Calendar effects in cryptocurrencies: not so straightforward

Introduction
The exponential growth of cryptocurrencies is a phenomenon that has attracted considerable attention from investors, central banks and governments in recent years. Compared to traditional asset classes such as equity or debt, the cryptocurrencies are relatively young (Tthe first cryptocurrency, BitCcoin, was invented in 2009, but active trading did not beginstarted in until 2013) and therefore fewer the literatures are documented, therefore, is not extensive. Among these literaturesNevertheless, many researchersa considerable amount of research has have been documenting aboutaddressed the existencet of market anomalies in the cryptocurrency market. Some evidences suggests that cryptocurrencyies returns are much more volatile than other markets (Cheung et al., 2015;, Dwyer, 2015; and Carrick, 2016), haveexhibiting persistence in its return and volatility in their return series (Urquhart, 2016;, Caporale et al., 2018)., It has also been documented that there is correlation betweenhave correlations with other cryptocurrencies (Yi et al., 2018;, Ji et al., 2019) orand that they also showhave correlations with other asset classes (Dyhrberg, 2016;, Okorie and Lin, 2020). In particular, some researchers have found seasonality in the cryptocurrency market, which potentially allows traders to earn abnormal profits (Aharon and Cadan, 2019;, Caporale and Plastun, 2019;, Kaiser, 2019). These market anomalies make it questionable whether traditional market theoriesy such as the efficient market hypothesis (EMH) can be used to correctly explain the abnormal behaviors of cryptocurrency markets. This theoretical background forms a basis for led to the key issue discussed in the present empirical research, i.e. the question of whether there areabout the calendar effects in cryptocurrencies, which would be inconsistent with the Efficient Market Hypothesis (EMH), according to which, prices and returns should be unpredictable (see Fama, 1970 for the theoretical underpinnings).	Comment by Mathieu: The c in Bitcoin should be lower case.	Comment by Mathieu: In the examples of past papers provided, where references are cited in the body text, the author’s name is followed by a comma and different refs in a list are separated by semi-colons.	Comment by Mathieu: Do we need to repeat the full name, Efficient Market Hypothesis, or can we just give the abbreviation?
This research is motivated by the number of stock market anomalies that have been identified in the literature toas havinge significant market predictive ability, which is inconsistent withcontradicts the EMH. One strand of these anomalies finds thatFor example, it has been demonstrated that stock returns are systematically lower or higher depending on the day of the week, the day of the month, or month of the year. These anomalies are commonly known as calendar effects (also referred to as ‘seasonalities’). Theyse include the well-known Monday effect (Cross, 1973;, Connolly, 1979;, French, 1980;, Maberly, 1995 among others), the January effect (Rozeff and Kinney, 1976;, Gultekin and Gultekin, 1983;, Keim, 1987;, Sun and Tong, 2010 among others) and the Halloween effect (Bouman and Jacobsen, 2002;, Lucey and Zhao, 2008;, Haggard and Witte, 2010;, Andrade et al., 2013 among others). All three anomalies are the focus of which are the anomalies studied in this research. 
Prior literatures about  has addressed the question of calendar effects in cryptocurrencies, exists but there seems to be disagreement among scholars about the actual existence of such effects. Some researchers have documented that seasonality is not present in cryptocurrency (Baur et al., 2019;, Caporale et al., 2019;, Kinateder and Papavassiliou, 2019), noting that cryptocurrency markets are indeed efficient (Bartos, 2015;, Nadarajah and Chu, 2017;, Tiwari et al., 2018). While oOthers, however, argue that Bitcoin shows calendar effects (Aharon and Qadan, 2019;, Caporale and Plastun, 2019;, Kaiser, 2019), notingpointing to the lack of government’s regulations and a potentially inefficient cryptocurrency market (Urquhart and McGroarty, 2014;, Urquhart, 2016;, Kristoufek and Vosvrda, 2019). Hence, the existent of seasonality in cryptocurrencies warrants an empirical investigation as well as some theoretical background, if such market anomalies wereare found[footnoteRef:1].  [1:  Since EMH cannot be used to explain market anomalies such as calendar effects, some researchers rely on alternative market hypotheses to explain unusual market behaviors. Notable among the literature is a study by Lo (2014) who proposed the Adaptive Market Hypothesis (AMH). A few studies support the AMH in the cryptocurrency market (for example, Khuntia and Pattanyak, 2018 and Chu et al., 2019). However, the true market model cannot be observed and is a matter of ongoing debate which lies outside the scope of this study.  ] 

Unlike most of the previousprior literatures which either focuses on Bitcoin (Urquhart, 2016;, Kurihara and Fukushima, 2017;, Baur et al., 2019) or focus on a single calendar effect (Aharon and Qadan, 2019;, Caporale and Plastun, 2019;, Ma and Tanizaki, 2019), this study carries out a more comprehensive analysis by considering five main cryptocurrencies and applying three different calendar effect tests over the period 2013–2020. In addition to academics, the contribution fromof this research is clear for traders and market participants who could generate abnormal profits; it will also help to guide as well as for market regulators into designing the necessary regulations to prevent such arbitrage opportunities in the cryptocurrency markets.
The remainder of the paper is structured as follows. The followingnext section presents a brief review of the literature regarding calendar anomalies. The nextSubsequent sections describes the research hypotheses, data and methodology. The empirical results and robustness checks are then presented and discussed. Finally, the conclusions are given, along with suggestions for future research.

2 Data 
	As noted by Kaiser (2019) notes that sufficient market capitalization and liquidity are important criteria to be considered by investors and to qualify for the construction of a crypto fund within the regulatory framework ofunder the regulation of the Alternative Investment Fund Managers (AIFM) Directive by market regulators., tThe analysis, therefore, focusses on the five largest cryptocurrencies by market capitalization (Bitcoin, Ethereum, Ripple, Tether and Litecoin) with a sufficiently long historical price series so as to estimate seasonality patterns. The data set is extracted fromsource is CoinmMarketcCap.com. and Tthe study is in line with previous research in terms of the application of daily returns, data sources and thea focus on the largest cryptocurrencies is in line with prior research (Urquhart, 2016;, Nadarajah and Chu, 2017;, Kaiser, 2019). and thereforeThus, the findings provides a solid basis for comparison. Table 1 reports the descriptive statistics of the data.

Table 1: Descriptive statistics
	
	Return 
	
	
	
	Size

	Volume

	Volatility
	#Obs

	
	mean
	std
	skew
	kurt
	
	
	
	

	BTC
	0.15
	4.36
	-0.59
	14.94
	117,314.8
	46,491.9
	1.72
	2520

	ETH
	0.23
	7.19
	-3.45
	71.11
	14,770.1
	11,396.3
	2.73
	1690

	XRP
	0.14
	7.24
	1.97
	32.71
	6,901.6
	2,117.4
	2.31
	2423

	TET
	0.01
	2.07
	-12.37
	19.90
	4,627.6
	57,333.1
	0.46
	1845

	LTC
	0.01
	6.49
	1.51
	27.98
	2,494.6
	3,598.2
	2.39
	2520


Note: This table presents the descriptive statistics for the five cryptocurrencies considered in this study:. The coins considered are: Bitcoin (BTC), Ethereum (ETC), Ripple (XRP), Tether (TET) and Litecoin (LTC). The coins wherewere selected on the basis of being the largest by market capitalization as of March 2020 and gathered from www.coinmarketcap.com. Statistics are provided for returns, market -capitalization (size), trading volume (volume) and volatility estimator.

3 Methodology

Urquhart and McGroarty (2014) and Kinateder and Papavassiliu (2019) argue that the method used to investigate calendar effects in cryptocurrency returns and volatilities should be generalized as an autoregressive conditional heteroscedasticity (GARCH) model with dummy variables, because the model is capable of capturing volatility clustering and non-normality in cryptocurrency price series. This is particularly important when dealing with calendar effects, as theythese effects are sensitive to model specification. Ignoring the stylized facts can produce biased results (see, for example, Bollerslev, 1986;, Connolly, 1989;, Auer and Rottmann, 2014 for discussions). In addition, it is a consistent method for investigating not only how seasonality affects returns, but also how they impact volatility.	Comment by Mathieu: This last sentence in the paragraph seems repetitive (hasn’t the message already been conveyed? Is this point really ‘in addition’ to what has just been said?).
Since Engle (2001) shows that the GARCH(1,1) model is the simplest and most robust of the family of volatility models, and is the most widely applicable usedapplied in the literature. Therefore, this research utilizes a GARCH(1,1) dummy regression, following prior researches. In this regard, Auer and Rottmann (2014) recommend to usinge Bollerslev and Wooldridge's (1992) QML procedure for high-kurtosis data in order to correct standard errors. As shown in Table 1, Bitcoin returns (and all other coins under consideration) are characterized by excess kurtosis (k = 14.94), being far away from normal kurtosis (k = 3)., tTherefore, thea QML estimatorion wereis used inthroughout the analysis throughout. All tests have tThe null hypothesiszes for all tests is defined asof no calendar effect. 	Comment by Mathieu: Should we not be using the present tense (following the examples provided of past papers).
The returns are computed as:

	 		; Wwhere Pi,t  areis the closinge price of a coin i on the tth day

	As trading volume indicates the level of activity on the markets, as well asBesides being a proxy for market liquidity, trading volume indicates the level of activity on the markets andit is therefore included in the analysis. Finally, the daily volatility estimator is estimated followsing Roger and Satchell’s (1991)’s methodology on the basis of high, low and closing prices. Accordingly, the volatility is estimated as follows:

	

Wwhere Hi,t is the highest price, Li,t the lowest price, Oi,t the opening price and Ci,t the closing price of a coin i aton day t. For robustness, this study also considers the squared daily return as an estimator for volatility. The results show no material differences from the main analysis.

4. Results and discussion

4.1 January effect

Since the 1970’s when Rozeff and Kinney (1976) documented the higher average stock returns in January, scholars haves been proposing potential reasons behind for the phenomenona. The literature generally links the stock market anomaly with tax-loss selling, window-dressing, omitted risk -factors, bid-ask bounce, information -release or a combination of all of these (see, for example, Ritter, 1988). Although many of the aforementioned factors appear to be unlikely reasonscauses of anomaly in the case of cryptocurrency, tax-loss selling (Starks et. al., 2006), appearmay to offer abe reasonable explanation because the US Internal Revenue Service (IRS) and similar authorities in many countries treated cryptocurrency as a property for tax purposes. In addition, the wash sale[footnoteRef:2] regulations, do not apply to cryptocurrency because it is classified as a property. This makes tax-loss selling even more likely to be present in cryptocurrency, and is also consistent with the observed empirical results of higher trading volume in January. Table 2 reports the results on the January effect.	Comment by Mathieu: The possessive apostrophe is incorrect here.	Comment by Mathieu: Footnote 2 seems to repeat the Wikipedia definition, shouldn’t it be reworded? [2:  A wash sale is a sale of a security (stocks, bonds, options) at a loss and repurchase of the same or substantially identical security shortly before or after. Losses from such sales are not tax deductible in most cases under the Internal Revenue Code in the United States. (See Section 1091 of the US Internal Revenue Code, “Loss from wash sales of stock or securities”, for more details.)] 


Table 2: January effect
	
	Return
	
	Volume
	
	Volatility
	

	
	Coefficient
	t-stat
	Coefficient
	t-stat
	Coefficient
	t-stat

	BTC
	-0.25
	-0.69
	0.13
	2.31**
	0.15
	0.03

	ETH
	1.12
	2.20**
	0.15
	3.32***
	0.30
	0.21

	XRP
	-0.28
	-0.66
	0.74
	9.33***
	1.37
	3.31***

	TET
	-0.02
	0.33
	0.16
	5.59***
	-0.93
	-0.01

	LTC
	-0.01
	-0.02
	0.41
	5.89***
	0.93
	1.57


Note: This table reports the results for the January effect across the returns of each coin (Return), the trading volume of each coin (Volume) and the volatility estimator of each coin (Volatility). t-statistics reported are based on Bollerslev and Wooldridge's (1992) robust estimator. *,**,*** represent statistical significance at the 1%, 5%, and 10% levels, respectively. The coins considered are: Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Tether (TET) and Litecoin (LTC). The coins were selected on the basis of being the largest by market capitalization as of March 2020, excluding recent bitcoin spin- offs (Bitcoin cash and Bitcoin SV), and collected from www.coinmarketcap.com.

Overall, two main observations are observedcan be made. First, the returns of Ethereum in January are on average positive – implying that a January effect is indeed present in Ethereum returns. The result is consistent with Kristoufek and Vosvrda (2019)’s who posit that Ethereum and Litecoin are the least efficient cryptocurrenciesy. Second, the trading volume of all coins under consideration isare found to be higher in the month of January month. This result is consistent with the tax-loss selling hypothesis documented in prior literature, which predicts that trading volume should be higher in January because investors buy back assets inat the beginning of the year after a tax-loss selling activities at the previous year end (see, for example, Chang and Pinega, 1986;, Starks et. al., 2006;, Chen et al., 2011). Finally, no consistent inference can be drawn from the volatility series since only one out of five coins under considerations shows a significant relationship.	Comment by Mathieu: Full stop is missing.

4.2 Monday effect
	
	The Monday effect refers to the tendency of returns on Mondays to be lower compared to the rest of the week. The weekend effect, often used interchangeably with the Monday effect in the stock market literature, is observed separately in this study on the basis of continueds trading over the weekends in cryptocurrency markets. This allows the present study to investigate ifwhether trading patterns on Saturday and Sunday deviate from working days and, consequently, thereby deviate from the classical specification of the weekend effect. Table 3 reports the results.

Table 3: Monday effect
	
	Return
	
	Volume
	
	Volatility
	

	Panel A: Monday effect
	Coefficient
	t-stat
	Coefficient
	t-stat
	Coefficient
	t-stat

	[bookmark: _Hlk40979453]BTC
	0.09
	0.32
	0.19
	3.84***
	0.28
	1.52

	ETH
	-0.28
	-0.57
	0.09
	2.16**
	-0.17
	-0.43

	XRP
	-0.12
	-0.28
	0.33
	4.86***
	0.46
	1.33

	TET
	-0.00
	0.87
	0.08
	2.15**
	-0.78
	-0.00

	LTC
	-0.82
	-2.21**
	0.12
	1.87*
	0.13
	0.35

	Panel B: Weekend effect
	
	
	
	
	
	

	BTC
	0.44
	1.29
	-0.28
	-6.45***
	-0.20
	-1.03

	ETH
	-0.20
	-0.46
	-0.14
	-4.64***
	0.00
	0.01

	XRP
	0.48
	1.19
	-0.49
	-7.92***
	-0.01
	-0.22

	TET
	-0.01
	-0.36
	-0.12
	-3.94***
	-0.00
	-0.11

	LTC
	0.71
	1.60
	-0.20
	-3.62***
	-0.28
	-0.80


Note: This table reports the results for the Monday effect across the returns of each coin (Return), the trading volume of each coin (Volume) and the volatility estimator of each coin (Volatility). t-statistics reported are based on Bollerslev and Wooldridge's (1992) robust estimator. *,**,*** represent statistical significance at the 1%, 5%, and 10% levels, respectively. The coins considered are: Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Tether (TET) and Litecoin (LTC). The coins were selected on the basis of being the largest by market capitalization as of March 2020, excluding recent bitcoin spin- offs (Bitcoin cash and Bitcoin SV), and collected from www.coinmarketcap.com.

	The null hypothesis if of no Monday effect cannot be rejected for 4 out of 5 of the considered cryptocurrency returns considered. However, the coefficient of the Monday dummy was found to be negative and statistically significant for Litecoin. This suggests the existencet of a Monday effect in Litecoin and is consistent with the stock market literatures (French, 1980;, Abraham and Ikenberry, 1994;, Ülkü and Rogers, 2018 among others). Once again, the result confirms Kristoufek and Vosvrda’s (2019)’s posit findings that Ethereum and Litecoin are the least efficient cryptocurrenciesy. All coins under consideration show a higher trading volume inon Mondays, which is also in line with the stock market literature.
	 No evidence was found to suggestwith respect to a difference in returns and volatility between weekend and non-weekend days were found. However, all considered of the coins considered have significantly lower trading volumes atduring the weekend. (all considered coefficients are negative and statistically significant at 1%). The results suggests, that trading activities, although possible on seven days a week, takes place primarily duringon working days, and are in line with Buar et al. (2019) and Kaiser (2019), using a different approach.	Comment by Mathieu: Should this point about a different approach be expanded on?
	
4.3 Halloween effect
	
	The Halloween effect (also known as the “Sell in May” effect) refers to the market anomaly whichwhereby returns from November to April are higher than for the other half of the year. The first empirical evidence was documented by Bouman and Jacobsen (2002), who detected the Halloween effect in 36 out of 37 considered equity markets. Most literature in the field posits that the Halloween effect isare present in stock markets and the results are robust even after takingen into considerations of outlier observations, transaction costs, compensation for risks or seasonality in news (for example, Bouman and Jacobsen, 2002;, Lucey and Zhao, 2008;, Haggard and Witte, 2010;, Andrade et al., 2013). Since Haggard and Witte (2010) and Kaiser (2019) argue that the Halloween effect doesis not driven by the January effect, it is therefore preferable to include the anomaly in the analysis. Table 4 reports the results for the Halloween effect.	Comment by Mathieu: ‘Therefore’ is not needed because the sentence begins with ‘since’.

Table 4: Halloween effect
	
	Return
	
	Volume
	
	Volatility
	

	
	Coefficient
	t-stat
	Coefficient
	t-stat
	Coefficient
	t-stat

	BTC
	0.04
	0.31
	0.29
	15.38***
	0.13
	1.21

	ETH
	0.32
	1.36
	0.45
	29.33***
	-0.24
	-1.15

	XRP
	0.00
	0.03
	0.61
	21.07***
	0.09
	0.49

	TET
	-0.02
	-0.68
	2.90
	68.81***
	-0.01
	-0.09

	LTC
	0.10
	-0.59
	0.07
	0.30
	-0.34
	-1.09


Note: This table reports the results for the Halloween effect across the returns of each coin (Return), the trading volume of each coin (Volume) and the volatility estimator of each coin (Volatility). t-statistics reported are based on Bollerslev and Wooldridge's (1992) robust estimator. *,**,*** represent statistical significance at the 1%, 5%, and 10% levels, respectively. The coins considered are: Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Tether (TET) and Litecoin (LTC). The coins were selected on the basis of being the largest by market capitalization as of March 2020, excluding recent bitcoin spin- offs (Bitcoin cash and Bitcoin SV), and collected from www.coinmarketcap.com.

	Contrary to the results from the equity market, it was found that the returns and volatility of cryptocurrency in non-summer months are not statistically different from the returns fromover the other half of the year, for all considered cryptocurrencies considered. Most considered coins show a higher trading volume in non-summer months, in line with the stock market literature (Bouman and Jacobsen, 2002;, Hong and Yu, 2019). The results reject the existencet of the Halloween effect in cryptocurrency and are consistent with Buar et al., 2019, using a different approach. No evidence of exploitable trading strategies, based on the Halloween effect, were found in any of theall considered coins considered.	Comment by Mathieu: Again, should the different approach be expanded on?

5 Robustness checks 

For robustness, this study also utilizes the non-parametric Kruskal–Wallis test (Kruskal and Wallis, 1952) with respect to calendar effects in cryptocurrency returns in order to account for the non-normality, but find no material differences were found. In addition, to account for potential asymmetries, tests with respect to calendar effects in cryptocurrency returns based on a GLS-GARCH(1,1) approach (Glosten et. Aal, 1993) wereare also conducted, but again, no material differences were detected. Consistently, traditional OLS regression yields directionally identical results with lower significance. 
This research also testeds the Monday effect using a 5-days a week system (excluding the weekend) to be consistent with the literature on stock markets, but yet again, observe no material differences were observed. The test for the turn-of-the-month effect (Ariel, 1987;, Lakonishok and Smidt, 1988;, McConell and Xu, 2008;, Atanasova and Hudson, 2010, among others) wasis also conducted but no statistically significant evidence was found across the set of the considered cryptocurrencies. 

6. Conclusion

	This study examines calendar anomalies in daily cryptocurrency returns, along with trading volume and volatility in multiple cryptocurrencies. As calendar effects react sensitively to model specifications, the present research uses a robust method and an estimator that accounts for the stylized facts of cryptocurrency returns. Overall, the results differ from those documented in the stock market. In general, no consistent evidence was found of a Monday effect, January effect or Halloween effect in cryptocurrency returns were found (i.e. investors cannot earn abnormal profits on Mondays, in January or in non-summer months).
As the existence of calendar anomalies is not consistent with the Efficient Market Hypothesis (EMH), the findings from this research validate the view that cryptocurrency returns are mostly weak-form efficient with respect to calendar anomalies, which is in line with the findings of prior literature. studies (Nadarajah and Chu, 2017;, Baur et al., 2019; and Kinateder and Papavassiliou, 2019). The absence of significant calendar effects in most of the cryptocurrencies under consideration indicates that there are generally no seasonal return patterns that could be exploited by arbitragers to generate abnormal profits. 
However, two major exceptions were discoveredfound in this study. First, it was found that Ethereum investors can generate abnormal returns in January. Second, abnormal profits can be generated from short-selling Litecoin onin Mondays. These results are robust after the considerations of volatility-clustering, non-normality and changes in methodologies to detect the anomalies. Although the anomalies are at odds with the rest of the conducted tests, it is consistent with the hypothesis that each cryptocurrency has a different level of efficiency. In particular, the results are in lineconsistent with Kristoufek and Vosvrda (2019)’s who posit that Ethereum and Litecoin are the least efficient cryptocurrenciesy. Thus, future research about the cryptocurrencies efficiency ranking of cryptocurrencies, as well as the potential reasons behind the phenomena are highly encouraged.
Overall, this study contributes to the literature on cryptocurrency market efficiency and seasonality. Besides academics, this study may help Ethereum/Litecoin investors to improve their investment portfolio performance. Ultimately, the practical implications also extend to market regulators, offering guidance in order toin designing the necessary regulations to promote fair trade and prevent arbitrage in the fast-growing cryptocurrency markets. 
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