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\section{Introduction \label{sec:Introduction}}

In quantum mechanics, the dimension of the Hilbert space grows exponentially
 with the system size. In order tTo represent a quantum state with $n$	Comment by David M: In order to can be rephrased as to. 
particles in classical computation, we need an order of $C^{n}$ bits,
where $C$ is a constant. Therefore, the possibility of making a calculation
 of many-body quantum states in classical computing becomes practically
impossible. To overcome this problem, it was first proposed by Richard	Comment by David M: The first name does not need to be added to any reference.
Feynman to use a quantum computational machine (``Quantum Computer'')
\cite{feynman1982simulating}. A quantum computer is able to not only calculate
not only simulation ofsimulate quantum dynamics, but also solve complex mathematical
problems. In addition, the quantum computer is much faster than classical
one in solving a factorial problems \cite{shor1994algorithms} and in database
 searching \cite{grover1997quantum}. For two decades, researchers
have been trying to implement quantum computation using different
platforms, but, all these platforms are suffer from inherent experimental limitsally
limits \cite{cirac1995quantum,home2009complete,opticalQC,weitenberg2011quantum,imamog1999quantum,barends2014superconducting}.	Comment by David M: Please confirm that this format of in text references follows the guidelines of the publishing body. 
 Here, we present a new platform of a quantum computer system with ultracold
 fermionic atoms. We take advantage of the fermionic statistics and
 ultracold atom system benefits (Feshbach resonance and the ability
 to capture single atoms in optical traps) in order to carry outperform a
 new protocol for quantum gate operators. \\
\\
Quantum computer system requirements as stated by D.DiVincenzo \cite{divincenzo2000physical}
should comply with \label{sec:5 condition}5 conditions: 
\begin{itemize}
\begin{doublespace}
\item \textbf{Quantum state.} The quantum state encapsulates the quantum
information in a quantum computer.The state is usually spanned by
two basis vector, $\left|0\right\rangle $ and $\left|1\right\rangle $,
and the qubit state is defined by
\[
\left|\psi\right\rangle =\alpha\left|0\right\rangle +\beta\left|1\right\rangle 
\]
where $\alpha$ and $\beta$ are complex numbers. When the qubit is
measured, with the probability of $\left|\alpha\right|^{2}$ it will
be in a state $\left|0\right\rangle $ and with a probability of $\left|\beta\right|^{2}$
in a state $\left|1\right\rangle $, satisfying the relation:
\[
\left|\alpha\right|^{2}+\left|\beta\right|^{2}=1
\]
since the probabilities must sum to one. 
\item \textbf{Preparation of the Initial State.} One should be able to prepare
 the initial state of the qubit. The particular initial state is of
 little importance, as we can transform it to any other state using
several quantum gates. However, it is important that the initial state
will be created with high fidelity. 
\item \textbf{Quantum gates\label{Quantum-gates.-It}.} In order toTo preformperform
any quantum calculation, we need several unitary operations (``Quantum
Gates'') which that form a universal set, namely any other operation can
be decoposed decomposed to a series of gate operations taken from this set.\textbf{	Comment by David M: Since there are several spelling errors in your document, please confirm that your terms and references are spelled correctly.
}The quantum gates operate on one or two qubit. Examples of one qubit
gates include the Hadamard gate, the phase gate, and the $\pi/8$ gate.
The two qubit gate is C-NOT. In place of a C-NOT gate, it is also possible
 to use a $\sqrt{SWAP}$ gate \cite{loss1998quantum}. 
\end{doublespace}
\begin{enumerate}
\item \textbf{\uline{$\ $Hadamard gate}}\uline{.\label{enu:Hadamard-gate}}
The Hadamard gate is a one qubit rotation. This gate maps the qubit
states $\left|0\right\rangle $ and $\left|1\right\rangle $ to two
superpositions with equal weight. 
\[
U=\frac{\left|0\right\rangle +\left|1\right\rangle }{\sqrt{2}}\left\langle 0\right|+\frac{\left|0\right\rangle -\left|1\right\rangle }{\sqrt{2}}\left\langle 1\right|
\]
or in a matrix representation 
\[
U=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1\\
1 & -1
\end{array}\right]
\]
It is worth noting here thatIn addition, hadamard gate is essentially a \textquotedbl{}beam	Comment by David M: This is a more active and professional way of presenting this idea. 
splitter\textquotedbl{} for the two \textquotedbl{}modes\textquotedbl{}
$\left|0\right\rangle $ and $\left|1\right\rangle $, namely $\left|0\right\rangle \rightarrow\frac{\left|0\right\rangle +\left|1\right\rangle }{\sqrt{2}}$
and $\left|1\right\rangle \rightarrow\frac{\left|0\right\rangle -\left|1\right\rangle }{\sqrt{2}}$.
\item \textbf{$\ $}\textbf{\uline{Phase gate.\label{enu:Phase-gate}}}\textbf{
}The phase gate is a one qubit gate that leaves the basis $\left|0\right\rangle $
without a change while transforming $\left|1\right\rangle \rightarrow e^{i\phi}\left|1\right\rangle $.
\[
U=\left|0\right\rangle \left\langle 0\right|+e^{i\phi}\left|1\right\rangle \left\langle 1\right|
\]
or in a matrix representation
\[
U_{\phi}=\left[\begin{array}{cc}
1 & 0\\
0 & e^{i\phi}
\end{array}\right]
\]
Where $\phi$ is the \textit{phase shift}. Some common examples are
the phase gate with $\phi=\pi/2$ , the $\pi/8$ gate with $\phi=\pi/4$ ,	Comment by David M: Please confirm that there should be the space before the comma. 
and the Pauli-Z gate with $\phi=\pi$. \\
\item $\ $\textbf{\uline{$\sqrt{SWAP}$ gate}}. A $\sqrt{SWAP}$ gate
is operated on the mixed states and swapped with them in half way, namely
$\left|1,0\right\rangle \rightarrow\frac{1}{2}\left[\left(1+i\right)\left|1,0\right\rangle +\left(1-i\right)\left|0,1\right\rangle \right]$
and $\left|0,1\right\rangle \rightarrow\frac{1}{2}\left[\left(1-i\right)\left|1,0\right\rangle +\left(1+i\right)\left|0,1\right\rangle \right]$.
In a matrix representation, the gate  is defined by 
\begin{equation}
U_{\sqrt{swap}}=\begin{bmatrix}1 & 0 & 0 & 0\\
0 & \frac{1}{2}\left(1+i\right) & \frac{1}{2}\left(1-i\right) & 0\\
0 & \frac{1}{2}\left(1-i\right) & \frac{1}{2}\left(1+i\right) & 0\\
0 & 0 & 0 & 1
\end{bmatrix}\label{eq:swap}
\end{equation}
with respect to the basis $\left|00\right\rangle $, $\left|01\right\rangle $,
$\left|10\right\rangle $, $\left|11\right\rangle $.\\
\\
By using all these gates, we can reduce any unitary operation of $n$
qubits to a cumulative series of these gates \cite{Nielsen2000}. 
\end{enumerate}
\begin{doublespace}
\item \textbf{Ability to Measure the Result. }The ability to measure the
final state of the system is required for all computation schemes.
\item \textbf{Scalability.} All physical resources (such as space, money, and numnber	Comment by David M: Etc. should not appear in academic and technical documents. 
 of components, etc.) should not scale as $X^{n}$, where $X$ is some
constant and $n$ is the number of qubits. This requirement ensures that
the system is technically feasible. 
\end{doublespace}
\end{itemize}
\begin{doublespace}
In quantum computing, the phase between states are determinate, and the system
 is coherent. However, in the real world, a quantum computer is not
completely isolated and suffers from gates fidelity being less than one.
Therefore, the coherence time decay of the state with time $T_{D}$
(decoherence time). The time $T_{D}$ is also indicated by the results
of the quantum- error correction algorithm that can find and correct the same
 errors in the quantum state \cite{divincenzo2000physical,preskill1998reliable}.
In order to To use error correction, we demeaned that the decoherence
time is much longer than the gate operation timescale $T_{gate}$
times the typical number of operation $N$.
\[
\frac{N\cdot T_{gate}}{T_{D}}\ll1
\]
\\
To date, attempts have been made to use different physical systems
to meet these requirements and realize a quantum computer. For example,
in an optical system, the polarization of a photon is taken as a state
and optical component, such as polarizing beam splitters, and a wavelength
plates are used to manipulate the state. Optical systems suffer from
the fact that photons do not interacting and therefore ; therefore, it is quite difficult
to implement two qubit gates \cite{opticalQC}. Another platform of
quantum calculations is ion traps \cite{cirac1995quantum,home2009complete}.
HereIon traps use one uses the internal state of the ion as the qubit, and quantum
gates are implemented using the coupling of the ions to lasers. These
systems are probably the closest to date to a successful implementation,
but there are still unsolved issues with the scalability and heating
from the electrodes. Another platform that was has been investigated is based
on localized electron spins as qubits in quantum dots \cite{imamog1999quantum}
the interaction between the spins can realize the quantum gates. The
interaction and the detection are done performed using lasers. The main problem
 in this platform is the strong coupling of the qubit to a noisy bath
 (i.e., phonons), which this limits the ratio of operation time (\textasciitilde{}10	Comment by David M: American English uses commas after i.e. and e.g.
psec) to decoherence gate- operation time (\textasciitilde{}1 nsec).
Another platform that could theoretically serve to perform quantum
computation is neutral atoms in a 1-DimensionalD (1-D) optical lattice \cite{weitenberg2011quantum}.
In this method, they used two sub-level $\left(m_{f}\right)$ in the
ground state of an optical lattice and described a one- qubit gate
with Raman sidebant transition $\left(t_{\pi/2}\sim150\;nsec\right)$
and with RF pulse $\left(t_{\pi/2}\sim30\;\mu sec\right)$. In addition,
they use a movable optical tweezer for the two- qubits gate to transport	Comment by David M: Please confirm this is what you mean. If not, please clarify accordingly. 
one qubit to another onegate.\\
\\
In this thesis, we present a new platform of quantum computation whichthat	Comment by David M: This term needs to be that instead of which in American English. 
is based on fermionic atoms in an optical microtrap. The basis for
this platform is the fermionic statistic of the qubits. In addition,
with ultracold atoms, we can control the interaction between atoms
by using Feshbach resonance. Furthermore, the depth of the micro-trap,
shape, and position can be controlled dynamically.\\
\\
In recent years, there has been substantial experimental progress with
preparation and measurement of an individual atoms in the ground state
of an optical microtrap \cite{cheuk2015quantum,edge2015imaging}.
Several techniques have been used to accomplish this:\label{twoway}. 
\end{doublespace}
\begin{enumerate}
\begin{doublespace}
\item Light-Assisted Collisions (LAC) can reduce the number of atoms by
shining the atoms with a near resonant laser. By carefully tuning
the frequency, it is possible to increases the probability that one
of the atoms will leave the trap while the other will stay. Aatoms	Comment by David M: This phrase is unclear; please clarify this phrase. 
one by one by intensifying their interaction \cite{fung2016single}.
After the LAC has been used to remove all atoms other than one, it
is possible to use the Raman side-band cooling technique to cool this
single atoms to the ground state of the trap \cite{kaufman2012cooling}. 
\item By Lloading spin polarized atoms to a microtrap with one state or several
 atoms to a low optical microtrap (with several states) and then by
creating a linear potential that removes all bound states other than
one, it is possible to end up with only a single atom in. remaining with
one state\cite{Few-FermionSystem}.
\end{doublespace}
\end{enumerate}
\begin{doublespace}
The measurement of a single fermion $^{40}K$ atom in a trap is clearly
not a simple task. In this field, there are few studies which that succeeded
in doing so \cite{cheuk2015quantum,edge2015imaging,kaufman2012cooling}.
In these studies, a sideband cooling technique was employed in order
to cool the atoms and at the same time to measure them the fluorescence.
\\
\\
Our platform is based on ultracold fermion $\left(^{40}K\right)$
neutral atoms trapped in an optical micro-trap. There still remain
some open questions regarding the experimental system, which that I discusswill	Comment by David M: You should use the present tense to discuss what is in the document. 
elaborate on in the next chapters. In chapter \ref{sec:New-platform-of},
I present the theory behind our proposed scheme. In chapter \ref{sec:ultracold-atomsback},
I give some relevant ultracold- atom background. In chapter \ref{sec:The-experimental-machines},
I present the experimental work done en in route to implementing the
new computation scheme.
\end{doublespace}

\newpage{}
\begin{doublespace}

\section{New platform of quantum computation\label{sec:New-platform-of}}
\end{doublespace}

In this chapter, I explain how we fulfill the five principles mentioned
in the introduction. The $\sqrt{SWAP}$ gate was developed by Dr.
Jonathan Nemirovsky. I performed the numerical simulations with a
code that was also developed by Dr. Nemirovsky.

\subsection{The new scheme}

our new platform is based on neutral ultracold $^{40}K$ atoms. In
this chapter I will describe the 5 five conditions for a quantum computation
(\ref{sec:5 condition}) and how they are realized in our method. 

\subsubsection{The Qubit }

Our quantum computer is based on two internal energy levels of an
single atom in a microtrap. We choose $\left|0\right\rangle =\left|9/2,-9/2\right\rangle $
and $\left|1\right\rangle =\left|9/2,-7/2\right\rangle $ with notation
$\left|f,m_{f}\right\rangle $ , where $f$ is the total atomic spin	Comment by David M: Please confirm that this space should be here. 
and $m_{f}$ is the projection in z direction (set by external magnetic
field). We can choose any two $m_{f}$ states, but we want to control
the interaction between the atoms by means of a Feshbach resonance
\cite{chin2010feshbach}. The Feshbach resonance between $m_{f}=-9/2$
and $m_{f}=-7/2$ is at $B=202.2$ G \cite{regal2006experimental}.
We can also work in a spin state $\left|0\right\rangle =\left|9/2,-9/2\right\rangle $
and $\left|1\right\rangle =\left|9/2,-5/2\right\rangle $ or $\left|0\right\rangle =\left|9/2,-7/2\right\rangle $
and $\left|1\right\rangle =\left|9/2,-5/2\right\rangle $. Their Feshbach
resonance is $B_{-\frac{9}{2},-\frac{5}{2}}=224.21$ G and $B_{-\frac{7}{2},-\frac{5}{2}}=174$
G \cite{regal2006experimental}. However, with these states, there
is a possibility of spin- exchange collisions, which means that the qubit
can leave the designated Hilbert space.
\begin{doublespace}

\subsubsection{Preparation of the Initial State }
\end{doublespace}

\begin{doublespace}
In our method, the initial state requires a single atom state in each qubit.
As I mentioned above, the preparation of one atom in a microtrap can
be done in two ways.\\
The first method (``Fast approach'') is based on loading several
atoms $\left(\sim10-20\right)$ from a 3-Dimensional (3D) Magneto-Optical-Trap directly	Comment by David M: Please confirm. 
to an optical microtrap and with a LAC \cite{fung2016single} with
a blue detune laser from the $D_{1}$ transition, reducing the atom's	Comment by David M: Detuning?
number to one (this study has been carried performed with bosonic $^{85}Rb$).
When the will trap contains a single atom, we can cool the atom to the
ground state with Raman sideband cooling \cite{kaufman2012cooling}.
This process gives us two more features. We can measure the fluorescence
and calculate the atom number at the optical microtrap (zero, one,
or more). Additionally, we can know which qubit is empty and do not
use its for the quantum calculation.\\
The second way (``Degenerate fermi gas'') is to reduce the trap
depth until there is only a single bound state left \cite{Few-FermionSystem}.
In ref \cite{Few-FermionSystem}, it was shown that by using a gradient
of magnetic field magnetic field with a gradient, they controlled the number of atoms (up to single
atom trapped $\left(^{6}Li\right)$). In order to getTo obtain high occupation
probability of the lowest state due to Fermi-Dirac statistics, such an
experiment must begin at very low temperatures $T/T_{f}<0.5$ ,In
other words, $T\sim40$ nK. The time it takes to prepare atoms at
this temperature is about 80 seconds.\\
 In table \ref{tab:01}, we compare these two systems. The advantages
of the fast approach are rapid data acquisition and it is experimentally
simpler, but the disadvantages may be a higher final temperature of
the captured atom. Also, there are many unknowns with this method
which that still need to be investigated before we will be able tocan conclude
this approach is viable. The advantages of the degenerate fermi gas
is low final temperature of the trapped atom, but the disadvantage
is long preparation time ($\sim$80 sec). In chapter \ref{sec:The-experimental-machines},
I present the two systems in more detail. 
\end{doublespace}

\begin{table}[H]
\begin{centering}
\begin{tabular}{|c|c|c|}
\hline 
 & Fast approach  & Degenerate fermi gas\tabularnewline
\hline 
\hline 
Number of Vacuum Cell  & One or Two  & Two or Three\tabularnewline
\hline 
2-Dimenional (2D) and 3D MOT (15-40 sec) & maybe just 3D  & $\checkmark$\tabularnewline
\hline 
$D_{1}$cooling (20 msec) & $\checkmark$ & $\checkmark$\tabularnewline
\hline 
 Magnetic Trap \& RF Evaporation (30 sec) & X & $\checkmark$\tabularnewline
\hline 
Optic or Magnetic Transfer (1-3 sec) & X & $\checkmark$\tabularnewline
\hline 
Optic Evaporation  & X & $\checkmark$\tabularnewline
\hline 
Sideband Cooling (2 sec) & $\checkmark$ & X\tabularnewline
\hline 
\end{tabular}
\par\end{centering}
\caption{\label{tab:01}A comparison between the two systems. As shown in the
Table, the preferable system in terms of time is the one using Lightlight-Assistedassisted
Collisionscollisions. However, we are unsure if these will succeed. }

\end{table}


\subsubsection{Quantum gates }

After preparing one or two qubits made of single atoms, we need to
be able to preform perform quantum- gate operation. In order toTo call our system a
``Quantum Computer,'' ,as I explained in paragraph one, we need to
adapt the Hadamard gate, the phase gate, $\pi/8$ gate, and the $\sqrt{SWAP}$
gate to our system. 

\paragraph{Single qubit gates.\label{subsec:Single-qubit-gates}}

An arbitrary single qubit state can be written
\[
\left|\psi\right\rangle =e^{i\gamma}\left(\cos\frac{\theta}{2}\left|0\right\rangle +e^{i\phi}\sin\frac{\theta}{2}\left|1\right\rangle \right)
\]
where $\theta$, $\phi$, and $\gamma$ are real numbers. The numbers
$0\leq\theta\leq\pi$ and $0\leq\phi\leq2\pi$ define a point on a
unit three-dimensional sphere ,commonly called, the $Bloch\ sphere$.
A qubit state with an arbitrary value of $\gamma$ is represented
by a point on the Bloch sphere, as the factor of $e^{i\gamma}$ has no
observable effects. Wwe can then write the following: 
\[
\left|\psi\right\rangle =\cos\frac{\theta}{2}\left|0\right\rangle +e^{i\phi}\sin\frac{\theta}{2}\left|1\right\rangle 
\]
\\

\begin{figure}
\begin{centering}
\includegraphics[scale=0.7]{qubit-the-bloch-sphere}
\par\end{centering}
\caption{$Bloch\ sphere$}

\end{figure}

The Bloch sphere is $S^{2}$, which can be embedded in $\mathbb{R}^{3}$
using the following map 
\[
f:\left(r=1,\phi,\theta\right)\rightarrow\left(\cos\phi\sin\theta,\sin\phi\sin\theta,\cos\theta\right)
\]

The rotations of Bloch vectors can be generated by Pauli matrices
$\hat{\sigma_{x}}=\begin{pmatrix}0 & 1\\
1 & 0
\end{pmatrix}$, $\hat{\sigma_{y}}=\begin{pmatrix}0 & -i\\
i & 0
\end{pmatrix}$ and $\hat{\sigma_{z}}=\begin{pmatrix}1 & 0\\
0 & -1
\end{pmatrix}$ . Therefore, the rotation around the axes is given by 
\[
R_{x}\left(\theta\right)\equiv e^{-i\frac{\theta}{2}\cdot\hat{\sigma_{x}}}=\cos\frac{\theta}{2}\hat{\mathbb{I}}-i\sin\frac{\theta}{2}\hat{\sigma_{x}}=\begin{bmatrix}\cos\frac{\theta}{2} & -i\sin\frac{\theta}{2}\\
-i\sin\frac{\theta}{2} & \cos\frac{\theta}{2}
\end{bmatrix}
\]
\[
R_{y}\left(\theta\right)\equiv e^{-i\frac{\theta}{2}\cdot\hat{\sigma_{y}}}=\cos\frac{\theta}{2}\hat{\mathbb{I}}-i\sin\frac{\theta}{2}\hat{\sigma_{y}}=\begin{bmatrix}\cos\frac{\theta}{2} & -\sin\frac{\theta}{2}\\
-\sin\frac{\theta}{2} & \cos\frac{\theta}{2}
\end{bmatrix}
\]
\[
R_{z}\left(\theta\right)\equiv e^{-i\frac{\theta}{2}\cdot\hat{\sigma_{z}}}=\cos\frac{\theta}{2}\hat{\mathbb{I}}-i\sin\frac{\theta}{2}\hat{\sigma_{z}}=\begin{bmatrix}\exp\left(-i\frac{\theta}{2}\right) & 0\\
0 & \exp\left(i\frac{\theta}{2}\right)
\end{bmatrix}
\]

Any unitary transformation on a single qubit can be decomposed into
a rotation in the Bloch sphere around some axis $\hat{n}$ by an angle
$\theta$, multiplied by a global phase $\phi$
\[
U=e^{i\phi}R_{\hat{n}}\left(\theta\right)
\]

Next, we define the single qubit gates using these terms. 
\begin{itemize}
\item \textbf{\uline{$\ $Hadamard gate.}} A Hadamard gate operator can
be represented by rotations around the $\hat{x}$ and $\hat{z}$ axes.
We choose $\theta=\pi/2$, $\phi=\pi/2$, and $\hat{n}=\left(1,0,1\right)/\sqrt{2}$
\begin{align*}
U_{\mathrm{hadamard}} & =e^{i\frac{\pi}{2}}R_{\hat{n}}\left(\pi\right)\\
 & =i\left[\cos\frac{\pi}{2}\hat{\mathbb{I}}-i\sin\frac{\pi}{2}\left(\frac{\hat{\sigma_{x}}+\hat{\sigma_{z}}}{\sqrt{2}}\right)\right]\\
 & =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1\\
1 & -1
\end{array}\right]
\end{align*}
\item \textbf{\uline{Phase gate.}} A Phase Gate Operator can be represented
by taking $\theta=\pi/2$ , $\phi=\pi/4$ and $\hat{n}=\left(0,0,1\right)$
\[
U_{\pi/2}=e^{i\frac{\pi}{4}}R_{z}\left(\frac{\pi}{2}\right)=e^{i\frac{\pi}{4}}\begin{bmatrix}\exp\left(-i\frac{\pi}{4}\right) & 0\\
0 & \exp\left(i\frac{\pi}{4}\right)
\end{bmatrix}=\begin{bmatrix}1 & 0\\
0 & \exp\left(i\frac{\pi}{2}\right)
\end{bmatrix}
\]
\[
U_{\pi/2}=\begin{bmatrix}1 & 0\\
0 & i
\end{bmatrix}
\]
\item \textbf{\uline{$\boldsymbol{\pi/8}$ Gate.}} A $\pi/8$ Gate Operator
can be represented by using $\theta=\pi/4$ , $\phi=\pi/8$ and $\hat{n}=\left(0,0,1\right)$
\[
U_{\frac{\pi}{8}}=e^{i\frac{\pi}{8}}R_{z}\left(\frac{\pi}{4}\right)=e^{i\frac{\pi}{8}}\begin{bmatrix}\exp\left(-i\frac{\pi}{8}\right) & 0\\
0 & \exp\left(i\frac{\pi}{8}\right)
\end{bmatrix}=\begin{bmatrix}1 & 0\\
0 & \exp\left(i\frac{\pi}{4}\right)
\end{bmatrix}
\]
We can realize these gates in our system, by coupling a two- level
system to an external EM field \cite{rf_onequbit,kuhr2003controlled}.
Let us write the state of the atom as follows:
\end{itemize}
\[
\psi\left(t\right)=C_{0}\left(t\right)\left|\psi_{0}\right\rangle +C_{1}\left(t\right)\left|\psi_{1}\right\rangle 
\]

where $\left|\psi_{n}\right\rangle $ are the energy eigennestates of
the atoms which that are relevant to the computational scheme , $C_{0}\left(t\right)=e^{-E_{n}t/\hbar}C_{0}\left(0\right)$
are the complex amplitude, and $E_{n}=\hbar\omega_{n}$ are the eigenvalues.	Comment by David M: Please confirm there are multiple eigenvalues. 
we write the Hamiltonian as 
\[
H=H_{0}+V\left(t\right)
\]
where $H_{0}$ is the free Hamiltonian and $V\left(t\right)$ is the
interaction between the electromagnetic field and the atom. 	Comment by David M: Interaction potential?

\[
V\left(t\right)=\mu\left[A\left(t\right)e^{-i\omega t}+A^{*}\left(t\right)e^{i\omega t}\right]
\]
where $\mu$ is the electric or magnetic moment, $\omega$ is the
EM field frequency, and $A\left(t\right)$ represents the EM field
amplitude, which we can treat classically. We calculate the matrix
element $\left\langle \psi_{n}\right|V\left(t\right)\left|\psi_{m}\right\rangle $
\[
V\left(t\right)=\begin{bmatrix}0 & V_{0,1}\\
V_{1,0} & 0
\end{bmatrix}
\]

where $V_{n,m}=-\mu_{n,m}\delta_{n,m}\left[A\left(t\right)e^{-i\omega t}+A^{*}\left(t\right)e^{i\omega t}\right]$.
Therefore, the Hamiltonian is 
\[
H=\begin{bmatrix}E_{0} & V_{0,1}\\
V_{1,0} & E_{1}
\end{bmatrix}
\]

The time-dependent Schrodinger equation for the two-level system is
\[
i\hbar\frac{\partial\psi}{\partial t}=H\psi
\]

\[
i\frac{d}{dt}\begin{pmatrix}B_{0}\left(t\right)\\
B_{1}\left(t\right)
\end{pmatrix}=\begin{pmatrix}\omega_{0} & V_{0,1}/\hbar\\
V_{1,0}/\hbar & \omega_{1}
\end{pmatrix}\begin{pmatrix}B_{0}\left(t\right)\\
B_{1}\left(t\right)
\end{pmatrix}
\]

by transforming the amplitudes $B_{i}(t)=C_{i}\left(t\right)e^{-\omega_{i}t}$
we can get obtain 
\[
i\hbar\frac{d}{dt}\begin{pmatrix}C_{0}\left(t\right)\\
C_{1}\left(t\right)
\end{pmatrix}=\begin{pmatrix}0 & -\mu\left[A\left(t\right)e^{-i\omega t}+A^{*}\left(t\right)e^{i\omega t}\right]e^{-i\omega_{10}t}\\
-\mu\left[A\left(t\right)e^{-i\omega t}+A^{*}\left(t\right)e^{i\omega t}\right]e^{-i\omega_{10}t} & 0
\end{pmatrix}\begin{pmatrix}C_{0}\left(t\right)\\
C_{1}\left(t\right)
\end{pmatrix}
\]

where $\omega_{10}=\omega_{1}-\omega_{0}$ . In the rotating wave	Comment by David M: Please confirm this period
approximation ,the terms that oscillate quickly are dropped, and the
term that rotate slowly remains. 

\[
i\hbar\frac{d}{dt}\begin{pmatrix}C_{0}\left(t\right)\\
C_{1}\left(t\right)
\end{pmatrix}=\begin{pmatrix}0 & \frac{\Omega^{*}}{2}e^{-i\delta t}\\
\frac{\Omega}{2}e^{-i\delta t} & 0
\end{pmatrix}\begin{pmatrix}C_{0}\left(t\right)\\
C_{1}\left(t\right)
\end{pmatrix}
\]
where $\delta=\omega-\omega_{01}$ is the detuning of the EM field
from resonance, and $\Omega=2\mu A/\hbar$ is the Rabi frequency. 

In the resonant case, the evolution of the Bloch vector in the presence
of an external pulse (Rabi pulse) can be described \cite{kuhr2003controlled}
\[
u\left(t\right)=\begin{pmatrix}1 & 0 & 0\\
0 & \cos\theta\left(t\right) & \sin\theta\left(t\right)\\
0 & -\sin\theta\left(t\right) & \cos\theta\left(t\right)
\end{pmatrix}u_{0}
\]

where $\theta\left(t\right)=\int_{0}^{t}\sqrt{\left|\Omega\left(t'\right)\right|^{2}+\delta^{2}}dt'$.
Namely,mley the Rabi pulse rotates the Bloch vector about the x axis. In
the state vector representation, a resonant pulse of duration t is
expressed by the application of a unitary operator $U(t)$ to the
state vector:
\[
\left|\psi\left(t\right)\right\rangle =\hat{U\left(t\right)}\left|\psi_{0}\right\rangle 
\]

\begin{equation}
\hat{U\left(t\right)}=\begin{pmatrix}\cos\frac{\theta\left(t\right)}{2} & i\sin\frac{\theta\left(t\right)}{2}\\
-i\sin\frac{\theta\left(t\right)}{2} & \cos\frac{\theta\left(t\right)}{2}
\end{pmatrix}\label{eq:onegateparameter}
\end{equation}
by setting the angle as $\theta\left(t\right)$, we can get obtain the one- qubit gate.
This can be done with a coils that preform acreate magnetic fieeild with $\omega_{1}$
and, in this case, the Rabi frequency is given by $\Omega=\mu B/\hbar$,
and the detuning is $\delta=\omega_{1}-\omega_{0}$.

For example, by taking EM pulse with as $\theta(t)=\pi/2$
\[
\hat{U\left(t\right)_{\pi/2}}=\frac{1}{\sqrt{2}}\begin{pmatrix}1 & i\\
-i & 1
\end{pmatrix}
\]
If the atom is initially prepared in one of the basis states, a $\pi/2$
pulse transforms it into a superposition state 
\[
\left|0\right\rangle \rightarrow\frac{1}{\sqrt{2}}\left(\left|0\right\rangle +i\left|1\right\rangle \right)\qquad\left|1\right\rangle \rightarrow\frac{1}{\sqrt{2}}(\left|1\right\rangle -i\left|0\right\rangle )
\]
Therefore, by taking RF pulse with detuning relevant to as $\left|0\right\rangle $	Comment by David M: Please confirm this space should be here. 
or $\left|1\right\rangle $, we can drive the atom state with Phase
gate, $\pi/4$ gate and Hhadamard gate. 

\paragraph{Two- Qqubit gate.}	Comment by David M: Please be consistent in your formatting of section headings throughout the manuscript. 

In order toTo implement the two qubit $\sqrt{SWAP}$ gate, we are going
to utilize two unique advantages of ultracold atoms. 
\begin{itemize}
\item Ability to control the interaction between atoms around Feshbach resonance
\cite{chin2010feshbach}. 
\item Ability to shape the potential landscape using far off resonance light,
and thus controlcontrolling the atom tunneling between two traps \cite{Few-FermionSystem}. 
\end{itemize}
These, together with fermionic statistics, are the basis for a new
protocol for $\sqrt{SWAP}$ gate. This protocol is original, but similar
in some aspects to the gate first describe in ref.\cite{hayes2007quantum}
. We consider two optical microtraps with one atom at each site, with
a distance $d$ between them. Using second quantization and the Fermi-Hubbard
model \cite{hubbard1963electron}, the Hamiltonian is given by 
\begin{align*}
H_{J,U} & =J\left(\hat{u_{1}}^{\dagger}\hat{u_{2}}+\hat{u_{2}}^{\dagger}\hat{u_{1}}+\hat{d_{1}}^{\dagger}\hat{d_{2}}+\hat{d_{2}}^{\dagger}\hat{d_{1}}\right)+2U\left(\hat{u_{1}}^{\dagger}\hat{u_{1}}\hat{d_{1}}^{\dagger}\hat{d_{1}}+\hat{u_{2}}^{\dagger}\hat{u_{2}}\hat{d_{2}}^{\dagger}\hat{d_{2}}\right)\\
 & \equiv J\cdot H_{J}+U\cdot H_{u}
\end{align*}
Where $J$ is the tunneling energy, $U$ is on- site interaction energy,
$\hat{u_{i}}$ and $\hat{u_{i}}^{\dagger}$ are annihilation and creation
operators of particle $i$ in state ``up'', i.e., $\left|1\right\rangle $, and
$\hat{d_{i}}$ and $\hat{d_{i}}^{\dagger}$ are annihilation and creation
operators of particle $i$ in state ``down'', i.e., $\left|0\right\rangle $
with the usual fermionic commutation relations \cite{esslinger2010fermi}.
We assume only on- site interactions because of the short- range interaction
atoms e.g., $^{40}K$. \\
Firstly, I explain the operation of the $\sqrt{SWAP}$ gate in three	Comment by David M: “First” is a more professional way of presenting this idea.
steps. At each step, the Hamiltonian is time independent and the unitary
evolution operator has the form 
\[
\hat{U}=e^{\frac{-i}{\hbar}H\cdot t}
\]
The $\sqrt{SWAP}$ gate can be divided into 

\begin{equation}
\hat{U}_{\sqrt{SWAP}}=e^{-\frac{i}{\hbar}J\cdot H_{J}\cdot t_{1}}e^{-\frac{i}{\hbar}U\cdot H_{u}\cdot t_{2}}e^{-\frac{i}{\hbar}J\cdot H_{J}\cdot t_{1}}\label{eq:4}
\end{equation}
where $t_{1}=\frac{\pi\hbar}{4J}$ and $t_{2}=\frac{\pi\hbar}{4U}$.
To prove itthis relation, we need to calculate the time evolution of $H_{J}$ and
$H_{U}$.\\
For $H_{J}$ we note that 
\begin{align}
H_{J}\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\left|0\right\rangle  & =2\left(\hat{d_{1}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{2}}^{\dagger}\right)\left|0\right\rangle \label{eq:1}\\
H_{J}\left(\hat{d_{1}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{2}}^{\dagger}\right)\left|0\right\rangle  & =2\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\left|0\right\rangle \nonumber 	Comment by David M: Please clarify or confirm this function. I recommend including numbers for all your equations, but please follow the guidelines of the publishing body.
\end{align}

\begin{align}
H_{J}\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\left|0\right\rangle  & =0\nonumber \\
H_{J}\left(\hat{u_{1}}^{\dagger}\hat{u_{2}}^{\dagger}\right)\left|0\right\rangle  & =0\label{eq:2}\\
H_{J}\left(\hat{d_{1}}^{\dagger}\hat{d_{2}}^{\dagger}\right)\left|0\right\rangle  & =0\nonumber 
\end{align}

Now we look at equations (\ref{eq:1}), and get obtain a simple matrix 
\begin{equation}
i\frac{d}{dt}\begin{bmatrix}A_{1}\left(t\right)\\
A_{2}\left(t\right)
\end{bmatrix}=\begin{bmatrix}0 & 2\\
2 & 0
\end{bmatrix}\begin{bmatrix}A_{1}\left(t\right)\\
A_{2}\left(t\right)
\end{bmatrix}\label{eq:3}
\end{equation}

Where $A_{1}\left(t\right)$ and $A_{2}\left(t\right)$ are the amplitude of the time- dependent
states amplitude, i.e., $\begin{pmatrix}\left|\psi_{1}\right\rangle \\
\left|\psi_{2}\right\rangle 
\end{pmatrix}$. The solutions to eq.\ref{eq:3} are as follows:	Comment by David M: Clauses before colons need to be complete sentences. 	Comment by David M: Please consider capitalizing eq. or presenting it as “Equation” throughout the manuscript. Please consult the guidelines of the publishing body and revise accordingly.
\[
A_{1}\left(t\right)=A\cos\left(2\left(t-t_{0}\right)\right)\qquad A_{2}\left(t\right)=A\sin\left(2\left(t-t_{0}\right)\right)
\]
Now we add the solution of equations eq.\ref{eq:2}(homogeneous solution),
and we get that the general solution is as 
\begin{align*}
\left|\psi\right\rangle  & =(C_{00}\hat{d_{1}}^{\dagger}\hat{d_{2}}^{\dagger}+C_{11}\hat{u_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+C_{12}\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)+\\
 & +A_{12}\left[\cos\left(2\left(t-t_{0}\right)\right)\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)-i\sin\left(2\left(t-t_{0}\right)\right)\left(\hat{d_{1}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{2}}^{\dagger}\right)\right]\left|0\right\rangle 
\end{align*}

Where $\left|\psi\right\rangle $ is a solution to the time- evolution	Comment by David M: Time-dependent? 
equation $i\frac{d}{dt}\left|\psi\right\rangle =H_{J}\left|\psi\right\rangle $.
Now, we can choose, $C_{11}=C_{12}=C_{00}=0$ and $t_{0}=0$ . This
means that the singlet $\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}=\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{u_{1}}^{\dagger}\hat{d_{2}}^{\dagger}$
after $t_{1}=\frac{\pi\hbar}{4J}$ into 
\[
e^{-i\frac{\pi}{4}H_{J}}\rightarrow-i\left(\hat{d_{1}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{2}}^{\dagger}\right).
\]

Now we find the solution for $H_{U}$ . 

\[
H_{u}\left(\hat{d_{1}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{2}}^{\dagger}\right)\left|0\right\rangle =2\left(\hat{d_{1}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{2}}^{\dagger}\right)\left|0\right\rangle 
\]
\[
H_{u}\left(\hat{u_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\left|0\right\rangle =0\qquad H_{u}\left(\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\left|0\right\rangle =0
\]
\[
H_{u}\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}\right)\left|0\right\rangle =0\qquad H_{u}\left(\hat{d_{2}}^{\dagger}\hat{d_{1}}^{\dagger}\right)\left|0\right\rangle =0
\]

Here, the solution is simple, because  all the single- particle states are stationary, 
while the solution for the state $\left|\psi_{0}\right\rangle =\left(\hat{d_{1}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{2}}^{\dagger}\right)$
reads
\begin{equation}
\left|\psi_{+}\right\rangle =e^{2it}\left|\psi_{0}\right\rangle \label{eq:14}
\end{equation}
Now we can calculate eq.(\ref{eq:4}) . The first term with $t=t_{1}$
is 
\[
\left|0_{1}\right\rangle =e^{-\frac{i\pi}{4}H_{J}}\left|0_{initial}\right\rangle 
\]

We can see that due to the Pauli principle, all the three symmetric
states $\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}$ , $\hat{u_{2}}^{\dagger}\hat{u_{1}}^{\dagger}$,
$\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)$
are stationary in time eq.(\ref{eq:2}). The singlet state, which
is anti-symmetric, evolves as follows: $\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{u_{1}}^{\dagger}\hat{d_{2}}^{\dagger}\overset{H_{\text{J}}}{\longrightarrow}\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}$. Therefore,
at the end of the first evolution, the symmetric states are unchanged,
while the anti-symmetric state becames a state of ``two particle''
(i.e., doublon $-i\left(\hat{d_{1}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{2}}^{\dagger}\right)$)
. The second evolution with $t=t_{2}$ (duo to eq. \ref{eq:14}) 
\[
\left|0_{2}\right\rangle =e^{-\frac{i}{\hbar}U\cdot H_{u}\cdot t_{2}}\left|0_{1}\right\rangle 
\]
the ``two particle'' state get obtains a phase of $e^{-i\pi/2}=-i$ , and
transforms it into $-\left(\hat{d_{1}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{2}}^{\dagger}\right)$
.The three symmetric states does not change. Finally, by repeating
the first evolution with $t=t_{1}$, the symmetric states are unchanged,
and the ``doublon'' state gets a phase of $-i$. Now it reverts
back to an anti-symmetric singlet state 
\[
\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\overset{\sqrt{SWAP}}{\rightarrow}i\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)
\]
In conclusion, all the three steps give us 
\begin{itemize}
\item $\hat{d_{1}}^{\dagger}\hat{d_{2}}^{\dagger}\rightarrow\hat{d_{1}}^{\dagger}\hat{d_{2}}^{\dagger}$
\item $\hat{u_{1}}^{\dagger}\hat{u_{2}}^{\dagger}\rightarrow\hat{u_{1}}^{\dagger}\hat{u_{2}}^{\dagger}$
\item $\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\rightarrow\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}$
\item $\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\rightarrow i\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)$
\end{itemize}
Therefore, all these three actions together are equivalent to a $\sqrt{SWAP}$
gate. In matrix notation,
\begin{itemize}
\item $\hat{d_{1}}^{\dagger}\hat{d_{2}}^{\dagger}\rightarrow\hat{d_{1}}^{\dagger}\hat{d_{2}}^{\dagger}$
\item $\hat{u_{1}}^{\dagger}\hat{u_{2}}^{\dagger}\rightarrow\hat{u_{1}}^{\dagger}\hat{u_{2}}^{\dagger}$
\item $\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}=\frac{1}{2}\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\rightarrow$

$\frac{1}{2}\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}+i\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\right)=\frac{1+i}{2}\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\frac{1-i}{2}\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}$
\item $\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}=\frac{1}{2}\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}-\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\rightarrow$

$\frac{1}{2}\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}-i\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\right)=\frac{1-i}{2}\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\frac{1+i}{2}\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}$
\end{itemize}
which is the same as the matrix form that I showed above in  ,eq.(\ref{eq:swap}) 	Comment by David M: Please consider presenting a comma before which in this sentence.

We can simplify the gate farther to be accomplished in two or even
one further step. We note that 
\begin{align*}
H_{J,U}\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\left|0\right\rangle  & =2J\left(\hat{d_{1}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{2}}^{\dagger}\right)\left|0\right\rangle \\
H_{J,U}\left(\hat{d_{1}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{2}}^{\dagger}\right)\left|0\right\rangle  & =2J\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\left|0\right\rangle +U\left(\hat{d_{1}}^{\dagger}\hat{u_{1}}^{\dagger}+\hat{d_{2}}^{\dagger}\hat{u_{2}}^{\dagger}\right)\left|0\right\rangle 
\end{align*}

Now we can write these equations in a matrix form for the anti-symmetric state
\begin{equation}
i\frac{d}{dt}\begin{bmatrix}A_{1}\left(t\right)\\
A_{2}\left(t\right)
\end{bmatrix}=\begin{bmatrix}0 & 2J\\
2J & 2U
\end{bmatrix}\begin{bmatrix}A_{1}\left(t\right)\\
A_{2}\left(t\right)
\end{bmatrix}\label{eq:5}
\end{equation}

Where the matrix eigenvalues are 
\[
\lambda_{1,2}=U\pm\sqrt{4J^{2}+U^{2}}
\]

and the eigenvectors are as follows: 
\[
V_{1,2}=\frac{1}{2J}\begin{bmatrix}-\lambda_{2,1}\\
2J
\end{bmatrix}
\]

SoThus, the solution is given by $Ae^{-i\lambda_{1}t}V_{1}+Be^{-i\lambda_{2}t}V_{2}$
and $AV_{1}+BV_{2}=\begin{bmatrix}1\\
0
\end{bmatrix}$. The second- term solution is $A=-B$. Therefore, the solution for
the amplitude ,eq.(\ref{eq:5}), is 

\[
=\frac{Ae^{-iUt}}{2J}\left(e^{-it\sqrt{4J^{2}+U^{2}}}\begin{bmatrix}-U+\sqrt{4J^{2}+U^{2}}\\
2J
\end{bmatrix}-e^{it\sqrt{4J^{2}+U^{2}}}\begin{bmatrix}-U-\sqrt{4J^{2}+U^{2}}\\
2J
\end{bmatrix}\right)=
\]

\begin{equation}
=Ae^{-iUt}\begin{bmatrix}\frac{\sqrt{4J^{2}+U^{2}}}{J}\cos\left(t\sqrt{4J^{2}+U^{2}}\right)+i\frac{U}{J}\sin\left(t\sqrt{4J^{2}+U^{2}}\right)\\
-2i\sin\left(t\sqrt{4J^{2}+U^{2}}\right)
\end{bmatrix}\label{eq:7}
\end{equation}

We can find a specific solution, if we choose the parameter correctly. 

\begin{equation}
tU=\frac{\pi}{2}\left(4n-1\right)\qquad t\sqrt{4J^{2}+U^{2}}=\pi m\label{eq:8}
\end{equation}

Where $m$ is an odd integer, and $n$ is any integer.

By using these choices, eq.(\ref{eq:8}) and $A=\frac{\sqrt{m^{2}-\left(2n-1/2\right)^{2}}}{2m}$
(the solution should be normalized), we get obtain eq. (\ref{eq:7})

\begin{equation}
i\begin{bmatrix}1\\
0
\end{bmatrix}\label{eq:11}
\end{equation}
 From eq (\ref{eq:11}), we get obtain the $\sqrt{SWAP}$ gate . 
\[
\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)\overset{\sqrt{SWAP}}{\rightarrow}i\left(\hat{d_{1}}^{\dagger}\hat{u_{2}}^{\dagger}-\hat{d_{2}}^{\dagger}\hat{u_{1}}^{\dagger}\right)
\]

From these two equations, (\ref{eq:8}), we can obtain the strength
of the interaction $U$ and the time $t$ for which the interaction will
act like similar to a $\sqrt{SWAP}$gate 
\begin{equation}
U=\pm\frac{2J\left(2n-\frac{1}{2}\right)}{\sqrt{m^{2}-\left(2n-\frac{1}{2}\right)^{2}}}\qquad t=\frac{\pi\sqrt{m^{2}-\left(2n-\frac{1}{2}\right)^{2}}}{2J}\label{eq:9}
\end{equation}

The last parameter, $J$, depends on the distance between the two qubits
, i.e., $d\left(t\right)$. One of our goals is to optimize $d\left(t\right)$. 
\begin{doublespace}

\subsubsection{Ability to Measure the Results}
\end{doublespace}

In our system, we can detect the population of state $\left|0\right\rangle $
$\left(\left|-9/2,-9/2\right\rangle \right)$ in a fluorescence imaging
using the cycling transition $\left|-9/2,-9/2\right\rangle \rightarrow\left|11/2,-11/2\right\rangle $.
Unfortunately, we can not detect on the cycling transition $\left|-9/2,-9/2\right\rangle \rightarrow\left|11/2,-11/2\right\rangle $
in our platform. The typical trap depth is $\sim400$ nK, and the recoil
temperature in $^{40}K$ is $404\;\mu K$ \cite{tiecke2010properties};
therefore, our atom will drives out from the trap (even when the direction
is random and the heating goes as $\sqrt{N_{\mathrm{photon}}}$).
To overcome this problem, we can measure it with a Raman sideband
cooling technique \cite{sidebandcooling} (for more details, see section
\ref{subsec:Raman-Sideband-cooling}). Recent studies with $^{40}K$
sideband cooling have shown that single atoms release approximately
$60-80\;photom/sec$ \cite{cheuk2015quantum,edge2015imaging}. I assumed
that we can collect 10\% of the photons, and it is give uses the abillity
to measure one- atom fluorescence with the EMCCD camera (depending on the
objective solid fraction angle and the laser detuning eq. \ref{eq:numberofatom}).
For sShorter detection times can tune the probe laser frequency and
raise the microtraps depth. \\


\subsubsection{Scalability}

In our system, the scalability is straight forward. When you alreadyare
able to initialize and control one qubit, by adding more microtraps,
you can get a larger number of qubits. The other microtraps are created
by other laser beams that reach the the optical objective. These lasers
are then focused to different positions at the focal plane: 
\[
d=f\cdot\theta
\]

\begin{figure}
\begin{centering}
\includegraphics[scale=0.5]{\string"focal lens\string".png}
\par\end{centering}
\caption{\label{fig:lens}The distance between two traps that reach the lens
with an angle $\theta.$ }
\end{figure}
Where $d$ is the distance between two microtraps, $f$ is the objective
focal length, and $\theta$ is the angle between the incoming beams
(see Figurefig. \ref{fig:lens}). One way to do it dynamically is by employing	Comment by David M: Please consider placing changing fig to Figure throughout the document for a more academic and formal tone.
two Acousto-Optic-Modulators (AOM), one in x axis and one in y axis
\cite{lester2015rapid}. We can position the qubits with $d\gg\lambda$
and then $J\approx0$. Then, the qubits can be brought closer with
the optimal $d\left(t\right)$. For one- qubit gates,s we can take one
qubit to a position where the RF field is optimal and far enough from
other qubits (fig.Figure \ref{fig:Array-of-qubits}). 
\begin{figure}[H]
\begin{centering}
\includegraphics[scale=0.7]{arrayofmicrotrap}
\par\end{centering}
\caption{\label{fig:Array-of-qubits}Array of qubits that are formed by AOM.
The qubits are moved to the $\sqrt{SWAP}$ region or to the one- qubit-
gate region, according to the quantum code.}

\end{figure}
 The qubit isolation depends on the lifetime in the optical microtrap.
we can reduce the laser power when the atom state is at the ground
state and obtain a lifetime of several minutes. Therefore, the decoherence
 in our system should be very slow. Furthermore, in our method, we can
find $m$ and $n$ (eq.\ref{eq:9}) such that $\mathcal{F}\rightarrow1$
(the fidelity is the overlap between the chosen target state and the
spin state as measured or calculated $\mathcal{F}=\left\langle \psi_{target}\right|\hat{\rho}\left|\psi_{target}\right\rangle $).

\subsection{Theoretical simulation and calculation}

In order toTo make a numerical calculation of a single atom in a microtrap,
we need to solve the time independent Schrodinger equation that is
given by 
\begin{equation}
H\psi\left(r,\theta,z\right)=E_{n}\psi\left(r,\theta,z\right)\label{eq:shrodinger eq}
\end{equation}
where $E_{n}$ is the state energy of state $n$ and $H$ is the system
Hamiltonian given by 

\[
H=-\frac{\hbar^{2}}{2m}\nabla^{2}+V\left(r,\theta,z\right)
\]
where $V$ is the potential. In 3D, the potential of a single microtrap
is 
\[
V\left(r,z\right)=-V_{0}\frac{\omega_{0}^{2}}{\omega\left(z\right)^{2}}e^{-2\frac{r^{2}}{\omega\left(z\right)^{2}}}
\]
where $\omega\left(z\right)=\omega_{0}\sqrt{1+\left(\frac{z\lambda}{\pi\omega_{0}^{2}}\right)^{2}}$.
The waist of a Gaussian beam is given by $\omega_{0}=\frac{\lambda}{\pi\cdot NA}$,
where $NA$ is the numerical aperture. The trap parameters are laser
beams with $NA=0.9$ and $\lambda=1064\:nm$. We calculated the eigenenergies
and the eigenstates by solving numerically eq \ref{eq:shrodinger eq}.
The numerical 2D calculation is 2D takinges advantage of the cylindrical
symmetry, with 112 divisions in the radial direction and 102 divisions
in the axial direction, and the accuracy of the results is better than
1\%. The result of the calculation is shown in fig.Figure \ref{fig:singel numerical}.
We present calculations in low optical trap $V_{0}/k_{b}=310\:nK$
\in order to get one bound symmetric eigenstate. In fig.Figure \ref{fig:Calculations-of-bound}
I plot the bound states in a single Gaussian potential for $m=0,1$
($m$ is the azimuthal quantum number). WE can see that fFor lower
NA, we need to lower the optical trap depth, and the lowest eigenenergy
depth is smaller. In fig.Figure \ref{fig:lowest-eigen-state-and} we can
see that for one bound symmetric eigenstate, we need a low- depth optical
trap ( NA=0.9). 

\begin{figure}
\centering{}\subfloat[\label{fig:lowes}]{\includegraphics[width=4.5cm,height=6cm]{Atom_in_Trap_Orbital_1}

} \subfloat[\label{fig:second_Eig}]{\includegraphics[width=4.3cm,height=6cm]{Atom_in_Trap_Orbital_2}

} \subfloat[\label{fig:third eig}]{\includegraphics[width=4.5cm,height=6cm]{Atom_in_Trap_Orbital_3}

}\caption{\label{fig:singel numerical}Calculations of bound states in a single
Gaussian potential. a) Lowest eigenstate (symmetric) with energy $E/k_{b}\approx-40\:nK$.
b) Second eigenstate with energy $E/k_{b}\approx-1.5\:nK$ (antisymmetric).
c) Third eigenstate with energy $E/k_{b}\approx-0.316\:nK$ (symmetric).
Other states have $E/k_{b}>0$ and are therefore not bound.}
\end{figure}

\begin{figure}[H]
\begin{centering}
\subfloat[]{\begin{centering}
\includegraphics[width=7.5cm,height=7cm]{temprature}
\par\end{centering}

} \subfloat[]{\begin{centering}
\includegraphics[width=8cm,height=7cm]{temprature_NA_0\lyxdot 75}
\par\end{centering}

}
\par\end{centering}
\caption{\label{fig:Calculations-of-bound}a) Calculations of bound states
in a single Gaussian potential with NA=0.9. The first 12 is are with
$m=0$ and the next 12 is are with $m=1$. There are three bound states
$\left(E<0\right)$ that are plotted in fig.Figure \ref{fig:lowes}, fig.Figure
\ref{fig:second_Eig}, and fig.Figure \ref{fig:third eig}. b) Calculations
of bound states in a single Gaussian potential with experimentally
condition NA=0.75. In order toTo get just two2 bound states, we need to
tune the optical trap depth to $V_{0}/k_{b}=175\:nK$. }
\end{figure}

\begin{figure}[H]
\begin{centering}
\includegraphics[width=11cm,height=7cm]{ground_state_vs_p_trap}
\par\end{centering}
\caption{\label{fig:lowest-eigen-state-and}Lowest and second eigenstates energy
(in terms of temperature) vs. optical trap depth. }
\end{figure}

There are many more numerical calculations that have to be done. For
example, the gates parameter $U$, $t$, $d\left(t\right)$ (eq \ref{eq:9})
for a two- qubit gate and one- qubit gates parameters that are given by eq
\ref{eq:onegateparameter}. Another parameter is the transfer qubit
trajectory in order to get obtain a fast transfer \cite{lewis1969exact}.
All these parameters need to be optimized with demand on the fidelity
$\mathit{\mathcal{F}>0.99}$.\\

\newpage{}

\section{ultracold atoms \label{sec:ultracold-atomsback}}

The field of ultracold atoms has seen a rapid development during the
last 20 years. Many new experimental techniques have been introduced,
and the experimental toolbox has been vastly expanded. Cooling and
trapping of atoms is based on the use of forces acting on atoms in
laser fields, or on the combination of laser fields and magnetic fields.
In this chapter, I presents a brief background of cooling and trapping
techniques. 

\subsection{Laser cooling technique }
\begin{doublespace}

\subsubsection{Doppler cooling\label{subsec:Doppler-Cooling}}
\end{doublespace}

Doppler cooling mechanism was experimentally described in 1978 \cite{first_dooppler}
and it is the basis of our cooling techniques. At a low temperature,
kinetic energy sets the temperature by 
\[
\left\langle E_{k}\right\rangle =\frac{3}{2}k_{b}T
\]
where $k_{b}$ is a Boltzmann constant. Each time a photon is absorbed
by an atom, the atom receives a the recoil momentum $\frac{h\nu}{c}$
in the laser propagation direction. When it emits a photon, it again
changes its momentum by the same value but in a random direction.
According to thisly, if the atom travels in the opposite direction to
the laser propagation direction, the atom will slow down. However, if
the atom moves in the same direction as the laser propagation direction,
it will accelerate.\\
In order tTo slow down and not accelerate the atom, Doppler cooling
takes advantage of the Doppler effect, a shift in frequency for an
observer moving relative to its source. This means that as the atom
moves, it experiences a shift in laser- beam frequency. When the atom
moves towards the laser- beam propagation, it will seeexperiences a frequency
shift of $+\delta\nu_{D}$, and if it moves in the opposite direction
to the laser propagation, the shift will beis $-\delta\nu_{D}$. Thus,
if the laser frequency is lower than the resonance frequency $\nu_{0}-\delta\nu$,
the atom that which travels in the same direction as the laser will feelexperiences
, according toper the Doppler effect, $\nu_{0}-\delta\nu+\delta\nu_{D}$.
HoweverIn contrast, the atom which that travels in the opposite direction will feelexperiences
$\nu_{0}-\delta\nu-\delta\nu_{D}$. \\
  Accordingly, the atom that travels to in the direction of the laser will feel experience a force corresponding to thethe resonance
frequency $\sim\nu_{0}$, but while the an atom that travels in the opposite
direction of the laser will feelexperiences a force that corresponds to a frequency that is far of resonance
$\sim\nu_{0}-2\delta\nu$. Changing the detuning is one way of controlling
the magnitude of this force, and drastically affects the number of
trapped atoms . Therefore, Doppler cooling creates a velocity- dependent
force. It slows down atoms selectively based on the magnitude of their
velocity.
\begin{doublespace}

\subsubsection{Sisyphus Cooling\label{subsec:Sisyphus-Cooling.}}
\end{doublespace}

Sisyphus cooling (polarization- gradient cooling) is a laser- cooling
technique which was observed experimentally and later first given
a full explanation by Claude Cohen-Tannoudji \cite{dalibard1989laser}.
Sisyphus cooling is achieved by two orthogonal polarization laser
beams. The two lasers create a polarization lattice. When the atoms
move to the maximum of the potential (and the resonance frequency
is closer to the laser frequency), they lose kinetic energy and move
slower. As they reach the maximum, they are optically pumped to the
minimum, as show in fig.Figure \ref{fig:7a}.\textbf{ }In $^{40}K$, this
technique does not work due to the narrow and inverted hyperfine structure
of the $P_{3/2}$ state \cite{landini2011sub}.
\begin{doublespace}

\subsubsection{Gray Molasses Cooling \label{subsec:Gray-Molasses}}
\end{doublespace}

Gray Molasses is a cooling technique very similar to Sisyphus cooling.
The difference between them is that in Gray Molasses, the electromagnetic
field splits the energy levels to a dark state and bright states.
If the laser beam is blue detuned, the bright level is light-shifted
and the dark state does not change (since it is not coupled to the
light field). Similar to Sisyphus cooling, the atoms \textquotedbl{}climb\textquotedbl{}	Comment by David M: This term does not necessarily need to be in quotes. 
to the maximum of the potential well and then pumped to the dark level
(see Ffigure \ref{fig:cooling-scenme}). In As a general principle, a
bBetter- cooling scheme is one that where the coldest atoms are pumped to a
dark state and they are not heated by spontaneous scattering events.
Recent studies \cite{D1coolingmechnisem,fernandes2012sub} have showed
that for $^{40}K$, Gray mollases on the $D_{1}$ line can reach a
temperature of $T\sim15\:\mu K$ .
\begin{figure}[H]
\begin{centering}
{\large{}}\subfloat[\label{fig:7a}]{\includegraphics[scale=0.7]{\string"Sisyphus cooling\string".JPG}

{\large{}}{\large \par}}{\large{} }\subfloat[]{\includegraphics[width=7cm,height=5cm]{\string"Sisyphus mechanism\string".JPG}{\large{}\label{fig:cooling-scenme}}{\large \par}

{\large{}}{\large \par}}
\par\end{centering}{\large \par}
\centering{}\caption{a) Sisyphus cooling scheme. Adopted from ref. \cite{sisyphus_cooling}
b)Gray molasses cooling scheme. With positive detuning, the ground
state splits to two states, $\left|\psi_{D}\right\rangle $ and $\left|\psi_{B}\right\rangle $.
These two states act like similar to the states in Sisyphus cooling. Adopted
from ref.{\large{}\cite{fernandes2012sub}.}}
\end{figure}

\begin{doublespace}

\subsubsection{Magneto optical trap\label{subsec:MOT-1}}
\end{doublespace}

\begin{doublespace}
A Magneto Optical Trap (MOT) consists of laser- beams propagation and
retro-reflecting along three orthogonal directions and coils with
anti-Helmholtz configuration. The laser beams with red-detuning from
an energy transition in the potassium spectrum are sent to the atoms.
The main mechanism is a the Doppler (\ref{subsec:Doppler-Cooling}) effect
\cite{letokhov1977cooling}. The red-detuned (light with a frequency
smaller than the resonance frequency) light is Doppler shifted in
the rest frame of a moving atom. This shift causes the atoms to interact
with the laser as if they are moving opposite to the lasers- propagation
direction. We cool the atoms by lowering their velocities. However,
in this process, there is a limit \cite{letokhov1977cooling} to the
temperature
\[
T_{D}=\frac{\hbar\Gamma}{2k_{B}}
\]

where $k_{B}$ is the Boltzmann's constant, $\hbar$ is the reduced
Plank's constant, and $\Gamma$ is the natural line-width. In $^{40}K$,
the Doppler limit is $T_{D}\sim150\mu k$. 
\end{doublespace}
\begin{doublespace}

\subsubsection{Magnetic field for MOT }
\end{doublespace}

Doppler cooling lowers the temperature of atoms, but does not differentiate
between an atom far from the middle of the trap and one at the center.
A magnetic field takes advantagece of the Zeeman effect to localize the
atoms and to increase the density. Atoms can have different angular
momentum $m_{z}=-f,-f+1,..,f$ where $f$ is the total atomic spin.
In the presence of a magnetic field, the energy levels are split into
sub-levels. The energy change is given by the following: 
\[
\Delta U=-\vec{\mu}\cdot\vec{B}
\]
where $\vec{\mu}$ is the magnetic dipole moment of the state, and
\emph{$\vec{B}$} is the magnetic field. Therefore, the energy difference
is proportional to the magnetic field and depends on its direction. 

\begin{figure}
\begin{centering}
\includegraphics[scale=0.5]{\string"magnetic feild of anti-Helmholz\string".jpg}
\par\end{centering}
\caption{\label{fig:The-magnetic-field}The magnetic field created by anti-Helmholz
configuration }
\end{figure}

Coils with an anti-Helmholtz configuration produce a magnetic field that
switch its sign at the origin (see Ffigure \ref{fig:The-magnetic-field}
). This give two regions,: positive and negative. At the origin, the
magnetic field is zero. Therefore, the energy shift is $\Delta U\approx0$	Comment by David M: Please confirm this is what you mean.
. In the positive magnetic field, the $m_{z}<0$ and will the photons have increased
energy, while  and in the negative magnetic field, the $m_{z}>0$ and willthe photons
have decreased energy. ($\Delta U$ go oppositeis in the opposite direction as to the magnetic field).
Therefore, as shown in Ffigure \ref{fig:Zeeman} , a photon with the
correct polarization , will be confined by the atoms by giving a spatially
dependent forces with zero force in the center. In fig.Figure \ref{fig:MOT-configuration},
I summarized the laser directions and polarization in 3D due to the magnetic
field from quadratic coils. 

\begin{doublespace}
\begin{figure}[H]
\includegraphics[scale=0.7]{\string"sigma cunfigoration\string".png}
\centering{}\caption{\label{fig:Zeeman}Description of Zeeman split and polarization of
laser beams with detuning $\delta\nu$ in one dimension. The blue
line is the energy level at zero magnetic field. On the left, the magnetic	Comment by David M: Please consider using a and b instead of left sand right for a more formal document. 
field is negative; therefore, the atom interacts with $\sigma^{+}$
laser polarity . OIn the right side, the magnetic field is positive, so
the atom interacts with $\sigma^{-}$laser polarity. }
\end{figure}
\begin{figure}[H]
\begin{centering}
\includegraphics[width=8cm,height=7cm]{MOT}
\par\end{centering}
\caption{\label{fig:MOT-configuration}MOT configuration }
\end{figure}

\end{doublespace}

\subsection{Raman Sideband cooling \label{subsec:Raman-Sideband-cooling}}

In order toTo describe Raman sideband cooling, we need to explain what
is a Raman transition \cite{arimondo1976nonabsorbing}. Raman transition
is a two two-photon transition consisting of absorption and stimulated
emission. As shown in Figurefig \ref{fig:raman tra}, an atom moving with
velocity $v$, that absorbs a photon with frequency $\omega_{1}$ is,
excited to a virtual state $\left|\mathrm{c}\right\rangle $. Immediately,
another photon with frequency $\omega_{2}$, traveling in the opposite
direction causes stimulated emission of the atom into state $\left|b\right\rangle $.
This allows for the precise selection of atoms with velocities that
satisfy the equation 
\[
\frac{v}{c}=\frac{\omega_{0}-\left(\omega_{1}-\omega_{2}\right)}{\omega_{1}+\omega_{2}}
\]
where $c$ is the light speed and $\hbar\omega_{0}$ is the transition
energy between $\left|a\right\rangle $ and $\left|b\right\rangle $.

We can use the Raman pulse to transfer an atom with velocity $v$
from $\left|a\right\rangle \rightarrow\left|b\right\rangle $, and	Comment by David M: Please confirm the space should be here. 
with another laser, we can excite the atom from $\left|b\right\rangle \rightarrow\left|c\right\rangle $.
At state $\left|c\right\rangle $, the width of the velocity distribution
is $\sigma_{c}\left(v\right)\ll\sigma_{a}\left(v\right)$. Therefore
when the atom decays back to $\left|a\right\rangle $ with velocity
around $v-v_{r}$, at the end of the cycle, we have more atoms with
lower velocity. In 1995, Wineland \textit{at el}.\cite{sidebandcooling},
proposed cooling an atom to the ground state in a 3D- optical trap
scheme that was based on Raman transition. Only recently and with
more sophistication, it was carried outperformed with $^{40}K$ \cite{cheuk2015quantum}
in an optical lattice. By cooling with Raman sideband technique, we
gain two benefits. First, we can detect the number of atoms at each
site due to their fluorescence, and second, we can lower the atom
to the ground state.

\begin{figure}
\begin{centering}
\subfloat[\label{fig:raman tra}]{\includegraphics[scale=0.5]{\string"raman transition\string".png}

} \subfloat[]{\includegraphics{\string"sideband cooling\string".JPG}

}
\par\end{centering}
\caption{a) Raman transition between two atomic levels $\left|a\right\rangle $
and $\left|b\right\rangle $ b) Raman sideband cooling scheme in $^{40}K$
taken from \cite{cheuk2015quantum}. }

\end{figure}


\subsection{Magnetic trap - Quic configuration}

One cooling technique in ultracold atoms experiments is RF evaporation
\cite{christensen19774}. In this technique, the atoms are loaded to
magnetic trap with $m_{z}>0$, and by using RF field, the atoms are
transferred to a state with $m_{z}<0$, which is not magnetically confined,
and therefore they leave the trap. In this technique , if the minimum
of a magnetic field is zero, then the atoms that are closer to the minimum
(with low temperature) can flip their spin and be ejected. A QUIC
configuration trap \cite{quiccoils} is formed by two quadrupole coils
and one Ioffe coil. The MOT uses the same coils as the quadrupole
trap, so the transfer of atoms from the MOT into the magnetic trap
is straightforward. Atoms are loaded into a quadrupole trap and subsequently
transferred to an Ioffe Ioffe-type trap. As shown in fig Figure (\ref{fig:-Magnetic-field}),
the magnetic field goes from quadrupole with $\mathrm{min}\left(B\right)=0$
to quadrupole with $\mathrm{min}\left(B\right)=1\;\mathrm{G}$, and
the minimum is shifted around $17\:\mathrm{mm}$ towards the Ioffe
coil. The ratio between $\frac{I_{I}}{I_{Q}}$ depends on the exact
sizes of the coils and distance between the quadrupole coils and the
Ioffe coil.
\begin{center}
\begin{figure}[H]
\begin{centering}
\includegraphics[scale=0.35]{\string"QUIC_calculation - Yanay\string".jpg}
\par\end{centering}
\caption{\label{fig:-Magnetic-field} Magnetic field calculations in $y$ direction
starts with quadrupole with $I_{0}=210\:A$ and the addition of a
Ioffe coil with different current. The minimum is adiabaticlly moved
$\sim17\:mm$ towards the Ioffe coil. }
\end{figure}
\par\end{center}

\subsection{Optical trap}

Optical dipole force comes from the potential that an atom feels when
the oscillating electric dipole moment of the atom, induced by the
oscillating electric field of the laser light, interacts with the
field. Two important quantities for optical dipole traps are the depth
of the potential $U_{dip}\left(r\right)$ and the scattering rate
$\Gamma_{sc}\left(r\right)$. In terms of decay rate, they can be expressed
as \cite{optical_trap_theory} 
\[
U_{dip}(r)=\frac{3\pi c^{2}\Gamma}{2\hbar\omega_{0}^{3}\delta}I\left(r\right)
\]
\[
\Gamma_{sc}\left(r\right)=\frac{3\pi c^{2}\Gamma^{2}}{2\hbar\omega_{0}^{3}\delta^{2}}I\left(r\right)
\]

where $I\left(r\right)$is the laser beam intensity and $\delta=\omega-\omega_{0}$
is the frequency detuning of the laser from the frequency of the optical
transition $\omega_{0}$. The dipole trap can be attractive for red
detuning $\left(\delta<0\right)$ or repulsive for blue detuning $\left(\delta>0\right)$.
\begin{table}[H]
\begin{centering}
\begin{tabular}{|c|c|c|}
\hline 
$\lambda$ & $P\;[mW]$ & $lifetime\ [msec]$\tabularnewline
\hline 
\hline 
1064 & 75 & 220\tabularnewline
\hline 
820 & 20 & 23\tabularnewline
\hline 
\end{tabular}
\par\end{centering}
\caption{\label{tab:2}Comparison of the life time and the laser source power
in two commercial laser wavelengths. We required a $1\:mK$ trap whichthat
is high enough for atoms at temperature following $D_{1}$ cooling
$\left(T_{D_{1}}\sim30\mu K\right)$. }
\end{table}
 

The simple example is for $TEM_{00}$ Gaussian mode with far of from resonance
frequency. Beam intensity is given by 
\[
I\left(r,z\right)=\frac{2P}{\pi\omega^{2}\left(z\right)}e^{\frac{-2r}{\omega^{2}\left(z\right)}}
\]

Where $\omega\left(z\right)=\omega_{0}\sqrt{1+\left(\frac{z}{z_{R}}\right)^{2}}$.
The peak intensity is given by $I_{0}=2P/\pi\omega_{0}^{2}$. The
trap depth is defined as $U_{0}=\left|U\left(0,0\right)\right|$ and
is linearly proportional to the beam intensity. Expanding around the
position of maximum intensity leads to a harmonic potential 
\begin{equation}
U_{dip}(r,z)=-U_{0}\left[1-2\left(r/\omega_{0}\right)^{2}-\left(z/z_{R}\right)^{2}\right]\label{eq:20}
\end{equation}

\newpage{}

\section{The experimental machines \label{sec:The-experimental-machines}}

In our lab, we built an ultracold- atoms system with $^{40}K$. In this
Chapter, I will describe the systems and concentrate on the parts I
constructed.
\begin{doublespace}

\subsection{The experimental systems}
\end{doublespace}

\begin{doublespace}
We considered two methods (see sketches in fig Figure \ref{fig:a)-First-System})
of creating a single atom trapped in an optical trap. Each of these
methods has advantages and disadvantages, as we describe below, and
at this point. , and Wwe have not yet decided which one to use. We plan to
advance in both before makinge the final decision. Considerations are
the preparation time of a single atom trap and the temperature of
the atom. The first system is a machine producing as an initial resource
a quantum degenerate Fermi gas with $T/T_{f}\ll1$. The second method
is characterized by loading from only a relatively ultracold cloud
after 3D MOT or $D_{1}$cooling, removing all atoms other than one,
and then cooling inside the trap.
\end{doublespace}
\begin{enumerate}
\begin{doublespace}
\item \textbf{Degenerate fermi gas.} The first system (see fig.Figure \ref{fig:first system })
is composed of three3 cells under ultrahigh vacuum $\sim10^{-11}\ torr$
. In the first cell (``source''), we release $^{40}K$ atoms from
home made dispensers. The atoms are captured by a 2D MOT. On the third
axis, there is a mirror with a hole (nozzle) inside the chamber. The
atoms are cooling cooled in two axes and pushed to the second cell by another
laser (with different detuning ) in the third axis (reflected with
hole in the middle by a nozzle). In the second cell they are captured
and trapped by a 3D MOT. At this point, the cloud temperature is around
$\sim220\mu K$ set by Doppler limit. By using a Gray Molasses cooling
on the $D_{1}$ atomic transition, the atomic cloud temperature is
reduced to $\sim15\mu K$. Next, we optically pump the atoms into
the states$\left|9/2,9/2\right\rangle $ and $\left|9/2,7/2\right\rangle $
and load the atoms to a magnetic trap with a QUIC configuration \cite{quiccoils}.
In this configuration, we get a magnetic trap without $B=0$. This
is important for a $RF$ evaporation. Following the evaporation, the
temperature is $T/T_{f}\approx1-3$. Next, we load the atoms to a far-
of from-resonance optical trap and move the optical trap adiabaticlly (with
air bearing stage ) to the science chamber. Then, we first make sureconfirm
that the cloud is spin polarized, and then load it to a microtrap
and reduce the trap depth until there is only a single bound state
\cite{Few-FermionSystem}.\\
The advantages of this approach is that the process of cooling happensoccurs
prior to loading, and there is a large spatial separation between
the source and the final trap (which ensure a long lifetime of the
trapped atom) and a greater density of atoms. The disadvantage is
that the process is rather complicated and takes around 80 seconds. 
\item \textbf{Fast approach.} In the second system (see fig.Figure \ref{fig:second system }), we
have one cell under high vacuum $\sim10^{-11}\ torr$ . The $^{40}K$
atoms will beis released from a home made dispenser by heating and trapped
with a 3D MOT. Then, by using a Gray Molasses cooling on the $D_{1}$
atomic transition, we will get obtain a cloud with temperature of over hundreds
of micro-kelvin. Next, we can load directly to a micro-trap made of
a far-off-resonance light. Then, using light assisted collisions, only
a single atom will remain trapped. This single atom is \textquotedbl{}hot\textquotedbl{}
in the sense that its spread over vibration states is large. In orderTo
to measure the atom and to cool it to ground state, we plan to use
Raman side-band cooling \cite{sidebandcooling,cheuk2015quantum,edge2015imaging}.
 \\
The advantages of this approach is simplicity of the apparatus and
the short duration of the experiment which that allows for a fast data- accumulation
rate. The disadvantage is a shorter lifetime due to the residual ambient
gas. There is also a possibility to construct a system made of two
chambers, where one chamber is used with 2D MOT to generate a source. 
\end{doublespace}
\end{enumerate}
\begin{figure}
\begin{centering}
\subfloat[\label{fig:first system }]{\includegraphics[width=9cm,height=10cm]{lab1_1} 

}\subfloat[\label{fig:second system }]{\includegraphics[width=7cm,height=10cm]{vacuum_1.PNG}

}
\par\end{centering}
\caption{\label{fig:a)-First-System}a) Degenerate fermi gas system description.
Atoms are released from the dispensers and are trapped by a 2D MOT
in the first cell (``2D''). In the second cell (``cooling''),
atoms are trapped by a 3D MOT and cooled with $D_{1}$ cooling and
RF evaporation. Then, they are loaded to an optical trap that transfers
the atoms to the third cell (``science''). b) Fast approach system
(with one cell) description. This chamber is like similar to the 2D- MOT chamber
in the first system. Atoms are released from the dispensers and trapped
by 3D MOT. Then the atoms are loaded into an optical microtrap. }
\end{figure}

We are currently building two experimental systems: the first one
is a degenerate fermi gas machine where we will beare able to proceed
with the first approach (this system is planned to be also used also for
other experiments), and a second smaller system in which we are going
to explore the second approach. The first one, we startedWe started  to constructconstructing the first one
two years ago, and in the meantime, we completed the 2D and 3D MOT,
$D_{1}$ cooling, optical pumping, magnetic trapping in QUIC trap,
RF evaporation, loading in to an optical trap, and transporting the atoms
to the science chamber. The second system wWe started to build the second system eight
months ago (the vacuum chamber was actually evacuated two and a half
years ago), we have just one cell, and we ha've completed the 3D MOT and	Comment by David M: Please clarify how this phrase compares to the previous clause.
are now working on loading atoms to the optical microtrap and detecting
them. 
\begin{doublespace}

\subsection{MOT}
\end{doublespace}

\begin{doublespace}
In both systems, the first stage is MOT. In the first method, we started
with a 2D MOT and continued to a 3D MOT, and in the fast approach method,
we start with a 3D MOT. In the first system, we first used a 2D MOT
as described in \cite{2dMOT}. For the 3D MOT we needed, as explained
beforepreviously, two lasers (cooling and repump) and two coils with anti-Helmholtz
configuration. In this configuration, we can not make RF evaporation
as there is a zero magnetic field at the bottom. Therefore, we added
a Ioffe coil in a QUIC configuration \cite{quiccoils}. 
\end{doublespace}
\begin{doublespace}

\subsubsection{Coils setup}
\end{doublespace}

I made three coils from a $4.2x4.2\ mm$ square copper tube, which
is hollow in order to cool the coil at a high current by letting water
flowing through it. To wrap this coil, we have designed a part made
of Teflon that connects to a rotating spindle (\ref{fig:coil twist}).
Teflon is important for two reasons, one so that the glue will not
stick to the holder, and the other to avoid harming the coating of
the coil. After each round, we smeared a layer of glue\textit{ (Araldite
2011)} and let it dry for 24 hours.\\
 Taking into account the dimensions of our system, we need two coils
(both for the 3d MOT and for the magnetic trap) with \textit{7X5}
winding with $r=20\ mm$. Another coil with \textit{6X4} and an inner
most radius of $r=30\ mm$(\ref{fig:9-a}). The coil current is controlled
with a PID loop which that measures the current by Hall probe. \\

\begin{figure}[H]
\begin{centering}
\subfloat[\label{fig:9-a}]{\includegraphics[scale=0.3]{QUIC}

} \subfloat[\label{fig:coil twist}]{\includegraphics[scale=0.3]{coil.PNG}

}
\par\end{centering}
\caption{\label{fig:coil } a) Quic configuration. Atoms are loaded at point
a, by two coils with anti-Helmholtz configuration with $U_{min}=0$.
Wwhen the Ioffe current rises, the atoms are moved to the new minimum,
at point b $\left(d=\sim16.9\;mm\right)$, with $B_{min}\approx1\:G$.
b) Picture of the part which that twisted the coils. }
\end{figure}

\begin{doublespace}

\subsubsection{Lasers setup }
\end{doublespace}

For MOT, we need two lasers: one for cooling and the other as a repump,
to return the atoms to the cooling transition if they end up in the
other hyperfine state $m_{f}=7/2$ . In our setup, as shown in figFigure
(\ref{fig:Laser-setup.-Cooling}), we used one laser as a reference
laser (DBR laser \textit{PH770DBR080T8 } from \emph{Photodigm} and
a current and temperature controller of \emph{LDC 501} from\emph{
Stanford Research System}). The reference laser is locked on the $\left|F=2\right\rangle \rightarrow\left|F'=3\right\rangle $
on the $D_{2}$ transition in $^{39}K$. The reference laser is locked
to room temperature on the vapor cell with $^{39}K$ atoms;, hence,
we need to use Saturated Absorption Spectroscopy (\ref{subsec:Saturated-absorption-spectroscop})
. The two other lasers are locked with Offset locking \cite{offsetlocking}
to the reference laser. I chose that configuration, as I needed a wide
tunability range for the lasers (we can not get thatobtain that configuration by using AOMs).
Theoretically, the shift between the reference laser to the cooling
laser , as described in fig Figure (\ref{fig:-Optical-transitions}), is 
\[
f_{\mathrm{cooling}}=f_{\mathrm{reference}}+804.85\:MHz
\]
I placed an AOM as a switch before the fiber with $-100MHz$ shift,
and I determined a red detuninge of $3\Gamma\approx18\:MHz$. Therefore,
\[
\Delta f_{coolng}=922\:MHz
\]
In addition, the theoretical shift between the reference laser to
the cooling laser is 
\[
f_{repump}=f_{reference}-431\:MHz
\]
I also placed a AOM as a switch before the fiber with $+110\:MHz$ shift,
and I determined a red detuninge of $3\Gamma\approx18\:MHz$. Therefore,
\[
\Delta f_{coolng}=522\:MHz
\]

\begin{center}
\begin{figure}
\centering{}\includegraphics[scale=0.75]{mot_script}\caption{Laser setup\label{fig:Laser-setup.-Cooling}. Cooling and repump are
locked by offset locking to the reference laser. The reference laser
locked on {\large{}$\left|F=2\right\rangle \rightarrow\left|F'=3\right\rangle $
in the $D_{2}$ transition of $^{39}K$ with} SAS system. Most of
the power of the lasers (cooling and repump) goes through a AOM whichthat
is used as a switch. After a 1:2 telescope, they are split, and the
most injected to one fiber that leads to the MOT, while. T the other power
is injected to another fiber that lead to the probe. }
\end{figure}
\par\end{center}

\begin{figure}[H]
\begin{centering}
\includegraphics[width=6.5cm,height=10cm]{potassium_propeties}
\par\end{centering}
\caption{ \label{fig:-Optical-transitions}Optical transitions of the $D_{1}$
and $D_{2}$-lines of $^{39}K\:\&\:^{40}K$. The Bblue Arrow arrow is the transition
which that we lock to using the Saturated absorption spectroscopy for the
MOT. The Orange orange arrow is a transition used for the $D_{1}$ cooling. The Ggreen
Arrow arrow is the cooling transition, and the red arrow is the repump transition
for the MOT. The Bblack Arrow arrow is the cooling transition and the purple
arrow is the repump transition for the D1 cooling. The numbers are
in $MHz$. Adopted from \cite{tiecke2010properties}}
\end{figure}

\begin{doublespace}

\subsubsection{Saturated Absorption Spectroscopy (SAS)}
\end{doublespace}

\textbf{\label{subsec:Saturated-absorption-spectroscop}} In laser
cooling, we must lock the laser to the frequency of an atomic transition.
The atoms move with a random velocity distribution, so the laser comes
into resonance with different velocity groups of atoms. Therefore,
the laser interacts with atoms in different velocity groups of atoms.
Their velocities, according to Maxwell-Boltzmann distribution, are
\\
\[
\frac{dn}{dv}=n_{0}\sqrt{\frac{m}{2\pi k_{b}T}}exp\left(\frac{-mv^{2}}{2k_{b}T}\right)
\]
\\
If the laser beam is at frequency $f_{0}$ in the reference frame
of the lab, in the atoms frame, the frequency is shifted due to the
Doppler effect:
\[
f=\left(1\pm\frac{v}{c}\right)f_{0}
\]
 This means that each velocity group has a different resonance frequency
in their respective frame of reference. Therefore, the frequency assumes
a shape of Gaussian shape
\begin{equation}
I\left(f\right)=I_{0}exp\left[-\frac{mc^{2}\left(f_{0}-f\right)^{2}}{2k_{b}Tf^{2}}\right]\label{eq:15}
\end{equation}
 with a width of $\sigma=f_{0}\sqrt{\frac{k_{b}T}{mc^{2}}}$. In $^{39}K$
on temperature $T\approx340\:k$ the width $\sigma=346\;MHz$\\
Doppler broadening makes it impossible to determine the precise transition
frequency to within the natural linewidth $\left(\Gamma\sim6\:MHz\right)$.
To overcome this difficulty, we need to use an SAS system which is
a probe pump setup. \\
\\
Two counter-propagating , probe and pump, laser beams derived from
a single laser beam are sent through an atomic vapor cell (in our
case, a vapor with $^{39}K$) at room temperature with same frequency
$f_{0}$. A photodiode is placed after the vapor cell and measured
the probe beam. If the probe beam frequency is not at the resonance
frequency , $f_{\mathrm{probe}}\neq f_{0}$, then it will interacts
with atoms whose have velocity $v$ that satisfy the the Doppler shift
$f_{probe}=f_{0}\left(1+v/c\right)$. In addition, the pump beam will
interacts with atoms whose that have velocity $-V$. In this case, the signal
on the photodiode will beis a deep (eq. \ref{eq:15}) with width of	Comment by David M: Please clarify this phrase.
$\sigma$,But, . However, when the beam is on resonance $f_{probe}=f_{0}$, the
atoms with has zero velocity, and there is a sharp decrease in absorption
(seen as a sharp increase in the signal from the detector), since
many of these atoms have been pumped out of the ground state, and
will are not be able to absorb any photons from the resonant probe beam.
In fFigure \ref{fig:sas d2} shows the  I show the signal from the SAS system with
with $^{39}K$ at room temperate for the $D_{2}$ laser, and in Ffigure
\ref{fig:sas d1} I show another SAS system result for the $D_{1}$
transition. The system description in in fig Figure \ref{fig:Laser-setup.-Cooling}
for $D_{2}$ and in fig Figure \ref{fig:D1-laser-setup.} for $D_{1}$.

\begin{figure}[H]
\begin{centering}
\subfloat[\label{fig:sas d2}]{\begin{centering}
\includegraphics[width=15cm,height=8cm]{\string"SAS D2\string".jpg} 
\par\end{centering}

}
\par\end{centering}
\begin{centering}
\subfloat[\label{fig:sas d1}]{\includegraphics[scale=0.38]{\string"sas d1\string".jpg}

}
\par\end{centering}
\caption{Saturated Absorption Spectroscopy in our system. Figure a) is for
the $D_{2}$ transition (fig.\ref{fig:-Optical-transitions}) where
zero frequency is for the repump transition in $^{40}K$ and in Ffigure
b) is for the $D_{1}$ transition (fig.\ref{fig:-Optical-transitions}),
where zero frequency is the transition between $F=1\rightarrow F'=CO\left(1,2\right)$
in $^{39}K$.}
\end{figure}

\begin{doublespace}

\subsubsection{Offset locking\label{Offset-locking}}
\end{doublespace}

Offset locking is a technique to lock a laser to the reference laser
and give the ability of frequency tuning from tens of MHz to several
GHz. This technique is based on the frequency depended phase shift,
experienced by the beat note of two laser frequencies, as shown in
\cite{offsetlocking}. The circuit and the locking signal are shown
in fig Figure \ref{fig:Offset-Locking}.

\begin{doublespace}
\begin{figure}[h]
\begin{centering}
\subfloat[]{\includegraphics[scale=0.35]{\string"offset circuit\string".png}

} \subfloat[]{\includegraphics[scale=0.35]{\string"offset locking\string".jpg}

}
\par\end{centering}
\caption{\label{fig:Offset-Locking}a) Offset Locking circuit. The signal is
go throw a coupler (ZEDC-10-2B) in order to take a reference of the
signal (and measure the laser width) and amplify (zfl-1000+). Then
it mixed (zx-12MH-S+)with a voltage control oscillator (zx95-800A+).
It then splits to two lines (ZX10-2-12-S+), one short and another long
(0.1m \& 3.4m). After thatAfterwards, the two lines are recombined on a phase
detector (ZRPD-1+). We use a low- pass filter of 1.9KHz at the end.
b) offset signal. The ``dot'' possition is controlled by the VCO}
\end{figure}

\end{doublespace}
\begin{doublespace}

\subsubsection{Measurements of the number of atoms }
\end{doublespace}

\begin{doublespace}
In order toTo calculate the number of atoms, we measure their florescence
with a photodiode. We can calculate the number of atoms by the following equation:
\begin{equation}
N=\frac{V\tau}{g_{1}g_{2}S\cdot E_{photon}\rho_{6}}\label{eq:numberofatom}
\end{equation}
\\
where \emph{$V$} is the measured output voltage, $\tau$ is the excited
state life time of the atom, $g_{1}$is the current to voltage photodiode
gain , $g_{2}$ is the photodiode efficiency\emph{, $S$ }is the solid	Comment by David M: This seems unclear; please clarify. 
angle fraction $\left(S=\arctan\left(\frac{d}{f}\right)\right)$,
$E_{photon}$ is the photon energy, and $\rho_{6}$ is the excited
state fraction that is calculated in \cite{sixlevelwilliamson1997magneto}
for a six- level model. 

In order toTo calibrate the laser detuning, we first find the resonance.
We load the MOT for 15 seconds with cooling laser frequency at $f_{0}$	Comment by David M: Please consider using the unit abbreviations throughout the manuscript. 
optimized for MOT operation and then change in 10 milliseconds the
cooling laser frequency to $f_{1}$ and then measure the fluorescence
fraction $\frac{V\left(f_{1}\right)}{V\left(f_{0}\right)}$ . By performing
this sequence, we make sure that our signal does not depend on the number
of atoms and $f_{0}$, but only on $f_{1}$ . The result is shown
in Ffigure(\ref{fig:Calibration-of-the}). We repeat this measurement also
for the repump laser (fig. \ref{fig:repump_reson}). Now, wWe optimized
detuning the lasers detuning (cooling and repump) in order to get obtain a high number
of atoms (see fig Figure \ref{fig:Number-of-atoms cooling} and fig Figure \ref{fig:Number-of-atoms repump}). 

\begin{figure}
\begin{centering}
\subfloat[\label{fig:Calibration-of-the}]{\begin{centering}
\includegraphics[width=7.5cm,height=6cm]{\string"cooling resonance\string".jpg} 
\par\end{centering}
}\subfloat[\label{fig:repump_reson}]{\begin{centering}
\includegraphics[scale=0.4]{\string"repump resonance\string".jpg}
\par\end{centering}
}
\par\end{centering}
\caption{Calibration of the resonance frequencies. a) Cooling Laser Fluorescence
Fraction. b) Repump Laser Fluorescence Fraction }
\end{figure}

\begin{figure}
\begin{centering}
\subfloat[\label{fig:Number-of-atoms cooling}]{\begin{centering}
\includegraphics[scale=0.4]{\string"Number of atoms  vs.  cooling v tune\string".jpg}
\par\end{centering}
}\subfloat[\label{fig:Number-of-atoms repump}]{\begin{centering}
\includegraphics[scale=0.4]{\string"Number of atoms  vs.  repump v tune\string".jpg}
\par\end{centering}
}
\par\end{centering}
\caption{Number of atoms vs laser frequency. In order toTo know what are good
conditions for the MOT, we scan the laser frequency and calculate
the number of atoms . (a) Cooling Laser. (b) Repump Laser }
\end{figure}

The last parameter that is tunable is the dispenser current. The dispenser
current can shorten the loading time (fig.Figure \ref{fig:a)-Example-of})
and increase the atoms number. 

\begin{figure}
\begin{centering}
\subfloat[]{\includegraphics[scale=0.4]{\string"loading time\string".jpg}

} \subfloat[]{\includegraphics[scale=0.37]{\string"getter current\string".jpg}

}
\par\end{centering}
\caption{\label{fig:a)-Example-of}a) Example of loading time measurement.
b) Number of atoms and loading time vs. dispenser current. High currents
release more potassium-40 and therefore, increases atoms density in
the cell . As a result, the loading time decreases and the number
of atoms increases. However, a high current shortens the life of the
dispenser.}
\end{figure}

\end{doublespace}
\begin{doublespace}

\subsubsection{Temperature Measurement with Release \& Recapture Technique\label{subsec:Temperature-measurement-with} }
\end{doublespace}

\begin{doublespace}
In order toTo measure the MOT temperature, we use Release and Recapture
(R \& R) method \cite{R&Rmethod} described in figFigure(\ref{fig:Release-=000026-Recapture-1}).
Assuming that the atoms in the MOT have a Maxwell Boltzmann distribution
\[
f\left(v\right)=4\pi v^{2}\left(\frac{m}{2\pi k_{B}T}\right)^{3/2}e^{-\frac{mv^{2}}{2k_{B}T}}
\]

\begin{figure}
\begin{centering}
\includegraphics[scale=0.5]{\string"R&R description\string".JPG}
\par\end{centering}
\caption{\label{fig:Release-=000026-Recapture-1}Release \& Recapture Experiment.
In a short time, most of the atoms do not escape from the area of the
MOT beams so they are trapped again. However, as time exceeds, the
number of atoms that remain in the MOT beams decreases, depending
on their velocity or, in other words, their temperature.}
\end{figure}

At some point, we immediately shut off the trap and let the atoms expands
ballistically for duration $\delta t$ and then open the lasers again
and recapture part of the atoms. The position of each atom after this
expansion is given by
\[
f\left(r,t\right)=\frac{4r^{2}}{\sqrt{\pi}\alpha^{3}t^{2}}e^{-\frac{r^{2}}{\alpha^{2}t^{2}}}
\]

Where $\alpha=\left(\frac{m}{2k_{B}T}\right)^{-3/2}$. Now we can
use $v=r/t$ and get obtain 
\[
f\left(v\right)=\frac{4v^{2}}{\sqrt{\pi}\alpha^{3}}e^{-\frac{v^{2}}{\alpha^{2}}}
\]

Assuming that the MOT radius starts with $r_{0}$ and captures with
the radius beam ($r_{f}=\omega_{0}$), we can calculate the number
of atoms that we trap 
\[
N\left(t\right)=\int_{r_{0}}^{r_{f}}N_{0}f\left(v\right)dv=N_{0}\frac{4}{\sqrt{\pi}\alpha^{3}t^{3}}\int_{0}^{\omega_{0}}r^{2}e^{-\frac{r^{2}}{\alpha^{2}t^{2}}}dr
\]

\[
\Rightarrow\frac{N\left(t\right)}{N_{0}}=erf\left(\frac{\omega_{0}}{\alpha\cdot\delta t}\right)-\frac{2\omega_{0}e^{-\frac{\omega_{0}^{2}}{\alpha^{2}\delta t^{2}}}}{\alpha\cdot\delta t\sqrt{\pi}}
\]

I measured the fraction of the number of atoms in the MOT after $\delta t$
without lasers divided by the number of atoms before closing the trap
(the result are shown in fig Figure (\ref{fig:Release-=000026-Recapture})).
We measured the MOT laser waist $\omega_{0}=4.4\;mm$ and got obtained $\alpha=0.01247\pm0.00258$.
Therefore, the temperature is $T=274\pm13\mu k$.

\begin{figure}
\subfloat[]{\includegraphics[width=7.5cm,height=6.5cm]{\string"R&R zoom\string".jpg}

} \subfloat[]{\includegraphics[scale=0.3]{\string"MOT Temprature\string".PNG}

} 
\centering{}\caption{\label{fig:Release-=000026-Recapture}Release \& Recapture Measurement.
a) Example of sequence. We loaded the MOT and closed the lasers for
$\delta t$ and calculated the fraction of $\frac{N_{\delta t}}{N_{0}}$.
b) Fraction vs. $\delta t$. From the fit, I calculated the temperature
and found $T\approx247\mu k$. }
\end{figure}

\end{doublespace}
\begin{doublespace}

\subsection{$D_{1}$ cooling }
\end{doublespace}

As explained in \ref{subsec:Gray-Molasses}, $D_{1}$cooling can lower
the temperature to $T\approx15\mu K$ in $^{40}K$ without atom loss.
Below I introduce our system and experimental results. 
\begin{doublespace}

\subsubsection{Lasers setup}
\end{doublespace}

\begin{doublespace}
We used a DBR laser (\textit{photodigm PH770DBR080T8}) at $\lambda=770.1\;nm$
and a current and temperature controller (\emph{ Stanford Research
System LDC501}). We took a $\sim10mW$ towards an SAS system (\ref{subsec:Saturated-absorption-spectroscop})
. We locked the laser with the derivative signal by a PID loop on
the current of the laser.\\
\\
The $D_{1}$ cooling transition is $\left|F=9/2\right\rangle \rightarrow\left|F'=7/2\right\rangle $.
However, we used a $^{39}K$ for locking the laser and the most obvious
line in locking signal is the crossover line $\left|F=co\left(1,2\right)\right\rangle \rightarrow\left|F'=2\right\rangle $.
As we can see \ref{fig:10 (b)} shows that, to obtain the transition $\left|F=1\right\rangle \rightarrow\left|F'=2\right\rangle $
we need to add $230.85\:MHz$ .Now we need to move to the energy level
of $^{40}K$. Therefore, the cooling resonance is the following: 
\[
f_{cooling}=f_{lock}+704.85\:MHz
\]
\\
We manage this with a three Acousto-Optic-Modulator (AOM) . The first
one is a double pass (\textit{ Gooch \& Housego -AOM AOMO 3200-124})
configuration with $230\:MHz$ on the $-1$ order. This configuration
gave the ability to change the frequency without changing the optic
system (Outgoing angle does not change when changing the frequency
of the AOM). The second AOM (\textit{ Gooch \& Housego -AOM AOMO 3200-124})
has a frequency of $200\:MHz$ (+1 order) .\\
 The relation between the $f_{lock}$ and $f_{co(1,2)\rightarrow2}$
is:
\begin{eqnarray*}
f_{lock} & = & f_{co(1,2)\rightarrow2}-\frac{f_{AOM-SAS}}{2}-f_{double-pass}
\end{eqnarray*}
Therefore, the frequency shift is 
\begin{eqnarray*}
\Delta f & = & f_{cooling(f=9/2\rightarrow f'=7/2)}-f_{lock}\\
 & = & 704.85-60-230\times2\\
 & = & 202.55\:MHz
\end{eqnarray*}
We added the third AOM (\textit{ Gooch \& Housego -AOM AOMO 3200-124})
at $+200MHz$ for the final frequency transition. Prior to the third
AOM, we added a home made Tapered Amplifier (TA) to increase the laser
power. The beam after the TA is diverging on an axis parallel to the
table. Therefore, we added a cylindrical lens with $f=75mm$. After
thatAfterwards, we added a telescope 4:1 to get a small beam for the third AOM.
We took the first positive order and made another telescope 1:2 to
match the beam mode to the fiber mode. \\
 For the repump laser, we used the cooling beam and added a sideband
by using home-made high frequency Electro-Optic-Modulator (EOM \ref{subsec:High-frequency-Electro-Optic-Mod}).
Then, laser beam is injected to three optical fibers (the 3d MOT fibers)\\
The control of the power beam is done by changing the RF AOM power
(with a voltage variable attenuator (\textit{Mini circuits ZX73-2500-s+})). 

\begin{figure}
\begin{centering}
\includegraphics[angle=90,scale=0.6]{\string"d1 script\string".jpg}
\par\end{centering}
\caption{\label{fig:D1-laser-setup.}D1 laser setup. }
\end{figure}

\end{doublespace}
\begin{doublespace}

\subsubsection{High Frequency Electro-Optic-Modulator\label{subsec:High-frequency-Electro-Optic-Mod}}
\end{doublespace}

\begin{doublespace}
Cooling process requires two laser frequencies, one for cooling and
one for repumping (\ref{subsec:Sisyphus-Cooling.}). In $^{40}K$
the $D_{1}$ transition has a distance of $1.285\;GHz$. Therefore,
as in the MOT, we can take two different lasers locked by an offset
locking technique. However, in $D_{1}$ cooling, the frequency shift
is the frequency shift between $\left|-9/2\right\rangle \rightarrow\left|-7/2\right\rangle $
in $^{2}S_{1/2}$. In addition, in $D_{1}$cooling the magnetic field
is set to zero, and the states distances are not changed. Therefore,
we can use an Electro-Optic-Modulator (EOM) to add frequency side
band on the top of the cooling laser that are $\pm1.285Ghz$ apart
from the main laser frequency.\\
\\
EOMs are based on the linear Electro-Optic effect, the modification
of the refractive index of a nonlinear crystal by electric field,
in proportion to the field strength. \\
The electric field at $\omega_{0}$ enters into the medium where operates
another electric field at $\omega_{m}$. So Thus, the equation of the field
is 

\[
E(t)=E_{0}\left(\sin\left(\omega_{0}t+n\sin\left(\omega_{m}t\right)\right)\right)
\]

\[
=E_{0}\sum_{n=0}^{\infty}J_{n}(n)\sin\left(\left(\omega_{0}+n\omega_{m}\right)t\right)
\]

This new phase can be applied by sending the electric field through
a nonlinear crystal, resulting in a corresponding change in the refractive
index. To make a significant change in the crystal there should be
produced a high voltage with a frequency of $\omega_{m}$ on the crystal.
There are electronics that can generate a high frequency voltage of
more than $1GHz$. Therefore, we needed to produce a resonant circuit
\cite{HighfrequencyEOM}. I constructed a circuit from copper foil
with thickness of 0.1 mm . I made a loop with $3\;mm$ space for contact
with the crystal $\left(LiNbO_{3}\right)$ (fig Figure \ref{fig:EOM cir}). 

\begin{figure}
\subfloat[]{\includegraphics[scale=0.6]{EOM_script_27_12_2015.JPG}

} \subfloat[]{\includegraphics[scale=0.6]{hfEOM}

}
\centering{}\caption{\label{fig:EOM cir}a) High Frequency EOM prescription. The black
square with area of $A=w*d$ is the crystal area cross section and
the brown with radios r is the foil with a thickness of \emph{0.1mm}.
b) EOM picture where one loop is for antenna and anther is a pickup
coil for Q factor measurement. }
\end{figure}

The crystal could be described as an ideal capacitor. Therefore, $C=\epsilon wl/d$
, where $\epsilon$ is a dialectic constant at $\omega_{m}$. Also
the accumulative inductance of the copper foil loop can be described
as an ideal cylinder current sheet ( because $2\pi r\gg d$ ) $L=\mu_{0}\pi r^{2}/l$.
Therefore, the resonant frequency of this $CL$ circuit is given as 

\[
f_{0}=\frac{1}{2\pi}\left(\frac{c}{r}\right)\left(\frac{d}{\pi w\left(\epsilon_{w}/\epsilon_{0}\right)}\right)^{1/2}
\]

We used a crystal of dimensions $w=d$ , and $c$ is speed of light.
I calculated that in our experiment ($f_{0}=1.285Ghz)$ $r\approx4.15\;mm$
(the value of $\epsilon_{w}$ at this frequency is not known and therefore
we assume that it is $\sim43$). \\
\\
In our lab, we used a $LiNbO_{3}$ crystal with dimensions of $3\times3\times30\;mm$.
If the crystal would have been smaller thaen 3 by 3 mm, then the gap
would have been smaller, resulting in a larger electric field for
a given a power. However, the laser beam has to go through the crystal
and our laser beam is a $1.5\;mm$, Therefore, a crystal with dimensions
of $3\times3\;mm$ is well suited to our lab. \\
\\
I constructed the design for this EOM. The holder of the crystal is
formed from Teflon, to prevent unwanted changes to the resonator quality
(due to inductance).\\
\\
 Copper foil with a thickness of $0.1\:mm$ was polished in order
to maximize the transmission of the foil. Then, I twisted the foil
on a drill with a diameter of $8.3\:mm$. Both sides of the copper
cylinder were bent, so that a surface of $3\:mm$ would fit the dimensions
of the crystal.\\
\\
I made a hole in the Teflon holder and threaded the RF antenna (end
loop). For good coupling, we required that the antenna be located
as close to the copper foil cylinder as possible, but it should not
block the path of the optical crystal and not touch the foil. The
antenna was connected to a Voltage Control Oscillator (\textit{Mini
Circuits ZX95-1410+}). \\
\\
Next, I measured the quality of the resonator. The $Q$ (quality)
factor describes how much energy is lost in the resonator ,with a
large $Q$ meaning less energy lost. The $Q$ factor is defined as
\[
Q=\frac{f_{0}}{\Delta f}
\]
where $\Delta f$ is the bandwidth (where the energy is reduced by
half the maximum value) and $f_{0}$ is the resonance frequency.\\
\begin{figure}
\begin{centering}
\subfloat[]{.\includegraphics[scale=0.5]{\string"EOM HF Q factor\string".PNG}

} \subfloat[\label{fig:fabryperot}]{\includegraphics[scale=0.6]{D1_fabty.JPG}}
\par\end{centering}
\caption{a) Measurement of Q factor $Q\approx150$ and $f_{0}=1.285\;GHz$
. b) Measurement of EOM efficiency using Fabry Perot. The maximum
efficiency (at high Rf power \textasciitilde{} 4W) of the EOM is $\frac{I_{repump}}{I_{cooling}}=0.19$.
The Fabry perot scanning is $1.5\;GHz$, and the first order peak distance
is $1500-216=1284\;MHz$ (in this figure, we see the sideband from
the next peak where the distance between them is $1.5\;GHz$ ). }
\end{figure}

I measured the $Q$ factor with an RF antenna and found that $Q\approx150$
and $f_{0}=1.285GHz$. This gave us the possibility of adjusting the
device. The direction was made by a squeeze of the resonator, reducing
the radius and thus increasing the resonant frequency.

In addition, we studied the effect on the laser by measuring the laser
in a Fabry Perot. I took an RF power of $P=4\:W$ and got obtained $\frac{I_{repump}}{I_{cooling}}=7.5\%$
(figFigure. \ref{fig:fabryperot}) , which should be sufficient for the $D_{1}$cooling.
\end{doublespace}
\begin{doublespace}

\subsubsection{Measurement of the $D_{1}$ Frequency Resonance}
\end{doublespace}

\begin{doublespace}
In the first measurement, we wanted to find the resonance frequency
of the cooling transition ($\left|F=9/2\right\rangle \rightarrow\left|F'=7/2\right\rangle $)
. For this measurement, we used a Photo Multiplier Tube (PMT) to measure
the fluorescence of the atoms. We opened the PMT $3\:ms$ before opening
the $D_{1}$laser (just cooling), as the PMT has an opening time of
$\sim2\:ms$. When we opened the cooling laser, the atoms are fluorescent
for $\sim100\mu s$. Therefore, we see a signal of exponential decay.
We made a fit of $I=A_{0}e^{-t/\tau}$ and took the $A_{0}$ as the
intensity of the atoms fluorescence. We scanned over a range of $f=25\:MHz$.
We can not scan over more than $25\:MHz$ as we scan on the double-pas
AOM before the locking circuit, and any change in this AOM changes
the intensity on the locking signal and the laser would lock out.
We found that the cooling resonance is at $f_{AOM-DP}=221.175\:MHz$
with a width of $10.02\:MHz$. We set the cooling frequency with blue
detuning at 
\[
f_{DP-AOM}=f_{resonance}+3\Gamma=233.675\:MHz
\]

\begin{figure}
\begin{centering}
\includegraphics[scale=0.6]{D1_cooling_resonance_freq.PNG}
\par\end{centering}
\caption{PMT signal Vs. DP-AOM frequency. The resonance is in $2\cdot f_{AOM-DP}=443\:MHz$.
To get coolthe cooling with the blue detuning of $\sim3\Gamma$ on the
$D_{1}$, we need to add $18\:MHz$. Ttherefore, $2\cdot f_{AOM-DP}=461\:MHz$.
The final parameter will set by the atoms parameters (temperature
and number of atoms), as shown in fig Figure \ref{fig:a)-cooling-tune}. }
\end{figure}

Next, we added the repump frequency to the cooling beam by using a
High Frequency EOM. This laser has two frequencies which that are injected
to the three3 fiber of the 3d MOT (retro-reflection configuration). The
power ,at each axis, is approximately $I=12I_{sat}$ with $\frac{I_{r}}{I_{c}}\sim7.5\%$.
Before we start to reduce the temperature, we need to compress the
atoms by adding a magnetic-trap for $2\;msec$ (which causes increased temperature
increase).
\end{doublespace}
\begin{doublespace}

\subsubsection{Temperature and atoms number measurement by Time Of Flight (TOF )
technique}
\end{doublespace}

TOF measurements are performed by acquiring the absorption signal
of the probe laser beam through the falling and expanding atomic cloud.
There are several methods of measurement of temperature, R\&R \ref{subsec:Temperature-measurement-with}
, MOT fluorescence spectrum analysis\cite{MOTfluorescencespectrum},forced-oscillation\cite{forceOscillations}.
Another model that was suggested by Jerzy and Gawlik in \cite{brzozowski2002TOFmodel}shows
that the absorb signal from an atoms 
\[
N\left(t\right)=\frac{P_{0}}{2\pi\left(\sigma_{I}^{2}+\sigma_{t}^{2}\right)}\exp\left[-\left(\frac{g\left(t_{0}^{2}-t^{2}\right)}{2\sqrt{2}\sqrt{\sigma_{I}^{2}+\sigma_{t}^{2}}}\right)^{2}\right]
\]
where $p_{0}$ is the probe laser power, $t_{0}$ is the arrival time
of atoms with no initial vertical velocity, $\sigma_{I}$ are laser
beam waist along $x$ and $y$ axes and $\sigma_{t}=\sqrt{\sigma_{0}^{2}+\sigma_{v}^{2}t^{2}}$
is the Gaussian radius of the ballistic expanded cloud. The Gaussian
radius $\sigma_{v}$ of the velocity distribution is associated with
the temperature $T$ of the atoms cloud by 
\[
T=\frac{m}{k_{B}}\sigma_{v}^{2}
\]
After a loading time of $30\;sec$, we closed the coil current and
the $D_{2}$ laser beam and opened the $D_{1}$cooling for $t=4\:msec$.
We then closed the $D_{1}$ laser, waited $18\;msec$, and then took
a TOF image. I scanned the parameters of the cooling and repump frequency
and optimized these parameters as described in fig Figure \ref{fig:a)-cooling-tune}.
At the end, the atoms parameters $T=19\:\mu K$ and $N=2\times10^{8}$atoms
(where $f_{AOM-DP}=461.3\:MHz$, $f_{repump}=1287\;MHz$ and $D_{1}$
duration $t=4\;msec$). The TOF image is shown in fig Figure \ref{fig:21}.

\begin{figure}[H]
\begin{centering}
\subfloat[]{\includegraphics[width=7.5cm,height=7cm]{\string"d1 cooling tune\string".jpg}

} \subfloat[]{\includegraphics[width=7.5cm,height=7cm]{\string"d1 repump tune\string".jpg}

}
\par\end{centering}
\begin{centering}
\subfloat[]{\includegraphics[scale=0.45]{\string"d1 duration\string".jpg}

} \subfloat[\label{fig:21}]{\begin{centering}
\includegraphics[scale=0.6]{Abs_image_30sec_18msecTOF10msecD1cooling_28uK2e8atoms_14062016}
\par\end{centering}
}
\par\end{centering}
\caption{\label{fig:a)-cooling-tune}a) $D_{1}$cooling tune vs temperature.
b) $D_{1}$ repump tune vs temperature. c) $D_{1}$ duration vs temperature
d) Absorb image of atoms after $D_{1}$ cooling with Time Of Flight
$t=18\;msec$ }

\end{figure}

\begin{doublespace}

\subsection{Optical Trap}
\end{doublespace}

As shown above (\ref{eq:20}), in a microtrap, the potential and the	Comment by David M: Please be more descriptive by stating the actual equation number. Often, “above” or “below” should be removed in academic and technical writing. 
scattering rate depend on the beam $\omega_{0}$

\[
U_{dip}\propto\omega_{0}^{-5}
\]
Therefore, we need precise measurement of the beam waist. In addition,
we want to use a laser with $\lambda=1064\:nm$ in order to obtain
a long lifetime in the micro trap (\ref{tab:2}) . 
\begin{doublespace}

\subsubsection{Microtrap waist measurement}
\end{doublespace}

\begin{doublespace}
In order toTo know the optical trap's depth and size, we need to measure
the $\omega_{0}$ of the beam. Each camera has a finite size of the
pixel which is greater than $7\,\mu m$ so, we can not use a camera
to measure the waist. We can use a knife edge measurement, but again,
we need a high resolution x-y-z stage ($<0.3\,\mu m$ for seven less
measurements at the waist). \\
We used two nice and easy ways to measure the micro-trap waist. \\
A collimated laser beam with waist $\omega_{1}=0.89\ mm$ and $\lambda=1064\:nm$
enters a 1:6 telescope. It then travels through an Aspheric lens with
$f=26\ mm$. The Numerical Aperture (NA) is given by 
\[
NA=\frac{2\cdot6\cdot\omega_{1}}{2f}=0.205
\]

\end{doublespace}

The NA of a Gaussian laser beam is then reduced to its minimum spot
size by 
\[
NA=\frac{\lambda}{\pi\omega_{0}}
\]
where $\lambda$ is the laser wavelength (in our trap, $\lambda=1064\:nm$)
and $\omega_{0}$ is the laser beam waist at the focus. Therefore,
\[
\omega_{0,theory}=\frac{\lambda}{\pi\cdot NA}=1.65\ \mu m
\]
 
\begin{doublespace}

\subsubsection{Measurement of a microtrap waist with an optical chopper }
\end{doublespace}

An optical chopper is a spinning wheel with holes at a constant frequency.
The holes are used as a knife for the knife edge measurement. I set
a photodiode after the chopper and measured power vs. time on a digital
scope. By knowing the frequency of the chopper and the distance between
the laser and the center of the chopper, we can calculate the the
velocity of the knife. Therefore, we can translate the time to distance.
\begin{doublespace}

\subsubsection{Measurement of the microtrap waist with a piezoelectric actuator
and michelson interferometer}
\end{doublespace}

In this measurement, I inserted a Piezoelectric actuator $\left(Thorlabs\,AE0203D08F\right)$
to a translation stage. In our labs, we only have an actuator that
can travel at $9.1\,\mu m$. The actuator receives a voltage of $0-150\;V$
from a ramp waveform. On the translation stage, I set a knife and
measured the power on the photodiode. We can assume that the actuator
travels linearly from $0\rightarrow9.1\;\mu m$, but we can calibrate
this with a Michelson interferometer (calculate the actuator traveling
distance) .As described in fig Figure (\ref{fig:miclson int}),I took our
collimated laser $\lambda=1064\,nm$ and split it with a Non Polarize
Beam Splitter (NPBS) to two mirrors. One mirror is moved with the
translation stage by the actuator and the second mirror does not move.
The lasers from the two mirrors are combined on the NPBS and focused
on a photodiode. On the photodiode, we obtain a diffraction pattern
that is dependent on the difference between the optical paths \cite{fox1999reliable}.
\\
\[
\Delta L=\frac{\lambda m}{2}
\]
where $\Delta L$ is the distance that the mirror is moved, $m$ is
the number of maximums and $\lambda$ is the wavelength of the laser.
As shown in figure Figure \ref{fig:measured-the-micro-trap}, we get obtain $m=14.5$
in one waveform period;  and therefore, 
\[
\Delta L=7.714\,\mu m
\]
Now, I can calculate the distance in the knife edge measurement and
I obtained $\omega_{0}=2.148\mu m$ . With these measurements, I can
not know about aberration or about $M^{2}$. In order toTo measure them,
there is a need to make measurements of $\omega(z)$, but for this,
there is a need for a long travel Piezoelectric actuator $\left(\Delta L>15\cdot\omega_{0}\right)$.(\ref{fig:Calculation-of-the})
\begin{doublespace}
\begin{center}
\begin{figure}[H]
\begin{centering}
\subfloat[\label{fig:miclson int}]{\includegraphics[scale=0.65]{\string"Michelson interferometer system\string".png}

}\textvisiblespace{}\subfloat[\label{fig:measured-the-micro-trap}]{\includegraphics[scale=0.7]{\string"Michelson Interferometer\string".jpg}

}
\par\end{centering}
\caption{Measuring the Microtrap Waist with a Piezoelectric Actuator and a
Michelson Interferometer. a) The system description. Collimated laser
beam splited by NPBS and go to two mirror (mirror 1 is on the translation
state and mirror 2 is fixed). They reflected back and combined on
the NPBS and focused on a photodiode. b) Interferometer result. We	Comment by David M: Please consider the revise way of presenting this idea. Please confirm that this is correct.
can see that weThe figure shows that we get obtain 14.5 maximum peaks, so the actuator travel is $7.714\,\mu m$, and.
We also can see that the travel path of the piezo actuator is not
linear (the frequency of the sin function is not the same).}
 
\end{figure}
\par\end{center}
\end{doublespace}

\begin{center}
\begin{figure}[H]
\includegraphics[scale=0.3]{\string"final waist (1)\string".jpg}
\begin{centering}
\caption{\label{fig:Calculation-of-the}Calculation of the beam waist with
Knife edge technique}
\par\end{centering}
\end{figure}
\par\end{center}
\begin{doublespace}

\section{Summery and Future Plan}
\end{doublespace}

In this study, I presented our new platform for quantum computation.
It is based on fermion statistics and the attributes of ultracold
atoms. In Chapter \ref{sec:Introduction}, I introduced the fundamentals
of quantum computing and the features of ultracold atom. \\
\\
In Chapter \ref{sec:New-platform-of}, we demonstrated the theory behind
quantum computation solutions for our system. In addition, I explained
the one one-qubit gates and two two-qubits gates in ultracold fermion systems.
Moreover, I presented our indecision regarding the choice of system
form from between the \textbf{Degenerate fermi gas system} (cooling to
low temperature and then loading to a micro trap) or the\textbf{ fast
approach System} (loading to an optical microtrap and then cooling
the atoms to ground state). \\
\\
In Chapter \ref{sec:ultracold-atomsback}, I give a relevant background
for ultracold atoms, and in Chapter \ref{sec:The-experimental-machines},
I described our two systems that are in the middle of construction.
I show the MOT trapping and cooling stage and $D_{1}$ cooling with
one laser. \\
\\
Looking ahead in timeFor future reseach, we need to carry outperform a more theoretical study
on the system parameters, such as the velocity $d\left(t\right)$ of
one qubit without change the qubit state , defining $U$ and $t$
for a $\sqrt{SWAP}$ gate in order to obtain fidelity $\mathcal{F}=1$,
and more. \\
From an experimental point of viewperspective, we need to strive to reach a numbersseveral
of goals.
\begin{itemize}
\item Loading several atoms to a microtrap and developing the ability to
measure a single atom.
\item Reducing the number of atoms to one. 
\item Construction of two tunable microtraps with the application of a one
and two qubit gate.
\item Numerical calculation of the gates parameter ($U$, $t$, $d\left(t\right)$,
trap parameter, etc.). 
\end{itemize}
I hope that in a few years we will be able to provide answers to these
and other issues. 
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