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Abstract

In quantum mechanics, the dimension of the Hilbert space grows exponentially with the system size.

Therefore, a classical calculation of many-body quantum states becomes practically impossible for

already a small number of particles. Richard Feynman was the �rst to suggest a di�erent paradigm

to overcome this di�culty - a quantum computational machine (�Quantum Computer�). The quest to

build a quantum computer has been going on for more than 20 years but so far no single

experimental platform emerged as technologically superior. I will present our suggestion for a new

platform based on ultracold 40K fermionic atoms held in an optical microtrap. In our scheme,

quantum information can be stored in the internal states of these atoms or in vibrational states of

the trap. Single qubit gates are implemented by coupling the atom to an external �eld, and a

universal two-qubit
√
SWAP gate is implemented by a novel protocol that takes advantage of our

ability to precisely control the tunnelling energy and the interaction energy between two atoms at

two adjacent traps. I will present numerical simulations of the qubits and gates, and report on our

progress in the lab towards testing our ideas in real life.
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1 Introduction

In quantum mechanics, the dimension of the Hilbert space grows exponentially with system size. To

represent a quantum state with n particles in classical computation, we need an order of Cn bits,

where C is a constant. Therefore, the possibility of calculating many-body quantum states in clas-

sical computing becomes practically impossible. To overcome this problem, it was �rst proposed by

Feynman to use a quantum computational machine (Quantum Computer) [1]. A quantum computer

is able to not only simulate quantum dynamics, but also solve complex mathematical problems. In

addition, the quantum computer is much faster than classical computers in solving factorial problems

[2] and in database searching [3]. For two decades, researchers have been trying to implement quantum

computation using di�erent platforms,but all these platforms su�er from inherent experimental limits

[4, 5, 6, 7, 8, 9]. Here, we present a new platform of a quantum computer system with ultracold

fermionic atoms. We take advantage of the fermionic statistics and ultracold atom system bene�ts

(Feshbach resonance and the ability to capture single atoms in optical traps) to perform a new protocol

for quantum gate operators.

Quantum computer system requirements, as stated by D.DiVincenzo [10], should comply with �ve

conditions:

• Quantum state. The quantum state encapsulates the quantum information in a quantum

computer. The state is usually spanned by two basis vectors, |0〉 and |1〉, and the qubit state is

de�ned by

|ψ〉 = α |0〉+ β |1〉

where α and β are complex numbers. When the qubit is measured, with the probability of |α|2

it is in a state |0〉 and with a probability of |β|2 in a state |1〉, satisfying the following relation:

|α|2 + |β|2 = 1

since the probabilities must sum to one.
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• Preparation of the Initial State. The initial state of the qubit should be capable of being

prepared. The particular initial state is of little importance, as we can transform it to any other

state using several quantum gates. However, it is important that the initial state can be created

with high �delity.

• Quantum gates. To perform any quantum calculation, we need several unitary operations

(�Quantum Gates�) that form a universal set, namely, any other operation can be decomposed to

a series of gate operations taken from this set. The quantum gates operate on one or two qubits.

Examples of one-qubit gates include the Hadamard gate, the phase gate, and the π/8 gate. The

two-qubit gate is a C-NOT gate. In place of a C-NOT gate, it is also possible to use a
√

SWAP

gate [11].

1. Hadamard gate. The Hadamard gate is a one-qubit rotation. This gate maps the qubit

states |0〉 and |1〉 to two superpositions with equal weight.

U =
|0〉+ |1〉√

2
〈0|+ |0〉 − |1〉√

2
〈1|

or in a matrix representation

U =
1√
2

 1 1

1 −1


In addition, Hadamard gate is essentially a "beam splitter" for the two "modes" |0〉 and

|1〉, namely |0〉 → |0〉+|1〉√
2

and |1〉 → |0〉−|1〉√
2

.

2. Phase gate.Phase gate is a one-qubit gate that leaves the basis |0〉 without a change while

transforming |1〉 → eiφ |1〉.

U = |0〉 〈0|+ eiφ |1〉 〈1|

or in a matrix representation

Uφ =

 1 0

0 eiφ
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Where φ is the phase shift. Some common examples are the phase gate with φ = π/2, the

π/8 gate with φ = π/4 and the Pauli-Z gate with φ = π.

3.
√

SWAP gate. A
√

SWAP gate is operated on the mixed states and swapped with them half

way, namely, |1, 0〉 → 1
2 [(1 + i) |1, 0〉+ (1− i) |0, 1〉] and |0, 1〉 → 1

2 [(1− i) |1, 0〉+ (1 + i) |0, 1〉].

In a matrix representation, the gate is de�ned by

U√swap =



1 0 0 0

0 1
2 (1 + i) 1

2 (1− i) 0

0 1
2 (1− i) 1

2 (1 + i) 0

0 0 0 1


(1)

with respect to the basis |00〉, |01〉, |10〉, |11〉.

By using all these gates we can reduce any unitary operation of n qubits to a cumula-

tive series of these gates [12].

• Ability to Measure the Result. The ability to measure the �nal state of the system is

required for all computation schemes.

• Scalability. All physical resources (such as space, money and number of components) should

not scale as Xn, where X is some constant, and n is the number of qubits. This requirement

ensures that the system is technically feasible.

In quantum the phase between states are determinate, and the system is coherent. However, in the

real world, a quantum computer is not completely isolated and su�ers from gates �delity being less

than one. Therefore, the coherence time decay of the state with time TD (decoherence time). The

time TD is also indicated by the results of the quantum-error correction algorithm that can �nd and

correct the same errors in the quantum state [10, 13]. To implement error correction, we demeaned
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that the decoherence time is much longer than the gate operation timescale Tgate times the typical

number of operation N .

N · Tgate
TD

� 1 (2)

To date, attempts have been made to use di�erent physical systems to meet these requirements and

realize a quantum computer. For example, in an optical system, the polarization of a photon is taken

as a state and optical component, such as polarizing beam splitters, and wavelength plates are used

to manipulate the state. Optical systems su�er from photons not interacting; therefore, it is quite

di�cult to implement two qubit gates [6]. Another platform of quantum calculations is ion traps [4, 5].

Ion traps use the internal state of the ion as the qubit, and quantum gates are implemented using

the coupling of the ions to lasers. These systems are probably the closest to a successful implementa-

tion, but there unsolved issues remain with the scalability and heating from the electrodes. Another

platform that has been investigated is based on localized electron spins as qubits in quantum dots [8]

the interaction between the spins can realize the quantum gates. The interaction and the detection

are performed using lasers. The main problem in this platform is the strong coupling of the qubit to

a noisy bath (i.e., phonons), which this limits the ratio of operation time (∼10 psec) to decoherence

gate-operation time (∼1 nsec). Another platform that could theoretically serve to perform quantum

computation is neutral atoms in a 1-Dimensional (1D) optical lattice [7]. In this method, they used two

sub-level (mf ) in the ground state of an optical lattice and described a one qubit-gate with Raman

sidebant transition
(
tπ/2 ∼ 150 nsec

)
and with RF pulse

(
tπ/2 ∼ 30 µsec

)
. In addition, they use a

movable optical tweezer for the two-qubits gate to transport qubit to another one.

In this thesis, we present a new platform of quantum computation that is based on fermionic atoms in

an optical microtrap. The basis for this platform is the fermionic statistic of the qubits. In addition,

with ultracold atoms, we can control the interaction between atoms by using Feshbach resonance.

Furthermore, the depth of the micro-trap, shape, and position can be controlled dynamically.
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In recent years, there has been substantial experimental progress with preparation and measurement

of individual atoms in the ground state of an optical microtrap [14, 15]. Several techniques have been

used to accomplish this:.

1. Light-Assisted Collisions (LAC) can reduce the number of atoms by shining the atoms with a near

resonant laser. By carefully tuning the frequency, it is possible to increase the probability that

one of the atoms will leave the trap while the other will stay. Atoms one by one by intensifying

their interaction [16]. After the LAC has been used to remove all atoms other than one, it is

possible to use the Raman side-band cooling technique to cool this single atom to the ground

state of the trap [17].

2. By loading spin polarized atoms to a microtrap with one state or several atoms to a low optical

microtrap (with several states) and then creating a linear potential that removes all bound states

other than one, it is possible to end with only a single atom in one state[18].

The measurement of a single fermion 40K atom in a trap is clearly not a simple task. In this �eld,

there are few studies that have succeeded in doing so [14, 15, 17]. In these studies, a sideband cooling

technique was employed to cool the atoms while measuring the �uorescence.

Our platform is based on ultracold fermion
(

40K
)
neutral atoms trapped in an optical micro-trap.

There still remain some questions regarding the experimental system that are discussed in next chap-

ters. Chapter 2, presents the theory behind our proposed scheme. Chapter 3 gives some relevant

ultracold-atoms background. Chapter 4, Presents the experimental work performed in route to imple-

menting the new computation scheme.
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2 New platform of quantum computation

This chapter explains how we ful�ll the �ve principles mentioned in the introduction. The
√
SWAP

gate was developed by Dr. Jonathan Nemirovsky, and the numerical simulations were performed with

a code that was also developed by Dr. Nemirovsky.

2.1 The new scheme

Our new platform is based on neutral ultracold 40K atoms. This chapter describes the �ve conditions

for quantum computation (1) and how they are realized in our method.

2.1.1 The Qubit

Our quantum computer is based on two internal energy levels of a single atom in a microtrap. We

choose |0〉 = |9/2,−9/2〉 and |1〉 = |9/2,−7/2〉 with notation |f,mf 〉, where f is the total atomic

spin, and mf is the projection in z direction (set by external magnetic �eld). We can choose any

two mf states, but we want to control the interaction between the atoms by means of a Feshbach

resonance [19]. The Feshbach resonance between mf = −9/2 and mf = −7/2 is at B = 202.2 G

[20]. We can also work in spin states |0〉 = |9/2,−9/2〉 and |1〉 = |9/2,−5/2〉 or |0〉 = |9/2,−7/2〉

and |1〉 = |9/2,−5/2〉. Their Feshbach resonance is B− 9
2 ,−

5
2

= 224.21 G and B− 7
2 ,−

5
2

= 174 G [20].

However, with these states, there is a possibility of spin-exchange collisions, which means that the

qubit can leave the designated Hilbert space. The states |9/2,−9/2〉 and |9/2,−7/2〉 are sensitive to

magnetic �eld �uctuation which will lead to shortening the coherence time. Therefore, when qubit is

not needed for a gate operatio, we would like to store they in insensitive states. One option to do it

is to transfer |9/2,−7/2〉n=0 → |9/2,−9/2〉n=1 using Raman transition 3.2. Then the qubit have two

energy state but they have the same mf and hence have the same magnetic dipole moment. Another

possibility is to �nd two states the have same sensitivity to a magnetic �eld (like in atomic clock [21]).

In 40K, we can use the states |9/2, 7/2〉n=0 and |7/2, 7/2〉n=0which are insensitive to magnetic �eld at

B ≈ 357 G (�gure 1). The transformation can be done by, �rst, �ip the mf from negative to positive

(|9/2,−9/2〉n=0 → |9/2, 9/2〉n=0 and |9/2,−7/2〉n=0 → |9/2, 7/2〉n=0). It can by an adiabatic rapid

passage that induced by an RF �eld that is frequency swept across all the magnetic sublevels [22].
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Figure 1: The energy di�erent between the state |9/2, 7/2〉n=0 and |9/2, 7/2〉n=0 of the 2S1/2 ground-
state in 40K vs. external magnetic �eld. In the minimum the �rst derivative is vanish and it insensitive
to magnetic �eld (in �rst order). Using these state we can minimize the decoherence time duo to �uc-
tuation in external magnetic �eld.

Then, with a microwave transition or Raman transition, we can transfer |9/2, 9/2〉n=0 → |7/2, 7/2〉n=0.

2.1.2 Preparation of the Initial State

In our method, the initial state requires a single atom state in each qubit. As mentioned in 1, the

preparation of one atom in a microtrap can be performed in two ways.

The �rst method (Fast approach) is based on loading several atoms (∼ 10− 20) from a 3-Dimensional

(3D) Magneto-Optical-Trap directly to an optical microtrap and with a LAC [16] with a blue detuning

laser from the D1 transition, reducing the atom's number to one (this study has been performed with

bosonic 85Rb). When the trap contains a single atom, we can cool the atom to the ground state with

Raman sideband cooling [17]. This process grants two more features. We can measure the �uorescence

and calculate the atom number at the optical microtrap (zero, one, or more). Additionally, we can

know which qubit is empty and not use it for the quantum calculation.

The second way (Degenerate fermi gas) is to reduce the trap depth until there is only a single bound

state left [18]. In ref [18] it was shown that by using a magnetic �eld with a gradient the number of

atoms up to single atom trapped
(

6Li
)
can be controlled. To obtain high occupation probability of the
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lowest state due to Fermi-Dirac statistics, such an experiment must begin at very low temperatures

T/Tf < 0.5 ,In other words, T ∼ 40 nK. The time it takes to prepare atoms at this temperature is

about 80 seconds.

In table 1, I compare these two systems. The advantages of the fast approach are rapid data acquisition,

and it is experimentally simpler, but here may be a higher �nal temperature of the captured atom. Also,

there are many unknowns with this method that still need to be investigated before we can conclude

that this approach is viable. The advantages of the degenerate fermi gas is low �nal temperature of

the trapped atom, but the disadvantage is long preparation time (∼80 sec). Chapter 4 presents the

two systems in more detail.

Fast approach Degenerate fermi gas

Number of Vacuum Cell One or Two Two or Three
2D and 3D MOT (15-40 sec) maybe just 3D X

D1cooling (20 msec) X X
Magnetic Trap & RF Evaporation (30 sec) X X

Optic or Magnetic Transfer (1-3 sec) X X
Optic Evaporation X X

Sideband Cooling ( ∼ 2 sec) X X

Table 1: A comparison between the two systems. The table shows that the preferable system in terms
of time is the one using light-assisted collisions. However, we are unsure if these will succeed.

2.1.3 Quantum gates

After preparing one or two qubits made of single atoms, we need to be able to perform quantum-

gate operation. To call our system Quantum Computer, as was explained in 1, we need to adapt the

Hadamard gate, the phase gate, π/8 gate, and the
√

SWAP gate to our system.

Single qubit gates. An arbitrary single qubit state can be written

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)

where θ, φ, and γ are real numbers. The numbers 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π de�ne a point on a unit

three-dimensional sphere, which is commonly called the Bloch sphere. A qubit state with an arbitrary
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Figure 2: Bloch sphere

value of γ is represented by a point on the Bloch sphere, as the factor of eiγ has no observable e�ects.

We can then write the following:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉

The Bloch sphere is S2, which can be embedded in R3 using the following map

f : (r = 1, φ, θ)→ (cosφ sin θ, sinφ sin θ, cos θ)

The rotations of Bloch vectors can be generated by Pauli matrices σ̂x =

0 1

1 0

, σ̂y =

0 −i

i 0
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and σ̂z =

1 0

0 −1

 . Therefore, the rotation around the axes is given by

Rx (θ) ≡ e−i θ2 ·σ̂x = cos
θ

2
Î− i sin

θ

2
σ̂x =

 cos θ2 −i sin θ
2

−i sin θ
2 cos θ2



Ry (θ) ≡ e−i θ2 ·σ̂y = cos
θ

2
Î− i sin

θ

2
σ̂y =

 cos θ2 − sin θ
2

− sin θ
2 cos θ2



Rz (θ) ≡ e−i θ2 ·σ̂z = cos
θ

2
Î− i sin

θ

2
σ̂z =

exp
(
−i θ2

)
0

0 exp
(
i θ2
)


Any unitary transformation on a single qubit can be decomposed into a rotation in the Bloch sphere

around some axis n̂ by an angle θ multiplied by a global phase φ

U = eiφRn̂ (θ)

Next, we de�ne the single-qubit gates using these terms.

• Hadamard gate. A Hadamard gate operator can be represented by rotations around the x̂

and ẑ axes. We choose θ = π/2, φ = π/2, and n̂ = (1, 0, 1) /
√

2

Uhadamard = ei
π
2Rn̂ (π)

= i

[
cos

π

2
Î− i sin

π

2

(
σ̂x + σ̂z√

2

)]

=
1√
2

 1 1

1 −1



• Phase gate. A Phase Gate Operator can be represented by taking θ = π/2 , φ = π/4, and
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n̂ = (0, 0, 1)

Uπ/2 = ei
π
4Rz

(π
2

)
= ei

π
4

exp
(
−iπ4

)
0

0 exp
(
iπ4
)
 =

1 0

0 exp
(
iπ2
)


Uπ/2 =

1 0

0 i


• π/8 Gate. A π/8 Gate Operator can be represented by using θ = π/4 , φ = π/8 and n̂ = (0, 0, 1)

Uπ
8

= ei
π
8Rz

(π
4

)
= ei

π
8

exp
(
−iπ8

)
0

0 exp
(
iπ8
)
 =

1 0

0 exp
(
iπ4
)


We can realize these gates in our system by coupling a two-level system to an external EM �eld

[23, 24]. Let us write the state of the atom as follows:

ψ (t) = C0 (t) |ψ0〉+ C1 (t) |ψ1〉

where |ψn〉 are the energy eigenstates of the atoms that are relevant to the computational scheme

, C0 (t) = e−Ent/~C0 (0) are the complex amplitude, and En = ~ωn are the eigenvalues. We write the

Hamiltonian as

H = H0 + V (t)

where H0 is the free Hamiltonian, and V (t) is the interaction between the electromagnetic �eld and

the atom.

V (t) = µ
[
A (t) e−iωt +A∗ (t) eiωt

]
where µ is the electric or magnetic moment, ω is the EM �eld frequency, and A (t) represents the EM
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�eld amplitude, which we can treat classically. We calculate the matrix element as 〈ψn|V (t) |ψm〉

V (t) =

 0 V0,1

V1,0 0


where Vn,m = −µn,m

[
A (t) e−iωt +A∗ (t) eiωt

]
. Therefore, the Hamiltonian is

H =

 E0 V0,1

V1,0 E1


The time-dependent Schrodinger equation for the two-level system is

i~
∂ψ

∂t
= Hψ

i
d

dt

B0 (t)

B1 (t)

 =

 ω0 V0,1/~

V1,0/~ ω1


B0 (t)

B1 (t)


by transform the amplitudes Bi(t) = Ci (t) e−ωit we can obtain

i~
d

dt

C0 (t)

C1 (t)

 =

 0 −µ
[
A (t) e−iωt +A∗ (t) eiωt

]
e−iω10t

−µ
[
A (t) e−iωt +A∗ (t) eiωt

]
e−iω10t 0


C0 (t)

C1 (t)


where ω10 = ω1 − ω0. In the rotating wave approximation, the terms that oscillate quickly are

dropped, and the term that rotate slowly remains.

i~
d

dt

C0 (t)

C1 (t)

 =

 0 Ω∗

2 e
iδt

Ω
2 e
−iδt 0


C0 (t)

C1 (t)


where δ = ω − ω01 is the detuning of the EM �eld from resonance, and Ω = 2µA/~ is the Rabi

frequency.

In the resonant case, the evolution of the Bloch vector in the presence of an external pulse (Rabi
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pulse) can be described [24]

u (t) =


1 0 0

0 cos θ (t) sin θ (t)

0 − sin θ (t) cos θ (t)

u0

where θ (t) =
∫ t

0

√
|Ω (t′)|2 + δ2dt′. Namely, the Rabi pulse rotates the Bloch vector about the x

axis. In the state vector representation, a resonant pulse of duration t is expressed by the application

of a unitary operator U(t) to the state vector:

|ψ (t)〉 = ˆU (t) |ψ0〉

ˆU (t) =

 cos θ(t)2 i sin θ(t)
2

−i sin θ(t)
2 cos θ(t)2

 (3)

by setting the angle θ (t)we can obtain the one qubit gate. This can be done with coils that create

magnetic �eld with ω1 and in this case, the Rabi frequency is given by Ω = µB/~ and the detuning is

δ = ω1 − ω0.

For example, by taking EM pulse as θ(t) = π/2

ˆU (t)π/2 =
1√
2

 1 i

−i 1


If the atom is initially prepared in one of the basis states, a π/2 pulse transforms it into a superposition

state

|0〉 → 1√
2

(|0〉+ i |1〉) |1〉 → 1√
2

(|1〉 − i |0〉)

Therefore, by taking RF pulse with detuning relevant as |0〉 or |1〉, we can drive the atom state with

Phase gate, π/8, gate and Hadamard gate.
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Two-qubit gate. To implement the two-qubit
√

SWAP gate, we utilize two unique advantages of

ultracold atoms.

• Ability to control the interaction between atoms around Feshbach resonance [19].

• Ability to shape the potential landscape using far o� resonance light, controlling the atom tun-

neling between two traps [18].

These, together with fermionic statistics, are the basis for a new protocol for
√

SWAP gate. This

protocol is original but similar in some aspects to the gate �rst described in ref.[25]. We consider

two optical microtraps with one atom at each site, with a distance d between them. Using second

quantization and the Fermi-Hubbard model [26], the Hamiltonian is given by

HJ,U = J
(
û1
†û2 + û2

†û1 + d̂1
†
d̂2 + d̂2

†
d̂1

)
+ 2U

(
û1
†û1d̂1

†
d̂1 + û2

†û2d̂2
†
d̂2

)
≡ J ·HJ + U ·Hu

Where J is the tunneling energy, U is on site interaction energy, ûi and ûi
† are annihilation and

creation operators of particle i in state �up�, i.e., |1〉 and d̂i and d̂i
†
are annihilation and creation

operators of particle i in state �down�, i.e., |0〉 with the usual fermionic commutation relations [27].

We assume only on-site interactions because of the short-range interaction atoms e.g., 40K.

First, the operation of the
√

SWAP gate in three steps is as follows. At each step, the Hamiltonian is

time independent and the unitary evolution operator has the form

Û = e
−i
~ H·t

The
√

SWAP gate can be divided into

Û√SWAP = e−
i
~J·HJ ·t1e−

i
~U ·Hu·t2e−

i
~J·HJ ·t1 (4)

where t1 = π~
4J and t2 = π~

4U . To prove this relation, we need to calculate the time evolution of HJ and

HU .
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For HJ we note that

HJ

(
d̂1
†
û2
† − û1

†d̂2
†)
|0〉 = 2J

(
d̂1
†
û1
† + d̂2

†
û2
†
)
|0〉 (5)

HJ

(
d̂1
†
û1
† + d̂2

†
û2
†
)
|0〉 = 2J

(
d̂1
†
û2
† + d̂2

†
û1
†
)
|0〉

HJ

(
d̂1
†
û2
† + û1

†d̂2
†)
|0〉 = 0

HJ

(
û1
†û2
†
)
|0〉 = 0 (6)

HJ

(
d̂1
†
d̂2
†)
|0〉 = 0

Now we look at equations (5) and obtain a simple matrix

i~
d

dt

A1 (t)

A2 (t)

 =

 0 2J

2J 0


A1 (t)

A2 (t)

 (7)

WhereA1 (t) andA2 (t) are the amplitude of the time-dependent states, i.e., A1 (t)
(
d̂1
†
û2
† − û1

†d̂2
†)
|0〉+

A2 (t)
(
d̂1
†
û1
† + d̂2

†
û2
†
)
|0〉. The solutions to equation 7 are as follows:

A1 (t) = A cos

(
2J

~
(t− t0)

)
A2 (t) = A sin

(
2J

~
(t− t0)

)

Now, we add the solution of equations 6(homogeneous solution), and we get that the general solution

as

|ψ〉 = (C00d̂1
†
d̂2
†

+ C11û1
†û2
† + C12

(
d̂1
†
û2
† + û1

†d̂2
†)

+

+A12

[
cos

(
2J

~
(t− t0)

)(
d̂1
†
û2
† − û1

†d̂2
†)
− i sin

(
2J

~
(t− t0)

)(
d̂1
†
û1
† + d̂2

†
û2
†
)]
|0〉
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Where |ψ〉 is a solution to the time-dependent equation i~ d
dt |ψ〉 = HJ |ψ〉. Now we can choose,

C11 = C12 = C00 = 0 and t0 = 0 . This means that the singlet d̂1
†
û2
† − û1

†d̂2
†
after t1 = π~

4J into

e−i
π
4HJ → −i

(
d̂1
†
û1
† + d̂2

†
û2
†
)
.

Now we �nd the solution for HU .

Hu

(
d̂1
†
û1
† − û2

†d̂2
†)
|0〉 = 2U

(
d̂1
†
û1
† − û2

†d̂2
†)
|0〉

Hu

(
û2
†û1
†
)
|0〉 = 0 Hu

(
d̂2
†
û1
†
)
|0〉 = 0

Hu

(
d̂1
†
û2
†
)
|0〉 = 0 Hu

(
d̂2
†
d̂1
†)
|0〉 = 0

Here, the solution is simple, because all the single-particle states are stationary, while the solution

for the state |ψ0〉 =
(
d̂1
†
û1
† + d̂2

†
û2
†
)
reads

|ψ+〉 = e2it |ψ0〉 (8)

Now, we can calculate eq.(4). The �rst term with t = t1 is

|01〉 = e−
iπ
4 HJ |0initial〉

We can see that due to the Pauli principle, all the three symmetric states d̂1
†
û2
† , û2

†û1
†,(

d̂1
†
û2
† + d̂2

†
û1
†
)
are stationary in time eq.(6). The singlet state, which is anti-symmetric, evolves

as follows: d̂1
†
û2
† − û1

†d̂2
† HJ−→ d̂1

†
û2
† + û1

†d̂2
†
. Therefore, at the end of the �rst evolution, the

symmetric states are unchanged, while the anti-symmetric state becomes a state of �two particle� (i.e.,

doublon −i
(
d̂1
†
û1
† + û2

†d̂2
†)
). The second evolution with t = t2 (duo to eq. 8)

|02〉 = e−
i
~U ·Hu·t2 |01〉
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the �two particle� state obtains a phase of e−iπ/2 = −i and transforms it into −
(
d̂1
†
û1
† + û2

†d̂2
†)
.

The three symmetric states does not change. Finally, by repeating the �rst evolution with t = t1, the

symmetric states are unchanged, and the �doublon� state gets a phase of −i. Now, it reverts back to

an anti-symmetric singlet state

(
d̂1
†
û2
† − û1

†d̂2
†) √SWAP→ i

(
d̂1
†
û2
† − û1

†d̂2
†)

In conclusion, the three steps give us

• d̂1
†
d̂2
†
→ d̂1

†
d̂2
†

• û1
†û2
† → û1

†û2
†

• d̂1
†
û2
† + û1

†d̂2
†
→ d̂1

†
û2
† + û1

†d̂2
†

• d̂1
†
û2
† − û1

†d̂2
†
→ i

(
d̂1
†
û2
† − û1

†d̂2
†)

Therefore, combing these three actions together is equivalent to a
√

SWAP gate. In matrix notation,

• d̂1
†
d̂2
†
→ d̂1

†
d̂2
†

• û1
†û2
† → û1

†û2
†

• d̂1
†
û2
† = 1

2

(
d̂1
†
û2
† + û1

†d̂2
†

+ d̂1
†
û2
† − û1

†d̂2
†)
→

1
2

(
d̂1
†
û2
† + û1

†d̂2
†

+ i
(
d̂1
†
û2
† − û1

†d̂2
†))

= 1+i
2 d̂1

†
û2
† + 1−i

2 û1
†d̂2
†

• û1
†d̂2
†

= 1
2

(
d̂1
†
û2
† + û1

†d̂2
†
− d̂1

†
û2
† + û1

†d̂2
†)
→

1
2

(
d̂1
†
û2
† + û1

†d̂2
†
− i
(
d̂1
†
û2
† − û1

†d̂2
†))

= 1−i
2 d̂1

†
û2
† + 1+i

2 û1
†d̂2
†

which is the same as the matrix form that I showed above in equation 1. We can simplify the gate in

two additional step or one additional step. We note that

HJ,U

(
d̂1
†
û2
† − û1

†d̂2
†)
|0〉 = 2J

(
d̂1
†
û1
† + d̂2

†
û2
†
)
|0〉

HJ,U

(
d̂1
†
û1
† + d̂2

†
û2
†
)
|0〉 = 2J

(
d̂1
†
û2
† − û1

†d̂2
†)
|0〉+ 2U

(
d̂1
†
û1
† + d̂2

†
û2
†
)
|0〉
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Now we can write these equations in a matrix form

i~
d

dt

A1 (t)

A2 (t)

 =

 0 2J

2J 2U


A1 (t)

A2 (t)

 (9)

Where the matrix eigenvalues are:

λ1,2 = U ±
√

4J2 + U2

and the eigenvectors are as follows:

V1,2 =
1

2J

−λ2,1

2J



Thus, the solution is given by Ae−iλ1tV1 + Be−iλ2tV2 and AV1 + BV2 =

1

0

. The second-term

solution is A = −B. Therefore, the solution for the amplitude, equation 9, is

=
Ae−i

Ut
~

2J

e−i t~√4J2+U2

−U +
√

4J2 + U2

2J

− ei t~√4J2+U2

−U −√4J2 + U2

2J


 =

= Ae−i
Ut
~


√

4J2+U2

J cos
(
t
~
√

4J2 + U2
)

+ iUJ sin
(
t
~
√

4J2 + U2
)

−2i sin
(
t
~
√

4J2 + U2
)

 (10)

We can �nd a speci�c solution if we choose the parameter correctly.

t∗U

~
=
π

2
(4n− 1)

t∗

~
√

4J2 + U2 = πm (11)

Where m is an odd integer and n is any integer.
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By using these choices, equation 11 and A =

√
m2−(2n−1/2)2

2m (the solution should be normalized),

we obtain equation 10

A1 (t∗)

A2 (t∗)

 = i

1

0

 (12)

From equation 12, we obtain the
√

SWAP gate.

 d̂1
†
û2
† − û1

†d̂2
†

d̂1
†
û1
† + d̂2

†
û2
†

 √SWAP→

 i
(
d̂1
†
û2
† − û1

†d̂2
†)

0


From these two equations, (11), we can obtain the strength of the interaction U and the time t for

which the interaction acts similar to
√

SWAP gate

U = ±
2J~

(
2n− 1

2

)√
m2 −

(
2n− 1

2

)2 t =
~π
√
m2 −

(
2n− 1

2

)2
2J

(13)

The last parameter, J , depends on the distance between the two qubits ,i.e., d (t). One of our goals

is to optimize d (t).

2.1.4 Ability to Measure the Results

In our system, we can detect the population of state |0〉 (|−9/2,−9/2〉) in a �uorescence imaging us-

ing the cycling transition |−9/2,−9/2〉 → |11/2,−11/2〉. Unfortunately, we cannot detect the cycling

transition |−9/2,−9/2〉 → |11/2,−11/2〉 in our platform. The typical trap depth is ∼ 400 nK, and the

recoil temperature in 40K is 404 nK [28]; therefore, the atom drives out from the trap (even when the

direction is random and the heating goes as
√
Nphoton). To overcome this problem, we can measure

it with a Raman sideband cooling technique [29] (for more details, see section 3.2). Recent studies

with 40K sideband cooling have shown that single atoms release approximately 60 − 80 photom/sec

[14, 15]. Consequently, we can collect 10% of the photons, and it uses the ability to measure one-atom

�uorescence with the EMCCD camera (depending on the objective solid fraction angle and the laser
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Figure 3: The distance between two traps that reach the lens with an angle θ.

detuning equation 18). Shorter detection times can tune the probe laser frequency and raise the mi-

crotraps depth.

2.1.5 Scalability

In our system, the scalability is straight forward. When one qubit can be initited and controlled, by

adding more microtraps, you can obtain a larger number of qubits. The other microtraps are created by

other laser beams that reach the optical objective. These lasers are then focused to di�erent positions

at the focal plane:

d = f · θ

Where d is the distance between two microtraps, f is the objective focal length, and θ is the angle

between the incoming beams (see �gure 3). One way to do it dynamically is by employing two Acousto-

Optic-Modulators (AOM), one in x axis and one in y axis [30]. We can position the qubits with d� λ

and then J ≈ 0. Then, the qubits can be brought closer with the optimal d (t). For one-qubit gates,

we can take one qubit to a position where the RF �eld is optimal and far enough from other qubits

(�gure 4).
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Figure 4: Array of qubits that are formed by two AOMs. The qubits are moved to the
√
SWAP region

(I & V atoms) or to the one-qubit gate region (III atom) according to the quantum code.

The qubit isolation depends on the lifetime in the optical microtrap. We can reduce the laser power

when the atom state is at the ground state and obtain a lifetime of several minutes (see more details

see section 3.4 ). Therefore, the decoherence in our system should be very slow. Furthermore, in our

method, we can �nd m and n (eq.13) such that F → 1 (the �delity is the overlap between the chosen

target state and the spin state as measured or calculated F = 〈ψtarget| ρ̂ |ψtarget〉).

2.2 Theoretical simulation and calculation

To make a numerical calculation of a single atom in a microtrap, we need to solve the time independent

Schrodinger equation that is given by

Hψ (r, θ, z) = Enψ (r, θ, z) (14)

where En is the state energy of state n and H is the system Hamiltonian given by

H = − ~2

2m
∇2 + V (r, θ, z)
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where V is the potential. In 3D the potential of a single microtrap is

V (r, z) = −V0
ω2

0

ω (z)
2 e
−2 r2

ω(z)2

where ω (z) = ω0

√
1 +

(
zλ
πω2

0

)2

. The waist of a Gaussian beam is given by ω0 = λ
π·NA , where NA

is the numerical aperture. The trap parameters are laser beams with NA = 0.9 and λ = 1064 nm.

We calculated the eigenenergies and the eigenstates by solving numerically eq 14. The numerical 2D

calculation takes advantage of the cylindrical symmetry with 112 divisions in the radial direction and

102 divisions in the axial direction, and the accuracy of the results is better than 1%. The result of

the calculation is shown in Figure 5. We present calculations in low-optical trap V0/kB = 310 nK to

obtain bound symmetric eigenstates (in another word, laser with power of 1.06 µW). In this optical

depth regime we can get a life time of ∼ 438 sec (more details in 3.4). Figure 6 shows the plots of the

bound states in a single Gaussian potential for m = 0, 1 (m is the azimuthal quantum number). WE

can see that for lower NA we need to low the optical trap depth and the lowest eigenenergy depth is

smaller. In �gure 6 we can see that for one bound symmetric eigenstate we need a low depth optical

trap ( NA=0.9).
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(a) (b)

(c) (d)

Figure 5: Calculations of bound states in a single Gaussian potential. a) Potential of one trap with
NA=0.9 and V0/kb = 310 nK at y = 0. b) Lowest eigenstate (symmetric) with energy E/kb ≈ −40nK.
c) Second eigenstate with energy E/kb ≈ −1.5 nK (antisymmetric). d) Third eigenstate with energy
E/kb ≈ −0.316 nK (symmetric). Other states have E/kb > 0 and are therefore not bound.

23



(a) (b)

(c)

Figure 6: a) Calculations of bound states in a single Gaussian potential with NA=0.9. The �rst 12
are with m = 0 and the next 12 with m = 1. There are three bound states (E < 0) that are plotted
in Figure 5b, Figure 5c, and Figure 5d. b) Calculations of bound states in a single Gaussian potential
with experimentally condition NA=0.75. Here E1 = −18.14 nK, E2 = −1.67 nK E3 = −0.16 nK. c)
Lowest and second eigenstates energy (in terms of temperature) vs. optical trap depth.

In order to solve numerically the problem of two atoms in two traps with distance d (t) we need to

solve the time-dependent Schrodinger equation for two particles. This is one of the theory calculation

that need to be done. but �rstly we can solve the problem with one atom in two Gaussian traps
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that separated with a constant d. By knowing the energy di�erence between the symmetric and the

antisymmetric state we can state we can to de�ne J (∆E ≈ 2J). In �gure 7 I show the eigenenergy of

this system with d = 0.8 · λ and NA=0.9. The energy di�erence is ∆E = 4.968 · 10−31 Joule and the
√
SWAP gate time is Tg ∼ 0.3 ms (eq. 13). On the other hand, the scatteing rate is given by eq. 15 I

calculate the lifetime in the trap TI =
(

Γ
~δV0

)−1 ≈ 440 sec [31]. This give the ratio
Tgate
TI
∼ 10−6 and

it ful�lls the decoherence requirement (2).

There are many more numerical calculations that must be preformed, e.g., the gates parameter

U , t, d (t) (equation 13) for two-qubit gate and one-qubit gate parameters that given by equation 3.

Another parameter is the transfer qubit trajectory to obtain a fast transfer [32]. All these parameters

need to be optimized with demand on the �delity F > 0 .99 .
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(a) (b)

(c) (d)

(e) (f)

Figure 7: a) Potential of two traps with d = 0.8 · λ at y = 0. b) Eigenenergies calculations of
bound states in a double Gaussian potential. The �rst 12 is are with m = 0 and the next 12 is with
m = 1. There are four bound states in this potential (with E<0). The lowest state is with E = −54.8
nK and the second bound state with E = −18.85 nK. For this calculation the traps prameters are
d = 0.8 ·λwith λ = 1064 nm, and each trap depth is V0/kb = 310 nK and NA=0.9. This 3D numerical
calculation is done in Cartesian coordinates with 102 divisions at each dimension. c) Lowest eigenstate
(symmetric) with energy E/kb ≈ −54.82 nK. d) Second eigenstate with energy E/kb ≈ −18.85 nK
(antisymmetric in z axis and symetric in x axis). e) Third eigenstate with energy E/kb ≈ −7.23 nK.
f) Lowest eigenstate with m=1 and the energy is E/kb ≈ −27.94 nK.



3 ultracold atoms

The �eld of ultracold atoms has seen rapid development during the last 20 years. Many new exper-

imental techniques have been introduced, and the experimental toolbox has been vastly expanded.

Cooling and trapping of atoms is based on the use of forces acting on atoms in laser �elds or on the

combination of laser �elds and magnetic �elds. This chapter presents a brief background of cooling

and trapping techniques.

3.1 laser cooling technique

3.1.1 Doppler cooling

Doppler cooling mechanism was experimentally described in 1978 [33] and is the basis of our cooling

techniques. At low temperature, kinetic energy sets the temperature by

〈Ek〉 =
3

2
kBT

where kb is a Boltzmann constant. Each time a photon is absorbed by an atom, the atom receives

the recoil momentum hν
c in the laser propagation direction. When it emits a photon, it again changes

its momentum by the same value but in a random direction. Accordingly, if the atom travels in the

opposite direction to the laser propagation direction, the atom slows. However, if the atom moves in

the same direction as the laser propagation direction, it accelerates.

To slow down the atom, Doppler cooling takes advantage of the Doppler e�ect, a shift in frequency for

an observer moving relative to its source. This means that as the atom moves, it experiences a shift

in laser-beam frequency. When the atom moves towards the laser-beam propagation, it experiences a

frequency shift of +δνD, and if it moves in the opposite direction to the laser propagation, the shift

is −δνD. Thus, if the laser frequency is lower than the resonance frequency ν0 − δν, the atom that

travels in the same direction as the laser experiences, according to the Doppler e�ect, ν0 − δν + δνD.

In contrast, the atom that travels in the opposite direction experiences ν0 − δν − δνD. Accordingly,

the atom that travels in the direction of the laser experiences a force corresponding to the resonance
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frequency ∼ ν0, while an atom that travels in the opposite direction of the laser experiences a force

that corresponds to a frequency that is far of resonance ∼ ν0 − 2δν. Changing the detuning is one

way of controlling the magnitude of this force and drastically a�ects the number of trapped atoms .

Therefore, Doppler cooling creates a velocity-dependent force. It slows down atoms selectively based

on the magnitude of their velocity.

3.1.2 Sisyphus Cooling

Sisyphus cooling (polarization-gradient cooling) is a laser-cooling technique that was observed exper-

imentally and later �rst given a full explanation by Claude Cohen-Tannoudji [34]. Sisyphus cooling

is achieved by two orthogonal polarization laser beams. The two lasers create a polarization lattice.

When the atoms move to the maximum of the potential (and the resonance frequency is closer to the

laser frequency), they lose kinetic energy and move slower. As they reach the maximum, they are

optically pumped to the minimum, as shown in Figure 8a. In 40K, this technique does not work due

to the narrow and inverted hyper�ne structure of the P3/2 state [35].

3.1.3 Gray Molasses Cooling

Gray Molasses is a cooling technique similar to Sisyphus cooling. The di�erence between them is that

in Gray Molasses, the electromagnetic �eld splits the energy levels into a dark state and bright states.

If the laser beam is blue detuned, the bright level is light-shifted and the dark state does not change

(since it is not coupled to the light �eld). Similar to Sisyphus cooling, the atoms climb to the maximum

of the potential well and are then pumped to the dark level (see Figure 8b). As a general principle, a

better-cooling scheme is where the coldest atoms are pumped to a dark state and are not heated by

spontaneous scattering events. Recent studies [36, 37] have showed that for 40K, Gray Molasses on

the D1 line can reach a temperature of T ∼ 15 µK .
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(a) (b)

Figure 8: a) Sisyphus cooling scheme. Adopted from ref. [38] b)Gray Molasses cooling scheme. With
positive detuning, the ground state splits to two states, |ψD〉 and |ψB〉. These two states act similar
to the states in Sisyphus cooling. Adopted from ref.[37].

3.1.4 Magneto optical trap

A MOT consists of laser-beam propagation and retro-re�ecting along three orthogonal directions and

coils with anti-Helmholtz con�guration. The laser beams with red-detuning from an energy transition

in the potassium spectrum are sent to the atoms. The main mechanism is the Doppler (3.1.1) e�ect

[39]. The red-detuned (light with a frequency smaller than the resonance frequency) light is Doppler

shifted in the rest frame of a moving atom. This shift causes the atoms to interact with the laser as

if they are moving opposite to the laser propagation direction. We cool the atoms by lowering their

velocities. However, in this process, there is a limit [39] to the temperature:

TD =
~Γ

2kB

where kB is the Boltzmann's constant, ~ is the reduced Plank's constant, and Γ is the natural

line-width. In 40K, the Doppler limit is TD ∼ 150 µK.
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Figure 9: The magnetic �eld created by anti-Helmholz con�guration

3.1.5 Magnetic �eld for MOT

Doppler cooling lowers the temperature of atoms but does not di�erentiate between an atom far from

the middle of the trap and an atom at the center. A magnetic �eld takes advantage of the Zeeman

e�ect to localize the atoms and to increase the density. Atoms can have di�erent angular momentum

mz = −f,−f + 1, .., f where f is the total atomic spin. In the presence of a magnetic �eld, the energy

levels are split into sub-levels. The energy change is given by the following:

∆U = −~µ · ~B

where ~µ is the magnetic dipole moment of the state and ~B is the magnetic �eld. Therefore, the energy

di�erence is proportional to the magnetic �eld and depends on its direction.

Coils with an anti-Helmholtz con�guration produce a magnetic �eld that switches its sign at the

origin (see Figure 9 ). This give two regions, positive and negative. At the origin, the magnetic �eld

is zero. Therefore, the energy shift is ∆U ≈ 0 . In the positive magnetic �eld, mz < 0 and state

have increased energy, while in the negative magnetic �eld, mz > 0 and the state have decreased

energy. (∆U go opposite to the magnetic �eld). Therefore, as shown in Figure 10 , a photon with the

correct polarization is con�ned by the atoms, giving a spatially dependent forces with zero force in
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the center. Figure 11 summarize the laser directions and polarization in 3D due to the magnetic �eld

from quadratic coils.

Figure 10: Description of Zeeman split and polarization of laser beams with detuning δν in one
dimension. The blue line is the energy level at zero magnetic �eld. On the left, the magnetic �eld is
negative, therefore, the atom interacts with σ+ laser polarity. On the right side, the magnetic �eld is
positive, so the atom interacts with σ−laser polarity.

Figure 11: MOT con�guration in 3D.
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3.2 Raman Sideband cooling

To describe Raman sideband cooling, a Raman transition must be explained [40]. A Raman transition

is a two-photon transition consisting of absorption and stimulated emission. As shown in Figure12a, an

atom moving with velocity v that absorbs a photon with frequency ω1 is excited to a virtual state |c〉.

Immediately, another photon with frequency ω2 traveling in the opposite direction causes stimulated

emission of the atom into state |b〉. This allows for the precise selection of atoms with velocities that

satisfy the equation

v

c
=
ω0 − (ω1 − ω2)

ω1 + ω2

where c is the speed of light and ~ω0 is the transition energy between |a〉 and |b〉.

We can use the Raman pulse to transfer an atom with velocity v from |a〉 → |b〉, and with another

laser, we can excite the atom from |b〉 → |c〉. At state |c〉, the width of the velocity distribution is

σc (v)� σa (v). Therefore, when the atom decays back to |a〉 with velocity around v − vr, at the end

of the cycle, we have more atoms with lower velocity. In 1995, Wineland et al.[29], proposed cooling

an atom to the ground state in a 3D-optical trap scheme that was based on Raman transition. Only

recently and with more sophistication was performed with 40K [14] in an optical lattice. By cooling

with Raman sideband technique, we gain two bene�ts. First, we can detect the number of atoms at

each site due to their �uorescence, and second, we can lower the atom to the ground state.

3.3 Magnetic trap - QUIC con�guration

One cooling technique in ultracold atoms experiments is RF evaporation [41]. In this technique, the

atoms are loaded to magnetic trap with mz > 0, and by using a RF �eld, the atoms are transferred

to a state with mz < 0, which is not magnetically con�ned; therefore, they leave the trap. In this

technique, if the minimum of a magnetic �eld is zero, then the atoms that are closer to the minimum

(with low temperature) can �ip their spin and be ejected. A QUIC con�guration trap [42] is formed

by two quadrupole coils and one Io�e coil. The MOT uses the same coils as the quadrupole trap, so

the transfer of atoms from the MOT into the magnetic trap is straightforward. Atoms are loaded into

a quadrupole trap and subsequently transferred to an IOFFE-type trap. Figure(13) shows that the
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(a) (b)

Figure 12: a) Raman transition between two atomic levels |a〉 and |b〉 b) Raman sideband cooling
scheme in 40K taken from [14].

magnetic �eld goes from quadrupole with min (B) = 0 to quadrupole with min (B) = 1 G, and the

minimum is shifted around 17 mm towards the Io�e coil. The ratio between II
IQ

depends on the exact

sizes of the coils and distance between the quadrupole coils and the Io�e coil.

Figure 13: Magnetic �eld calculations in y direction starts with quadrupole with I0 = 210A and the
addition of a Io�e coil with di�erent current. The minimum is adiabatically moved ∼ 17mm towards
the Io�e coil.
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3.4 Optical trap

Optical dipole force comes from the potential that an atom feels when the oscillating electric dipole

moment of the atom induced by the oscillating electric �eld of the laser light interacts with the �eld.

Two important quantities for optical dipole traps are the depth of the potential Udip (r) and the

scattering rate Γsc (r). In terms of decay rate, they can be expressed as [31]

Udip(r) =
3πc2Γ

2~ω3
0δ
I (r)

Γsc (r) =
3πc2Γ2

2~2ω3
0δ

2
I (r) (15)

where I (r) is the laser beam intensity, Γ is the natural line-width and δ = ω − ω0 is the frequency

detuning of the laser from the frequency of the optical transition ω0. The dipole trap can be attractive

for red detuning (δ < 0) or repulsive for blue detuning (δ > 0).

λ p [mW] lifetime [ms]

1064 75 220
820 20 23

Table 2: Comparison of the life time and the laser source power in two commercial laser wave-
lengths. We required a 1 mK trap that is high enough for atoms at temperature following D1 cooling
(TD1 ∼ 30 µK).

The simple example is for TEM00 Gaussian mode far from resonance frequency. Beam intensity is

given by

I (r, z) =
2P

πω2 (z)
e
−2r

ω2(z)

Where ω (z) = ω0

√
1 +

(
z
zR

)2

. The peak intensity is given by I0 = 2P/πω2
0 . The trap depth is

de�ned as U0 = |U (0, 0)| and is linearly proportional to the beam intensity. Expanding around the
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position of maximum intensity leads to a harmonic potential

Udip(r, z) = −U0

[
1− 2 (r/ω0)

2 − (z/zR)
2
]

(16)
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4 The experimental machines

In our lab, we built an ultracold-atom system with 40K. This chapter describes the systems and

concentrate on the parts I constructed.

4.1 The experimental systems

We considered two methods (see sketches in Figure 14) of creating a single atom trapped in an optical

trap. Each of these methods has advantages and disadvantages, and we have not yet decided which

method to use. We plan to advance in both before making the �nal decision. Considerations are the

preparation time of a single atom trap and the temperature of the atom. The �rst system includes a

machine producing as an initial resource a quantum degenerate Fermi gas with T/Tf � 1. The second

method is characterized by loading from only a relatively ultracold cloud after 3D MOT or D1 cooling,

removing all atoms other than one, and then cooling inside the trap.

1. Degenerate fermi gas. The �rst system (see Figure 14a) is composed of three cells under

ultrahigh vacuum ∼ 10−11 torr. In the �rst cell (source), we release 40K atoms from homemade

dispensers. The atoms are captured by a 2D MOT. On the third axis, there is a mirror with a

hole (nozzle) inside the chamber. The atoms are cooled in two axes and pushed to the second

cell by another laser (with di�erent detuning) in the third axis (re�ected with hole in the middle

by a nozzle). In the second cell (cooling), they are captured and trapped by a 3D MOT. At this

point, the cloud temperature is around ∼ 220 µK. By using a Gray Molasses cooling on the D1

atomic transition, the atomic cloud temperature is reduced to ∼ 15 µK. Next, we optically pump

the atoms into the states|9/2, 9/2〉 and |9/2, 7/2〉 and load the atoms to a magnetic trap with a

QUIC con�guration [42]. In this con�guration, we obtain a magnetic trap without B = 0. This

is important for a RF evaporation. Following the evaporation, the temperature is T/Tf ≈ 1− 3.

Next, we load the atoms to a far-o�-resonance optical trap and move the optical trap adiabatically

(with air bearing stage ) to the science chamber. Then, we �rst con�rm that the cloud is spin

polarized and then load it to a microtrap and reduce the trap depth until there is only a single
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bound state [18].

The advantages of this approach is that the process of cooling occurs prior to loading, and there

is a large spatial separation between the source and the �nal trap (which ensures a long lifetime

of the trapped atom) and a greater density of atoms. The disadvantage is that the process is

rather complicated and takes around 80 seconds.

2. Fast approach. In the second system (see Figure 14b), we have one cell under high vacuum

∼ 10−11 torr. The 40K atoms is released from a homemade dispenser by heating and trapped

with a 3D MOT. Then, by using a Gray Molasses cooling on the D1 atomic transition, we obtain

a cloud with temperature of over dozens of micro-kelvin. Next, we can load directly to a micro-

trap made of a far-o�-resonance light. Then, using LAC, only a single atom remains trapped.

This single atom is "hot" in the sense that its spread over vibration states is large. To measure

the atom and cool it to ground state, we plan to use Raman side-band cooling [29, 14, 15].

The advantages of this approach are the simplicity of the apparatus and the short duration of the

experiment that allows for a fast data-accumulation rate. The disadvantage is a shorter lifetime

due to the residual ambient gas. There is also a possibility to construct a system made of two

chambers where one chamber is used with 2D MOT to generate a source.

We are currently building two experimental systems: the �rst one is a degenerate fermi gas ma-

chine where we can proceed with the �rst approach (this system is planned to be also used for other

experiments), and a second smaller system in which we are going to explore the second approach. We

started constructing the �rst system two years ago, and in the meantime, we completed the 2D and

3D MOT, D1 cooling, optical pumping, magnetic trapping in QUIC trap, RF evaporation, loading

into an optical trap, transporting the atoms to the science chamber. We started to build the second

system eight months ago (the vacuum chamber was actually evacuated two and a half years ago); we

have just one cell and we have completed the 3D MOT and are now working on loading atoms to the

optical microtrap and detecting them.
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(a) (b)

Figure 14: a) Degenerate fermi gas system description. Atoms are released from the dispensers and
are trapped by a 2D MOT in the �rst cell. In the second cell (cooling ), atoms are trapped by a
3D MOT and cooled with D1 cooling and RF evaporation. Then, they are loaded to an optical trap
that transfers the atoms to the third cell. b) Fast approach system (with one cell) description. This
chamber is similar to the 2D-MOT chamber in the �rst system. Atoms are released from the dispensers
and trapped by 3D MOT. Then, the atoms are loaded into an optical microtrap.
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4.2 MOT

In both systems the �rst stage is MOT. In the �rst method, we start with a 2D MOT and continue

to a 3D MOT, and in the fast approach method, we start with a 3D MOT. In the �rst system, we

�rst used a 2D MOT as described in [43]. For the 3D MOT, we needed, as explained previously, two

lasers (cooling and repump) and two coils with anti-Helmholtz con�guration. In this con�guration, we

can not make RF evaporation, as there is a zero-magnetic �eld at the bottom. Therefore, we added a

IOFFE coil in a QUIC con�guration [42].

4.2.1 Coils setup

Three coils were made from a 4.2X4.2 mm square copper tube, which is hollow to cool the coil at

a high current by letting water �ow through it. To wrap this coil, we have designed a part made of

Te�on that connects to a rotating spindle (15b). Te�on is use so the glue does not stick to the holder

and to avoid harming the coating of the coil. After each round, we smeared a layer of glue (Araldite

2011) and let it dry for 24 hours.

Considering the dimensions of our system, two coils (both for the 3D MOT and for the magnetic trap)

were needed with 7X5 winding with r = 20 mm. Another coil with 6X4 and an inner most radius of

r = 30 mm(15a). The coil current is controlled with a Proportional-Integral-Derivative (PID) loop

that measures the current by Hall probe.
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(a) (b)

Figure 15: a) QUIC con�guration. Atoms are loaded at point a by two coils with anti-Helmholtz
con�guration with Umin = 0. When the Io�e current rises, the atoms are moved to the new minimum,
at point b (d ∼ 16.9 mm), with Bmin ≈ 1 G. b) Picture of the part that twisted the coils.

4.2.2 Lasers setup

For MOT, we need two lasers: one laser for cooling and the other laser as a repump to return

the atoms to the cooling transition if they end in the other hyper�ne state mf = 7/2. In our setup,

as shown in Figure (16), we used one laser as a reference laser (DBR laser PH770DBR080T8 from

Photodigm and a current and temperature controller of LDC 501 from Stanford Research System).

The reference laser is locked on the |F = 2〉 → |F ′ = 3〉 on the D2 transition in 39K. The reference

laser is locked to room temperature on the vapor cell with 39K atoms; hence, we need to use Saturated

Absorption Spectroscopy (SAS) (4). The two other lasers are locked with O�set locking [44] to the

reference laser. That con�guration was used because wide tunability range was needed for the lasers

(we cannot obtain that by using AOMs). Theoretically, the shift between the reference laser to the

cooling laser, as described in Figure(17), is

fcooling = freference + 804.85 MHz
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An AOM was placed as a switch before the �ber with −100 MHz shift, and determined a red detuning

of 3Γ ≈ 18 MHz. Therefore,

∆fcooling = 922 MHz

In addition, the theoretical shift between the reference laser to the cooling laser is

frepump = freference − 431 MHz

A AOM was placed as a switch before the �ber with +110 MHz shift, and determined a red detuning

of 3Γ ≈ 18 MHz. Therefore

∆fcoolng = 522 MHz
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Figure 16: Laser setup. Cooling and repump are locked by o�set locking to the reference laser. The
reference laser locked on |F = 2〉 → |F ′ = 3〉 in the D2 transition of 39K with SAS system.
Most of the power of the lasers (cooling and repump) goes through a AOM that is used as a switch.
After a 1:2 telescope, they are split, and the most injected to one �ber leads to the MOT, while the
other power is injected to another �ber that lead to the probe.
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Figure 17: Optical transitions of the D1 and D2-lines of
39K & 40K. The blue arrow is the transition

that we lock to using the SAS for the MOT. The orange arrow is a transition used for the D1 cooling.
The green Arrow is the cooling transition, and the red arrow is the repump transition for the MOT.
The black arrow is the cooling transition, and the purple arrow is the repump transition for the D1
cooling. The numbers are in MHz. Adopted from [28]

4.2.3 Saturated Absorption Spectroscopy (SAS)

In laser cooling, we must lock the laser to the frequency of an atomic transition. The atoms move

with a random velocity distribution, so the laser comes into resonance with di�erent velocity groups of

atoms. Therefore, the laser interacts with atoms in di�erent velocity groups of atoms. Their velocities,

according to Maxwell-Boltzmann distribution, are

dn

dv
= n0

√
m

2πkBT
exp

(
−mv2

2kbT

)
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If the laser beam is at frequency f0 in the reference frame of the lab, than in the atoms frame, the

frequency is shifted due to the Doppler e�ect:

f =
(

1± v

c

)
f0

This means that each velocity group has a di�erent resonance frequency in their respective frame of

reference. Therefore, the intensity assumes Gaussian shape

I (f) = I0exp

[
−mc

2 (f0 − f)
2

2kBTf2

]
(17)

with a width of σ = f0

√
kBT
mc2 . In

39K on temperature T ≈ 340 K, the intensity width σ = 346 MHz.

However, Doppler broadening makes it impossible to determine the precise transition frequency to

within the natural linewidth (Γ ∼ 6 MHz). To overcome this di�culty, we need to use an SAS system

that is a probe pump setup.

Two counter-propagating probe and pump, laser beams derived from a single laser beam are sent

through an atomic vapor cell (in our lab, a vapor with 39K) at room temperature with same frequency

f0. A photodiode is placed after the vapor cell and measured the probe beam. If the probe beam

frequency is not at the resonance frequency, fprobe 6= f0, then it interacts with atoms that have velocity

v that satisfy the Doppler shift fprobe = f0 (1 + v/c). In addition, the pump beam interacts with atoms

that have velocity −V . In this case, the signal on the photodiode is a deep (eq. 17) with width of σ.

However, when the beam is on resonance fprobe = f0, the atoms has zero velocity, and there is a sharp

decrease in absorption (seen as a sharp increase in the signal from the detector), since many of these

atoms have been pumped out of the ground state and are not be able to absorb any photons from

the resonant probe beam. Figure 18a shows the signal from the SAS system with with 39K at room

temperate for the D2 laser, and in Figure 18b shows another SAS system result for the D1 transition.

The system description in Figure 16 for D2 and in Figure 25 for D1.

44



(a)

(b)

Figure 18: Saturated Absorption Spectroscopy in our system. �gure a) shows the D2 transition
(�gure17) where zero frequency is for the repump transition in 40K, and Figure b) shows the D1

transition (�gure17), where zero frequency is the transition between F = 1→ F ′ = CO (1, 2) in 39K.
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4.2.4 O�set locking

O�set locking is a technique to lock a laser to the reference laser and give the ability of frequency

tuning from tens of MHz to several GHz. This technique is based on the frequency depended phase

shift experienced by the beat note of two laser frequencies, as shown in [44]. The circuit and the

locking signal are shown in Figure19.

(a) (b)

Figure 19: a) O�set Locking circuit. The signal is goes through a coupler (ZEDC-10-2B) to take
a reference of the signal (and measure the laser width) and amplify (z�-1000+). Then, it is mixed
(zx-12MH-S+)with a voltage control oscillator (VCO-zx95-800A+). It then splits to two lines (ZX10-
2-12-S+), one short and another long (0.1m & 3.4m). Afterwards, the two lines are recombined on a
phase detector (ZRPD-1+). We use a low-pass �lter of 1.9KHz at the end. b) o�set signal. The �dot�
position is controlled by the VCO

4.2.5 Measurements of the number of atoms

To calculate the number of atoms, we measure their �orescence with a photodiode. We can calculate

the number of atoms by the following equation:

N =
V τ

g1g2S · Ephotonρ6
(18)
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(a) (b)

Figure 20: Calibration of the resonance frequencies. a) Cooling Laser Fluorescence Fraction. b)
Repump Laser Fluorescence Fraction

where V is the measured output voltage, τ is the excited state life time of the atom, g1is the

current to voltage photodiode gain , g2 is the photodiode e�ciency, S is the solid angle fraction(
S = arctan

(
d
f

))
, Ephoton is the photon energy, and ρ6 is the excited state fraction that is calculated

in [45] for a six-level model.To calibrate the laser detuning, we �rst �nd the resonance. We load the

MOT for 15 sec with cooling laser frequency at f0 optimized for MOT operation, change in 10 msec

the cooling laser frequency to f1, and measure the �uorescence fraction V (f1)
V (f0) . By performing this

sequence, we con�rm that our signal does not depend on the number of atoms and f0, but only on

f1. The result is shown in Figure (20a), and we repeat this measurement for the repump laser (Figure

20b). We optimized the lasers detuning (cooling and repump) to obtain a high number of atoms (see
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(a) (b)

Figure 21: Number of atoms vs laser frequency. To know what are good conditions for the MOT, we
scan the laser frequency and calculate the number of atoms. (a) Cooling Laser. (b) Repump Laser

(a) (b)

Figure 22: a) Example of loading time measurement. b) Number of atoms and loading time vs.
dispenser current. High currents release more potassium-40 and increase the atoms density in the cell.
Thus, the loading time decreases and the number of atoms increases. However, a high current shortens
the life of the dispenser.
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Figure 23: Release & Recapture Experiment. In a short time, most of the atoms do not escape from
the area of the MOT beams so they are trapped again. However, as time progresses, the number of
atoms that remain in the MOT beams decreases depending on their velocity or, in other words, their
temperature.

Figure21a and Figure21b).

The last parameter that is tunable is the dispenser current. The dispenser current can shorten the

loading time (Figure 22) and increase the number of atoms.

4.2.6 Temperature Measurement with Release & Recapture Technique

To measure the MOT temperature, we use Release and Recapture (R & R) method [46] described

in Figure (23). Assuming that the atoms in the MOT have a Maxwell Boltzmann distribution

f (v) = 4πv2

(
m

2πkBT

)3/2

e
− mv2

2kBT

At some point, we immediately shut o� the trap and let the atoms expand ballistically for duration

δt and then open the lasers again and recapture part of the atoms. The position of each atom after

this expansion is given by

f (r, t) =
4r2

√
πα3t2

e−
r2

α2t2

Where α =
(

m
2kBT

)−3/2

. Now we can use v = r/t and obtain

f (v) =
4v2

√
πα3

e−
v2

α2
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(a) (b)

Figure 24: Release & Recapture Measurement. a) Example of sequence. We loaded the MOT and
closed the lasers for δt and calculated the fraction of Nδt

N0
. b) Fraction vs. δt. From the �t, the

temperature was calculated and showed T ≈ 247 µk.

Assuming that the MOT radius starts with r0 and captures with the radius beam (rf = ω0), we

can calculate the number of atoms that we trap

N (t) =

∫ rf

r0

N0f (v) dv = N0
4√
πα3t3

∫ ω0

0

r2e−
r2

α2t2 dr

⇒ N (t)

N0
= erf

( ω0

α · δt

)
− 2ω0e

− ω2
0

α2δt2

α · δt
√
π

The fraction of the number of atoms in the MOT was measured after δt without lasers divided by

the number of atoms before closing the trap (the results are shown in Figure(24)). We measured the

MOT laser waist ω0 = 4.4 mm and obtained α = 0.01247 ± 0.00258. Therefore, the temperature is

50



T = 247± 13 µK.

4.3 D1 cooling

As explained in 3.1.3, D1 cooling can lower the temperature to T ≈ 15 µK in 40K without atom

loss. The following introduces our system and experimental results.

4.3.1 Lasers setup

We used a DBR laser (photodigm PH770DBR080T8 ) at λ = 770.1 nm and a current and temper-

ature controller ( Stanford Research System LDC501 ). We took a ∼ 10 mW towards an SAS system

(4) . We locked the laser with the derivative signal by a PID loop on the current of the laser.

The D1 cooling transition is |F = 9/2〉 → |F ′ = 7/2〉. However, we used a 39K for locking the laser

and the most obvious line in locking signal is the crossover line |F = co (1, 2)〉 → |F ′ = 2〉. 17 shows

that to obtain the transition |F = 1〉 → |F ′ = 2〉 we need to add 230.85 MHz .Now we need to move

to the energy level of 40K. Therefore the cooling resonance is the following :

fcooling = flock + 704.85 MHz

We manage this with a three Acousto-Optic-Modulator (AOM) . The �rst one is a double pass ( Gooch

& Housego -AOM AOMO 3200-124 ) con�guration with 230 MHz on the −1 order. This con�guration

gave the ability to change the frequency without changing the optic system (Outgoing angle does

not change when changing the frequency of the AOM). The second AOM ( Gooch & Housego -AOM

AOMO 3200-124 ) has a frequency of 200 MHz (+1 order).

The relation between the flock and fco(1,2)→2 is:

flock = fco(1,2)→2 −
fAOM−SAS

2
− fdouble−pass
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Therefore, the frequency shift is

∆f = fcooling(f=9/2→f ′=7/2) − flock

= 704.85− 60− 230× 2

= 202.55 MHz

We added the third AOM ( Gooch & Housego -AOM AOMO 3200-124 ) at +200 MHz for the �nal

frequency transition. Prior to the third AOM, we added a homemade Tapered Ampli�er (TA) to

increase the laser power. The beam after the TA diverges on an axis parallel to the optical table.

Therefore, we added a cylindrical lens with f = 75 mm. Afterwards we added a telescope 4:1 to obtain

a small beam for the third AOM. We took the �rst positive order and made another telescope 1:2 to

match the beam mode to the �ber mode.

For the repump laser, we used the cooling beam and added a sideband by using home-made high

frequency Electro-Optic-Modulator (EOM 4.3.2). Then, the laser beam is injected to three optical

�bers (the 3D MOT �bers)

The power beam is controlled by changing the RF AOM power (with a voltage variable attenuator

(Mini circuits ZX73-2500-s+)).

4.3.2 High Frequency Electro-Optic-Modulator

Cooling process requires two laser frequencies, one frequency for cooling and one frequency for

repumping (3.1.2). In 40K the D1 transition has a distance of 1.285 GHz. Therefore, as in the MOT,

we can take two di�erent lasers locked by an o�set locking technique. However, in D1 cooling, the

frequency shift is the frequency shift between |−9/2〉 → |−7/2〉 in 2S1/2. In addition, in D1 cooling,

the magnetic �eld is set to zero and the state distances are not changed. Therefore, we can use an

Electro-Optic-Modulator (EOM) to add frequency side band on the top of the cooling laser that are

±1.285 GHz apart from the main laser frequency.

EOMs are based on the linear Electro-Optic e�ect, which is the modi�cation of the refractive index of

a nonlinear crystal by electric �eld in proportion to the �eld strength. The electric �eld at ω0 enters

the medium that operates another electric �eld at ωm. Thus, the equation of the �eld is
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Figure 25: D1 laser setup.
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(a) (b)

Figure 26: a) High Frequency EOM prescription. The black square with area of A = w ∗ d is the
crystal area cross section, and the brown with radios r is the foil with a thickness of 0.1mm. b) EOM
picture where one loop is for antenna and anther is a pickup coil for Q factor measurement.

E(t) = E0 (sin (ω0t+ n sin (ωmt)))

= E0

∞∑
n=0

Jn(n) sin ((ω0 + nωm) t)

This new phase can be applied by sending the electric �eld through a nonlinear crystal, resulting

in a corresponding change in the refractive index. To make a signi�cant change in the crystal, a high

voltage need to be produced with a frequency of ωm on the crystal. There are electronics that can

generate a high frequency voltage of more than 1 GHz. Therefore, we needed to produce a resonant

circuit [47]. A circuit from copper foil was constructed with thickness of 0.1 mm and a loop with 3

mm space was made for contact with the crystal (LiNbO3) (Figure26).

The crystal could be described as an ideal capacitor. Therefore, C = εwl/d , where ε is a dialectic

constant at ωm. Also the accumulative inductance of the copper foil loop can be described as an ideal

cylinder current sheet ( because 2πr � d ) L = µ0πr
2/l. Therefore, the resonant frequency of this CL

circuit is given as
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f0 =
1

2π

( c
r

)( d

πw (εw/ε0)

)1/2

We used a crystal of dimensions w = d , and c is speed of light. For our experiment, (f0 =

1.285 GHz) r ≈ 4.15 mm (the value of εw at this frequency is not known and we assume that it is

∼ 43).

In our lab, we used a LiNbO3 crystal with dimensions of 3 × 3 × 30 mm. If the crystal would have

been smaller than 3 by 3 mm, then the gap would have been smaller, resulting in a larger electric �eld

for a given power. However, the laser beam must travel through the crystal, and our laser beam is a

1.5 mm, Therefore, a crystal with dimensions of 3× 3 mm is well suited to our lab.

In addition, the design for this EOM was constructed as follows. The holder of the crystal is formed

from Te�on to prevent unwanted changes to the resonator quality due to inductance.

Copper foil with a thickness of 0.1 mm was polished to maximize the transmission of the foil. Then,

the foil was twisted on a drill with a diameter of 8.3 mm. Both sides of the copper cylinder were bent

so a surface of 3 mm would �t the dimensions of the crystal.

A hole was made in the Te�on holder and threaded the RF antenna (end loop). For good coupling,

the antenna was located as close to the copper foil cylinder as possible without blocking the path of

the optical crystal or touching the foil. The antenna was connected to a VCO (Mini Circuits ZX95-

1410+).

Next, the quality of the resonator was measured. The Q (quality) factor describes how much energy

is lost in the resonator, with a large Q meaning less energy lost. The Q factor is de�ned as

Q =
f0

∆f

where ∆f is the bandwidth (where the energy is reduced by half the maximum value) and f0 is the

resonance frequency.

The Q factor was measured with an RF antenna and found that Q ≈ 150 and f0 = 1.285 GHz.

This gave us the possibility of adjusting the device. The direction was made by a squeeze of the
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.
(a) (b)

Figure 27: a) Measurement of Q factor Q ≈ 150 and f0 = 1.285 GHz. b) Measurement of EOM
e�ciency using Fabry Perot. The maximum e�ciency (at high RF power ~ 4W) of the EOM is
Irepump

Icooling
= 0.19. The Fabry Perot scanning is 1.5 GHz, and the �rst-order peak distance is 1500−216 =

1284 MHz (this �gure shows the sideband from the next peak where the distance between them is 1.5
GHz).
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resonator, reducing the radius and thus increasing the resonant frequency. In addition, we studied the

e�ect on the laser by measuring the laser in a Fabry Perot. An RF power of P = 4 W and obtain

Irepump
Icooling

= 7.5% (Figure 27b) ,which should be su�cient for the D1cooling.

4.3.3 Measurement of the D1 Frequency Resonance

In the �rst measurement, we wanted to �nd the resonance frequency of the cooling transition

(|F = 9/2〉 → |F ′ = 7/2〉). For this measurement, a Photo Multiplier Tube (PMT) measured the

�uorescence of the atoms. We opened the PMT 3 ms before opening the D1laser (just cooling), as the

PMT has an opening time of ∼ 2 ms. When we opened the cooling laser, the atoms are �uorescent

for ∼ 100 µs. Therefore, the signal had an exponential decay. We made a �t of I = A0e
−t/τ and took

the A0 as the intensity of the atoms �uorescence while scanning over a range of f = 25 MHz. We

cannot scan over more than 25 MHz, as we scan on the double-pass AOM before the locking circuit,

and any change in this AOM changes the intensity on the locking signal and the laser would lock out.

We found that the cooling resonance is at fAOM−DP = 221.175 MHz with a width of 10.02 MHz. We

set the cooling frequency with blue detuning at

fDP−AOM = fresonance + 3Γ = 233.675 MHz

Next, we added the repump frequency to the cooling beam by using a High Frequency EOM.

This laser has two frequencies that are injected to the three �ber of the 3D MOT (retro-re�ection

con�guration). The power at each axis is approximately I = 12Isat with
Ir
Ic
∼ 7.5%. Before starting

to reduce the temperature, the atoms must be compressed by adding a magnetic-trap for 2 ms (which

causes increased temperature).

4.3.4 Temperature and atoms number measurement by Time Of Flight (TOF ) technique

TOF measurements are performed by acquiring the absorption signal of the probe laser beam

through the falling and expanding atomic cloud. There are several methods of measurement of tem-

perature, R&R 4.2.6 , MOT �uorescence spectrum analysis[48],forced-oscillation[49]. Another model
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Figure 28: PMT signal Vs. DP-AOM frequency. The resonance is in 2 · fAOM−DP = 443 MHz. To
cool with the blue detuning of ∼ 3Γ on the D1 18 MHz was added. Therefore, 2 · fAOM−DP = 461
MHz . The �nal parameter is set by the parameters of the atoms (temperature and number of atoms)
as shown in Figure29.

that was suggested by Jerzy and Gawlik in [50] shows that the absorb signal from an atoms

N (t) =
P0

2π (σ2
I + σ2

t )
exp

−( g
(
t20 − t2

)
2
√

2
√
σ2
I + σ2

t

)2


where p0 is the probe laser power, t0 is the arrival time of atoms with no initial vertical velocity, σI

are laser beam waist along x and y axes, and σt =
√
σ2

0 + σ2
vt

2 is the Gaussian radius of the ballistic

expanded cloud. The Gaussian radius σv of the velocity distribution is associated with the temperature

T of the atoms cloud by

T =
m

kB
σ2
v

After a loading time of 30 sec, we closed the coil current and the D2 laser beam and opened the D1

cooling for t = 4 ms. We then closed the D1 laser, waited 18 ms, and then took a TOF image. The

parameters of the cooling and repump frequency were scanned and these parameters were optimized

as described in Figure29. At the end, the atoms parameters were T = 19 µK and N = 2 × 108atoms

(where fAOM−DP = 461.3 MHz, frepump = 1287 MHz and D1 duration t = 4 ms). The TOF image is
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shown in Figure29d.

(a) (b)

(c) (d)

Figure 29: a) D1cooling tune vs temperature. b) D1 repump tune vs temperature. c) D1 duration vs
temperature d) Absorb image of atoms after D1 cooling with Time Of Flight t = 18 ms.

4.4 Optical Trap

As shown in equation (16), in a optical trap, the potential and the scattering rate depend on the

beam ω0
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Udip ∝ ω−5
0

Therefore, we need precise measurement of the beam waist. In addition, a laser with λ = 1064 nm

should be used to obtain a long lifetime in the micro trap (2).

4.4.1 Microtrap waist measurement

To know the optical trap's depth and size, we need to measure the ω0 of the beam. Each camera

has a �nite size of the pixel that is greater than 7 µm thus, we can not use a camera to measure the

waist. We can use a knife edge measurement, but again, we need a high resolution x-z stage (< 0.2 µm

for seven less measurements at the waist).

We used two easy ways to measure the micro-trap waist by using the Knife edge technique in a

di�erent way [51]. For Gaussian beam the one dimensional pro�le is given by

V =
P0

2

(
1± erf

(√
2(x− x0)

w0

))

where P0 is the laser power and ω0 is the beam waist. In our setup, a collimated laser beam with waist

ω1 = 0.89 mm and λ = 1064 nm enters a 1:6 telescope. It then travels through an Aspheric lens with

f = 26 mm. The Numerical Aperture (NA) is given by

NA =
2 · 6 · ω1

2f
= 0.205

The NA of a Gaussian laser beam is then reduced to its minimum spot size by

NA =
λ

πω0

where λ is the laser wavelength (in our trap, λ = 1064 nm) and ω0 is the laser beam waist at the focus.

Therefore,

ω0,theory =
λ

π ·NA
= 1.65 µm
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4.4.2 Measurement of a microtrap waist with an optical chopper

An optical chopper is a spinning wheel with holes at a constant frequency. The holes are used as

a knife for the knife edge measurement. A photodiode was placed after the chopper and measured

power vs. time on a digital scope. By knowing the frequency of the chopper and the distance between

the laser and the center of the chopper, we can calculate the velocity of the knife. Therefore, we can

translate the time to distance.

4.4.3 Measurement of the microtrap waist with a piezoelectric actuator and Michelson

interferometer

In this measurement, a Piezoelectric actuator (ThorlabsAE0203D08F ) was inserted to a transla-

tion stage. In our lab, we only have an actuator that can travel at 9.1 µm. The actuator receives a

voltage of 0−150 Volt from a ramp waveform. On the translation stage, a knife was set and measured

the power on the photodiode. We can assume that the actuator travels linearly from 0→ 9.1 µm, but

we can calibrate this with a Michelson interferometer (calculate the actuator traveling distance). As

described in Figure (30a), our collimated laser beam λ = 1064 nm was split with a Non Polarizing

Beam Splitter (NPBS) to two mirrors. One mirror is moved with the translation stage by the actuator,

and the second mirror does not move. The lasers from the two mirrors are combined on the NPBS

and focused on a photodiode. On the photodiode, we obtain a di�raction pattern that is dependent

on the di�erence between the optical paths [52].

∆L =
λm

2

where ∆L is the distance that the mirror is moved, m is the number of maximums, and λ is the

wavelength of the laser. As shown in Figure 30b, we obtain m = 14.5 in one waveform period;

therefore,

∆L = 7.714 µm

Now, the distance in the knife edge measurement was measured as ω0 = 2.148 µm (�gure 31). However,

these measurements do not provide information regarding aberration or about M2. To measure them,
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there measurements of ω(z) are needed, but for this, a long-travel Piezoelectric actuator is needed

(∆L > 15 · ω0).

(a) (b)

Figure 30: Measuring the Microtrap Waist with a Piezoelectric Actuator and a Michelson Interferom-
eter. a) The system description. Collimated laser beam split by NPBS and traveling to two mirror
(mirror 1 is on the translation state and mirror 2 is �xed). They re�ected back and combined on the
NPBS and focused on a photodiode. b) Interferometer result. The �gure shows that we obtain 14.5
maximum peaks, so the actuator travel is 7.714 µm and, that the travel path of the piezo actuator is
not linear (the frequency of the sin function is not the same).
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Figure 31: Calculation of the beam waist with Knife edge technique.

5 Summery and Future Plan

This study presents our new platform for quantum computation. It is based on fermion statistics

and the attributes of ultracold atoms. Chapter 1 introduces the fundamentals of quantum computing

and the features of ultracold atom.

Chapter 2 demonstrates the theory behind quantum computation solutions for our system. In ad-

dition, the explained one-qubit gates and two-qubit gates in ultracold fermion systems are presented.

Moreover, the chapter presented our indecision regarding the choice of system from between the De-

generate fermi gas system (cooling to low temperature and then loading to a micro trap) or the

fast approach System (loading to an optical microtrap and then cooling the atoms to ground state).

Chapter 3 presents the relevant background for ultracold atoms, and Chapter 4 describes our two

systems that are in the middle of construction. Additionally, it shows the MOT trapping and cooling

stage and D1 cooling with one laser.
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For future research, we need to perform a more theoretical study on the system parameters, such

as the velocity d (t) of one qubit without change the qubit state , de�ning U and t for a
√
SWAP gate

to obtain �delity F = 1, and more.

From an experimental perspective, we need to reach several goals.

• Loading several atoms to a microtrap and developing the ability to measure a single atom.

• Reducing the number of atoms to one.

• Construction of two tunable microtraps with the application of one and two qubit gates.

• Numerical calculation of the gates parameter (e.g., U , t, d (t), trap parameter).

I hope that in a few years we will be able to provide answers to these and other issues.
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