30%–-50%
	
	
	+

	
	Bits 31-16
	40%–-72%
	
	
	

	Accumulator in regions B, C, D
	Bits 15-0
	13%–-30%
	+
	
	+

	
	Bits 31-16
	15%–-40%
	+
	
	+

	
	
	TRToggle rate
	
	
	

	Gated clock in region A
	
	30%–-40%
	
	+
	

	Gated clock in regions B, C, D
	
	5%–-27%
	+
	+
	


Table 1 – ResNet-18 sSummary of SP and gated clock TR toggle rate distribution with potential to asymmetric aging timing violations.
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Figure 6 – ResNet-50 sSignal probability heatmaps measurements for ResNet-50 inference on a sample of ImageNet images: (a) Accumulator accumulator bits 0–-15, (b) Accumulator accumulator bits 16–-31, (c) Weight weight bits 0–-7, (d) Activation activation bits 0–-5, (e) Activation activation bits 6 and -7, (f) Multiplier multiplier bit 0, and (g) Multiplier multiplier bits 1–-15.

[image: ]
Figure 7 –Accumulator and multiplier gated clock toggle rate: (a) ResNet-18 and (b)ResNet-50. 
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Figure 8 – Examined Ttiming path groups forof PE timing in a PE.

	Logical path
	Setup WNS [ps] before /and after asymmetric aging
	Hold WNS [ps] before/ and after asymmetric aging

	
	Region A
	Region B
	Region C
	Region D
	Region A
	Region B
	Region C
	Region D

	A2A
	2605/2598
	2605/2598
	2605/2598
	2605/2599
	0/-2
	0/-4
	0/-3
	0/-3

	W2W
	2576/2573
	2576/2571
	2576/2571
	2576/2571
	0/-1
	0/-1
	0/-2
	0/-1

	AW2M
	1038/910
	1038/906
	1038/908
	1038/905
	0/-3
	0/-3
	0/-3
	0/-3

	M2AC
	119/-32
	119/-44
	119/-38
	119/-49
	0/-1
	0/-2
	0/-2
	0/-2

	AC2AC
	0/-155
	0/-170
	0/-162
	0/-174
	30 / 31
	30 / 31
	30 / 31
	30 / 32


Table 2 – Summary of the Worst Negative Slack (WNS) of timing violations in the SA as a result of asymmetric aging

	
	Number of violated setup paths  
	Number of violated hold paths

	Logical path
	Region A
	Region B
	Region C
	Region D
	Region A
	Region B
	Region C
	Region D

	A2A
	0
	0
	0
	0
	8,606
	9,150
	7,680
	12,000

	W2W
	0
	0
	0
	0
	8,606
	8,606
	7,872
	7,680

	AW2M
	0
	0
	0
	0
	4,303
	4,303
	3,840
	3,840

	M2AC
	4,303
	4,303
	3,840
	3,840
	8,606
	47, 333
	34, 560
	42, 240

	AC2AC
	9,822
	12, 909
	11, 520
	11, 520
	0
	0
	0
	0

	Total 
(Percentages of violating paths out of total number of paths)
	14 ,125 (0.00014%)
	17 ,212
 (0.00017%)
	15 ,360 (0.00015%)
	15 ,360 (0.00015%)
	30, 121 (0.0003%)
	69 ,392 (0.0007%)
	53 ,952 (0.0005%)
	65 ,760 (0.00065%)


Table 3 – Summary of the total number of timing violations in the SA due to asymmetric aging

4. Fault Analysis
	Our fault injection experimental model examines the impact ofhow timing violations due to asymmetric aging on affect the prediction accuracy of the DNN model. When Violation of timing paths are violated, it may cause flip-flops to turn transform into meta-stable states, resulting in bit flips. In severe cases, when the data consistently misses the boundaries of the flip-flop sampling window, theyit may even manifest as persistent errors. The rate of entering aat which a meta-stable state is entered in a flip-flop when timing constraints are violated is provided using Equation 2 ([[48]]): 


Equation 2 – Metastability failure rate

w	Where S is a pre-determined time for metastability resolution, FC is the clock frequency, and FD is the data  transition rate. Both 𝜏 and 𝑇𝑊 are intrinsic flip-flop intrinsic circuit parameters which that represent the resolution time constant and the metastability window width, respectively. When plugging in the design parameters of our 28 nm SA into Eq.uation (2) and considering the resolution time available for every path group to resolve the failure events, it produceswe obtain the FIT rate as summarized in Table 3 per a single flip flop with timing violation.

	Path group
	Failure events in an inference

	A2A
	0.01

	W2W
	0.01

	AW2M
	853

	M2AC
	853

	AC2AC
	853


Table 3 – Failure events per single flip-flop with timing violations in an inference for every path group.

When considering both setup- and hold- timing violations for our fault injection model, the overall number of flip-flop failure events can reach up to 190 million per single inference. We perform a sensitivity analysis of the DNN model prediction accuracy to the number of flip-flop failure events in every inference. In our sensitivity analysis, we increase the number of failure events in every inference in steps of 10 ,000 [f(0.00526% of the overall number of failure events predicted by Eq.uation (2)]. Additionally, the failure events are distributed randomly over all DNN layers, excluding the first and last layers. Within a model layer, all flip-flop failure events are randomly distributed over time. We run every image inference five times and calculate the average prediction accuracy. Figure 9(a) presents the sensitivity of ResNet-18 prediction accuracy when the fault injection model is considered. It can be observed that by considering less than 0.00001% of the overall failure events, the prediction accuracy of the model drops by 40%. In addition, when less than 0.00005% of the failure events are considered, the model prediction accuracy drops to nearly 0%. 
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(a)
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(b)
Figure 9 – ResNet-18 Inference with fault injection: (a) Prediction accuracy and (b) flip-flop failure rate.

	The next step in our fault- injection analysis considers only hold- timing violations, assuming that setup-timing violations can be mitigated by reducing the clock frequency. The hold fault injection analysis is performedwas done with a failure event distribution similar tolike the combined setup-and-hold analysis. In the case of hold-related faults, the overall number of flip-flop failure events can reach up to 127 million per single inference. In our analysis, we increase the number of failure events in every inference in steps of 10 ,000, which is 0.008% of the overall number of failure events predicted by Eq.uation (2). Figure 9(b) illustrates the sensitivity of ResNet-18 prediction accuracy when hold-related faults are considered. It can be observed The results show that, by considering less than 0.7% of the overall failure events, the prediction accuracy of the model drops by 40%. Such a significant reduction in prediction accuracy, even when setup violations are excluded and only a small portion of the overall hold failure events are considered, suggests that asymmetric aging can induce catastrophic functionality failures in SAs and DNN models. Therefore, developing mitigation techniques for asymmetric aging is crucial to maintain DNNs' resiliency.	
5. Strategies to Mitigate Asymmetric Aging Mitigation Strategies
	In this study wWe identify several approaches to mitigate asymmetric aging in ML accelerators. We demonstrate these techniques on SAs; however, they are applicable to ML accelerators in general. Our mitigation techniques includeare:
1. iIntroducing a new clock gate circuitry to alleviate asymmetric aging of clock buffers;.
2. aAdding timing guard bands to the clock cycle time to mitigate setup violations;.
3. using sSelective hold violationhold-timing violation fixes;. 
4. pPresenting a completed design flow for ML accelerators which that integrates the flows and analysis described through this paperherein.
	Through this study, we observeshows that clock gate circuitryies promotes asymmetric aging on clock branches, resulting in severe timing violations. Figure 10(a) shows aA common clock gate circuitry is illustrated in Figure 10(a), which consists of a latch and an AND gate. When the enable signal, En, is set to logical 1, the clock signal is allowed to propagate through the clock branch. However, when the enable signal En is set to logical 0, the clock path is maintained under a constant logical state of 0, which encourages promotes BTI stress. To overcome the limitation of the common clock gate, we propose thea novel symmetric clock gate circuitry that is illustrated shown in Figure 10(b). In thise new  clock gate, the logical state of the gated clock iscan be controlled by the mode signal. When the mode is set to logical the 0, the symmetric clock operates like the original clock gate, i.e., the logical state of the gated clock logical state is 0. However, when the mode is set to logical when the gated clock state will isbe logical 1. The proposed clock gate is free from static hazards, allowing the mode signal to be toggled at a low rate by the SA control logic. This ensures that, when the clock is gated, it spends nearly an equal amount of time in logical 1 as it does innd logical 0 states. 	Comment by Brett Kraabel: Please ensure that the intended meaning is maintained.
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(a)
[image: ]
(b)
Figure 10 – (a) A typical clock gate circuitry and (b) A Symmetric clock gate circuitry

Our aging profiling simulation shows that the usage utilization of the symmetric clock gate achieves produces a SP of approximately 50% on the gated clock. In addition, the timing analysis of the SA with the symmetric clock gate is summarized and compared to with the conventional clock gate in Table 4. It can be observedThe results show that the symmetric clock gate improves the hold WNS by 50% in most of the violated path groups. In addition, it reduces the number of hold violationhold-timing violations by 55%. The timing analysis also shows a negligible impact ofthat the symmetric clock gate on negligibly affects setup violations. Our synthesis and place-and-route analysis indicates that symmetric clock gates introduce an overhead of 1% onto the total cell area, which can be absorbed by the implementation tools with no overhead to the overall floorplan area. In addition, the symmetric clock gate power overhead is nearly 0.09% of the total SA power.

	Path groups
	WNS with conventional (Table 2) / 
symmetric clock gate [ps]

	
	Setup
	Hold

	A2A
	2598/2569
	−-4/−-2

	W2W
	2571/2573
	−-2/−-1

	AW2M
	905/904
	−-3/−-2

	M2AC
	-49/-50
	−-2/−-1

	AC2AC
	-174/-174
	31/31

	

	
	Number of violated paths with conventional 
(Table 3) / symmetric clock gate [ps]

	
	Setup
	Hold

	A2A
	0 / 0
	37436 / 32572 (−-13%)

	W2W
	0 / 0
	32764 / 16286 (−-51%)

	AW2M
	0 / 0
	16286 /16286 (0%)

	M2AC
	16286 / 16286
	132739 / 32572 (−-75%)

	AC2AC
	45771 / 45771
	0 / 0 (0%)

	Total
	62057 / 62057
	219225 / 97716 (−-55%)


Table 4 – Path groups failure rate per single flip-flop with timing violations.

	Overcoming setup timingsetup-timing violations requires tightening the clock cycle time and considering aging degradation in timing closure. Our timing results, summarized in Table 4, indicate that the setup WNS is −-174ps, which can be mitigated by tightening the clock cycle time by 7%. Table 5 presents our the results of our power analysis, which indicates that such a mitigation approach strategy introduces a 1.3%, 8%, and 7.25% increase in leakage power, dynamic power, and total power, respectively. In addition, our SA area analysis indicates that this approach involves negligible area overhead since logical cells on the critical path are swapped with lower Vth cells that have a similar area footprint. It should be noted that aAn alternative approach for tightening the clock cycle is to compromise SA performance and reduce its clock frequency by 7%.

	
	Leakage pPower
	Dynamic pPower
	Total pPower

	SA (original)
	156.4 mW
	1,249 mW
	1405.4 mW

	SA with aging clock cycle guard band
	158.51 mW
(+1.3%)
	1,348.8mW
(+8%)
	1507.3 mW
(+7.25%)


Table 5 – Power consumption of SA with aging guard band versus with respect to the original SA.

	The remaining timing violations after employing the previously described techniques are the hold violationhold-timing violations that have are not been solved by the symmetric clock gate. This time, we selectively fix hold violationhold-timing violations based on their contribution to the failure rate. Table 3 indicates shows that both A2A and W2W failures occur at a relatively low rate. Additionally, our fault- injection simulations also indicate that such faults have do an unobservable impactnot affect on the DNN prediction accuracy. Therefore, we consider fixing only the AW2M and M2AC hold violationhold-timing violations. The fix process for the remaining hold violationhold-timing violations are fixedis done  by adding a delay buffer to the violated logical path. Our area and power analyseis indicates that these remaining fixes incur 0.07% and 0.01% area and power overhead, respectively, with no impact on clock cycle time. Table 6 summarizes the overall power and area overhead for these techniques to mitigate e presented asymmetric aging mitigation techniques.	Comment by Brett Kraabel: Please ensure that the intended meaning is maintained.

	
	Power overhead
	Area overhead

	Symmetric clock gate
	0.09%
	1%

	Clock cycle guard band
	7.25%
	0%

	Selective hold violationhold-timing violation fixes.
	0.01%
	0.07%

	Total
	7.85%
	1.07%


Table 6 – Mitigation of aAsymmetric aging mitigation: Power and area overhead.

	LastFinally, we summarize the complete design flow for ML accelerators, which integrates the flows and analysis described in this paperherein. The full flow is depicted in Fig.ure 11 and consists of the following stages:
1. dDataset preparation;
2. simulation of DNN accelerator simulation on the related dataset.
3. aAging profile produced by functional simulation, which consistings of SP measurements for the building blocks of the DNN accelerator;.
4. sSynthesis and place-and-route of the DNN accelerator HDL model.	Comment by Brett Kraabel: You may want to spell out "HDL."
5. tTiming analysis combined with aging libraries and the aging profiles produced in stage 3;.
6. gGeneration of timing reports for all setup and hold timing violations;.
7. fFault injection analysis, which combines DNN accelerator functional simulation with fault injections for the violated paths;.
8. fFailure rate report, which detailsprovides the impact of faults on the overall accuracy of the model accuracy;.
9. tTiming fixes, which combine symmetric clock gating, clock cycle guard band, and selective fixes for hold violationhold-timing violations. (tThe necessary timing fixes are then pushed to the place-and-route tool to be implemented in the design).
. SStages 4–-9 are repeated until the design is found to be free from timing violations that affect model accuracy.
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Figure 11 – Asymmetric- aging- aware design flow for ML accelerators.

6. Conclusions
Summary
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