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Preface

The idea of writing this book came to me in 2015 when I started teaching a course
entitled “Data Analysis and Interpretation in Earth Science” at the Department of
Physics and Geology of Perugia University. From the beginning of the course, I
realized that many of my students were strongly interested in data managing, visual-
izing, and modeling in Python. I also realized that no reference book was available
for teaching Python to geologists. Although numerous books present Python to
programmers at all levels, from beginners to experts, they mostly focus solely on
programming techniques, without discussing real applications, especially in geol-
ogy. In other words, a book devoted to Earth Scientists was missing. The project
grew and became structured while teaching the basics of Python to Earth Scientists
at the Eötvös University Budapest (Hungary) and at Leibniz Universität of Han-
nover (Germany) in December 2018 and February 2020, respectively. Sadly, by the
beginning of March 2020, the COVID-19 pandemic had dramatically spread to all
regions of Italy and, on March 4th, the Italian government shut down all schools
and universities nationwide, forcing me to stay at home like most Italians. In one of
the most confusing and insecure moments of my life, I decided to start writing this
book. “Introduction to Python in Earth Science Data Analysis” is devoted to Earth
Scientists, at any level, from students to academics and professionals, who would
like to harness the power of Python to visualize, analyze, and model geological data.
No experience in programming is required to use this book. If you are working in
the Earth Sciences, are a novice programmer, and would like to exploit the power of
Python in your projects, this is the right place for you.

Assisi, 02-03, 2021 Maurizio Petrelli
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Overview

Let me introduce myself

Hi and welcome. My name is Maurizio Petrelli and I currently work at the Depart-
ment of Physics and Geology, University of Perugia (UniPg). My research focuses
on the petrological characterization of volcanoes with an emphasis on the dynamics
and timescales of pre-eruptive events. For this work, I combine classical and uncon-
ventional techniques. Since 2002, I’ve worked intensely in the laboratory, mainly
focusing on the development UniPg’s faciltiy for Laser Ablation Inductively Coupled
Plasma Mass Spectrometry (LA-ICP-MS). In February 2006, I obtained my Ph.D.
degree with a thesis entitled “Nonlinear Dynamics in Magma Interaction Processes
and their Implications on Magma Hybridization,” which received an award from the
Società Italiana di Mineralogia e Petrologia as the best Ph.D. thesis in Petrology for
the year 2006. Currently, I lead the research group at UniPg, Department of Physics
and Geology, for applying Machine Learning techniques in Geology. Finally, I also
manage the LA-ICP-MS laboratory at UniPg.

Organization of book

The book is organized in five parts plus three appendixes. The first part, entitled
“Python for Geologists: A Kickoff,” focuses on the very basics of Python program-
ming, from setting up an environment for scientific computing to solving your first
geology problems using Python. The second part is entitled “Describing Geological
Data” and explains how to start visualizing (i.e., making plots) and generating de-
scriptive statistics, both univariate and bivariate. The third part, entitled “Integrals
and Differential Equations in Geology,” discusses integrals and differential equa-
tions while highlighting various applications in geology. The fourth part deals with
“Probability Density Functions and Error Analysis” applied to the evaluation and
modeling of Earth Science data. Finally, the fifth part, entitled “Robust Statistics
and Machine Learning” analyzes data sets that depart from normality (statistically
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xii Overview

speaking) and the application of machine learning techniques to data modeling in
the Earth Sciences.

Styling conventions

I use conventions throughout this book to identify different types of information. For
example, Python statements, commands, and variables used within the main body
of the text are set in italics.

Consider the following quoted text as an example “There are many options to
create multiple subplots in matplotlib. In my opinion, the easiest approach is to
create an empty figure [i.e., fig = plt.figure(), then add multiple axes (i.e., subplots)
by using the method fig.add_subplot(nrows, ncols, index)]. The parameters nrows,
ncols, and index indicate the numbers of rows and columns (ncols) and the positional
index. In detail, index starts at 1 in the upper-left corner and increases to the right.
To better understand, consider the code listing 4.4.”

A block of Python code is highlighted as follows:

1 import pandas as pd
2
3 #Example 1
4 my_dataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,
5 sheet_name=’Supp_traces’)

Listing 1 Example of code listing in Python.

Shared codes

All code presented in this book is available at XXX

Involvement and collaborations

I am always open to new collaborations worldwide. Feel free to contact me by mail
to discuss new ideas or propose a collaboration. You can also reach me through
my personal website or by Twitter. I love sharing the content of this book in short
courses everywhere. If you are interested, please contact me to organize a visit to
your institution.

Personal contacts:
Q maurizio.petrelli@unipg.it
7 @mauripetre
W https://www.mauriziopetrelli.info
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Chapter 1
Setting Up Your Python Environment, Easily

1.1 The Python Programming Language

Python is a high-level, modular, interpreted programming language.1 What does this
mean? A high-level programming language is characterized by a strong abstraction
that cloaks the details of the computer so that the code is easy to understand for
humans. Python is modular, which means that it supports modules and packages that
allow program flexibility and code reuse. In detail, Python is composed of a “core”
that deals with all basic operations plus a wide ecosystem of specialized packages
to perform specific tasks. To be clear, a Python package or library is a reusable
portion of code, which is a collection of functions and modules (i.e., a group of
functions) allowing the user to complete specialized tasks such as reading an excel
file or drawing a publication-ready diagram.

Python is an interpreted language (like MATLAB, Mathematica, Maple, and R).
Conversely, C or FORTRAN are compiled languages.What is the difference between
compiled and interpreted languages? Roughly speaking, with compiled languages, a
translator compiles each code listing in an executable file. Once compiled, any target
machine can directly run the executable file. Interpreted languages compile code in
real time during each execution. The main difference for a novice programmer is that
interpreted code typically runs slower than compiled executable code. However, per-
formance is not an issue in most everyday operations. Performance starts becoming
significant in computing-intensive tasks such as complex fluid dynamic simulations
or three-dimensional (3D) graphical applications. If needed, the performance of
Python can be significantly improved with the support of specific packages such as
Numba, which can compile Python code. In this case, Python code approaches the
speed of C and FORTRAN.

Being an interpreted language, Python facilitates code exchange over different
platforms (i.e., cross-platform code exchange), fast prototyping, and great flexibility.

Some convincing arguments for Earth scientists to start learning Python are that
(1) its syntax is easy to learn; (2) it is highly flexible; (3) it enjoys the support of a

1 https://www.python.org
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4 1 Setting Up Your Python Environment, Easily

large community of users and developers; (4) it is free and open-source; and (5) it
will improve your skills and proficiency.

1.2 Programming Paradigms

Aprogramming paradigm is a style or general approach towriting code (Gabbrielli &
Martini, 2010; Turbak & Gifford, 2008; Van Roy & Haridi, 2004). As a zeroth-order
approximation, two archetypal paradigms dominate programming: imperative and
declarative. Imperative programming mainly focuses on “how” to solve a problem,
whereas declarative programming focuses on “what” to solve. Starting from these
two archetypes, programmers have developed many derived paradigms, such as
procedural, object-oriented, functional, logic, or aspect-oriented, just to to cite a few.
The selection of a specific programming paradigm to develop your code depends on
the overall nature of your project and final scope of yourwork. For parallel computing,
the functional approach provides a well-established framework. However, given that
an exhaustive documentation about programming paradigms is beyond the scope of
this book, I will only illustrate those paradigms that are supported in Python.

The Python programming language is primarily designed for object-oriented
programming, although it also supports, sometime spuriously, purely imperative,
procedural, and functional paradigms (Gabbrielli &Martini, 2010; Turbak&Gifford,
2008; Van Roy & Haridi, 2004):

Imperative. The imperative approach is the oldest and simplest programming
paradigm; one simply provides a defined sequence of instructions to a computer.

Procedural. The procedural approach is a subset of imperative programming. In-
stead of simply providing a sequence of instructions, it stores portions of code in
one or more procedures (i.e., subroutines or functions). Any given procedure can be
called at any point during the program execution, allowing for code organization and
reuse.

Object-oriented. Like the procedural style, the object-oriented approach is a subset
(i.e., an evolution) of imperative programming. Objects are the key elements in
object-oriented programming. One of the main benefits of this approach is that it
maintains a strong relation with real-world entities (e.g., shopping carts in websites,
WYSIWYG environments).

Functional. The functional approach is a declarative type of programming. The
purely functional paradigm bases the computation on evaluating mathematical func-
tions and is well suited for high-load, parallel computing applications.

In this introductory book we will take advantage of Python’s flexibility without
focusing too much on specific code styling or on a particular paradigm. Specifically,
our code remains mainly imperative for the easiest tasks but becomes more proce-
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dural for more advanced modeling. Also, we benefit from the many object-oriented
libraries (e.g., pandas and matplotlib) developed for Python.

1.3 A Local Python Environment for Scientific Computing

Two main strategies are available to create a Python environment suitable for sci-
entific computing on your personal computer: (1) install the Python core and add
all required scientific packages separately; or (2) install a “ready-to-use” Python
environment, specifically developed for scientific purposes. You can try both options
but I suggest starting with option (2) because it requires almost zero programming
skills and you will be ready to immediately and painlessly start your journey in the
world of Python.

An example of a “ready-to-use” scientific Python environment is the Anaconda
Python Distribution.2 Anaconda Inc. (previously Continuum Analytics) develops
and maintains the Anaconda Python distribution, providing different solutions that
include a free release and two pay versions. The Individual Edition is the free option
(and our choice); it is easy to install and offers community-driven support. To install
the Individual Edition of the Anaconda Python distribution, I suggest following
the directives given in the official documentation.3 First, download and run the
most recent stable installer for your Operating System (i.e., Windows OS, Mac OS or
Linux). For Windows and Mac OS, a graphical installer is available. The installation
procedure is the same as for any other software application. The Anaconda installer
automatically installs the Python core and Anaconda Navigator, plus about 250
packages defining a complete environment for scientific visualization, analysis, and
modeling. Over 7500 additional packages can be installed individually, as the need
arises, from theAnaconda repositorywith the "conda"4 packagemanagement system.

The Anaconda Navigator is a desktop graphical user interface (GUI), which
means that it is a program that allows you to launch applications, install packages,
and manage environments without using command-line instructions (Fig. 1.1).

From the Anaconda Navigator, we can launch two of the main applications that
we will use to write code, run the modeling, and vfisualize the results. They are the
Spyder application and the JupyterLab.

Spyder5 is an Integrated Development Environment (IDE), i.e., a software ap-
plication, providing a set of comprehensive facilities for software development and
scientific programming. It combines a text editor to write code, inspection tools for
debugging, and an interactive Python console for code execution. We will spend
most of our time using Spyder. Figure 1.2 shows a screenshot of the Spider IDE.

2 https://www.anaconda.com
3 https://www.anaconda.com/products/individual/
4 https://docs.conda.io/
5 https://www.spyder-ide.org
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Fig. 1.1 Screenshot of the Anaconda Navigator.

Text editor Interactive console

Variable Explorer

Fig. 1.2 Screenshot of Spider IDE. The text editor for writing code is on the left. The bottom-
right panel is the IPython interactive console, and the top-right panel is the Variable Explorer for
debugging.
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JupyterLab is a web-based development environment to manage Jupyter Note-
books, which are web applications that allow you to create and share documents
containing live code, equations, visualizations, and narrative text. Figure 1.3 shows
a screenshot of a Jupyter Notebook.

Fig. 1.3 Screenshot of Jupyter Notebook combining narrative text, code, and visualizations.

Both Sypder and JupyterLab allow you to write code, perform computations, and
report the results. There is not a preferred choice. My personal choice is to use
Spyder and Jupyter Lab for research and teaching, respectively.

1.4 Remote Python Environments

Remote Python environments are those running in a computer system or virtual
machines that can be accessed online. As an example, the Python environment
can be installed on remote machines hosted by your academic institution (most
universities have computing centers that offer this opportunity) or by commercial
providers (often offering a basic free plan). The concepts and procedures described
above for installing a local Python environment remain valid for remote machines.
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However, working with remote machines requires additional skills to access and
operate online (e.g., knowledge of Secure Shell or Remote Desktop protocols for
Linux andWindows-basedmachines, respectively). Therefore, to keep things simple,
I suggest again starting with a local installation of the Anaconda Python distribution.

An alternative possibility to start working with Python online without installing a
local environment is to use a remote IDE. For example, commercial providers such
as Repl.it6 and PythonAnywhere7 offer free and complete Python IDEs, allowing the
user to start coding first and later move on to developingmore advanced applications.
A drawback of this approach, however, is that neither IDE is specifically designed
for scientific computing. Consequently, running code from this book will require the
installation of additional libraries not included by default in the core distribution.
Therefore, to easily replicate the code and examples given in this book, I suggest,
once again, to locally install the most recent Anaconda Python distribution on your
computer.

1.5 Python Packages for Scientific Applications

Akey feature of Python is its modular nature. This section lists a few general-purpose
scientific packages that we will make wide use of in this book. For each library, I
provide with a quick description taken from the official documentation a link to the
official website and, when possible, a reference for further reading.

NumPy is a Python library that provides a multidimensional array object and an
assortment of routines for fast operations on arrays, including mathematical, logical,
shape manipulation, sorting, selecting, input-output, discrete Fourier transforms,
basic linear algebra, basic statistical operations, random simulations, and other func-
tionalities (Bressert, 2012).8

Pandas is an open-source library providing high-performance, easy-to-use data
structures and data-analysis tools for the Python programming language (Chen,
2017).9

SciPy is a collection of mathematical algorithms and functions built on the NumPy
extension of Python. It adds significant power to interactive Python sessions by
providing the user with high-level commands and classes for manipulating and vi-
sualizing data. With SciPy, an interactive Python session becomes a data-processing
and system-prototyping environment rivaling systems such as MATLAB, IDL, Oc-
tave, R, and SciLab (Bressert, 2012).10

6 https://repl.it
7 https://www.pythonanywhere.com
8 https://numpy.org
9 https://pandas.pydata.org
10 https://scipy.org
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Matplotlib is a Python library for creating static, animated, and interactive data
visualizations (Bisong, 2019).11

SymPy is a Python library for symbolic mathematics. Symbolic computation deals
with the symbolic computation of mathematical objects. This means that mathemati-
cal objects are represented exactly, not approximately, and mathematical expressions
with unevaluated variables are left in symbolic form (Meurer et al., 2017).12

Scikit-learn is an open-source machine learning library that supports supervised
and unsupervised learning. It also provides various tools for model fitting, data pre-
processing, model selection and evaluation, and many other utilities (Paper, 2020).13

1.6 Python Packages Specifically Developed for Geologists

Many Python packages have been developed to solve geology problems. They form
a wide, heterogeneous, and useful ecosystem allowing us to achieve specific geology
tasks. Examples include Devito, ObsPy, and Pyrolyte, to cite a few. Most of these
packages can be easily installed by using the Conda package management system.
Others requires a few additional steps and skills. The use of these specific packages
is not covered in the present book, since they are typically developed to solve very
specific geology problems. However, a novice to Python will benefit and probably
require the notions reported in this book to be able to use these packages. Appendix A
provides a comprehensive list of Python packages developed to solve geology tasks.

11 https://matplotlib.org
12 https://www.sympy.org
13 https://scikit-learn.org





Chapter 2
Python Essentials for a Geologist

2.1 Start Working with IPython Console

The IPython Console (Fig. 2.1) allows us to execute single instructions, multiple
lines of code, and scripts, all of which may receive output from Python (Rossant,
2018).

Fig. 2.1 IPython console.

To start working with the IPython Console, consider Fig. 2.2, where the first
two instructions are A = 1 and B = 2.5. The meaning of these two commands is
straightforward: they simply assign the value of 1 and 2.5 to the variables A and B,
respectively. The third instruction is A + B, which sums the two variables A and B,
obtaining the result 3.5.

Figure 2.2 also provides information about the type of variables in Python
(Fig. 2.3). For numbers, Python supports integers, floating point, and complex
numbers. Integers and floating-point numbers differ by the presence or absence
of decimals. In our case, A is an integer and B is a floating-point number. Complex
numbers have a real part and an imaginary part, and they are not discussed in this
book. Operations like addition or subtraction automatically convert integers into
floating-point numbers if one of the operands (in our case, B) is floating point. The

11
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Fig. 2.2 Start working with the IPython console.

type() function returns the type of a variable. Additional data types that are relevant
for this book are (a) Boolean (i.e., True or False), (b) Sequences, and (c) Dictionaries.

In Python, a Sequence type is an ordered collection of elements. Examples of
sequences are Strings, Lists, and Tuples. Strings are sequences of characters, Lists
are ordered collections of data, and Tuples are similar to Lists, but they cannot be
modified after their creation. Fig. 2.4 shows how to define and access Strings, Lists,
and Tuples.

Python Variable Types

Bololean Dictionaries Others

Numbers Sequences

Floating-point complex Strings Lists TouplesIntegers

Fig. 2.3 Variable data types in Python.
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Fig. 2.4 Defining and working with sequences.

The elements of a sequence can be accessed by using indexes. In Python, the first
index of a sequence is always 0 (zero). For example, the instruction my_string[0]
returns the first element of my_string defined in Fig. 2.4 (i.e., “M”). Similarly,
my_touple[2] returns the third element of my_touple (i.e., “Maurizi”). Additional
examples on how to access a sequence are reported in Fig. 2.5. Using negative
numbers (e.g., my_string[-1]), the indexing of the sequences starts from the last
element and proceeds in reverse mode. Two numbers separated by a colon (e.g. [3:7])
define an index range, sampling the sequence from the lower to the upper bounds,
excluding the upper bound. For the statementmy_string[3:7], the interpreter samples
my_string from the third to the seventh indexes (i.e., “name”). Finally, commands
like my_string[:2] and my_string[11:] sample my_string from the beginning to the
index 2 (excluded) and from the index 11 to the last element, respectively.

Dictionaries are data types consisting of a collection of key-value pairs. A dic-
tionary can be defined by enclosing a comma-separated list of key-value pairs in
curly braces, with a colon separating each key from the associated value (Fig. 2.6).
In a dictionary, a value is retrieved by specifying the corresponding key in square
brackets (Fig. 2.6).

2.2 Naming and Style Conventions

The main aim of using conventions in programming is to improve the readability of
codes and to facilitate collaboration between different programmers. In Python, the
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Fig. 2.5 Accessing Sequences.

Fig. 2.6 Defining and accessing Dictionaries.

“PEP 8 – Style Guide for Python Code” gives the coding conventions for Python,
comprising the standard library in the main Python distribution.1

Writing readable code is important for many reasons, the main one of which
is to allow others to easily understand your code. This is crucial when working
on collaborative projects. By sharing best practices, programming teams will write
consistent and elegant codes.

In the book, I try to follow the main rules defined by the PEP 8 – Style Guide for
Python Code. Beginners should keep in mind that these guidelines exist and start
following the most important ones, which are listed in Table ?? for convenience.

1 https://www.python.org/dev/peps/pep-0008/
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However, I suggest that beginners focus more on their results (i.e., achieving the
objectives) than on the form of the code.

Table 2.1 Styling and Naming conventions in Python.

Type Style or Naming Convention Example

Function Function names should be lowercase, with words
separated by underscores as necessary to improve
readability (cf. Section 2.4).

function, my_function

Variable Variable names follow the same convention as func-
tion names.

x, my_dataset

Constant Constants are usually written in all capital letters
with underscores separating words.

A, GREEK_P

Class Start each word with a capital letter (CapWords con-
vention). Do not use underscores to separate subse-
quent words (cf. appendix B).

Circle, MyClass

Method Use the function naming rules: lowercase with words
separated by underscores as necessary to improve
readability (cf. appendix B).

method, my_method

Names to avoid Never use the characters ’l’ (lowercase letter el), ’O’
(uppercase letter oh), or ’I’ (uppercase letter eye) as
single character variable names.

-

Indentation PEP 8 recommends using four spaces per indentation
level (cf. Section 2.4).

-

2.3 Working with Python Scripts

A script is a sequence of code instructions used to automate processes (e.g., making
a diagram, or a geological model) that would otherwise need to be executed step by
step (e.g., in the IPython console). In detail, Python scripts are text files typically
characterized by a .py extension and containing a sequence of Python instructions.
Writing and modifying Python scripts requires nothing more than a text editor.
Spyder incorporates a text editor with advanced features such as code completion
and syntax inspection. In Spyder, the text editor is usually positioned in a panel on
the left portion of the screen. To execute a Python script, the interpreter reads each
instruction sequentially, starting from the first line. To execute a Python script in the
active IPython console of Spyder, we click the play button, as shown in Fig. 2.7,
or use the F5 keyboard shortcut. Keyboard shortcuts help us be more proficient;
Table 2.2 lists a few additional keyboard shortcuts.

The script listing 2.1 gives the Python script of Fig. 2.7 and, in lines 5 to 10, the
output obtained upon running the script in the IPython console.

The three single quotation marks (i.e., ′′′) in lines 5 and 10 of the script listing 2.1
open and close a multi-line comment, which is simply lines of code or text that are
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Click here to run the entire script

Python instructions in the script listing ‘script.py’

Output of script listing ‘script.py’ 

Fig. 2.7 Running a Python script.

ignored by the interpreter. The symbol # means that the remaining text on the same
line is a comment. Comments are a fundamental part of Python codes because they
help you and future users clarify the code workflow. Keep in mind that you might
spend an entire day developing a very proficient script only to wake up the next
morning without remembering how the script works! Comments are a godsend in
these situations.

Table 2.2 Selected Spyder Keyboard Shortcuts.

Windows OS Mac OS Action

F5 F5 Run file (complete script)
F9 F9 Run selection (or current line)
Ctrl + T Cmd + T Open an IPython console
Ctrl + space Ctrl + space Code completion
Tab Tab Indent selected line(s)
Shift + Tab Shift + Tab Unindent selected line(s)
Ctrl + Q Cmd + Q Quit Spyder

In fact, you don’t necessarily need Spyder to write a .py script. As stated above,
Python scripts can be written using any text editor. The python instruction will run
your scripts in the command line or terminal application (see Fig. 2.8).
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Fig. 2.8 Running a Python script using the python instruction.

1 print("Python instruction n.1")
2 print("Python instruction n.2")
3 print("Python instruction n.3")
4
5 ’’’
6 Output:
7 Python instruction n.1
8 Python instruction n.2
9 Python instruction n.3
10 ’’’

Listing 2.1 A simple script in Python.

2.4 Conditional Statements, Indentation, Loops, and Functions

Conditional Statements

In Python, the if statement indicates the conditional execution of single or multiple
instructions based on the value of an expression. To understand, consider the script
listing 2.2. At line 1, we define the variable my_var and assign it the value 2. At line
3, the if statement evaluates my_var and executes the instruction at line 4 only if
my_var is greater than 2. Given that this is not in this case, the interpreter jumps to
line 5 and evaluates whether my_var is equal to 2. Note that “=” assigns a value to
a variable, whereas “==” compares two quantities, returning ”True” if they are the
same and “False” if they differ. Given that my_var equals 2, the interpreter executes
the instructions from line 6 to 8. Finally, the instruction at line 10 is executed in all
remaining cases (i.e., when my_var is less than 2).

1 my_var = 2
2
3 if my_var > 2:
4 print(’my_var is greater than 2’)
5 elif my_var == 2:
6 print(’my_var is equal to 2’)
7 # more instructions could be added
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8 # using the same indentation
9 else:
10 print(’MyVar is less than 2’)
11
12 ’’’
13 Output:
14 my_var is equal to 2
15 ’’’

Listing 2.2 If, elif, else statements.

Indentation and Blocks

The term “indentation” refers to adding one or more white spaces before an in-
struction. In a Python script, contiguous instructions (e.g., lines 6 to 8 of the script
listing 2.2) that are indented to the same level are considered to be part of the same
block of code. A code block is considered by the interpreter as a single entity, which
allows us to structure Python scripts. For example, the blocks after the if, elif, and
else statements in script listing 2.2 are executed in accordance with the conditions
given on lines 3, 5, and 9, respectively.

To better understand how indentation works in Python, consider the code list-
ing 2.3. The instructions from line 1 to 3 and at line 12 are always executed each
time we run the script. The interpreter executes the instructions at lines 5, 9, 10, and
11 if and only if the variable a equals 1. Finally, the interpreter executes lines 7 and
8 if and only if a and b equal 1 and 3, respectively.

1 # this instruction is always executed
2 # this instruction is always executed
3 # this instruction is always executed
4 if a == 1:
5 # this instruction is executed if a = 1
6 if b == 3:
7 # this instruction is executed if a = 1 and b = 3
8 # this instruction is executed if a = 1 and b = 3
9 # this instruction is executed if a = 1
10 # this instruction is executed if a = 1
11 # this instruction is executed if a = 1
12 # this instruction is always executed

Listing 2.3 Executing a series of instructions.

Note that indentation is a fundamental concept in Python, allowing us to define
simple operations like conditional statements, loops, and functions, but also more
complex structures like modules and packages.
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For Loops

The for loop in Python iterates over a sequence (i.e., lists, tuples, and strings) or
other iterable objects. As an example, the code listing 2.4 iterates over the list named
rocks. At line 1 we define a list (i.e., rocks), at line 3 we implement the iteration, and
at line 4 we print to the screen the result of each iteration, namely, each element of
the sequence.

Often, we perform iterations using range(). The command range() is a Python
function that returns a sequence of integers.
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1 rocks = [’sedimentary’, ’igneous intrusive’, ’igneous effusive’,
’methamorphic’]

2
3 for rock in rocks:
4 print(rock)
5
6 ’’’
7 Output:
8 sedimentary
9 igneous intrusive
10 igneous effusive
11 methamorphic
12 ’’’

Listing 2.4 Iterate over a list.

1 print(’a sequence from 0 to 2’)
2 for i in range(3):
3 print(i)
4
5 print(’----------------------’)
6 print(’a sequence from 2 to 4’)
7 for i in range(2, 5):
8 print(i)
9
10 print(’----------------------’)
11 print(’a sequence from 2 to 8 with a step of 2’)
12 for i in range(2, 9, 2):
13 print(i)
14
15 ’’’
16 Output:
17 a sequence from 0 to 2
18 0
19 1
20 2
21 ----------------------
22 a sequence from 2 to 4
23 2
24 3
25 4
26 ----------------------
27 a sequence from 2 to 8 with a step of 2
28 2
29 4
30 6
31 8
32 ’’’

Listing 2.5 Iterating over a sequence of numbers generated using range().
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The range syntax is range(start, stop, step) where the arguments start, stop, and
step are the initial, final, and step values of the sequence, respectively. Note that the
upper limit (i.e., stop) is not included in the seque nce. If we pass only one argument
to the range function [e.g., range(6)], it is interpreted as the stop parameter, with the
sequence starting from 0. The code listing 2.5 shows some examples of iterations
over sequences of numbers generated using the range() function.

While Loops

Thewhile loop begins by checking a test condition and starts only if the test-condition
is True. After each iteration over the loop instructions, the test condition is checked
again and the loop continues until the test-condition is False. To better understand,
consider the code listing 2.6. At line 1, we define the object my_var and assign it
the value 0. At line 3, we evaluate the test condition my_var < 5. Given that my_var
equals 0, the test condition is True and the interpreter enters the loop. At line 4, it
prints my_var (i.e., 0), and at line 5, my_var is assigned the value 1. The loop then
returns to line 3, where the test condition is evaluated again, and continues as long
as the test condition remains True (i.e., as long as my_var < 5). Consequently, the
interpreter repeats the instructions at lines 4 and 5 (i.e., the block of code with the
same indentation after the test condition) until my_var is assigned the value 5.

1 my_var = 0
2
3 while my_var < 5:
4 print(my_var)
5 my_var = my_var + 1
6
7 ’’’
8 Output:
9 0
10 1
11 2
12 3
13 4
14 ’’’

Listing 2.6 Iteration over a series of numbers.

Functions

A function is a block of reusable code that is developed to complete a specific task.
Function blocks begin with the keyword def followed by the name of the function
and then parentheses (see code listing 2.7). Input parameters or arguments should
be placed within these parentheses. The code block of a function starts after a colon
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(:) and must be indented. By using the optional statement return, we can pass back
to the caller a single or multiple answers, such as some variables computed within
the function. The code listing 2.7 shows how to define and use a simple function. At
line 1, we define a function named sum that accepts the two arguments a and b. At
line 2, the function assigns the sum of a and b to the variable c. Finally, the function
ends at line 3, returning c to the caller. At line 5, we define the variable res by calling
the function sum with a = 2 and b = 3 as arguments. At line 6, we print a string
containing the value of res [note that the str() function converts numbers to strings].

1 def sum(a, b):
2 c = a + b
3 return c
4
5 res = sum(a=2, b=3)
6 print(’the result is ’ + str(res))
7
8 ’’’
9 Output:
10 the result is 5
11 ’’’

Listing 2.7 Defining a function.

2.5 Importing External Libraries

The Anaconda Python distribution includes almost all the packages required for the
most common operations inData Science, such as NumPy, SciPy, pandas, matplotlib,
seaborn, and scikit-learn, which are briefly described in Section 1.5. The import and
from statements allow us to import entire modules, packages, or single functions
into our scripts. The code listing 2.8 gives examples of using the import and from
statements. Note that, at line 1 of the code listing 2.8, the entire pandas package
is imported into an object named pd. At line 2, we import the matplotlib package
pyplot into the object plt. At line 3, the random() function is imported from the
NumPy package. Finally, at line 4, we import all the functions in the SymPy package
by using the wildcard character “*” (note that such coding is discouraged because it
does not specify which items are imported, possibly leading to problems down the
road).

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from numpy import random
4 from sympy import * # To note: import * should be avoided

Listing 2.8 Use of import and from statements.
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2.6 Basic Operations and Mathematical Functions

Basic mathematical operators such as sum or multiplication are always available in
Python and are listed in Table 2.3. Additional trigonometric and arithmetic func-
tions are available by importing the math and NumPy libraries, which also contain
relevant constants such as c (Archimedes’ constant) and 4 (Euler’s number). The
main difference between the math and NumPy libraries is that the former is designed
to work with scalars whereas the latter is designed to work with arrays. However,
NumPy works well with scalars, too. Given that NumPy is more flexible than math,
the examples in this book use exclusively the NumPy library. Tables 2.4 and 2.5 list
some relevant NumPy constants and functions, respectively. Also, code listing 2.9
provides some introductory examples that illustrate how to use NumPy constants
and mathematical functions.

Table 2.3 Basic mathematical operations in Python.

Operator Description Example Operator Description Example

+ Addition 3 + 2 = 5 − Subtraction 3 − 2 = 1
∗ Multiplication 3 ∗ 2 = 6 / Division 6 / 2 = 3
** Power 3 ** 2 = 9 % Modulus 2 % 2 = 0

Table 2.4 Relevant constants in NumPy.

NumPy Description Value NumPy Description Value

e Euler’s number (e) 2.718... pi Archimedes’ const. (c) 3.141...
euler_gamma Euler’s constant (W) 0.577... inf Positive infinity ∞

Table 2.5 Introducing exponents, logarithms, and trigonometric functions in NumPy.

NumPy Description NumPy Description NumPy Description

sin() Trigonom. sine cos() Trigonom. cosine tan() Trigonom. tangent
arcsin() Inverse sine arccos() Inverse cosine arctan() Inverse tangent
exp() Exponential log() Natural logarithm log10() Base 10 logarithm
log2() Base-2 logarithm sqrt() Square-root abs() Absolute value
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1 import numpy as np # import numpy
2
3 # relevant constants
4 GREEK_P = np.pi
5 EULER_NUMBER = np.e
6
7 # print greek_p and euler_number on the screen
8 print("The Archimedes’ constant is " + str(GREEK_P))
9 print("The Euler’s number is " + str(EULER_NUMBER))
10
11 # trigonometric functions
12 x = np.sin(GREEK_P / 2) # x = 1 expected
13
14 # print the result on the screen
15 print("the sine of a quarter of radiant is " + str(x))
16
17
18 # defining a 1D array in numpy
19 my_array = np.array([4, 8, 27])
20 # print myArray on the screen
21 print("myArray is equal to " + str(my_array))
22
23 log10_my_array = np.log10(my_array)
24
25 # print the result on the screen
26 print("The the base 10 logarithm of the elements in myArray is")
27 print(log10_my_array)
28
29 ’’’
30 Output:
31 The Archimedes’ constant is 3.141592653589793
32 The Euler’s number is 2.718281828459045
33 the sine of a quarter of radiant is 1.0
34 myArray is equal to [ 4 8 27]
35 The the base 10 logarithm of the elements in myArray is
36 [0.60205999 0.90308999 1.43136376]
37 ’’’

Listing 2.9 Our first exposure to NumPy.

We are now ready to begin learning how to use Python to solve geology problems.



Chapter 3
Solving Geology Problems Using Python: An
Introduction

3.1 My First Binary Diagram Using Python

To start learning Python we will analyze geological data by applying two basic
operations: importing data sets using the pandas library and representing them in
binary diagrams. As introduced in Section 1.5, pandas is a Python library (i.e., a tool)
designed to facilitate working with structured data. In practice, it provides a host of
ready-to-use functions to work with scientific data. For example, with a single line
of code, we can use pandas to import a data set stored in an Excel spreadsheet or in
a text file. To understand how this is done, consider the code listing 3.1.

1 import pandas as pd
2
3 #Example 1
4 my_dataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,
5 sheet_name=’Supp_traces’)

Listing 3.1 Importing data from an Excel file into Python.

At line 1, we import the pandas library into an object named pd, which we use to
store all of pandas’ functionalities.

At line 4, we define a pandas DataFrame (i.e., my_dataset1) into which we read
data from an Excel file named “Smith_glass_post_NYT_data.xlsx.” Also, since
the Excel file potentially contains several spreadsheets, we specify the spreadsheet
“Supp_traces.” The imported data set contains the chemical concentrations of trace
elements of volcanic tephra published by Smith et al. (2011) and will serve as a
proxy for a geological data set. In detail, it consists of major (Supp_majors) and
trace-element (Supp_traces) analyses of tephra samples belonging to the recent
activity (last 15 ky) of the Campi Flergrei Caldera (Italy).

The instruction pd.read_excel() accepts numerous arguments, which gives it
significant flexibility. The two most important are a valid string-path and the
sheet_name. In our case, the string-path is the name of the Excel file (i.e.,

25
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Cs Column

File name

Sheet names

Fig. 3.1 The Smith_glass_post_NYT_data.xlsx Excel file.

“Smith_glass_post_NYT_data.xlsx”). If we only provide the file name in string-
path, the Excel file must be in the same folder as the Python script, otherwise a
complete or relative path to the Excel file must be provided. Additional allowed
values for string-path are local file addresses (e.g., “/Users/mauriziopetrelli/Docu-
ments/file.xlsx”) or valid URL schemes, including http, ftp, and s3. The sheet_name
parameter can be a string, an integer, a list, or None. The default value is 0, mean-
ing that pd.read_excel() opens the first sheet of the Excel file. In detail, integers and
strings indicate sheet positions starting from 0 and sheet names, respectively. Finally,
lists of strings or integers are used to request multiple sheets.

Return now to line 4 of the code listing 3.1, where we defined a DataFrame. What
is a DataFrame? It is “a two-dimensional labeled data structure with columns of
potentially different types,”1 which means that we can envision a DataFrame as a
simple data table over which Python has full control.

To start plotting, we introduce an additional library named matplotlib, which is “a
comprehensive library for creating static, animated, and interactive visualizations in
Python. It is a Python 2D plotting library that produces publication-quality figures
in a variety of hardcopy formats and interactive environments across platforms.”2
With just a few lines of code, it generates plots, histograms, power spectra, bar
charts, scatter plots, etc. Matplotlib allows two different coding styles: pyplot and
object-oriented Application Programming Interfaces (APIs). In matplotlib.pyplot
(i.e., pyplot-style), each function changes the active figure. In practice, each command

1 https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html
2 https://matplotlib.org
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produces an effect on your diagram, allowing it to be easily minded, organized, and
managed in the imperative coding paradigm (i.e., the most basic and easiest coding
paradigm; cf. Section 1.2). As a drawback, matplotlib.pyplot is less flexible and less
powerful than the matplotlib object-oriented interface (i.e., the OO-style), which is
not more difficult to learn than pyplot. Consequently, I suggest starting to familiarize
yourself with the OO-style directly with easy examples, and then going in deeper
detail (see Appendix C).

As an example, the code listing 3.2 shows how to make a simple binary diagram
using the OO-style API. In detail, code listing 3.2 shows how to plot the elements Th
versus Zr in a scatter diagram. The workflow is simple: at lines 1 and 2, we import
the pandas library and matplotlib.pyplot module, respectively. As discussed above,
line 4 imports the Excel file “Smith_glass_post_NYT_data.xlsx” into a DataFrame
named my_dataset1. At lines 6 and 7, we define two data sequences by selecting
the columns Zr and Th, respectively, from my_dataset1. At line 9, we generate a
“figure” (i.e., the object fig) containing only one “axes” (ax). Note that, in matplotlib,
the figure object represents the whole diagram whereas the “axes” are what you
typically think of when using the word “plot” (see Appendix C). A given figure can
host a single axis (i.e., a simple diagram) or many axes (i.e., a figure containing two
or more sub-plots).

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 my_dataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 x = my_dataset1.Zr
7 y = my_dataset1.Th
8
9 fig, ax = plt.subplots() # Create a figure containing one axes
10 ax.scatter(x, y)

Listing 3.2 Our first attempt to make a binary diagram in Python.

Although the diagram reported in Fig. 3.2 is a good start for a novice, it is missing
significant mandatory information (e.g., axis label). To add features to the diagram,
we use ax.set_title(), ax.set_xlabel(), and ax.set_ylabel() to add a title and labels to
the G and H axes, respectively. Figure 3.3 shows the diagram of Fig. 3.2 with a new
title and axis labels.

To improve our skills in the use of Python to visualize scientific data, consider at
the code listing 3.4, which shows how to slice a data set. In detail, lines 2 and 3 divide
the original data set (i.e., my_dataset1) into two sub data sets (i.e., my_sub_dataset1
and my_sub_dataset2) characterized by Zr contents above and below 450 ppm,
respectively.
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Fig. 3.2 The result of our first attempt to make a binary diagram in Python.

1 fig, ax = plt.subplots()
2 ax.scatter(x, y)
3 ax.set_title("My First Diagram")
4 ax.set_xlabel("Zr [ppm]")
5 ax.set_ylabel("Th [ppm]")

Listing 3.3 Our second attempt to make a binary diagram in Python, which includes a title
and axis labels.

the sub data sets my_sub_dataset1 and my_sub_dataset2 are then plotted at lines
11 and 16, respectively. Note that all the plotting instances (i.e., lines 11 and 16)
that occur after the command plt.subplots() display the results in the same figure.
Figure 3.4 shows the result of code listing 3.4.

We now continue with an additional example of DataFrame slicing. In detail, the
code listing 3.5 shows how to filter the original data set by using the labels given in
the “Epoch” column. These labels divide the eruptions in four different periods (i.e.,
one, two, three, and three-b). After the slicing the sub data sets (lines 3, 6, 9, and
12), samples belonging to different Epochs are plotted using unique labels (lines 4,
7, 10, and 13, respectively).

Readers already familiar with Python may suggest a way to make this code more
concise and more elegant by using a loop (see code listing 3.6).
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Fig. 3.3 The result of our second attempt in making a binary diagram in Python; it now includes a
title and axis labels.

1 # Define two sub-dataset for Zr>450 and Zr<450 respectively
2 my_sub_dataset1 = my_dataset1[my_dataset1.Zr > 450]
3 my_sub_dataset2 = my_dataset1[my_dataset1.Zr < 450]
4
5 #generate a new picture
6 fig, ax = plt.subplots()
7 # Generate the scatter Zr Vs Th diagram for Zr > 450
8 # in blue also defining the legend caption as "Zr > 450 [ppm]"
9 x1 = my_sub_dataset1.Zr
10 y1 = my_sub_dataset1.Th
11 ax.scatter(x1, y1, color=’blue’, label="Zr > 450 [ppm]")
12 # Generate the scatter Zr Vs Th diagram for Zr < 450
13 # in red also defining the legend caption as "Zr < 450 [ppm]"
14 x2 = my_sub_dataset2.Zr
15 y2 = my_sub_dataset2.Th
16 ax.scatter(x2, y2, color=’red’, label="Zr < 450 [ppm]")
17
18 ax.set_title("My Second Diagram")
19 ax.set_xlabel("Zr [ppm]")
20 ax.set_ylabel("Th [ppm]")
21 # generate the legend
22 ax.legend()

Listing 3.4 Making a binary diagram with a sub-sampling (i.e., Zr > 450 and Zr < 450 ppb)
of the original data set.
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Fig. 3.4 The result of the code given in listing 3.4.

1 fig, ax = plt.subplots()
2
3 my_data1 = my_dataset1[(my_dataset1.Epoch == ’one’)]
4 ax.scatter(my_data1.Zr, my_data1.Th, label=’Epoch 1’)
5
6 my_data2 = my_dataset1[(my_dataset1.Epoch == ’two’)]
7 ax.scatter(my_data2.Zr, my_data2.Th, label=’Epoch 2’)
8
9 my_data3 = my_dataset1[(my_dataset1.Epoch == ’three’)]
10 ax.scatter(my_data3.Zr, my_data3.Th, label=’Epoch 3’)
11
12 my_data4 = my_dataset1[(my_dataset1.Epoch == ’three-b’)]
13 ax.scatter(my_data4.Zr, my_data4.Th, label=’Epoch 3b’)
14
15 ax.set_title("My Third Diagram")
16 ax.set_xlabel("Zr [ppm]")
17 ax.set_ylabel("Th [ppm]")
18 ax.legend()

Listing 3.5 Binary diagram with a sub-sampling (i.e., using the labels of the Epoch column)
of the original data set.
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Fig. 3.5 The result of the code given in listing 3.5.

1 epochs = [’one’,’two’,’three’,’three-b’]
2
3 fig, ax = plt.subplots()
4 for epoch in epochs:
5 my_data = my_dataset1[(my_dataset1.Epoch == epoch)]
6 ax.scatter(my_data.Zr, my_data.Th, label="Epoch " + epoch)
7
8 ax.set_title("My Third Diagram again")
9 ax.set_xlabel("Zr [ppm]")
10 ax.set_ylabel("Th [ppm]")
11 ax.legend()

Listing 3.6 Re-writing the code of listing 3.5 using a for loop.

As explained in Section 2.4, the for loop is used in Python to iterate over a
sequence. Although you should become proficient in the use of loops, conditional
statements, and functions (see Section 2.4), many everyday operations and tasks can
be completed without a deep knowledge of the syntax and “core semantics” of the
Python language. To see this, let’s solve our first geology problem.
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Fig. 3.6 The result of the code given in listing 3.6

3.2 Making Our First Models in Earth Science

Developing a simple Earth Sciences model can provide useful information regarding
Python syntax, workflow, and ideology. This section shows how to develop a simple
function (Section 2.4) describing the evolution of trace elements in a magmatic
system. In detail, Eq. (3.1) describes the evolution of the concentration (�) of a
trace element in the liquid phase of a magmatic system during crystallization at
thermodynamic equilibrium (Rollinson, 1993):

� =
�0

� (1 − �) + � . (3.1)

The quantities�0,�, and � are the initial concentration, the bulk partition coefficient
of the trace element between melt and crystal, and the relative amount of melt in the
system, respectively. The code listing 3.7 shows how to create a function to solve
Eq. (3.1) for the concentration �.

In code listing 3.7, we define at line 1 a function named ec() that accepts �, �,
and �0 as arguments. Note that the code at line 2 is indented (recall that “indented”
refers to the spaces that appear at the beginning of a line of code; see Section 2.4).
All subsequent lines in the function must have at a minimum the same indentation
as this first line of code in the function. Thus, in the present case, lines 2 and 3 are
both similarly indented and are thus part of the function ec().
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1 def ec(f, d, c0):
2 cl = c0/(d * (1-f) + f)
3 return cl
4
5 my_c = ec(f=0.5, d=0.1, c0=100)
6
7 print(’RESULT: ’+ str(int(my_c)) + ’ ppm’)
8
9 ’’’
10 Output:
11 RESULT: 181 ppm
12 ’’’

Listing 3.7 Defining a function in Python to model Eq. (3.1).

The computation is done at line 2 and the result is returned at line 3. At line 5,
we call the function ec(), which computes the concentration of a trace element in the
melt phase of a system characterized by �, �, and �0 equal to 0.5, 0.1 and 100 ppm,
respectively. Line 7 prints the result, which appears at line 11 (181 ppm). Line 7 of
code listing 3.7 requires further explanation. The statement print() prints the content
in the brackets to the screen, whereas the function str() converts a number to a string
and the function int() truncates a decimal number to an integer.

Code listing 3.8 presents a more in-depth investigation of Eq. (3.1) for � ranging
from 1.0 to 0.3. For readers not familiar with Eq. (3.1), Fig. 3.7 shows the behavior
of incompatible elements (� < 1, i.e., elements that do not easily enter crystals
growing in the system but prefer to remain in the melt phase) in a completely molten
system (i.e., � = 1) to a magmatic mush characterized by a relative amount of melt
on the order of � = 0.3.

Line 1 of code listing 3.8 is now straightforward: it imports the matplotlib.pyplot
functionalities into the object plt for use in our script. At line 2, we import the
NumPy library. As discussed in Section 1.5, NumPy is a package for scientific
computing and can handle #-dimensional arrays, linear algebra, Fourier transform,
random numbers, and other mathematical niceties. The meaning of lines 4–6 is also
straightforward: they define the ec() function, as done in code listing 3.7.

The use of NumPy starts at line 8 with the statement np.linspace(0.3, 1, 8), which
generates a 1D array made of eight elements starting at 0.3 and ending at 1.0. Line
7 of code listing 3.9 shows the result of printing my_f to the screen.

Moving back to code listing 3.8, we call at line 10 the ec() function with the
arguments my_f (i.e., a 1D array of eight elements), 0.1, and 100 ppm for �, �, and
�0, respectively. The result is stored in my_c and is a 1D array of eight elements,
one for each element of the array my_f. At line 13, we plot the results my_f versus
my_c by using ax.plot(). By default, it plots a binary diagram connecting successive
points by lines. Figure 3.7 shows the result of code listing 3.8.
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1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def ec(f, d, c0):
5 cl = c0/(d * (1-f) + f)
6 return cl
7
8 my_f = np.linspace(0.3, 1, 8)
9
10 my_c = ec(f=my_f, d=0.1, c0=100)
11
12 fig, ax = plt.subplots()
13 ax.plot(my_f, my_c, label="Eq cryst. D = 0.1")
14
15 ax.set_xlabel(’F’)
16 ax.set_ylabel(’C [ppm]’)
17 ax.legend()

Listing 3.8 Solving Eq. (3.1) with � ranging from 0.3 to 1 and plotting the results.
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Fig. 3.7 The result of the code given in code listing 3.8.
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1 my_f = np.linspace(0.3, 1, 8)
2
3 print(my_f)
4
5 ’’’
6 Output:
7 [0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
8 ’’’

Listing 3.9 The np.linspace() statement.

1 my_f = np.arange(0, 10, 1)
2
3 print(my_f)
4
5 ’’’
6 Output:
7 [0 1 2 3 4 5 6 7 8 9]
8 ’’’

Listing 3.10 The np.arange() statement.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def ec(f, d, c0):
5 cl = c0/(d * (1-f) + f)
6 return cl
7
8 my_f = np.linspace(0.3,1, 8)
9
10 my_c1 = ec(f=my_f, d =0.1, c0=100)
11 my_c2 = ec(f=my_f, d=1, c0=100)
12 my_c3 = ec(f=my_f, d=2, c0=100)
13
14 fig, ax = plt.subplots()
15 ax.plot(my_f, my_c1, label="Eq cryst. D = 0.1")
16 ax.plot(my_f, my_c2, label="Eq cryst. D = 1")
17 ax.plot(my_f, my_c3, label="Eq cryst. D = 2")
18
19 ax.set_xlabel(’F’)
20 ax.set_ylabel(’C [ppm]’)
21 ax.legend()

Listing 3.11 Exploring Eq. (3.1) for various values of �.
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Fig. 3.8 The result of the code given in code listings 3.11 and 3.12.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def ec(f, d, c0):
5 cl = c0/(d * (1-f) + f)
6 return cl
7
8 my_f = np.linspace(0.3,1, 8)
9
10 d = [0.1, 1, 2]
11
12 fig, ax = plt.subplots()
13
14 for my_d in d:
15 my_c = ec(f=my_f, d=my_d, c0=100)
16 ax.plot(my_f, my_c, label=’Eq cryst. D = ’ + str(my_d))
17
18
19 ax.set_xlabel(’F’)
20 ax.set_ylabel(’C [ppm]’)
21 ax.legend()

Listing 3.12 Using a loop to exploring Eq. (3.1) for different values of �.
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NumPyoffersmanyotherways to define a 1Darray. For example, thenp.arange(start,
stop, step) function provides a similar way to obtain a 1D array (see code listing 3.10).

To investigate Eq. (3.1) for different values of �, we could proceed as done in
code listing 3.11, where we define three models for different values of � (lines
10–12). We then plot the results in a single diagram (lines 15–17) generated at line
14.

Unfortunately, the code listing 3.11, although easy to understand for a novice, is
neither elegant nor efficient. The code listing 3.12 shows how to obtain the same
results by using a loop instead of defining each model separately.

3.3 Quick Intro to Spatial Data Representation

Visualizing spatial data is a fundamental task in geology and has applications in
many fields such as geomorphology, hydrology, volcanology, and geochemistry, to
cite just a few.

This section outlines a simple task to allow us to become familiar with spatial
data. Specifically, we shall import a data elevation model (DEM) stored in a .csv file
and display each point using a color proportional to the elevation value. A .csv file is a
text file containing data separated by a delimiter such as a comma, tab, or semicolon.
To begin, we evaluate the data set stored in the file DEM.csv (see Fig. 3.9), which
consists of four columns: a unique index, the elevation, the G coordinate, and the H
coordinate. The data set is from the Umbria region in Italy.

Column names
First row

Delimiter

Fig. 3.9 Contents of the DEM.csv comma-delimited file.

Consider now the code listing 3.13. Lines 1 and 2 import the pandas library and
the matplotlib.pyplot subpackage, which are collections of functions and methods
to manage and plot scientific data. The command pd.read_csv() at line 5 imports
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the .csv file “DEM.csv,” creating a new Dataframe (i.e., a table) named my_data.
my_data now contains four columns named POINTID, ELEVATION, X_LOC, and
Y_LOC. The POINTID column contains the unique identifiers, the ELEVATION
column contains the elevation, and the X_LOC and Y_LOC columns contain the
(G, H) coordinates. The command plt.subplots() at line 6 generates a figure containing
a single axis. Finally, the command ax.scatter() at line 7 creates a scatter plot filling
each point defined by X_LOC, Y_LOCwith a color proportional to ELEVATION (see
Fig. 3.10). The argument cmap=’hot’ fo ax.scatter() at line 7 of code listing 3.13 sets
the colorbar to “hot.” In this case, the lowest and the highest values of the colorbar,
correspond to black and white, respectively. Intermediate colors mirror the sequence
of optical emission from a blackbody becoming progressively hotter (Fig. 3.10).
Lines 13–15 provide instructions to plot the colorbar (line 13), set the colorbar label
(line 14), and set the color of the colorbar edges (line 15). Figure 3.11 shows the
result of code listing 3.13 cmap equal to “hot.”

Figure 3.12 shows the range of colormaps available in matplotlib.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from matplotlib import cm
4
5 my_data = pd.read_csv(’DEM.csv’)
6 fig, ax = plt.subplots()
7 ax.scatter(x = my_data.X_LOC.values,
8 y = my_data.Y_LOC.values,
9 c=my_data.ELEVATION.values,
10 s=2, cmap=’hot’, linewidth=0, marker=’o’)
11 ax.axis(’equal’)
12 ax.axis(’off’)
13 colorbar = fig.colorbar(cm.ScalarMappable(cmap=’hot’), extend=’

max’, ax=ax)
14 colorbar.set_label(’Elevation [m]’, rotation=270, labelpad=20)
15 colorbar.outline.set_edgecolor(’Grey’)

Listing 3.13 Importing a data elevation model (DEM) stored in a .csv file and displaying the data
as a scatter plot.
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Fig. 3.10 The result of the code given in code listing 3.13.
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Fig. 3.11 The same as Fig. 3.10, but with cmap=’plasma’.
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Fig. 3.12 Examples of colormaps available from matplotlib.
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Chapter 4
Graphical Visualization of a Geological Data Set

4.1 Statistical Description of a Data Set: Key Concepts

Ross (2017) states that “statistics is the art of learning from data. It is concerned with
the collection of data, their subsequent description, and their analysis, which often
leads to the drawing of conclusions.” This section provides some basic definitions for
a proficient description of a geological data set. Data visualization is of paramount
importance to understand data (Tufte, 2001), so visualizing data should always come
before any advanced statistical modeling (Healy, 2019; Tufte, 2001).

Population: The population is the set of all elements of interest. As an example,
suppose we collect the strikes and dips of planar features in a selected area (e.g.,
bedding planes, foliation planes, fold axial planes, fault planes, and joints). The
population of the strikes is the set of all strikes (e.g., for a specific feature). Typically,
the whole population cannot be measured, so we must analyze a restricted sample
of the population (Ross, 2017).

Sample: A subgroup of the population to be studied in detail is called a sample
(Ross, 2017). Examples are the set of measurements of strikes, spring discharge
rates, or the acquisition of CO2 flow rates for selected locations in volcanic areas.
In geology, a piece of rock to be analyzed is also called a sample because it derives
from the sampling of a specific rock formation (i.e., the population).

Discrete and continuous data: Discrete data can only take on specific values.
An example of discrete data is the number of springs in a specific area. Data are
continuous when they can take any value within a range. The results of whole rock
analyses and the measurements of flow discharge rates for springs are examples of
continuous data (Ross, 2017).

Frequency distribution of a sample: The frequency distribution of a sample is
a representation that presents the number of observations within a given interval. It
can take either tabular or graphical form (Ross, 2017).

43
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4.2 Visualizing Univariate Sample Distributions

Histograms

A histogram is a bar-graph containing parallel adjacent bars whose height represents
a quantity of interest. It provides a qualitative description of an univariate sample
distribution. The vertical axis of a histogram diagram can represent either absolute
class frequencies, relative class frequencies, or probability densities. The intervals
(i.e., bins) are contiguous and are often of equal size, although this is not required.

The visual inspection of a histogram diagram provides significant information,
including (1) the degree of symmetry of the distribution; (2) its spread; (3) the
presence of one ormore classes characterized by high frequencies; (4) the occurrence
of gaps; and (5) the presence of outliers.

The Python statement matplotlib.axes.Axes.hist() provides a flexible way to gen-
erate and draw histograms. For example, consider code listing 4.1: Lines 1 and 2
import the pandas library and the matplotlib.pyplot module, respectively. Line 4
defines a DataFrame (i.e., my_dataset) by importing the “Supp_traces” spreadsheet
from the “Smith_glass_post_NYT_data.xlsx” file. Line 7 generates a new Figure
containing a single Axes. Line 8 plots the histogram for column Zr in my_dataset.

The arguments bins define (1) the number of bins (an integer) and (2) the bin edges
(a sequence). In our specific case, bins = ’auto’ uses a matplotlib internal method to
estimate the optimal number of bins.1 The arguments color and edgecolor define the
color of the bar filling and of the bar edges, respectively. Finally, the argument alpha
defines the transparency. More details on how to customize an histogram diagram in
matplotlib can be found in the official documentation.2

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 my_dataset = pd.read_excel(
5 ’Smith_glass_post_NYT_data.xlsx’, sheet_name=’Supp_traces’)
6
7 fig, ax = plt.subplots()
8 ax.hist(my_dataset.Zr, bins=’auto’, edgecolor=’black’, color=’tab

:blue’, alpha=0.8)
9 ax.set_xlabel(’Zr [ppm]’)
10 ax.set_ylabel(’Counts’)

Listing 4.1 Plotting a histogram distribution using absolute frequencies in Python.

Code listing 4.2 performs the same operations as code listing 4.1 but adds the
instruction density = True at line 8. With density = True, the H axis reports a
probability density. In this case, the area under the entire histogram (i.e., the integral)

1 https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html
2 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.hist.html
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Fig. 4.1 Result of code listing 4.1.

will sum to unity. This is achieved by dividing the absolute frequencies by the bin
widths. The use of probability densities correspond to a first attempt to approximate
a probability distribution, which is described in Chapter 9.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 my_dataset = pd.read_excel(
5 ’Smith_glass_post_NYT_data.xlsx’, sheet_name=’Supp_traces’

)
6
7 fig, ax = plt.subplots()
8 ax.hist(my_dataset.Zr, bins=’auto’, edgecolor=’black’, color=’

tab:blue’, alpha=0.8, density=True)
9 ax.set_xlabel(’Zr [ppm]’)
10 ax.set_ylabel(’Counts’)

Listing 4.2 Plotting a histogram distribution as a probability density in Python.
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Fig. 4.2 Result of code listing 4.2.

Plot of a cumulative distribution

A cumulative distribution function (also known as a cumulative density function) of
a distribution, evaluated at the value G, gives the probability to get values less than or
equal to G. Code listing 4.3 shows how to plot a cumulative distribution using hist().
It consists of adding the argument cumulative = 1 or cumulative = True to the hist()
instruction. The parameter histtype=’step’ prevents the area below the cumulative
distribution from being filled. Finally, the parameters linewidth and color define the
line width and color, respectively.

1 fig, ax = plt.subplots()
2 ax.hist(my_dataset.Zr, bins=’auto’, density=True, histtype=’step’

, linewidth=2, cumulative=1, color=’tab:blue’)
3 ax.set_xlabel(’Zr [ppm]’)
4 ax.set_ylabel(’Likelihood of occurrence’)

Listing 4.3 Plotting a cumulative distribution in Python.
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Fig. 4.3 Result of code listing 4.3.

4.3 Preparing Publication-Ready Binary Diagrams

Subplots

Many options are available to create multiple subplots in matplotlib. One of the
easiest is to create an empty figure (i.e., fig=plt.figure()), then addmultipleAxes (i.e.,
subplots) by using the method fig.add_subplot(nrows, ncols, index). The parameters
(nrows), (ncols), and index give the numbers of rows and columns (ncols) and the
positional index, respectively. The index starts at 1 in the upper-left corner and
increases upon moving to the right.

To better understand, consider code listing 4.4: Line 1 imports the mat-
plotlib.pyplot module, and line 3 generates a new empty figure (i.e., fig). From
line 6, we start creating and plotting a grid of diagrams (i.e., three columns and two
rows) using fig.add_subplot() (i.e., lines 5, 9, 13, 17, 21, and 25). In the middle of
each diagram, we use the command text() to insert text that gives nrows, ncols, and
index. Finally, the command tight_layout() automatically adjusts subplot parameters
so that the subplot(s) fits into the figure area. You should avoid using tight_layout()
because some diagram elements may overlap.
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1 import matplotlib.pyplot as plt
2
3 fig = plt.figure()
4 # index 1
5 ax1 = fig.add_subplot(2, 3, 1)
6 ax1.text(0.5, 0.5, str((2, 3, 1)), fontsize=18, ha=’center’)
7
8 # index 2
9 ax1 = fig.add_subplot(2, 3, 2)
10 ax1.text(0.5, 0.5, str((2, 3, 2)), fontsize=18, ha=’center’)
11
12 # index 3
13 ax1 = fig.add_subplot(2, 3, 3)
14 ax1.text(0.5, 0.5, str((2, 3, 3)), fontsize=18, ha=’center’)
15
16 # index 4
17 ax1 = fig.add_subplot(2, 3, 4)
18 ax1.text(0.5, 0.5, str((2, 3, 4)), fontsize=18, ha=’center’)
19
20 # index 5
21 ax1 = fig.add_subplot(2, 3, 5)
22 ax1.text(0.5, 0.5, str((2, 3, 5)), fontsize=18, ha=’center’)
23
24 # index6
25 ax1 = fig.add_subplot(2, 3, 6)
26 ax1.text(0.5, 0.5, str((2, 3, 6)), fontsize=18, ha=’center’)
27
28 plt.tight_layout()

Listing 4.4 Subplots with matplotlib.

As already noted, code listing 4.4, although easy to understand for a Python
novice, is neither elegant nor efficient. The same results may be obtained by using a
for loop, as done in code listing 4.5.

1 import matplotlib.pyplot as plt
2
3 fig = plt.figure()
4
5 for i in range(1, 7):
6 ax = fig.add_subplot(2, 3, i)
7 plt.text(0.5, 0.5, str((2, 3, i)), fontsize=18, ha=’center’)
8
9 plt.tight_layout()

Listing 4.5 Subplots created by using matplotlib in a for loop
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Fig. 4.4 Result of code listing 4.4.

Markers

The option markers in scatter diagrams or other plots determines the shape of the
symbol used to identify samples in the diagram. Code listing 4.6 and Fig. 4.5 show
how to use the parameter marker, and Table 4.1 present an almost complete list of
the markers available in Python.

Table 4.1 Marker codes for matplotlib scatter and plot diagrams.

Marker Symbol Marker Symbol Marker Symbol

. o v
∧ < >

1 2 4
4 8 s
p h H
+ x D
d | _
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1 fig = plt.figure()
2
3 ax1 = fig.add_subplot(2, 2, 1)
4 ax1.scatter(my_dataset.Zr, my_dataset.Th, marker=’x’, label="

cross")
5 ax1.set_xlabel("Zr [ppm]")
6 ax1.set_ylabel("Th [ppm]")
7 ax1.set_xlim([100, 1000])
8 ax1.set_ylim([0, 100])
9 ax1.legend()
10
11 ax2 = fig.add_subplot(2, 2, 2)
12 ax2.scatter(my_dataset.Zr, my_dataset.Th, marker=’o’, label="

circle")
13 ax2.set_xlabel("Zr [ppm]")
14 ax2.set_ylabel("Th [ppm]")
15 ax2.set_xlim([100, 1000])
16 ax2.set_ylim([0, 100])
17 ax2.legend()
18
19 ax3 = fig.add_subplot(2, 2, 3)
20 ax3.scatter(my_dataset.Zr, my_dataset.Th, marker=’^’, label="

triangle")
21 ax3.set_xlabel("Zr [ppm]")
22 ax3.set_ylabel("Th [ppm]")
23 ax3.set_xlim([100, 1000])
24 ax3.set_ylim([0, 100])
25 ax3.legend()
26
27 ax4 = fig.add_subplot(2, 2, 4)
28 ax4.scatter(my_dataset.Zr, my_dataset.Th, marker=’d’, label="

diamond")
29 ax4.set_xlabel("Zr [ppm]")
30 ax4.set_ylabel("Th [ppm]")
31 ax4.set_xlim([100, 1000])
32 ax4.set_ylim([0, 100])
33 ax4.legend()
34
35 fig.tight_layout()

Listing 4.6 Setting markers in scatter diagrams.

Marker dimensions

In scatter diagrams, the marker size can be dictated by the option s. Code listing 4.7
and Fig. 4.6 show how to set marker size.
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Fig. 4.5 Result of code listing 4.6. The codes to change markers are reported in Table 4.1.
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Fig. 4.6 Result of code listing 4.7.
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1 fig = plt.figure()
2
3 ax1 = fig.add_subplot(2, 2, 1)
4 plt.scatter(my_dataset.Zr, my_dataset.Th, marker=’o’, s=10,

label="size 10")
5 ax1.set_xlabel("Zr [ppm]")
6 ax1.set_ylabel("Th [ppm]")
7 ax1.set_xlim([100, 1000])
8 ax1.set_ylim([0, 100])
9 ax1.legend()
10
11 ax2 = fig.add_subplot(2, 2, 2)
12 ax2.scatter(my_dataset.Zr, my_dataset.Th, marker=’o’, s=50,

label="size 50")
13 ax2.set_xlabel("Zr [ppm]")
14 ax2.set_ylabel("Th [ppm]")
15 ax2.set_xlim([100, 1000])
16 ax2.set_ylim([0, 100])
17 ax2.legend()
18
19 ax3 = fig.add_subplot(2, 2, 3)
20 ax3.scatter(my_dataset.Zr, my_dataset.Th, marker=’o’, s=100,

label="size 100")
21 ax3.set_xlabel("Zr [ppm]")
22 ax3.set_ylabel("Th [ppm]")
23 ax3.set_xlim([100, 1000])
24 ax3.set_ylim([0, 100])
25 ax3.legend()
26
27 ax4 = fig.add_subplot(2, 2, 4)
28 ax4.scatter(my_dataset.Zr, my_dataset.Th, marker=’o’, s=200,

label="size 200")
29 ax4.set_xlabel("Zr [ppm]")
30 ax4.set_ylabel("Th [ppm]")
31 ax4.set_xlim([100, 1000])
32 ax4.set_ylim([0, 100])
33 ax4.legend()
34
35 fig.tight_layout()

Listing 4.7 Plotting a histogram distribution as a probability density in Python.

Marker colors

The color of both the marker edge and body of markers may be defined in scatter
diagrams by using the options edgecolor and c, respectively (see code listing 4.8
and Fig. 4.9). The options c and edgecolor can be a sequence of colors (e.g., one for
each symbol of the diagram) or a single value. In the latter case, the same color is
used for all symbols in the diagram. Color values can be specified in different ways.
Examples include hexadecimal RGB values (e.g., “#8B0000”), letters or names (see
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Fig. 4.7, taken from the official documentation of matplotlib3), and gray scale levels
(i.e., a value from 0 to 1, where 0 is black and 1 is white).

black k dimgray dimgrey
gray grey darkgray darkgrey
silver lightgray lightgrey gainsboro
whitesmoke w white snow
rosybrown lightcoral indianred brown
firebrick maroon darkred r
red mistyrose salmon tomato
darksalmon coral orangered lightsalmon
sienna seashell chocolate saddlebrown
sandybrown peachpuff peru linen
bisque darkorange burlywood antiquewhite
tan navajowhite blanchedalmond papayawhip
moccasin orange wheat oldlace
floralwhite darkgoldenrod goldenrod cornsilk
gold lemonchiffon khaki palegoldenrod
darkkhaki ivory beige lightyellow
lightgoldenrodyellow olive y yellow
olivedrab yellowgreen darkolivegreen greenyellow
chartreuse lawngreen honeydew darkseagreen
palegreen lightgreen forestgreen limegreen
darkgreen g green lime
seagreen mediumseagreen springgreen mintcream
mediumspringgreen mediumaquamarine aquamarine turquoise
lightseagreen mediumturquoise azure lightcyan
paleturquoise darkslategray darkslategrey teal
darkcyan c aqua cyan
darkturquoise cadetblue powderblue lightblue
deepskyblue skyblue lightskyblue steelblue
aliceblue dodgerblue lightslategray lightslategrey
slategray slategrey lightsteelblue cornflowerblue
royalblue ghostwhite lavender midnightblue
navy darkblue mediumblue b
blue slateblue darkslateblue mediumslateblue
mediumpurple rebeccapurple blueviolet indigo
darkorchid darkviolet mediumorchid thistle
plum violet purple darkmagenta
m fuchsia magenta orchid
mediumvioletred deeppink hotpink lavenderblush
palevioletred crimson pink lightpink

Fig. 4.7 Named colors, taken from the official documentation of matplotlib.

The greatest flexibility with colors is attained by using the hexadecimal RGB
values, also known as HEX codes. A HEX code consists of the symbol “#” followed
by six digits, which is a sequence of three hexadecimal values ranging from 00 to
FF (i.e., from 0 to 255 in decimal notation). The first, second, and third hexadecimal
values represent the red, green, and blue components of the color, respectively. At
first sight, the HEX notation may appear hard to use; however, you only need to use
a “color picker” to select the color of your choice and get the appropriate HEX code.
Figure 4.8 shows the color picker provided by Google.

3 https://matplotlib.org/examples/color/named_colors.html
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Fig. 4.8 Example of a color picker. To get the hexadecimal RGB value, you simply copy the code
in the HEX box.
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Fig. 4.9 Result of code listing 4.8.
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1 fig = plt.figure()
2
3 ax1 = fig.add_subplot(2, 2, 1)
4 ax1.scatter(my_dataset.Zr, my_dataset.Th, marker=’o’, s=60, c=

’#8B0000’, edgecolor=’#000000’, label="example using hex
RGB colors")

5 ax1.set_xlabel("Zr [ppm]")
6 ax1.set_ylabel("Th [ppm]")
7 ax1.set_xlim([100, 1000])
8 ax1.set_ylim([0, 100])
9 ax1.legend()
10
11 ax2 = fig.add_subplot(2, 2, 2)
12 ax2.scatter(my_dataset.Zr, my_dataset.Th, marker=’o’, s=60, c

=’r’, edgecolor=’k’, label="example using color letters")
13 ax2.set_xlabel("Zr [ppm]")
14 ax2.set_ylabel("Th [ppm]")
15 ax2.set_xlim([100, 1000])
16 ax2.set_ylim([0, 100])
17 ax2.legend()
18
19 ax3 = fig.add_subplot(2, 2, 3)
20 ax3.scatter(my_dataset.Zr, my_dataset.Th, marker=’o’, s=60, c=

’blue’, edgecolor=’black’, label="example using color
names")

21 ax3.set_xlabel("Zr [ppm]")
22 ax3.set_ylabel("Th [ppm]")
23 ax3.set_xlim([100, 1000])
24 ax3.set_ylim([0, 100])
25 ax3.legend()
26
27 ax4 = fig.add_subplot(2, 2, 4)
28 ax4.scatter(my_dataset.Zr, my_dataset.Th, marker=’o’, s=60, c=

’0.4’, edgecolor=’0’, label="example using color gray
levels")

29 ax4.set_xlabel("Zr [ppm]")
30 ax4.set_ylabel("Th [ppm]")
31 ax4.set_xlim([100, 1000])
32 ax4.set_ylim([0, 100])
33 ax4.legend()
34
35 fig.tight_layout()

Listing 4.8 Plotting a histogram distribution as a probability density in Python.

Managing legends

The legend is a fundamental element of a diagram, often providing the key notation
needed decipher the information presented in a plot. We have already seen how
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to add a legend to a plot by using the ax.legend() command, which automatically
creates a legend entry for each labeled element in the diagram.

We now customize the legend by setting its position and adding a title. The loc
parameter sets the legend position in the diagram. Allowed entries for loc are ’best’,
’upper right’, ’upper left’, ’lower left’, ’lower right’, ’center left’, ’center right’, ’lower
center’, ’upper center’, and ’center’. The loc parameter can contain the coordinates
of the lower-left corner of the legend, as shown in code listing 4.9, with the result
displayed in Fig 4.10. If not specified, the loc parameter assumes the ’best’ option,
meaning that it searches for the minimum overlap with other graphical elements.

The title parameter adds a title to a legend with title_fontsize defining its font
dimension.

Also, frameon (True or False), ncol (an integer), and framealpha (from 0 to 1)
define a frame, its transparency, and the numbers of columns, respectively (see code
listing 4.10 and Fig. 4.11).

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 myDataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 x = myDataset1.Zr
7 y = myDataset1.Th
8
9
10 loc_parameters = [’upper right’ , ’upper left’, ’lower left’,

’lower right’,’center’ ,’center left’]
11
12 fig = plt.figure(figsize=(8,4))
13 for i in range(len(loc_parameters)):
14 ax = fig.add_subplot(2,3,i+1)
15 ax.scatter(x, y, marker = ’s’, color = ’#c7ddf4’,

edgecolor = ’#000000’, label="loc = " + loc_parameters[i])
16 ax.set_xlabel("Zr [ppm]")
17 ax.set_ylabel("Th [ppm]")
18 ax.legend(loc=loc_parameters[i])
19
20 fig.tight_layout()

Listing 4.9 Customizing legend position using the loc parameter.
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Fig. 4.10 Result of code listing 4.9.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 my_dataset = pd.read_excel(
5 ’Smith_glass_post_NYT_data.xlsx’, sheet_name=’Supp_traces’

)
6
7 my_dataset1 = my_dataset[my_dataset.Epoch == ’one’]
8 my_dataset2 = my_dataset[my_dataset.Epoch == ’two’]
9
10 fig = plt.figure()
11 ax1 = fig.add_subplot(2, 1, 1)
12 ax1.scatter(my_dataset1.Zr, my_dataset1.Th, marker=’s’, color=

’#c7ddf4’, edgecolor=’#000000’, label="First Epoch")
13 ax1.scatter(my_dataset2.Zr, my_dataset2.Th, marker=’o’, color

=’#ff464a’, edgecolor=’#000000’, label="Second Epoch")
14 ax1.set_xlabel("Zr [ppm]")
15 ax1.set_ylabel("Th [ppm]")
16 ax1.legend(loc=’upper left’, framealpha=1, frameon=True, title

="Age < 15 ky", title_fontsize=10)
17
18 ax2 = fig.add_subplot(2, 1, 2)
19 ax2.scatter(my_dataset1.Zr, my_dataset1.Th, marker=’s’, color=

’#c7ddf4’, edgecolor=’#000000’, label="First Epoch")
20 ax2.scatter(my_dataset2.Zr, my_dataset2.Th, marker=’o’, color

=’#ff464a’, edgecolor=’#000000’, label="Second Epoch")
21 ax2.set_xlabel("Zr [ppm]")
22 ax2.set_ylabel("Th [ppm]")
23 ax2.legend(frameon=False, loc=’lower right’, ncol=2, title="

Age < 15 ky", title_fontsize=10)
24
25 fig.tight_layout()

Listing 4.10 Customizing legend parameters.
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Fig. 4.11 Result of code listing 4.10.

Rounding decimals, text formatting, symbols, and special characters

Reporting data in diagrams (e.g., in the legend or as an annotation), often requires
rounding a number or formatting a string. In such cases, the .format() method is
a flexible and useful tool: it allows positional injection of variables (i.e., numbers
or strings) within strings and value formatting. To insert a variable into a string, it
uses a placeholder (i.e., {}). In addition, it allows you to format dates, times, and
numbers and to round decimals. To better understand, consider code listing 4.11,
which presents practical examples of the use of .format(). At lines 5 and 7, .format()
is used to insert the two variables name and surname at specific positions in the text.
Also, lines 12–15 shows how to insert a value (i.e., Archimedes’ constant) and round
it to a specific number of digits.

Also, code listing 4.12 provides additional examples on the use of plus and minus
in .format() (lines 5 and 6), reporting numbers as a percent (line 12), and scientific
notation (lines 18 and 19).
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1 # Introductory examples
2 name = ’Maurizio’
3 surname = ’Petrelli’
4 print(’-------------------------------------------------’)
5 print(’My name is {}’.format(name))
6 print(’-------------------------------------------------’)
7 print(’My name is {} and my surname is {}’.format(name,

surname))
8 print(’-------------------------------------------------’)
9 # Decimal Number formatting
10 PI = 3.14159265358979323846
11 print(’----------------------------------------------------’)
12 print("The 2 digit Archimedes’ constant is equal to {:.2f}".

format(PI))
13 print("The 3 digit Archimedes’ constant is equal to {:.3f}".

format(PI))
14 print("The 4 digit Archimedes’ constant is equal to {:.4f}".

format(PI))
15 print("The 5 digit Archimedes’ constant is equal to {:.5f}".

format(PI))
16 print(’----------------------------------------------------’)
17
18 ’’’Results
19 -------------------------------------------------
20 My name is Maurizio
21 -------------------------------------------------
22 My name is Maurizio and my surname is Petrelli
23 -------------------------------------------------
24 ----------------------------------------------------
25 The 2 digit Archimedes’ constant is equal to 3.14
26 The 3 digit Archimedes’ constant is equal to 3.142
27 The 4 digit Archimedes’ constant is equal to 3.1416
28 The 5 digit Archimedes’ constant is equal to 3.14159
29 ----------------------------------------------------
30 ’’’

Listing 4.11 Familiarize yourself with .format().

In addition, the escape character “\” is used to insert illegal characters in a string
(e.g, " or ’ when they define the string) or do a specific action (e.g., go to a new line).
Table 4.2 and code listing 4.13 provide some useful examples.

Table 4.2 Using the escape character \ to insert special characters in a string or to do specific
actions.

Command Result Command Result Command Result

\n New Line \’ Single Quote \" Double Quote
\textbackslash \ \ooo Octal value \xhh Hex value
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1 # Explicit positive and negative reporting
2 a = +5.34352
3 b = -6.3421245
4 print(’-------------------------------------------------’)
5 print("The plus symbol is not reported: {:.2f} | {:.2f}".

format(+5.34352, -6.3421245))
6 print("The plus symbol is reported: {:+.2f} | {:+.2f}".format(

a, b))
7 print(’-------------------------------------------------’)
8
9 # Reporting as percent
10 c = 0.1558
11 print(’-------------------------------------------------’)
12 print("Reporting as percent: {:.1%}".format(c))
13 print(’-------------------------------------------------’)
14
15 # Scientific notation
16 d = 6580000000000
17 print(’-------------------------------------------------’)
18 print("Scientific notation using e: {:.1e}".format(d))
19 print("Scientific notation using E: {:.1E}".format(d))
20 print(’-------------------------------------------------’)
21
22 ’’’Results
23 -------------------------------------------------
24 The plus symbol is not reported: 5.34 | -6.34
25 The plus symbol is reported: +5.34 | -6.34
26 -------------------------------------------------
27 -------------------------------------------------
28 Reporting as percent: 15.6%
29 -------------------------------------------------
30 -------------------------------------------------
31 Scientific notation using e: 6.6e+12
32 Scientific notation using E: 6.6E+12
33 -------------------------------------------------
34 ’’’

Listing 4.12 More examples of reporting numbers using .format().

Our next challenge is to insert symbols and equations into diagrams. In my
opinion, the simplest and most direct way to apply text formatting (e.g., superscripts
and subscripts), insert symbols (e.g., ` or [), or introduce special characters (e.g.,
±) in matplotlib is to use TEX markup. In brief, TEX provides the foundations for
LATEX, a high-quality typesetting system. In practice, LATEX is the de facto standard
for the communication and publication of scientific documents.4

4 https://www.latex-project.org
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1 # Go to new line using \n
2 print(’-------------------------------------------------------

’)
3 print("My name is\nMaurizio Petrelli")
4
5 # Inserting characters using octal values
6 print(’-------------------------------------------------------

’)
7 print("\100 \136 \137 \077 \176")
8
9 # Inserting characters using hex values
10 print(’-------------------------------------------------------

’)
11 print("\x23 \x24 \x25 \x26 \x2A")
12 print(’-------------------------------------------------------

’)
13
14 ’’’Output:
15 -------------------------------------------------------
16 My name is
17 Maurizio Petrelli
18 -------------------------------------------------------
19 @ ^ _ ? ~
20 -------------------------------------------------------
21 # $ % & *
22 -------------------------------------------------------
23 ’’’

Listing 4.13 Examples of how to use the escape character \.

Although teaching TEX and LATEX is far beyond the scope of the present book, the
reader is invited to refer to specialized books on the subject (Kopka & Daly, 2003;
Lamport, 1994; Mittelbach et al., 2004). That said, knowing a few specific rules and
notations will greatly improve the quality of our diagrams.

Note that any text element in matplotlib can use advanced formatting, mathemati-
cal elements, and symbols. To use TEX in matplotlib, we precede the quotes defining
a string with r (i.e., r’this is my string’), and enclose math between dollar signs (i.e.,
$a+b=c$) . Code listing 4.14 shows an example of how to use the TEX notation to
improve the quality of our diagrams (Fig. 4.12).

Table 4.3 provides some common TEX instructions, such as how to apply super-
scripts and subscripts, insert Greek letters such as `, [, and c and special characters
such as ± and∞, or mathematical expressions such as

∫ 1
0
.
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Table 4.3 Introducing TEX notation in matplotlib. Example: r’$xˆ {2}$’→ G2.

TEX Result TEX Result TEX Result

xˆ{2} G2 x_{2} G2 \ pm ±
\ alpha U \ beta V \ gamma W

\ rho d \ sigma f \ delta X

\ pi c \ eta [ \ mu `

\ int
∫

\ sum
∑

\ prod
∏

\ leftarrow ← \ rightarrow → \ uparrow ↑
\ Leftarrow ⇐ \ Rightarrow ⇒ \ Uparrow ⇑
\ infty ∞ \ nabla ∇ \ partial m

\ neq ≠ \ simeq ' \ approx ≈

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import numpy as np
4
5
6 def my_line(x, m, q):
7 y = m * x + q
8 return y
9
10
11 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_majors’, engine=’openpyxl’)
12
13 my_dataset1 = my_dataset[my_dataset.Epoch == ’one’]
14 my_dataset2 = my_dataset[my_dataset.Epoch == ’two’]
15
16 x = np.linspace(52.5, 62, 100)
17 y = my_line(x, m=0.3, q=-10.3)
18
19 fig, ax = plt.subplots()
20
21 ax.scatter(my_dataset1.SIO2, my_dataset1.K2O, marker=’s’,

color=’#c7ddf4’, edgecolor=’#000000’, label=r’$1^{st}$
Epoch’)

22 ax.scatter(my_dataset2.SIO2, my_dataset2.K2O, marker=’s’,
color=’#ff464a’, edgecolor=’#000000’, label=r’$2^{nd}$
Epoch’)

23 ax.plot(x, y, color=’#342a77’)
24
25 ax.annotate(r’What is the 1$\sigma$ for this point?’, xy

=(47.6, 6.6), xytext=(47, 8.8), arrowprops=dict(arrowstyle
="->", connectionstyle="arc3"))

26 ax.text(52.4, 5.6, r’$ Na_2O = 0.3 \cdot SiO_2 -10.3$’, dict(
size=10, rotation=33))

27
28 ax.text(53.5, 5.1, r’$ \mu_{SiO_2} = \frac {a_{1}+a_{2}+\cdots

+a_{n}}{n}$ = ’ + ’{:.1f} [wt.%]’.format(57.721), dict(
size=11.5))

29
30 ax.set_xlabel(r’SiO$_2$ [wt%]’)
31 ax.set_ylabel(r’K$_2$O [wt%]’)
32
33 ax.legend()

Listing 4.14 Using TEX notation in matplotlib.
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Fig. 4.12 Result of code listing 4.14.

Adrawback of this scheme is that adding r to strings precludes the use of .format()
and \ as escape character. To overcome this problem, you can split the string into
sub-strings and then concatenate the sub-strings by using the + symbol, as done in
line 28 of code listing 4.14.

Binary diagrams: plot() versus scatter()

In the previous sections, we introduced two different methods to visualize geolog-
ical data in binary diagrams: the plot() and scatter() functions implemented in the
matplotlib sub-package named pyplot. The two methods share many functionalities
and can often be used interchangeably. As an example, consider code listing 4.15,
which shows how to plot a binary diagram with square markers.

Of course, plot() and scatter() differ in some ways; for example, plot() only
connects with a line the points defined by a sequence of (G, H) coordinates (see
Fig 4.14). Table 4.4 shows the main parameters available to personalize a plt.plot()
diagram. However, the plot() function is less flexible than scatter() for marker sizing
and coloring. For each plot() declaration, all symbols must be of the same size and
color. Conversely, scatter() allows you to use different colors and sizes for each
marker. For example, Fig 4.14 shows symbols whose size is proportional to the �
parameter and whose color is defined by the color sequence.
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Occasionally, you may need to combine plot() and scatter(). For example, if you
want to plot and connect a sequence of samples with different colors and dimensions,
you could use scatter() for symbols and plot() for the connecting line. The zorder
parameter is an integer number defining the stratigraphy of different layers in the
diagram. In code listing 4.16 (lines 33 and 34), zorder places symbols above the line.

Table 4.4 Parameters for personalizing a plot() diagram.

Parameter Value Description

alpha [0,1] Set transparency
color, c Color value (e.g., Figs. 4.7 and 4.8 ) Set color of the line
fillstyle {’full’, ’left’, ’right’, ’bottom’, ’top’, ’none’} Set marker fill style
linestyle, ls {’-’, ’–’, ’-.’, ’:’, ”, (offset, on-off-seq), ...} Set style of the line
linewidth, lw Floating point number Set line width in points
marker Marker style (e.g., Tab. 4.1) Set marker style
markeredgecolor, mec Color value Set marker edge color
markeredgewidth, mew Floating point number Set marker edge width
markerfacecolor, mfc Color value Set marker face color
markersize, ms Floating point number Set marker size in points

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 my_dataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 x = my_dataset1.Zr
7 y = my_dataset1.Th
8
9 fig = plt.figure()
10 ax1 = fig.add_subplot(1, 2, 1)
11 ax1.scatter(x, y, marker=’s’, color=’#ff464a’, edgecolor=’#000000

’)
12 ax1.set_title("using scatter()")
13 ax1.set_xlabel("Zr [ppm]")
14 ax1.set_ylabel("Th [ppm]")
15 ax2 = fig.add_subplot(1, 2, 2)
16 ax2.plot(x, y, marker=’s’, linestyle=’’, color=’#ff464a’,

markeredgecolor=’#000000’)
17 ax2.set_title("using plot()")
18 ax2.set_xlabel("Zr [ppm]")
19 ax2.set_ylabel("Th [ppm]")
20 fig.tight_layout()

Listing 4.15 Often, plot() and scatter() can be used to solve the same tasks.
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Fig. 4.13 Result of code listing 4.15.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4
5 def ec(f, d, c0):
6 cl = c0 / (d * (1-f) + f)
7 return cl
8
9
10 my_f = np.linspace(0.1, 1, 10)
11
12 my_c1 = ec(f=my_f, d=0.1, c0=100)
13
14 colors = [’#ff9494’, ’#cbeaa2’, ’#d1a396’, ’#828fc3’, ’#95b2e5

’, ’#e9b8f4’, ’#f4b8e5’, ’#b8f4f2’, ’#c5f4b8’, ’#f9ca78’]
15
16 fig = plt.figure()
17 ax1 = fig.add_subplot(2, 2, 1)
18 ax1.plot(my_f, my_c1, marker=’o’, linestyle=’-’, markersize=5)
19 ax1.set_xlabel(’F’)
20 ax1.set_ylabel(’C [ppm]’)
21
22 ax2 = fig.add_subplot(2, 2, 2)
23 ax2.scatter(my_f, my_c1, marker=’o’, s=my_f*150)
24 ax2.set_xlabel(’F’)
25 ax2.set_ylabel(’C [ppm]’)
26
27 ax3 = fig.add_subplot(2, 2, 3)
28 ax3.scatter(my_f, my_c1, marker=’o’, c=colors, s=my_f*150)
29 ax3.set_xlabel(’F’)
30 ax3.set_ylabel(’C [ppm]’)
31
32 ax4 = fig.add_subplot(2, 2, 4)
33 ax4.plot(my_f, my_c1, marker=’’, linestyle=’-’, zorder=0)
34 ax4.scatter(my_f, my_c1, marker=’o’, c=colors, s=my_f*150,

zorder=1)
35 ax4.set_xlabel(’F’)
36 ax4.set_ylabel(’C [ppm]’)
37
38 fig.tight_layout()

Listing 4.16 Main differences between plot() and scatter().
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Fig. 4.14 Result of code listing 4.16.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 my_dataset = pd.read_excel(
5 ’Smith_glass_post_NYT_data.xlsx’, sheet_name=’Supp_traces’

)
6
7 epochs = [’one’, ’two’, ’three’, ’three-b’]
8 colors = [’#c8b4ba’, ’#f3ddb3’, ’#c1cd97’, ’#e18d96’]
9 markers = [’o’, ’s’, ’d’, ’v’]
10
11 fig, ax = plt.subplots()
12 for (epoch, color, marker) in zip(epochs, colors, markers):
13 my_data = my_dataset[(my_dataset.Epoch == epoch)]
14 ax.scatter(my_data.Zr, my_data.Th, marker=marker, s=50, c=

color, edgecolor=’0’, label="Epoch " + epoch)
15
16 ax.set_xlabel("Zr [ppm]")
17 ax.set_ylabel("Th [ppm]")
18 ax.legend(title="Phlegraean Fields \n Age < 15 ky")

Listing 4.17 Creating a publication-ready diagram in Python.
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Example of publication-ready diagram

As a final task, we prepare a publication-ready diagram (see code listing 4.17). Lines
1 and 2 import the pandas library and thematplotlib.pyplotmodule, respectively. Line
4 imports the Excel file in a DataFrame named my_dataset. Lines 7–9 define three
sequences named epochs, colors, and markers, respectively. At line 11, we generate a
new empty figure, and then line 12 implements a loop that iterates over the sequences
of epochs, colors, and markers using the zip() function. This enables us to iterate over
two or more lists at the same time. Next, line 13 defines a new DataFrame named
my_data by filtering my_dataset using the labels the Epoch column. At line 14, we
add a Zr versus Th scatter diagram of the resulting my_data to the figure generated
at line 11. Finally, we add axis labels (lines 16 and 17) and a legend with a title (line
18). Note that \n simply defines a new line in the legend title.
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Fig. 4.15 Result of code listing 4.17.

1 import pandas as pd
2 import seaborn as sns
3
4 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 my_dataset1 = my_dataset[[’Ba’, ’Zr’, ’Th’]]
7 sns.pairplot(my_dataset1)

Listing 4.18 A first attempt at visualizing multivariate data using sns.pairplot().
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4.4 Visualization of Multivariate Data: a First Attempt

The function seaborn.pairplot() plots pairwise relationships from a data set. By
default, this function creates a grid of diagrams where each variable in the data
set is shared in the H axis across a single row and in the G axis across a single
column. In diagonal diagrams, the pairplot() function draws a plot showing the
univariate distribution for the variable in that column.5 Code listing 4.18 shows how
to generate a pairplot() diagram usingBa, Zr, and Th. Lines 1 and 2 import the pandas
and seaborn libraries, respectively, and line 4 imports an Excel file in a DataFrame
namedmy_dataset. Line 6 generates a newDataFrame (i.e.,my_dadaset1) by filtering
my_dataset for the columns Ba, Zr, and Th. More details about the filtering and
slicing of a DataFrame are reported in Appendix D. Finally, line 7 generates a
pairpolt diagram, which is displayed in Fig. 4.16 by using code listing 4.18.
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Fig. 4.16 Result of code listing 4.18.

5 https://seaborn.pydata.org/generated/seaborn.pairplot.html



Chapter 5
Descriptive Statistics 1: Univariate Analysis

5.1 Basics of Descriptive Statistics

Descriptive statistics deals with metrics, tools, and strategies that can be used to sum-
marize a data set. These metrics are extracted from the data and provide information
about (1) the location of a data set, sometime defined as the central tendency; (2) the
amount of data variation (i.e., the dispersion), and (3) the degree of symmetry (i.e.,
the skewness). Metrics of the location of a data set are the arithmetic, geometric,
and harmonic means. The median and the mode of mono-modal distributions are
also measures of the location of a data set. The total spread of a data set is a rough
estimate of dispersion. More accurate estimates of the dispersion of a data set are
the variance, standard deviation, and inter-quartile range. The skewness of a data set
can be measured by quantities such as Pearson’s first coefficient of skewness or the
Fischer-Pearson coefficient of skewness.

5.2 Location

In descriptive statistics, it is useful to represent an entire data set with a single
value describing its location or position. This single value is defined as the central
tendency. Mean, median, and mode all fall into this category.

Mean

The arithmetic mean `A is the average of all numbers in a data set and is defined as

`A = Ī =
1
=

=∑
8=1

I8 =
I1 + I2 + · · · + I=

=
. (5.1)

69
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The geometric mean `� is a type of mean that indicates the location of a data set by
using the product of their values:

`� = (I1I2 · · · I=)
1
= . (5.2)

Finally, the harmonic mean `� is

`� =
=

1
I1
+ 1
I2
+ · · · + 1

I=

. (5.3)

In the following, when not explicitly specified, the symbol ` is to be understood as
the arithmetic mean. Code listing 5.1 and Fig. 5.1 show one way to get the different
means for a specific feature (in our case, the concentration of a chemical element
like zirconium, Zr) in the imported data set.
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Fig. 5.1 Result of code listing 5.1.
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1 import pandas as pd
2 from scipy.stats.mstats import gmean, hmean
3 import matplotlib.pyplot as plt
4
5 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
6
7 a_mean = my_dataset.Zr.mean()
8 g_mean = gmean(my_dataset[’Zr’])
9 h_mean = hmean(my_dataset[’Zr’])
10
11 print (’-------’)
12 print (’arithmetic mean’)
13 print ("{0:.1f} [ppm]".format(a_mean))
14 print (’-------’)
15
16 print (’geometric mean’)
17 print ("{0:.1f} [ppm]".format(g_mean))
18 print (’-------’)
19
20 print (’harmonic mean’)
21 print ("{0:.1f} [ppm]".format(h_mean))
22 print (’-------’)
23
24 fig, ax = plt.subplots()
25 ax.hist(my_dataset.Zr, bins=’auto’, density=True, edgecolor=’k

’, label=’Measurements Hist’, alpha=0.8)
26 ax.axvline(a_mean, color=’purple’, label=’Arithmetic mean’,

linewidth=2)
27 ax.axvline(g_mean, color=’orange’, label=’Geometric mean’,

linewidth=2)
28 ax.axvline(h_mean, color=’green’, label=’Harmonic mean’,

linewidth=2)
29 ax.set_xlabel(’Zr [ppm]’)
30 ax.set_ylabel(’Probability density’)
31 ax.legend()
32
33 ’’’
34 Output:
35 -------
36 arithmetic mean
37 365.4 [ppm]
38 -------
39 geometric mean
40 348.6 [ppm]
41 -------
42 harmonic mean
43 333.8 [ppm]
44 -------
45 ’’’

Listing 5.1 Measuring and plotting the average values of a data set.
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Median

The median"4 is the number in the middle of a data set after sorting from the lowest
to the highest value (see code listing 5.2 and Fig. 5.2). Consequently, to obtain the
median of a data set, the data must be ordered from smallest to largest. If the number
of data values is odd, then the sample median is the middle value in the ordered list;
if it is even, then the sample median is the average of the two middle values (Ross,
2010).

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 median = my_dataset.Zr.median()
7
8 print (’-------’)
9 print (’median’)
10 print("{0:.1f} [ppm]".format(median))
11 print (’-------’)
12
13 fig, ax = plt.subplots()
14 ax.hist(my_dataset.Zr, bins=20, density=True, edgecolor=’k’,

label="Measurements Hist", alpha=0.8)
15 ax.axvline(median, color=’orange’, label=’Median’, linewidth=2)
16 ax.set_xlabel(’Zr [ppm]’)
17 ax.set_ylabel(’Probability density’)
18 ax.legend()
19
20 ’’’
21 Output:
22 -------
23 median
24 339.4 [ppm]
25 -------
26 ’’’

Listing 5.2 Measuring and plotting the median of a data set.

Mode

The mode "> of a data set is the value that appears most frequently in the data set
(Ross, 2010). In Python, the mode may be obtained as shown in code listing 5.3.
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Fig. 5.2 Result of code listing 5.2.

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
6
7 hist, bin_edges = np.histogram(my_dataset[’Zr’], bins= 20,

density=True)
8 modal_value = (bin_edges[hist.argmax()] + bin_edges[hist.

argmax()+1])/2
9
10 print (’modal value: {0:.0f} [ppm]’.format(modal_value))
11
12 fig, ax = plt.subplots()
13 ax.hist(my_dataset.Zr, bins=20, density=True, edgecolor=’k’,

label="Measurements Hist", alpha=0.8)
14 ax.axvline(modal_value , color="orange", label="Modal value",

linewidth=2)
15 ax.set_xlabel(’Zr [ppm]’)
16 ax.set_ylabel(’Probability density’)
17 ax.legend()
18
19 ’’’
20 Output: modal value: 277 [ppm]
21 ’’’

Listing 5.3 Measuring and plotting the mode of a data set.
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Fig. 5.3 Result of code listing 5.3.

5.3 Dispersion or Scale

After introducing several estimators of the central tendency of a data set, we now
consider measures of its variability. The range, variance, and standard deviation are
all estimators of the dispersion (i.e., variability) of a data set.

Range

A first gross estimator of the variability of a data set is its range ', which is the
difference between the highest and lowest values in a data set:

' = Imax − Imin. (5.4)
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1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 my_range = my_dataset[’Zr’].max()- my_dataset[’Zr’].min()
7
8 print (’-------’)
9 print (’Range’)
10 print("{0:.0f}".format(my_range))
11 print (’-------’)
12
13 fig, ax = plt.subplots()
14 ax.hist(my_dataset.Zr, bins=20, density=True, edgecolor=’k’,

label=’Measurements Hist’)
15 ax.axvline(my_dataset[’Zr’].max(), color=’purple’, label=’Max

value’, linewidth=2)
16 ax.axvline(my_dataset[’Zr’].min(), color=’green’, label=’Min

value’, linewidth=2)
17 ax.axvspan(my_dataset[’Zr’].min(), my_dataset[’Zr’].max(),

alpha=0.1, color=’orange’, label=’Range = ’ + "{0:.0f}".
format(my_range) + ’ ppm’)

18 ax.set_xlabel(’Zr [ppm]’)
19 ax.set_ylabel(’Probability density’)
20 ax.legend()

Listing 5.4 Measuring and plotting the range of a data set.

Variance and standard deviation

The variances for population (f2
p ) and sample (f2

s ) distributions are defined as

f2
p =

∑=
8=1 (I8 − `)2

=
, (5.5)

f2
s =

∑=
8=1 (I8 − `)2

= − 1
. (5.6)

The standard deviation f is the square root of the variance:

fp =
√
f2
p =

√∑=
8=1 (I8 − `)2

=
, (5.7)

fs =

√
f2
s =

√∑=
8=1 (I8 − `)2

.
= − 1. (5.8)
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Fig. 5.4 Result of code listing 5.4.

200 300 400 500 600 700 800 900
Zr [ppm]

0.000

0.001

0.002

0.003

0.004

Pr
ob

ab
ilit

y 
de

ns
ity

mean - 1
mean + 1
Measurements Hist
mean ± 1

Fig. 5.5 Result of code listing 5.5.
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The variance f2
s and the standard deviation fs of a sample distribution can be

estimated in pandas as shown in code listing 5.5.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 variance = my_dataset[’Zr’].var()
7 stddev = my_dataset[’Zr’].std()
8
9 print (’-------’)
10 print (’Variance’)
11 print("{0:.0f} [square ppm]".format(variance))
12 print (’-------’)
13 print (’Standard Deviation’)
14 print("{0:.0f} [ppm]".format(stddev))
15 print (’-------’)
16
17 fig, ax = plt.subplots()
18 ax.hist(my_dataset.Zr, bins= 20, density = True, edgecolor=’k’

, label=’Measurements Hist’)
19 ax.axvline(my_dataset[’Zr’].mean()-stddev, color=’purple’,

label=r’mean - 1$\sigma$’, linewidth=2)
20 ax.axvline(my_dataset[’Zr’].mean()+stddev, color=’green’,

label=r’mean + 1$\sigma$’, linewidth=2)
21 ax.axvspan(my_dataset[’Zr’].mean()-stddev, my_dataset[’Zr’].

mean()+stddev, alpha=0.1, color=’orange’, label=r’mean $\
pm$ 1$\sigma$’)

22 ax.set_xlabel(’Zr [ppm]’)
23 ax.set_ylabel(’Probability density’)
24 ax.legend()
25
26 ’’’
27 Output:
28 -------
29 Variance
30 14021 [square ppm]
31 -------
32 Standard Deviation
33 118 [ppm]
34 -------
35 ’’’

Listing 5.5 Measuring and plotting the variance and standard deviation of a data set.

In pandas, to estimate the variance and the standard deviation for an entire pop-
ulation, you need to change the Delta Degrees of Freedom (ddof). By default, the
pandas commands .var() and .std() use ddof = 1, normalizing the measurements by
= − 1. Setting .var(ddof = 0) and .std(ddof = 0) makes pandas calculate f2

p and fp,
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respectively. Variances and standard deviations can also serve as estimates of NumPy
arrays by using the same .var() and .std() commands. Unlike pandas, numpy.var()
and numpy.std() use ddof = 0 by default and so calculate by default the population
variance f2

p and standard deviation fp, respectively.

Inter-quartile range

In descriptive statistics, the inter-quartile range is the difference between the 75th
and 25th percentiles, or between the upper and lower quartiles (see code listing 5.6
and Fig. 5.6). For the meaning of the parameter interpolation, please refer to the
official documentation.1

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
6
7 q1 = np.percentile(my_dataset.Zr, 25, interpolation = ’midpoint’)
8 q3 = np.percentile(my_dataset.Zr, 75, interpolation = ’midpoint’)
9
10 iqr = q3 - q1 # Interquaritle range (IQR)
11
12 print (’-------’)
13 print (’Interquaritle range (IQR): {0:.0f} [ppm]’.format(iqr))
14 print (’-------’)
15
16 fig, ax = plt.subplots()
17 ax.hist(my_dataset.Zr, bins=’auto’, density=True, edgecolor=’k’,

label=’Measurements Hist’)
18 ax.axvline(q1, color=’purple’, label=’Q1’, linewidth=2)
19 ax.axvline(q3, color=’green’, label=’Q3’, linewidth=2)
20 ax.axvspan(q1, q3, alpha=0.1, color=’orange’, label=’

Interquaritle range (IQR)’)
21 ax.set_xlabel(’Zr [ppm]’)
22 ax.set_ylabel(’Probability density’)
23 ax.legend()
24
25 ’’’
26 Output:
27 -------
28 Interquaritle range (IQR): 164 [ppm]
29 -------
30 ’’’

Listing 5.6 Measuring and plotting the inter-quartile range of a data set.

1 https://numpy.org/doc/stable/reference/generated/numpy.percentile.html
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Fig. 5.6 Result of code listing 5.6.

5.4 Skewness

Having introduced various parameters providing information about the central ten-
dency and the variability of a data set, we can now start analyzing the skewness,
which reflects the shape of a distribution.

The skewness is a statistical parameter that provides information about the sym-
metry in a distribution of values. In the case of a symmetric distribution, the mean,
median, and mode are the same: "> = "4 = `A. Note, however, that the coinci-
dence of these three values, although being a necessary condition for a symmetric
distributions, does not guarantee the symmetry of a distribution. Conversely, the
non-coincidence of these three parameters indicates a skewed distribution. In partic-
ular, when "> < "4 < `A and `A < "4 < ">, the distribution is characterized
by tails on the right and left side, respectively.

In the specific case of the concentration distribution of Zr, where"> < "4 < `A,
a tail appears on the right side, as expected.
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1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
6
7 a_mean = my_dataset.Zr.mean()
8
9 median = my_dataset.Zr.median()
10
11 hist, bin_edges = np.histogram(my_dataset[’Zr’], bins=20,

density=True)
12 modal_value = (bin_edges[hist.argmax()] + bin_edges[hist.

argmax()+1])/2
13
14 fig, ax = plt.subplots()
15 ax.hist(my_dataset.Zr, bins=20, density=True, edgecolor=’k’,

label="Measurements Hist")
16 ax.axvline(modal_value , color=’orange’, label=’Modal Value’,

linewidth=2)
17 ax.axvline(median, color=’purple’, label=’Median Value’,

linewidth=2)
18 ax.axvline(a_mean, color=’green’, label=’Arithmetic mean’,

linewidth=2)
19 ax.set_xlabel(’Zr [ppm]’)
20 ax.set_ylabel(’Probability density’)
21 ax.legend()

Listing 5.7 A qualitative test of the skewness of a data set.

Another parameter providing information about the skewness of a sample distri-
bution is Pearson’s first coefficient of skewness, which is given by

U1 =
(` − ">)

fs
. (5.9)

A second parameter is the Pearson’s second moment of skewness,

U2 =
3 (` − "4)

fs
. (5.10)

An additional parameter providing information about the sample skewness is the
Fisher-Pearson coefficient of skewness,

61 =
<3

<
3/2
2

, (5.11)

where

<8 =
1
#

#∑
==1
(G [=] − `)8 . (5.12)
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In Python, the parameters U1, U2, and 61 can be determined as shown in code
listing 5.8.

1 import numpy as np
2 from scipy.stats import skew
3
4 a_mean = my_dataset.Zr.mean()
5 median = my_dataset.Zr.median()
6 hist, bin_edges = np.histogram(my_dataset[’Zr’], bins=20,

density=True)
7 modal_value = (bin_edges[hist.argmax()] + bin_edges[hist.

argmax()+1])/2
8 standard_deviation = my_dataset[’Zr’].std()
9
10 a1 = (a_mean - modal_value) / standard_deviation
11 a2 = 3 * (a_mean - median) / standard_deviation
12 g1 = skew(my_dataset[’Zr’])
13
14 print (’-------’)
15 print ("Pearson’s first coefficient of skewness: {:.2f}".

format(a1))
16 print ("Pearson’s 2nd moment of skewness: {:.2f}".format(a2))
17 print ("Fisher-Pearson’s coefficient of skewness: {:.2f}".

format(g1))
18 print (’-------’)
19
20 ’’’
21 Output:
22 -------
23 Pearson’s first coefficient of skewness: 0.74
24 Pearson’s 2nd moment of skewness: 0.66
25 Fisher-Pearson’s coefficient of skewness: 1.26
26 -------
27 ’’’

Listing 5.8 Measuring the skewness of a data set.

5.5 Descriptive Statistics in Pandas

As reported in the official pandas documentation, the command describe() “generates
descriptive statistics that summarize the central tendency, dispersion and shape of a
data set’s distribution, excluding NaN (i.e., Not a Number) values.”



82 5 Descriptive Statistics 1: Univariate Analysis

200 300 400 500 600 700 800 900
Zr [ppm]

0.000

0.001

0.002

0.003

0.004
Pr

ob
ab

ilit
y 

de
ns

ity
Modal Value
Median Value
Arithmetic mean
Measurements Hist

Fig. 5.7 Result of code listing 5.7.

1 import pandas as pd
2
3 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
4
5 statistics = my_dataset[[’Ba’,’Sr’,’Zr’,’La’]].describe()
6
7 print(statistics)
8
9 ’’’
10 Output:
11 Ba Sr Zr La
12 count 370.000000 369.000000 370.000000 370.000000
13 mean 789.733259 516.422115 365.377397 74.861088
14 std 523.974960 241.922439 118.409962 18.256772
15 min 0.000000 9.541958 185.416567 45.323289
16 25% 297.402777 319.667551 274.660242 61.745228
17 50% 768.562055 490.111131 339.412064 71.642167
18 75% 1278.422645 728.726116 438.847368 83.670805
19 max 2028.221963 1056.132069 920.174406 169.550008
20 ’’’

Listing 5.9 Computing descriptive statistics in pandas.
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5.6 Box Plots

A box plot (or boxplot) uses the inter-quartile distance to describe groups of nu-
merical data. Also, lines extending from the boxes (i.e., “whiskers”) indicate the
variability outside the upper and lower quartiles. The outliers are sometime plotted
as individual symbols. In detail, the bottom and top of a box always represent the first
and third quartiles, respectively. A line is always drawn inside the box to represents
the second quartile (i.e., the median).With matplotlib, the default whisker length
is 1.5 multiplied by the inter-quartile distance. Any data not included between the
whiskers is considered an outlier. Using the matplotlib library, a box plot can be de-
fined as shown in code listing 5.10 and Fig. 5.8. Note that dict() defines a dictionary
(see Chapter 2). Also, code listing 5.11 and Fig. 5.9 highlight how to make box plots
using the seaborn library.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 fig, ax = plt.subplots()
7 my_flierprops = dict(markerfacecolor=’#f8e9a1’,

markeredgecolor=’#24305e’, marker=’o’)
8 my_medianprops = dict(color=’#f76c6c’, linewidth = 2)
9 my_boxprops = dict(facecolor=’#a8d0e6’, edgecolor=’#24305e’)
10 ax.boxplot(my_dataset.Zr, patch_artist = True, notch=True,

flierprops=my_flierprops , medianprops=my_medianprops ,
boxprops=my_boxprops)

11 ax.set_ylabel(’Zr [ppm]’)
12 ax.set_xticks([1])
13 ax.set_xticklabels([’all Epochs’])
14 plt.show()

Listing 5.10 A qualitative check of the skewness of a data set.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4
5 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
6
7 fig, ax = plt.subplots()
8 ax = sns.boxplot(x="Epoch", y="Zr", data=my_dataset , palette=

"Set3")

Listing 5.11 A qualitative check of the skewness of a data set.
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Fig. 5.8 Result of code listing 5.10.
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Chapter 6
Descriptive Statistics 2: Bivariate Analysis

6.1 Covariance and Correlation

This chapter investigates how to capture relationships between two variables, which
is the field of bivariate statistics. To begin, consider Fig. 6.1, which is generated
by code listing 6.1. As you can see, the two diagrams differ in Fig. 6.1. From the
previous chapter, we know how to describe each variable (i.e., La, Ce, Sc, and U)
appearing in Fig. 6.1 using indexes of location (e.g., the arithmetic mean), dispersion
(e.g., the standard deviation), and shape (e.g., the skewness).

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 fig = plt.figure()
7 ax1 = fig.add_subplot(2,1,1)
8 ax1.scatter(my_dataset.La, my_dataset.Ce, marker=’o’, edgecolor=’

k’, color=’#c7ddf4’, label=’CFC recent Activity’)
9 ax1.set_xlabel(’La [ppm]’)
10 ax1.set_ylabel(’Ce [ppm]’)
11 ax1.legend()
12
13 ax2 = fig.add_subplot(2,1,2)
14 ax2.scatter(my_dataset.Sc, my_dataset.U, marker=’o’, edgecolor=’k

’, color=’#c7ddf4’, label=’CFC recent Activity’)
15 ax2.set_xlabel(’Sc [ppm]’)
16 ax2.set_ylabel(’U [ppm]’)
17 ax2.legend()

Listing 6.1 Linear relation between two variables.

85
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Fig. 6.1 Result of code listing 6.1.
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However, these indexes, although useful to describe a single variable, are unable
to capture relationships between variables. For example, the diagram La versus Ce
clearly shows an increase in Ce as La increases and vice-versa. Mathematicians
describe this by using the concepts of covariance and correlation. Conversely, it is
not possible to define any simple relation between Sc and U.

Definition: The covariance of two sets of univariate samples G and H derived
from two random variables - and . is a measure of their joint variability, or their
degree of correlation (Chatterjee & Hadi, 2013; Montgomery et al., 2012):

�>EGH =

∑=
8=1 (H8 − H̄) (G8 − Ḡ)

= − 1
. (6.1)

�>EGH > 0 indicates a positive relationship between . and - . In contrast, if
�>EGH < 0, the relationship is negative (Chatterjee & Hadi, 2013; Montgomery
et al., 2012). If - and . are statistically independent, then �>EGH = 0. Note that,
although statistically independent variables are always uncorrelated, the converse is
not necessarily true.

Note that the covariance depends on themagnitudes of the two variables inspected.
Consequently, it does not tell us much about the strength of such a relationship
(Chatterjee & Hadi, 2013; Montgomery et al., 2012). The normalized version of the
covariance (i.e., the correlation coefficient) allows us to overcome this limitation,
which shows, by its magnitude, the strength of the linear relation.

Equation (6.2) defines the correlation coefficient AGH for two joined univariate
sets of data, - and . , characterized by a covariance �>EGH and standard deviations
fBG and fBH , respectively (Chatterjee & Hadi, 2013; Montgomery et al., 2012):

AGH =
�>EGH

fBGfBH
=

∑=
8=1 (H8 − H̄) (G8 − Ḡ)√∑=

8=1 (H8 − H̄)2
∑=
8=1 (G8 − Ḡ)2

. (6.2)

By definition, AGH is scale invariant, which means it does not depend on the
magnitude of the values considered. Also, AGH satisfies the following inequality
(Chatterjee & Hadi, 2013; Montgomery et al., 2012):

−1 ≤ AGH ≤ 1. (6.3)

With a pandas DataFrame, the covariance and the correlation can be readily
computed by using the cov() and corr() functions. These functions calculate the
covariance and the correlation matrices for a DataFrame, respectively. A covariance
matrix is a table showing the covariances�>EGH between variables in theDataFrame.
Each cell in the table shows the covariance between two variables. The correlation
matrix follows the same logic as the covariance table, but gives the correlation
coefficients. In the latter, the diagonal cells all contain unity, which corresponds to
the self-correlation coefficient.
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Code listing 6.2 and Fig. 6.2 report the computation and subsequent representation
of the covariance and the correlation matrices for the elements reported in Fig. 6.1
(i.e., Ce, La, U, and Sc).

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4
5 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
6
7 my_sub_dataset = my_dataset[[’Ce’,’La’,’U’,’Sc’]]
8
9 cov = my_sub_dataset.cov()
10 cor = my_sub_dataset.corr()
11
12 fig = plt.figure(figsize=(11,5))
13
14 ax1 = fig.add_subplot(1,2,1)
15 ax1.set_title(’Covariance Matrix’)
16 sns.heatmap(cov, annot=True, cmap=’cividis’, ax=ax1)
17
18 ax2 = fig.add_subplot(1,2,2)
19 ax2.set_title(’Correlation Matrix’)
20 sns.heatmap(cor, annot=True, vmin= -1, vmax=1, cmap=’coolwarm

’, ax=ax2)
21
22 fig.tight_layout()

Listing 6.2 Estimating the covariance and the correlation matrix.

Note that a value of AGH close to zero only means that - and . are not linearly
related, not excluding other relationships (Chatterjee & Hadi, 2013; Montgomery
et al., 2012).

To evaluate nonlinear relationships, other parameters should be used. For exam-
ple, the Spearman rank-order correlation coefficient is a non-parametric measure
of the monotonicity of the relationship between two data sets. As with Pearson’s
correlation coefficient, the Spearman rank-order correlation coefficient ranges from
−1 to +1, with 0 implying no correlation. Correlations of −1 or +1 imply an exact
monotonic relationship. A positive correlation implies that . increases as - in-
creases. Conversely, a negative correlations implies that . decreases as - increases.
In Python, the function scipy.stats.spearmanr() calculates the Spearman correlation
coefficient together with the associated confidence (i.e., the ?-value).
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Fig. 6.2 Result of code listing 6.2.

6.2 Simple Linear Regression

Considering a response variable . and a predictor - , we can define a linear model
by using (Chatterjee & Hadi, 2013; Montgomery et al., 2012)

. = V0 + V1- + n, (6.4)

where V0 and V1 are coefficients respectively called the intercept (i.e., the predicted
value of . at - = 0) and slope (i.e., the change in . per unit change in -). The
quantity n is the residual error (Chatterjee & Hadi, 2013; Montgomery et al., 2012).
Using the least-squares method (i.e., minimizing the sum of squares of the vertical
distances from each point to Eq. (6.4), V1 and V0 are estimated by using Eqs. (6.5)
and (6.6), respectively:

V1 =

∑=
8=1 (H8 − H̄) (G8 − Ḡ)∑=

8=1 (G8 − Ḡ)2
=
�>EGH

f2
BG

= AGH
fBH

fBG
, (6.5)

V0 = H̄ − V1Ḡ. (6.6)

The square of the correlation coefficient, A2
GH , with 0 ≤ A2

GH ≤ 1, is typically used to
make a preliminary estimate of the quality of the given regression model.

A more exhaustive evaluation of the model requires a detailed analysis of the
errors, (i.e., an error analysis), which is discussed in Chapter 10.

Python contains numerous implementations of the least-squares method for first-
order linear regression. Examples are the the linregress() function (code listing 6.3
and Fig. 6.3) in the statistical module of Scipy and the linear regression module in
statsmodels.1

1 https://www.statsmodels.org
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1 import pandas as pd
2 import scipy.stats as st
3 import numpy as np
4 import matplotlib.pyplot as plt
5
6 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
7
8 fig = plt.figure()
9 ax1= fig.add_subplot(2,1,1)
10 ax1.scatter(my_dataset.La, my_dataset.Ce, marker=’o’,

edgecolor=’k’, color=’#c7ddf4’, label=’CFC recent Activity
’)

11 b1, b0, rho_value , p_value, std_err = st.linregress(my_dataset
.La, my_dataset.Ce)

12 x = np.linspace(my_dataset.La.min(),my_dataset.La.max())
13 y = b0 + b1*x
14 ax1.plot(x, y, linewidth=1, color=’#ff464a’, linestyle=’--’,

label=r"fit param.: $\beta_0$ = " + str(round(b0,1)) + r"
- $\beta_1$ = " + str(round(b1,1)) + r" - $r_{xy}^{2}$ =
" + str(round(rho_value**2,2)))

15 ax1.set_xlabel(’La [ppm]’)
16 ax1.set_ylabel(’Ce [ppm]’)
17 ax1.legend(loc= ’upper left’)
18
19 ax2 = fig.add_subplot(2,1,2)
20 ax2.scatter(my_dataset.Sc, my_dataset.U, marker=’o’, edgecolor

=’k’, color=’#c7ddf4’, label=’CFC recent Activity’)
21 b1, b0, rho_value , p_value, std_err = st.linregress(my_dataset

.Sc, my_dataset.U)
22 x = np.linspace(my_dataset.Sc.min(),my_dataset.Sc.max())
23 y = b0 + b1*x
24 ax2.plot(x, y, linewidth=1, color=’#ff464a’, linestyle=’--’,

label= "fit param.: $\beta_0$ = " + str(round(b0,1)) + r"
- $\beta_1$ = " + str(round(b1,1)) + r" - $r_{xy}^{2}$ = "
+ str(round(rho_value**2,2)))

25 ax2.set_xlabel(’Sc [ppm]’)
26 ax2.set_ylabel(’U [ppm]’)
27 ax2.legend(loc= ’upper left’)

Listing 6.3 Least-squares linear regression applied to the data of Fig. 6.1.

6.3 Polynomial Regression

The linear model defined in Eq. (6.4) is easily generalized to a polynomial of degree
=:

. = V0 + V1- + V2-
2 + V3-

3 + · · · + V=-= + n . (6.7)



6.3 Polynomial Regression 91

40 60 80 100 120 140 160
La [ppm]

100

150

200

250

300

Ce
 [p

pm
]

fit param.: 0 = 11.7 - 1 = 1.6 - r2
xy = 0.93

CFC recent Activity

0.1 0.0 0.1 0.2 0.3 0.4 0.5
Sc [ppm]

5

10

15

20

25

U 
[p

pm
]

fit param.: 0 = 12.0 - 1 = -8.8 - r2
xy = 0.06

CFC recent Activity

Fig. 6.3 Result of code listing 6.3.
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If = > 1, the function . (-) is nonlinear but the regression model remains linear
because the regression parameters V0, V1, V2, . . . , V= enter Eq. (6.7) as linear terms
(Chatterjee & Hadi, 2013; Montgomery et al., 2012).

For example, suppose you collected a geological quantity (e.g., the flow of spring
water) at selected time intervals and you wish to fit your data with second-, third-,
and fourth-order polynomial models. Code listing 6.4 shows how to do this in Python
by using the numpy.polyfit() function (see code listing 6.4 and Fig. 6.4).

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.arange(1,6)
5 y = np.array([0,1,2,9,9])
6
7 fig, ax = plt.subplots()
8 ax.scatter(x, y, marker = ’o’, s = 100, color = ’#c7ddf4’,

edgecolor = ’k’)
9
10 orders = np.array([2,3,4])
11 colors =[’#ff464a’,’#342a77’,’#4881e9’]
12 linestiles = [’-’,’--’,’-.’]
13
14 for order, color, linestile in zip(orders, colors, linestiles):
15 betas = np.polyfit(x, y, order)
16 func = np.poly1d(betas)
17 x1 = np.linspace(0.5,5.5, 1000)
18 y1 = func(x1)
19 ax.plot(x1, y1, color=color, linestyle=linestile , label="

Linear model of order " + str(order))
20
21 ax.legend()
22 ax.set_xlabel(’A quantity relevant in geology\n(e.g., time)’)
23 ax.set_ylabel(’A quantity relevant in geology\n(e.g., spring flow

rate)’)
24 fig.tight_layout()

Listing 6.4 Least-squares linear regression of order =.

6.4 Nonlinear Regression

In regression analysis, the linear and nonlinear terms do not describe the relationship
between . and - but instead refer to regression parameters that enter the equation
linearly or nonlinearly (Chatterjee & Hadi, 2013; Montgomery et al., 2012). For
example, Eqs. (6.4) and (6.7) are both linear. Also, the regression model for Eq. (6.8)
is linear because they are natively linear [Eq. (6.4)] or can be transformed into a
linear form (Chatterjee & Hadi, 2013):
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Fig. 6.4 Result of code listing 6.4.

. = V0 + V1 log(-) + n . (6.8)

For example, we can set -2 = -2, -3 = -3, . . . , -
= = -= in Eq. (6.7) and

-1 = log(-) in Eq. (6.8). The resulting equations are both linear:

. = V0 + V1- + V2-2 + V3-3 + ... + V=-= + n, (6.9)

. = V0 + V1-1 + n . (6.10)

In general, all regression parameters enter the equation linearly in linear models,
possibly after transforming the data (Chatterjee & Hadi, 2013). In contrast, in non-
linear models, the relationship between . and some of the predictors is nonlinear,
or some of the parameters appear nonlinearly, but no transformation is possible to
make the parameters appear linearly (Chatterjee & Hadi, 2013). Table 6.1 provides a
checklist, modified from Motulsky and Christopoulos (2004), to determine whether
linear regression is appropriate for your data set.

An example of nonlinear regression in petrology is given by the application of
the crystal-lattice-strain model (Blundy & Wood, 1994) to interpret experimental
data. In detail, this model provides a conceptual framework for quantifying partition
coefficients �8 in magmatic systems (Blundy & Wood, 1994; Meltzer & Kessel,
2020), where �8 is given by

�8 = �0 exp

{
−4c�#�

[
A0
2 (A8 − A0)2 + 1

3 (A8 − A0)3
]

')

}
, (6.11)
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Table 6.1 Is linear regression appropriate for your geological data set? Modified from Motulsky
and Christopoulos (2004).

Question Discussion

Are - and . related by a straight
line?

For many geological applications, the relationship between
- and . is nonlinear, making linear regression inappro-
priate. You should either transform the data or perform
nonlinear curve fitting.

Is the scattering of data around the
line normally distributed?

Linear regression analysis assumes that the scatter is Gaus-
sian.

Is variability the same every-
where?

Linear regression assumes that the scattering around the
best-fit line has the same standard deviation all along the
curve. The assumption is violated if the points with high or
low - values tend to be farther from the best-fit line (i.e.,
homoscedasticity).

Are the - values known with pre-
cision?

The least-squares linear regression model assumes that -
values are exactly correct, which means that - is very small
compared with the variability in . , and that experimental
error or geological variability only affects the . values.

Are the data points independent? Whether a point is above or below the line is a matter of
chance and does not influence whether another point is
above or below the line.

Are the - and . values inter-
twined?

If - is used to calculate . (or vice-versa), then linear re-
gression calculations are invalid.

where ) is the temperature, A8 is the radius the trace element 8 belonging to an
isovalent set of elements, A0 is the radius of the ideal element that minimally strains
the crystal lattice (i.e., characterized by the largest �8), �0 is the partition coefficient
of the ideal element characterized by radius A0, � is the apparent Young’s modulus
of the site, and #� and ' are Avogadro’s number and the universal gas constant,
respectively (Blundy & Wood, 1994; Meltzer & Kessel, 2020). The exponential
equation (6.11) describes a parabola if you graph log10 (�8) versus A8 .

Typically, A0,�0, and � are estimated by fitting by non-linear regression Eq. (6.11)
to the experimentally determined �8 .

In Python, the function scipy.optimize.curve_fit() applies the nonlinear least-
squares method to fit a function to data and can be used to extract A0, �0, and �
from experimental results for �8 . In detail, curve_fit() is based on three algorithms:
the trust region reflective algorithm (Branch et al., 1999), the dogleg algorithm with
rectangular trust regions (Voglis & Lagaris, 2004), and the Levenberg-Marquardt
algorithm (Moré, 1978). A detailed description of the algorithms governing the
nonlinear regression is beyond the scope of this book but is available in more
specialized books [see, e.g., Seber andWild (1989)]. As an example, code listing 6.5
replicates the results reported in Fig. 2 of Meltzer and Kessel (2020).

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.optimize import curve_fit
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4
5 def func(r, r0, D0, E):
6 R=8.314462618
7 scale = 1e-21 # r in Angstrom (r^3 -> 10^-30 m), E is GPa

(10^9 Pa)
8 T = 800 + 273.15
9 Na=6.02e23
10 return D0*np.exp((-4*np.pi*E*Na*((r0/2)*(r-r0)**2+(1/3)*(r-r0

)**3)*scale)/(R*T))
11
12 def add_elements(ax):
13 # to plot the name of the elements on the diagram
14 names = [’La’, ’Ce’, ’Nd’, ’Sm’, ’Eu’, ’Gd’, ’Dy’, ’Er’, ’Yb’

, ’Lu’, ’Y’, ’Sc’]
15 annotate_xs = np.array([1.172 + 0.01, 1.15 + 0.01, 1.123 +

0.01, 1.098 - 0.031, 1.087 - 0.028, 1.078 - 0.04, 1.052 +
0.005, 1.03 + 0.02, 1.008 + 0.01, 1.001 - 0.015, 1.04 -0.02,
0.885 - 0.03])

16 annotate_ys = np.array([0.468 + 0.1, 1.050 + 0.2, 10.305 + 3,
31.283 - 13, 45.634 -17, 74.633- 30, 229.279 + 80, 485.500,
583.828 +200, 460.404 -220, 172.844 -70, 141.630])

17
18 for name, annotate_x , annotate_y in zip(names, annotate_xs ,

annotate_ys):
19 ax.annotate(name, (annotate_x , annotate_y))
20
21 Di = np.array([0.468, 1.050, 10.305, 31.283, 45.634, 74.633,

229.279, 485.500, 583.828, 460.404, 172.844, 141.630])
22 I_r = np.array([1.172, 1.15, 1.123, 1.098, 1.087, 1.078, 1.052,

1.03, 1.008, 1.001, 1.04, 0.885])
23
24 fig = plt.figure(figsize=(9,5))
25
26 # Trust Region Reflective algorithm
27 ax1 = fig.add_subplot(1,2,1)
28 ax1.set_title("Trust Region Reflective algorithm")
29 ax1.scatter(I_r, Di, s=80, color=’#c7ddf4’, edgecolors=’k’, label

=’4 GPa - 1073 K, Kessel et al., 2005’)
30
31 popt1, pcov1 = curve_fit(func, I_r, Di, method=’trf’, bounds

=([0.8,0,0],[1.3,1000,1000]))
32
33 x1 = np.linspace(0.85,1.2,1000)
34 y1 = func(x1,popt1[0],popt1[1], popt1[2])
35 ax1.plot(x1,y1, color=’#ff464a’, linewidth=2, linestyle =’--’,

label=r’$r_0$ = ’ + str(round(popt1[0],3)) + r’, $D_0$ = ’ +
str(round(popt1[1],0)) + ’, E = ’ + str(round(popt1[2],0)))

36 add_elements(ax = ax1)
37 ax1.set_yscale(’log’)
38 ax1.set_xlabel(r’Ionic Radius ($\AA$)’)
39 ax1.set_ylabel(r’$D_i$’)
40 ax1.set_ylim(0.005,3000)
41 ax1.legend()
42
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43 # Levenberg -Marquardt algorithm
44 ax2 = fig.add_subplot(1,2,2)
45 ax2.set_title("Levenberg -Marquardt algorithm")
46 ax2.scatter(I_r, Di, s=80, color=’#c7ddf4’, edgecolors=’k’, label

=’4 GPa - 1073 K, Kessel et al., 2005’)
47
48 popt2, pcov2 = curve_fit(func, I_r, Di, method=’lm’, p0

=(1.1,100,100))
49
50 x2 = np.linspace(0.85,1.2,1000)
51 y2 = func(x2,popt2[0],popt2[1], popt2[2])
52 ax2.plot(x2,y2, color=’#4881e9’, linewidth=2, linestyle =’--’,

label=r’$r_0$ = ’ + str(round(popt2[0],3)) + r’, $D_0$ = ’ +
str(round(popt2[1],0)) + ’, E = ’ + str(round(popt2[2],0)))

53 add_elements(ax = ax2)
54 ax2.set_yscale(’log’)
55 ax2.set_xlabel(r’Ionic Radius ($\AA$)’)
56 ax2.set_ylabel(r’$D_i$’)
57 ax2.set_ylim(0.005,3000)
58 ax2.legend()
59
60 fig.tight_layout()

Listing 6.5 Least-squares nonlinear regression to extract A0, �0, and � from an experimental set
of �8 in the framework of the crystal-lattice-strain model (Blundy & Wood, 1994).
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Fig. 6.5 Result of code listing 6.5.

Figure 6.5 shows the best fit of Eq. (6.11) using the trust region reflective algorithm
(Branch et al., 1999) with bounds for A0, �0, and � (line 31 of code listing 6.5) and
the Levenberg-Marquardt algorithm (Moré, 1978) with an initial guess of A0, �0, and
� (see p0, line 48 of code listing 6.5). The two algorithms return the same best-fit
parameters (Fig. 6.5).



Part III
Integrals and Differential Equations in

Geology





Chapter 7
Numerical Integration

7.1 Definite Integrals

From the operational point of view, integration mainly involves problems of two
different classes (Priestley, 1997). The first class of problems are indefinite integrals
and involve functions that we must find given their derivative (Priestley, 1997). The
second class of problems are definite integrals, which consist of summing up a large
number of extremely small quantities to find areas, volumes, centers of gravity, etc.
(Priestley, 1997).

For most geological applications, problems involving integrals can be reduced to
definite integrals.

x

y = f(x)

y

a b

Fig. 7.1 Definite integral.
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Informal definition: Given a function 5 of a real variable G, the definite integral
(() of 5 (G) over an interval of real numbers [0, 1] is the area bounded by 5 (G), the
G axis, and the vertical lines at G = 0 and G = 1 (Fig. 7.1).

Note that the regions above and below the G axis enter the sum with a positive
and negative sign, respectively (Fig. 7.2).

x

y = f(x)
y

+

Fig. 7.2 Sign of definite integrals.

7.2 Basic Properties of Integrals

Definite integrals have some interesting properties that are often useful for solving
complex problems by reducing them to simpler problems. Three such properties are
listed below:

Additive properties:

∫ 1

0

5 (G)3G +
∫ 2

1

5 (G)3G =
∫ 2

0

5 (G)3G, (7.1)∫ 0

0

5 (G)3G = 0, (7.2)∫ 1

0

5 (G)3G = −
∫ 0

1

5 (G)3G. (7.3)

Scaling by a constant: ∫ 1

0

2 5 (G)3G = 2
∫ 1

0

5 (G)3G. (7.4)
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Integral of a sum:∫ 1

0

[ 5 (G) + 6(G)]3G =
∫ 1

0

5 (G)3G +
∫ 1

0

6(G)3G. (7.5)

7.3 Analytical and Numerical Solutions of Definite Integrals

In general, analytical methods give exact solutions, but sometimes such solutions are
impossible to achieve. In contrast, numerical methods give approximate solutions
with allowable tolerances (i.e., an error characterized by a known confidence limit).
Also, numerical methods are our only recourse when a function is only empirically
estimated at discrete points, as in most cases dealing with geological sampling (e.g.,
volatile fluxes at volcanic areas).

A detailed description of the analytical solutions of definite integrals is beyond the
scope of this book, so in the following I simply provide without proof the definition
from the Fundamental Theorem of Calculus and give a few simple examples based
on the symbolic approach in Python. Numerical methods, however, are discussed in
detail, mainly focusing on algorithms that solve definite integrals even when 5 (G)
is not mathematically defined [i.e., when we only know a limited number of fixed
values of 5 (G)], as in the case of sampling in many geological fields.

7.4 Fundamental Theorem of Calculus and Analytical Solutions

Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus formulates an analytical link between dif-
ferentiation and integration. The theorem consists of two parts, the first of which
establishes the relationship between differentiation and integration (Priestley, 1997;
Strang et al., 2016).

Part 1. If � (G) is continuous over an interval [0, 1] and the function � (G) is
defined by

� (G) =
∫ G

0

5 (C)3C, (7.6)

then � ′(G) = 5 (G) over [0, 1], and we define � (G) as the “antiderivative” of 5 (G).
The second part of the theorem affirms that, if we can determine an antideriva-

tive for the integrand, then we can evaluate the definite integral by evaluating the
antiderivative at the extreme points of the interval and subtracting.

Part 2: If 5 (G) is continuous over the interval [0, 1] and � (G) is the antiderivative
of 5 (G), then ∫ 1

0

5 (G)3G = � (1) − � (0). (7.7)
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Analytical Solutions: The Symbolic Approach in Python

Symbolic computation symbolically manipulates and solves mathematical expres-
sions (Meurer et al., 2017). In symbolic computation, mathematical objects are
represented exactly and not approximately, as in the case of numerical solutions
(Meurer et al., 2017). Also, mathematical expressions with unevaluated variables
are left in the symbolic form (Meurer et al., 2017). In Python, the sympy package
uses the symbolic approach to simplify expressions, compute derivatives, integrals,
and limits, solve equations, work with matrices, etc. (Meurer et al., 2017).

As a simple example consider Fig. 7.3, which shows how to use sympy to analyt-
ically solve the following two definite integrals:∫ 6

1
12G3 − 9G2 + 23G =

[
3G4 − 3G3 + 2G

]6
1 = (3252 − 2) = 3250, (7.8)∫ 1

0
sin(G)3G = [− cos(G)]10 = 1 − cos(1) ' 0.46. (7.9)

Fig. 7.3 Symbolic integration using SimPy.
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7.5 Numerical Solutions of Definite Integrals

Rectangle method

The simplest method to numerically approximate the solution of a definite integral
is to divide the area of interest into many rectangles of equal width and variable
height, and then sum up the area of each rectangle to obtain the area under the curve
(i.e., the definite integral; see Fig 7.4):∫ 1

0

5 (G)3G ≈ ℎ
=−1∑
8=0

5 (G8), (7.10)

where = is the number of rectangles, G0 = 0, G= = 1, and

ℎ =
1 − 0
=

. (7.11)

x

y = f(x)
y

a b

f(a) = f(x0)

f(x1)
f(xi) f(xi+1)

h

f(b) = f(xn)

Fig. 7.4 Example of the “left-rectangle” approximation to solve definite integrals.

The procedure reported in Eq. (7.10) and Fig. 7.4 is the so-called “left-rectangle”
approximation. Additional options include the “right-” [Eq. (7.12)] and “midpoint-
rectangle” [Eq. (7.13)] approximations (Fig. 7.5):
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0

5 (G)3G ≈ ℎ
=∑
8=1

5 (G8), (7.12)∫ 1

0

5 (G)3G ≈ ℎ
=−1∑
8=0

( 5 (G8) + 5 (G8+1))
2

. (7.13)

x

y = f(x)

y

a b

f(a) = f(x0)
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f(b) = f(xn)
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'midpoint-rectangular' approximation
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f(b) = f(xn)

'right-rectangular' approximation

f(a) = f(x0)

Fig. 7.5 Right- and midpoint-rectangle approximations for solving definite integrals.
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Filling 5 (G) with rectangles roughly approximates the area of interest. However,
the more rectangles are inserted between the boundaries 0 and 1, the more accurate
the approximation will be because the uncovered regions become smaller.

We can write a simple function in Python to implement the rectangle method
(code listing 7.1).
1 import numpy as np
2
3 def integrate_rec(f, a, b, n):
4 # Implementation of the rectanlge method
5 h = (b-a)/n
6 x = np.linspace(a, b, n+1)
7 i=0
8 area=0
9 while i<n:
10 sup_rect = f(x[i])*h
11 area += sup_rect
12 i += 1
13 return area
14 ’’’
15 We test the Rectangle method on the sine funcion were the

definite integral in the interval [0, c/2] is equal to 1.
16 ’’’
17
18 sup_5 = integrate_rec(np.sin, 0, np.pi/2, 5)
19 sup_10 = integrate_rec(np.sin, 0, np.pi/2, 10)
20 sup_100 = integrate_rec(np.sin, 0, np.pi/2, 100)
21
22 print(’Using n=5, the rectangle method returns a value of {:.2

f}’.format(sup_5))
23 print(’Using n=10, the rectangle method returns a value of

{:.2f}’.format(sup_10))
24 print(’Using n=100, the rectangle method returns a value of

{:.2f}’.format(sup_100))
25
26 ’’’
27 Output:
28 Using n=5, the rectangle method returns a value of 0.83
29 Using n=10, the rectangle method returns a value of 0.92
30 Using n=100, the rectangle method returns a value of 0.99
31 ’’’

Listing 7.1 Rectangle rule to solve definite integrals.

Trapezoid rule

The trapezoid rule is the basis for a technique similar to the rectangle method. Instead
of rectangles, the trapezoid rule uses trapezoids to fill the area under 5 (G) (Fig. 7.6).
Equation (7.14) and code listing 7.2 report the mathematical formulation of the
trapezoid rule and its implementation in Python, respectively:
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( =

∫ 1

0

5 (G)3G ≈ ℎ
[
5 (G0) + 5 (G=)

2

] =−1∑
8=1

5 (G8). (7.14)

1 import numpy as np
2
3 def integrate_trap(f, a, b, n):
4 # Implementation of the trapezoidal rule
5 h = (b-a)/n
6 x = np.linspace(a, b, n+1)
7 i=1
8 area = h*(f(x[0]) + f(x[n]))/2
9 while i<n:
10 sup_rect = f(x[i])*h
11 area += sup_rect
12 i += 1
13 return area
14
15 ’’’
16 We test the trapezoidal rule on the known sine funcion were

the
17 definite integral in the interval [0, c/2] is equal to 1.
18 ’’’
19
20 sup_5 = integrate_trap(np.sin, 0, np.pi/2, 5)
21 sup_10 = integrate_trap(np.sin, 0, np.pi/2, 10)
22
23 print(’Using n=5, the trapezoidal rule returns a value of {:.2

f}’.format(sup_5))
24 print(’Using n=10, the trapezoidal rule returns a value of

{:.2f}’.format(sup_10))
25
26 ’’’
27 Output:
28 Using n=5, the trapezoidal rule returns a value of 0.99
29 Using n=10, the trapezoidal rule returns a value of 1.00
30 ’’’

Listing 7.2 Trapezoid rule to solve definite integrals.

Trapezoidal and composite Simpson rules using scipy

The scipy.integrate sub-package implements many techniques for solving definite
integrals, including the trapezoid rule mentioned in the previous paragraph and the
composite Simpson rule.

The composite Simpson rule is a technique that approximates an integral over each
pair of consecutive sub-intervals using quadratic functions (Fig. 7.7). The resulting
formula to calculate a definite integral is
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y = f(x)y
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f(a) = f(x0)

f(x1)

f(xi)
f(xi+1)

h
f(b) = f(xn)

Fig. 7.6 Trapezoid rule to solve definite integrals.
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Fig. 7.7 Example of the composite Simpson’s rule and comparison with the trapezoid rule.

( =

∫ 1

0

5 (G)3G ≈ ℎ
3

=/2∑
8=1
[ 5 (G28−2) + 4 5 (G28−8) + 5 (G28)] , (7.15)

where = is an even number that gives the number of sub-intervals of [0, 1], as done
for the rectangle methods and the trapezoid rule.

Code listing 7.3 uses the scipy.integrate sub-package to apply the trapezoid and
composite Simpson rules to the equation H = G2.
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1 import numpy as np
2 from scipy import integrate
3
4
5 x = np.linspace(0,9, 3) # 3 divisions [G0, G1, G2 ], n=2
6 y = x**2
7
8 sup_trapz = integrate.trapz(y,x)
9 sup_simps = integrate.simps(y,x)
10
11
12 print(’Using n=2, the trapezoidal rule returns a value of {:.0

f}’.format(sup_trapz))
13 print(’Using n=2, the composite Simpson rule returns a value

of {:.0f}’.format(sup_simps))
14
15 ’’’
16 Output:
17 Using n=2, the trapezoidal rule returns a value of 273
18 Using n=2, the composite Simpson rule returns a value of 243
19 ’’’

Listing 7.3 Application of trapezoid and composite Simpson rules to the equation H = G2.

2 4 6 8
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y

x

S = 243
Strapz = 256
Ssimps = 243 } n=2

y = x2

Fig. 7.8 Application of trapezoid and composite Simpson rules to the equation H = G2 in the
interval [0, 9]. The analytical result is 243. Given that H = G2 is a quadratic function, it is perfectly
fit by Simpson’s rule.
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7.6 Computing the Volume of Geological Structures

An application in geology of definite integrals is to estimate the volume of structures
that cannot be approximated by simple geometries. For example, estimating volumes
is one of the most basic and widely applied tasks of hydrocarbon exploration and
production (Slavinić & Cvetković Marko, 2016).

Qualitatively, to approximate the volume of a solid,we imagine slicing it intomany
parts.We then estimate the volume of each part by using quantifiable geometries (e.g.,
trapezoidal prisms). Finally, we sum all the volumes to make our estimate (Slavinić
& Cvetković Marko, 2016; Strang et al., 2016).

Quantitatively, if the distance between two successive slice planes is infinitesimal,
we can mathematically express the procedure by using a definite integral:

+ =

∫ 1

0

�(G)3G, (7.16)

where + is the volume of a solid extending from G = 0 to G = 1, and �(G) is the area
of the intersection of the volume with a plane parallel to the H-I plane and passing
through the point (G, 0, 0) (Fig. 7.9).
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Fig. 7.9 Calculating the volume of geological structures.

Code listing 7.4 shows how to apply Eq. (7.16) to the structure shown in Fig. 7.9.
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1 import numpy as np
2 from scipy import integrate
3
4 conturs_areas = np.array([194135, 136366, 79745, 38335, 18450,

9635, 3895])
5 x = np.array([0,25,50,75,100,125,150])
6
7 vol_traps = integrate.trapz(conturs_areas , x)
8 vol_simps = integrate.simps(conturs_areas , x)
9
10 print(’The trapezoidal rule returns a volume of {:.0f} cubic

meters’.format(vol_traps))
11 print(’The composite Simpson rule returns a volume of {:.0f}

cubic meters’.format(vol_simps))
12
13 ’’’
14 Output:
15 The trapezoidal rule returns a volume of 9538650 cubic meters
16 The composite Simpson rule returns a volume of 9431367 cubic

meters
17 ’’’

Listing 7.4 Application of Eq. (7.16) to estimate the volume of the geological structure shown in
Fig. 7.9.

7.7 Computing the Lithostatic Pressure

We define the lithostatic pressure as the vertical pressure at a specific depth due to
the weight of the overlying column of rock. The pressure applied by a resting rock
mass (this includes fluids within the rock’s pore space) under the acceleration of
gravity is related to the rock density by

?(I) = ?0 +
∫ I

0
d(I)6(I)3I, (7.17)

where ?(I) is the pressure at depth I, ?0 is the pressure at the surface, d(I) is the
bulk density for the rock mass as a function of depth, and 6(I) is the acceleration
due to gravity.

As a zeroth-order approximation, we assume ?0 = 0 and that both d(I) and 6(I)
are constant, which reduces Eq. (7.17) to

?(I) = d6I. (7.18)

Code listing 7.5 shows the implementation of Eq. (7.18) in Python.

1 def simple_lithopress(z,ro=2900, g=9.8):
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2 pressure = z*g*ro/1e6 # return the pressure in MPa
3 return pressure
4
5 my_pressure = simple_lithopress(z=2000)
6
7 print(’The pressure at 2000 meters is {0:.0f} MPa’.format(

my_pressure))
8
9 ’’’
10 Output:
11 The pressure at 2000 meters is 57 MPa
12 ’’’

Listing 7.5 Simple listing showing the implementation of Eq. (7.18) in Python.

Table 7.1 Earth’s shells and relative densities.

Layer A from
[km]

A to
[km]

Thickness
[km]

Bottom density
[kg/m3]

Top density
[kg/m3]

Inner core 1 1220 1220 13100 12800
Outer core 1221 3479 2259 12200 9900
Lower mantle 3480 5650 2171 5600 4400
Upper mantle 5651 6370 720 4130 3400
Crust 6371 6400 30 3100 2700

We now take on the full implementation of Eq. (7.17). Using the data from
Dziewonski and Anderson (1981) and Anderson (1989) and assuming that d varies
linearly between the upper and lower limits of each shell (i.e., crust, upper mantle,
lower mantle, outer core, and inner core), we create an array that constitutes a first-
order approximation of d(I) (Table 7.1). To simplify the presentation of the data,
we define a new variable A (the radial distance from the Earth’s center) as A = ' − I,
where ' ≈ 6400 km is the Earth’s radius and the Earth is approximated as a sphere.

1 import numpy as np
2 from scipy.integrate import trapz
3 import matplotlib.pyplot as plt
4
5 r = np.linspace(1,6400,6400)
6
7 def density():
8 ro_inner_core = np.linspace(13100, 12800, 1220)
9 ro_outer_core = np.linspace(12200, 9900, 2259)
10 ro_lower_mantle = np.linspace(5600,4400,2171)
11 ro_upper_mantle = np.linspace(4130,3400,720)
12 ro_crust = np.linspace(3100,2700,30)
13



112 7 Numerical Integration

0 1000 2000 3000 4000 5000 6000
Distance from the Earth center r [km]

4000

6000

8000

10000

12000

De
ns

ity
 [K

g/
m

3 ]

Densities on the Earth's Interior

Fig. 7.10 Result of code listing 7.6.

14 ro_final = np.concatenate((ro_inner_core , ro_outer_core ,
ro_lower_mantle , ro_upper_mantle , ro_crust))

15
16 return ro_final
17
18 ro = density()
19
20 fig, ax = plt.subplots()
21 ax.plot(r,ro, label="Densities on the Earth’s Interior")
22 ax.set_ylabel(r"Density [Kg/m$^3$]")
23 ax.set_xlabel("Distance from the Earth center r [km]")
24 ax.legend()
25 ax.grid()

Listing 7.6 Defining the densities in Earth’s interior.

The acceleration 6(A) at a distance A from Earth’s center is estimated by using

6(A) = 4c�
A2

∫ A

A1=0
d(A1)A2

13A1, (7.19)

where � = (6.67408 ± 0.0031) × 10−11 m3 kg−1 s−2 is the “universal gravitational
constant.”
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1 def gravity(r):
2
3 g = np.zeros(len(r))
4 Gr = 6.67408e-11
5 r = r * 1000 # from Km to m
6
7 for i in range(1,len(r)):
8
9 r1 = r[0:i]
10 ro1 = ro[0:i]
11 r2 = r1[i-1]
12
13 y = ro1*r1**2
14 y_int = trapz(y,r1)
15
16 g1 = ((4 * np.pi*Gr)/(r2**2)) * y_int
17 g[i] = g1
18
19 return g
20
21 g = gravity(r)
22
23 fig, ax = plt.subplots()
24 ax.plot(r,g)
25 ax.grid()
26 ax.set_ylabel(r’g [m/s$^2]$’)
27 ax.set_xlabel(’Distance from the Earth center r [km]’)

Listing 7.7 Computing the acceleration due to gravity in Earth’s interior.

1 def pressure(r, ro, g):
2
3 p = np.zeros(len(r))
4 r = r *1000
5
6 for i in range(0,len(r)):
7 r1 = r[i:len(r)]
8 ro1 = ro[i:len(r)]
9 g1 = g[i:len(r)]
10 y = ro1*g1
11 p1 = trapz(y,r1)
12 p[i] = p1
13 return p
14
15 p = pressure(r,ro,g)/1e9 # expressed in GPa
16 z = np.linspace(6400, 1, 6400)
17
18 fig, ax = plt.subplots()
19 ax.plot(z,p)
20 ax.grid()
21 ax.set_ylabel(’P [GPa]’)
22 ax.set_xlabel(’Depth z from the Earth Surface [km]’)

Listing 7.8 Computing the pressure in Earth’s interior.
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Fig. 7.11 Result of code listing 7.7.
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Fig. 7.12 Result of code listing 7.8.



Chapter 8
Differential Equations

8.1 Introduction

Differential equations govern numerous problems in physics, engineering, biology,
and Earth Sciences.

Definition.Adifferential equation is an equation that relates one ormore functions
to their derivatives (Zill, 2012).

Qualitatively, a differential equation describes the rate at which one variable
changeswith respect to another. Examples include the rate of change in the number of
atoms of a radioactive material over time or the rate of change in magma temperature
during cooling (Burd, 2019). An equation is called an ordinary differential equation
(ODE) if it contains ordinary derivatives only (Zill, 2012). In other words, an ODE
depends on a single independent variable. To clarify the concept, ODEs have one
independent variable (e.g., C), one dependent variable [e.g., H = # (C)], and the
derivative of the dependent variable with respect to the independent variable (e.g.,
3#/3C). Everything else apart from the independent variable, the dependent variable,
and the derivatives are constants (King et al., 2003). The law of radioactive decay
(i.e., the change in radioactive material per unit time) is an example of an ODE:

3#

3C
= −_# (C), (8.1)

where # (C) is the number of radioactive nuclei at time C and _ is the probability of
decay per nucleus per unit time.

In contrast, a partial differential equation (PDE) contains partial derivatives. Thus,
a PDE is a differential equation in which the dependent variable depends on two or
more independent variables (King et al., 2003). Fick’s second law of diffusion is an
example of a PDE:

m�

mC
= �

m2�

mG2 , (8.2)

where � is the concentration of the chemical element under investigation and � is a
positive constant called the “diffusion coefficient.”
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To solve a differential equation, we need to find an expression for the dependent
variable [i.e., # (C) in Eq. (8.1)] in terms of the independent variable(s) [i.e., C
in Eq. (8.1)] that satisfies the differential equation. By definition, a differential
equation contains derivatives, so finding a solution requires an integration. The
general solution of an ODE is the solution that satisfies the differential equation for
all initial conditions. It is a combination of functions and one or more constants. A
particular solution to an ODE is the solution obtained from the general solution by
assigning specific values to the arbitrary constants. ODEs and PDEs can be solved
by using both analytical and numerical methods. Although this chapter focuses on
using Python to find numerical solutions to differential equations, you should keep
in mind that analytical solutions should be explored whenever possible (Burd, 2019).

8.2 Ordinary Differential Equations

As stated above, ODEs contain ordinary derivatives only. The order of an ODE is
the order of the highest derivative that appears in the equation. The explicit form of
an =th-order ODE can be written as (Agarwal & O’Regan, 2008)

3=H

3G=
= H (=) = 5 (G, H, H′, H′′, . . . , H (=−1) ), (8.3)

where 5 is a known function.
An ODE is linear if the unknown function appears linearly in the equation,

otherwise it is nonlinear (Agarwal & O’Regan, 2008; Burd, 2019; King et al., 2003;
Zill, 2012).

Direction fields of first-order ODEs

Direction fields provide an overview of first-order ODE solutions without actually
solving the equation. Recall that first-order ODEs are those that can be written in the
form (Agarwal & O’Regan, 2008)

H′ = 5 (G, H). (8.4)

A direction field is a set of short line segments passing through various, typically
grid shaped, points having a slope that satisfies the investigated differential equation
at the given point.

To my knowledge, Python offers no straightforward method to plot a simple
direction field. However, we can easily develop a function for the scope (code
listing 8.1). Figure 8.1 shows the result of applying code listing 8.1 to the ODE

H′ =
G2

1 − G2 − H2 . (8.5)
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1 import numpy as np
2 from matplotlib import pyplot as plt
3
4 # Direction Field
5 def direction_field(x_min, x_max, y_min, y_max, n_step, lenght,

fun, ax):
6
7 # this is to avoid RuntimeWarning: divide by zero
8 np.seterr(divide=’ignore’, invalid=’ignore’)
9
10 x = np.linspace(x_min, x_max, n_step)
11 y = np.linspace(y_min, y_max, n_step)
12 X, Y = np.meshgrid(x, y)
13 slope = fun(X,Y)
14 slope = np.where(slope == np.inf, 10**3, slope)
15 slope = np.where(slope == -np.inf, -10**3, slope)
16 delta = lenght * np.cos(np.arctan(slope))
17 X1 = X - delta
18 X2 = X + delta
19 Y1 = slope*(X1-X)+Y
20 Y2 = slope*(X2-X)+Y
21 ax.plot([X1.ravel(), X2.ravel()], [Y1.ravel(), Y2.ravel()], ’

k-’, linewidth=1)
22
23 # Differential equations
24 def my_ode(x, y):
25 dy_dx = x**2 / (1 - x**2 - y**2)
26 return dy_dx
27
28 # Make the plot
29 fig, ax1 = plt.subplots()
30 direction_field(x_min=-2, x_max=2, y_min=-2, y_max=2, n_step=30,

lenght=0.05, fun=my_ode, ax=ax1)
31 ax1.set_xlabel(’x’)
32 ax1.set_ylabel(’y’)
33 ax1.axis(’square’)
34 ax1.set_title(r"$ {y}’ = - \frac{x^2}{1 - x^2 - y^2} $")

Listing 8.1 Defining a function to create a direction field.

At this point, you should already know the meaning of most of the instructions
in code listing 8.1. Exceptions are the statements at lines 8 and 12. The command at
line 8 simply avoids displaying a warning for dividing by zero during the evaluation
of the function at line 13. When you divide by zero, the value returned could be inf,
− inf, or NaN (i.e., not a number). In the first two cases, the slope is “adjusted” to
a “large” number at lines 14 and 15 (i.e., 1000 and -1000, respectively) to plot a
vertical segment in the direction field. In the case of NAN, nothing is plotted at the
corresponding node of the grid.

At line 12, the command np.meshgrid(x,y) returns two coordinate matrices from
two coordinate vectors. More specifically, it creates two rectangular arrays: one of G
values and one of H values. Combining the resultingmatrices, we obtain a rectangular
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grid of coordinates. This approach is particularly useful when dealing with spatial
data.

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
y

y′ = x2

1 x2 y2

Fig. 8.1 Result of code listing 8.1.

The quiver() method of matplotlib provides an alternative method to investigate
the behavior of first-order ODEs. Specifically, it uses the formulation

3G

3C
= �(G, H),

3H

3C
= �(G, H).

(8.6)

The advantage of Eq. (8.6) lies in the fact that the quiver() function can be
used directly to display velocity vectors in [G, H] space. Similarly, the streamplot()
function visualizes ODE solutions as streamlines. As an example, the code listing 8.2
implements the direction field and streamlines of the velocity field of

3G

3C
= G + 2H,

3H

3C
= −2G. (8.7)

Figure 8.2 shows the results of the quiver() and streamplot() functions in the left and
right panels, respectively.
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The quiver() and streamplot() functions can be also used to investigate first-order
ODEs in the canonical form H′ = 5 (G, H). This is because �(G, H) and �(G, H) simply
derive from the transformation

3H

3G
=
�(G, H)
�(G, H) . (8.8)

Consequently, if we assume that �(G, H) = 5 (G, H) and �(G, H) = 1, then Eq. (8.8) re-
duces to the form H′ = 5 (G, H). As an example, code listing 8.3 shows the application
of the quiver() and streamplot() functions to

3H

3G
= −H − 2G2. (8.9)

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(-3, 3, 10)
5 y = x
6 X, Y = np.meshgrid(x, y)
7
8 dx_dt = X + 2*Y
9 dy_dt = - 2*X
10
11 fig = plt.figure()
12 ax1 = fig.add_subplot(1, 2, 1)
13 ax1.quiver(X, Y, dx_dt, dy_dt)
14 ax1.set_title(’using quiver()’)
15 ax1.set_xlabel(’x’)
16 ax1.set_ylabel(’y’)
17 ax1.axis(’square’)
18
19 ax2 = fig.add_subplot(1, 2, 2)
20 ax2.streamplot(X, Y, dx_dt, dy_dt)
21 ax2.set_title(’using streamplot()’)
22 ax2.set_xlabel(’x’)
23 ax2.set_ylabel(’y’)
24 ax2.axis(’square’)
25
26 fig.tight_layout()

Listing 8.2 Using the quiver() and streamplot() methods with first-order ODEs.
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Fig. 8.2 Result of code listing 8.2.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(-1, 1, 10)
5 y = x
6
7 X, Y = np.meshgrid(x, y)
8
9 dx_dt = np.ones_like(X)
10 dy_dt = - Y - 2 * X**2
11
12 # Making plot
13 fig = plt.figure()
14 ax1 = fig.add_subplot(1, 2, 1)
15 ax1.quiver(X, Y, dx_dt, dy_dt)
16 ax1.set_title(’using quiver()’)
17 ax1.set_xlabel(’x’)
18 ax1.set_ylabel(’y’)
19 ax1.axis(’square’)
20
21 ax2 = fig.add_subplot(1, 2, 2)
22 ax2.streamplot(X, Y, dx_dt, dy_dt, linewidth=0.5)
23 ax2.set_title(’using streamplot()’)
24 ax2.set_xlabel(’x’)
25 ax2.set_ylabel(’y’)
26 ax2.axis(’square’)
27
28 fig.tight_layout()

Listing 8.3 Using the quiver() and streamplot() functions.
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Fig. 8.3 Result of code listing 8.3.

8.3 Numerical Solutions of First-Order Ordinary Differential
Equations

Equation (8.1) for radioactive decay has an analytical solution of the form

# (C) = #04
−_C = #04

− C
g (8.10)

where # (C), #0, _, and g are the quantity # at time C, the quantity # at time C = 0, the
exponential decay constant, and the mean lifetime, respectively. Radioactive decay
represents a suitable example to illustrate some of the numerical techniques used to
solve both ordinary and partial differential equations.

Euler’s method

Euler’s Method consists of a finite-difference approximation to numerically solve
differential equations by taking small finite steps ΔC in the parameter C and approxi-
mating the function # (C) with the first two terms of its Taylor expansion:

3#

3C
≈ # (C + ΔC) − # (C)

ΔC
. (8.11)

This approach gives

# (C + ΔC) ≈ 3#
3C
ΔC + # (C) = −_# (C)ΔC + # (C) = # (C) (1 − _ΔC). (8.12)
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1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 # Euler Method
5 def euler_method(n0, decay_const , t_final, n_t_steps):
6 iterations = n_t_steps
7 delta_t = t_final/n_t_steps
8 t1 = np.linspace(0, iterations*delta_t, iterations)
9 n1 = np.zeros(t1.shape, np.float)
10 n1[0]=n0
11 for i in range(0,len(t1)-1):
12 n1[i+1] = n1[i] * (1 - decay_const * delta_t )
13 n1r = n1/n0
14 return n1, n1r, t1
15
16 ne, ner, te = euler_method(n0=10000, decay_const=1.54e-1,

t_final=20, n_t_steps=10)
17
18 #Analitical solution ...in the same points of the Euler method
19 def analytical_solution(n0, decay_const , t_final, n_t_steps):
20
21 intermediate_points = n_t_steps
22 delta_t = t_final/n_t_steps
23 t2 = np.linspace(0, intermediate_points*delta_t,

intermediate_points)
24 n2 = n0 * np.exp(-decay_const * t2 )
25 n2r = n2/n0
26 return n2, n2r, t2
27
28 na, nar, ta = analytical_solution(n0=10000, decay_const=1.54e

-1, t_final=20, n_t_steps=10)
29
30 euler_rel_error = 100*(ne-na)/na
31
32 fig = plt.figure()
33 ax1 = fig.add_subplot(1, 2, 1)
34 ax1.plot(te, ner, linestyle="-", linewidth=2, label=’Euler

method’)
35 ax1.plot(ta, nar, linestyle="--", linewidth=2, label=’

Analytical Solution’)
36 ax1.set_ylabel(’Relative Number of $^{238}$U atoms’)
37 ax1.set_xlabel(’time in bilion years’)
38 ax1.legend()
39
40 ax2 = fig.add_subplot(1, 2, 2)
41 ax2.plot(te, euler_rel_error , linestyle="-", linewidth=2,

label=’Deviation formthe \nexpected value’)
42 ax2.set_ylabel(’Relative Error, in %’)
43 ax2.set_xlabel(’time in bilion years’)
44 ax2.legend()

Listing 8.4 Implementing Euler’s method in Python.
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Assuming a decay constant _ = 1.54×10−1 per billion years (i.e., 1.54×10−10 per
year) as in the case of the uranium series from 238U to 206Pb, we can code a Python
script to solve Eq. (8.1) (code listing 8.4) and compare the analytical solution with
the numerical solution (Fig. 8.4). The deviation from the expected value of Euler’s
method (i.e., the error) is a function of ΔC.

In addition, Euler’s method is affected by an intrinsic issue, potentially leading to
a progressive amplification of the error because it evaluates the derivatives only at
the beginning of the investigated interval (i.e., ΔC). If the derivative at the beginning
of the step is systematically incorrect, either too high or too low, then the numerical
solution will suffer from the same systematic error (Fig. 8.4).
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Fig. 8.4 Result of code listing 8.4.

Note that, in this specific case, we use a quite large ΔC value to highlight the limits
of Euler’s method. Reducing ΔC significantly improves the accuracy. However, for
the general case, improving the accuracy requires estimating the derivative at more
than one point in the investigated interval.

The scipy.integrate.ode class

The scipy.integrate.ode class is generic interface class for numeric solutions ofODEs.
Available integrators are

1. a real-valued variable-coefficient ODE solver (i.e., vode);
2. a complex-valued variable-coefficient ODE solver with fixed-leading-coefficient

implementation (i.e., zvode);
3. a real-valued variable-coefficient ODE solver with fixed-leading-coefficient im-

plementation (i.e., lsoda);
4. an explicit Runge-Kutta method of order (4)5 (i.e., dopri5);
5. an explicit Runge-Kutta method of order 8(5,3) (i.e., dopri853).
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Please refer to more specialized books for a detailed description of these meth-
ods (Atkinson et al., 2009; Griffiths & Higham, 2010; Li et al., 2017).

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from scipy.integrate import ode
4
5 # using scipy.integrate.ode
6 def ode_sol(n0, decay_const , t_final, n_t_steps):
7 intermediate_points = n_t_steps
8 t3 = np.linspace(0,t_final, intermediate_points)
9 n3 = np.zeros(t3.shape, np.float)
10 def f(t, y, decay_const):
11 return - decay_const * y
12 solver = ode(f).set_integrator(’dopri5’) # runge-kutta of

order (4)5
13 y0 = n0
14 t0 = 0
15 solver.set_initial_value(y0, t0)
16 solver.set_f_params(decay_const)
17 k=1
18 n3[0] = n0
19 while solver.successful() and solver.t < t_final:
20 n3[k] = solver.integrate(t3[k])[0]
21 k += 1 # k = k + 1
22 n3r = n3 / n0
23 return n3, n3r, t3
24
25 # Analytical solution
26 na, nar, ta = analytical_solution(n0=10000, decay_const=1.54e-1,

t_final=20, n_t_steps=10)
27 # Euler method
28 ne, ner, te = euler_method(n0=10000, decay_const=1.54e-1, t_final

=20, n_t_steps=10)
29 nuler_rel_error = 100*(ne-na)/na
30 # runge-kutta of order (4)5
31 n_ode, n_oder, tode = ode_sol(n0=10000, decay_const=1.54e-1,

t_final=20, n_t_steps=10)
32 ode_rel_error = 100*(n_ode - na) / na
33
34 # Make the plot
35 fig = plt.figure(figsize=(8,5))
36 ax1 = fig.add_subplot(1, 2, 1)
37 ax1.plot(ta, nar, linestyle="-", linewidth=2, label=’Analytical

Solution’, c=’#ff464a’)
38 ax1.plot(te, ner, linestyle="--", linewidth=2, label=’Euler

method’, c=’#4881e9’)
39 ax1.plot(tode, n_oder, linestyle="--", linewidth=2, label=’Runge-

Kutta of order (4)5’, c=’#342a77’)
40 ax1.set_ylabel(’Relative Number of $^{238}$U atoms’)
41 ax1.set_xlabel(’Time in bilion years’)
42 ax1.legend()
43
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44 ax2 = fig.add_subplot(1, 2, 2)
45 ax2.plot(te, euler_rel_error , linestyle="-", linewidth=2, c=’

#4881e9’, label=’Euler method’)
46 ax2.plot(tode, ode_rel_error , linestyle="-", linewidth=2, c=’#342

a77’, label=’Runge-Kutta of order (4)5’)
47 ax2.set_ylabel(’Relative Error, in %’)
48 ax2.set_xlabel(’Time in bilion years’)
49 ax2.legend()
50
51 fig.tight_layout()

Listing 8.5 Euler’s method versus Runge-Kutta of order (4)5.

I now showhow to apply the scipy.integrate.ode class to the real case of radioactive
decay. The code listing 8.5 concerns the application of the explicit Runge-Kutta
method of order (4)5 to the equations investigated and compares the results with
those of Euler’s method [Eq. ( 8.5)].
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Fig. 8.5 Result of code listing 8.5.

8.4 Fick’s Law of Diffusion—AWidely Used Partial Differential
Equation

As originally reported by Fick (1855), the rate of transfer of a substance diffusing
through a unit area is proportional to the concentration gradient measured normal to
the area:

� = −� m�
mG
, (8.13)
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where � is the rate of transfer per unit area, � the concentration of the diffusing
substance, G the spatial coordinatemeasured normal to the area, and� is the diffusion
coefficient. In some cases, such as diffusion in dilute solutions, � can reasonably be
considered as a constant, whereas, in other cases, such as diffusion in high polymers,
it depends strongly on concentration (Crank, 1975). Equation (8.13) is universally
known as the first Fick law or the first law of diffusion (Crank, 1975). The units of
�, �, G, and � are concentration (e.g., gram, gram moles, or wt.%), concentration
per unit time (e.g., g/s; note that the units of � must be consistent with those of �),
length (e.g., meters), and length squared divided by time (e.g., m2/s), respectively.
In the case of one-dimensional processes characterized by a constant �, Eq. (8.13)
can be written as the one-dimensional second Fick’s law or second law of diffusion
(Crank, 1975):

m�

mC
= �

m2�

mG2 . (8.14)

For constant � and specific geometries, Eq. (8.2) can be solved analytically
(Crank, 1975). In all other cases the problem requires a numerical solution.
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Fig. 8.6 Result of code listing 8.6.
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Analytical solutions

If the diffusion coefficient is constant, analytical solutions to the diffusion equation
can be obtained for a variety of initial conditions and boundary conditions (Crank,
1975). As an example, the solution for a diffusing substance initially confined in a
finite region,

� = �0, G < 0, � = 0, G > 0, C = 0, (8.15)

can be written written in the form (Crank, 1975)

� (G, C) = 1
2
�0erfc

(
G

2
√
�C

)
, (8.16)

where erfc() is the complementary error function defined as 1 − erf():

erfc(G) = 1 − erf(G) = 2
√
c

∫ ∞

G

4−C
2
3C. (8.17)

More details about the error function are given in Section 9.2.
Code listing 8.6 implements Eq. (8.16) in Python.

1 import numpy as np
2 from scipy import special
3 import matplotlib.pyplot as plt
4
5 def plane_diff_1d(t, D, x0=0, xmin=-1, xmax=1, c_left=1, c_right

=0, num_points=200):
6
7 n = num_points
8 x = np.linspace(xmin, xmax, n)
9 delta_c = c_left - c_right
10
11 c0 = np.piecewise(x, [x < x0, x >= x0], [c_left, c_right])
12 c = 0.5 * delta_c * (special.erfc((x - x0)/(2 * np.sqrt(D *

t))))
13
14 return x, c, c0
15
16 D = 0.01 # Diffusion coefficient
17
18 fig, ax = plt.subplots()
19
20 for t in range(1, 14, 3):
21
22 x, c, c0 = plane_diff_1d(t=t, D=D)
23 if t==1:
24 leg = "t = " + str(t)
25 plt.plot(x, c0, label="t = 0")
26 leg = "t = " + str(t)
27 ax.plot(x, c, label=leg)
28
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29 ax.grid()
30 ax.set_xlabel(’x’)
31 ax.set_ylabel(’C’)
32 ax.legend()

Listing 8.6 Analytical solution of plane diffusion.

Numerical solution for constant �

The simplest way to discretize Eq. (8.2) is by using finite differences (Linge &
Langtangen, 2017):

�=+1
9
− �=

9

ΔC
= �

[
�=
9+1 − 2�=

9
+ �=

9−1

(ΔG)2

]
, (8.18)

where = and 9 represent the time and space domain, respectively. This scheme,
called “Forward-Time Central-Space” (FTCS), uses Euler’s method and a central-
difference scheme to approximate the derivatives in time and space, respectively. For
more details about the theory behind numerical schemes to solve PDEs, please refer
to more specialized books (Linge & Langtangen, 2017; Mazumder, 2015; Morton
& Mayers, 2005). In Python, Eq. (8.18) can be easily implemented by using code
listing 8.7. The finite-difference scheme given by Eq. (8.18) is stable under the
condition

2�ΔC(
ΔG2) ≤ 1. (8.19)

Figure 8.7 compares the analytical solution with the numerical solution.
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Fig. 8.7 Result of code listing 8.7.
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1 def ftcs(u, D, h, dt):
2
3 d2u_dx2 = np.zeros(u.shape, np.float)
4 for i in range(1,len(u)-1):
5 # Central difference scheme in space
6 d2u_dx2[i] = (u[i+1] - 2*u[i] + u[i-1]) / h**2
7
8 # Neuman boundary conditions at i=0 and i=len(u)-1
9 i=0
10 d2u_dx2[i] = (u[i+1] - 2 * u[i] + u[i]) / h**2
11 i=len(u)-1
12 d2u_dx2[i] = (u[i] - 2 * u[i] + u[i-1]) / h**2
13
14 # Euler method for the time domain
15 u1 = u + dt * D * d2u_dx2
16 return u1
17
18 dt = 0.001 #step size of time
19 tf = 3
20
21 def compute_d_const(u, d, h, dt, tf):
22
23 nsteps = tf/dt
24 u1 = u
25 for i in range(int(nsteps)):
26 u1 = ftcs(u1, D, h, dt)
27 return u1
28
29 x, c, c0 = plane_diff_1d(t=tf, D=D)
30
31 h = x[1] - x[0] #step size of the 1D space
32 u = c0 # intial conditions
33 c1 = compute_d_const(u, D, h, dt, tf)
34
35 fig, ax = plt.subplots()
36 ax.plot(x,c0, label=’initial conditions’)
37 ax.plot(x,c,’y’, label=’analytical solution’)
38 ax.plot(x,c1,’r--’, label=’numerical solution’)
39 ax.set_xlabel(’x’)
40 ax.set_ylabel(’C’)
41 ax.legend()

Listing 8.7 Plane diffusion by finite-difference method.

The implementation of the FTCS scheme (i.e., lines 1–16 of the code listing 8.7)
could be improved by more fully exploiting numpy (Linge & Langtangen, 2017).
In particular, the loop at lines 4–6 could be replaced by a single line of code using
vectorial notation [line 4 of code listing 8.8 (Linge & Langtangen, 2017)].
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1 def numpy_ftcs(u, d, h, dt):
2
3 d2u_dx2 = np.zeros(u.shape, np.float)
4 d2u_dx2[1:-1] = (u[2:] - 2 * u[1:-1] + u[:-2]) / h**2
5
6 # Neuman boundary conditions at i=0 and i=len(u)-1
7 i = 0
8 d2u_dx2[i] = (u[i+1] - 2 * u[i] + u[i]) / h**2
9 i = len(u)-1
10 d2u_dx2[i] = (u[i] - 2 * u[i] + u[i-1]) / h**2
11
12 # Euler method for the time domain
13 u1 = u + dt * D * d2u_dx2
14 return u1

Listing 8.8 Using the vectorial notation for the FTCS scheme.

In petrology and volcanology, the process of chemical diffusion is often used to
constrain the residence times of crystals in a volcanic plumbing system before an
eruption (Costa et al., 2020). For example, Costa et al. (2003) report a formulation
to model diffusion of Mg in plagioclase, while also accounting for the influence
of anorthite absolute values and gradients on chemical potentials and diffusion
coefficients (Costa et al., 2020). The rationale behind the formulation provided by
Costa et al. (2020) comes from diffusive fluxes of trace elements being strongly
coupled to major element concentration gradients (i.e., multi-component diffusion).

In the following, I provide a Python implementation for the problem reported by
Costa et al. (2020). The code consists of

1. analytically determining Mg and An contents on zoned plagioclases;
2. constraining the boundary conditions (e.g., equilibrium at the rims);
3. defining the initial and equilibrium profiles;
4. estimating the diffusion coefficient for Mg;
5. solving the time-dependent form of the diffusion equation by using finite differ-

ences.

The analytical determinations for An are typically done by electron-probe micro-
analysis (EPMA). Magnesium can be determined either by EPMA or laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-MS).

For example, Fig. 8.8 shows a rim-to-rim MgO profile, analyzed by EPMA, on
the plagioclase labelled 4202-1 Pl1 by Moore et al. (2014).

Following the approach proposed by Costa et al. (2003), the dependence of Mg
trace element partitioning between plagioclase and melt on the anorthite content is
approximated by (Costa et al., 2003)

') ln
�%;Mg

�;Mg
= �-An + �, (8.20)
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where -An, �%;Mg, �
;
Mg, ) , and ' are the anorthite molar fraction, the concentration

of Mg in plagioclase, the concentration of Mg in the liquid, the temperature, and the
universal gas constant, respectively (Costa et al., 2003). For the � and � parameters,
Moore et al. (2014) proposed � = −21882 and � = −26352.

To model the diffusive process, the initial and equilibrium profiles have been
estimated starting from Eq. (8.20). Specifically, the initial profile is defined by the
melt concentration in equilibrium with the crystal core (Moore et al., 2014). Both
the initial and equilibrium profiles are calculated by using Eq. (8.20) (i.e., MgO is
7.8 wt % and 8.4 wt %, respectively). As boundary conditions, the crystal rims in
contact with the surrounding melt are open. This means that Mg values at the rims
are those of the equilibrium profile, where I used the formulation for the diffusion
coefficient reported by Costa et al. (2003):

�"6 =

[
2.92 × 10−4.1-An−3.1 exp

(
−266 000
')

)]
× 1012. (8.21)

The time-dependent form of the diffusion equation developed by Costa et al.
(2003) for Mg in a plagioclase is

m�"6

mC
=

(
�"6

m2�"6

mG2 +
m�"6

mG

m�"6

mG

)
(8.22)

− �

')

(
�"6

m�"6

mG

m-�#

mG
+ �"6

m�"6

mG

m-�#

mG
+ �"6�"6

m2-�#

mG2

)
.

Code listing 8.9 shows the finite-difference approximation of Eq. (8.22). In ac-
cordance with Moore et al. (2014), I used in code listing 8.9 the FTCS scheme given
in Eq. (8.18). For first-order derivatives, the explicit central scheme in space is

m�

mG
≈
�=
9+1 − �

=
9−1

2ΔG
. (8.23)

The notation is the same as that used in Eq. (8.7).

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pandas as pd
4
5 # Model parameters
6 T = 1200.0 # Temperature in Celsius
7 dx = 4.12 # average distance in micron among the analyses
8 dt = 0.9 * 1e4
9 RT = 8.3144 * (T + 273.15)
10 R = dt / dx ** 2
11
12 # Initial Conditions
13 my_dataset = pd.read_excel(’Moore_Phd.xlsx’)
14 my_distance = my_dataset.Distance.values
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15 Mg_C = my_dataset.MgO.values
16 An = my_dataset.An_mol_percent.values
17 An = An / 100
18 An_unsmoothed = An
19 An_smoothed = np.full(len(An),0.)
20
21 # Smooting the An profile to avoid numerical artifacts
22 D_smoot = np.full(len(An) ,0.0005)
23 for i in range(2):
24 An_smoothed[1:-1] = An_unsmoothed[1:-1] + R * D_smoot[1:-1]

* (An_unsmoothed[2:] - 2 * An_unsmoothed[1:-1] +
An_unsmoothed[:-2])

25 An_smoothed[0] = An[0]
26 An_smoothed[len(An)-1] = An[len(An)-1]
27 an_unsmoothed = An_smoothed
28
29 D_Mg = 2.92 * 10**(-4.1 * An_smoothed - 3.1)*np.exp(-266 * 1e3/RT

)*1e12 # Eq. 8 in Costa et al., 2003
30
31 fig, ax = plt.subplots(figsize=(7,5))
32
33 # Initial and Equilibrium Profiles
34 A = - 21882
35 B = - 26352
36 K = np.exp((A*An_smoothed+B)/RT) # Eq. 8 in Moore et al., 2014
37 c_eq = 8.4 * K
38 c_init = 7.8 * K
39 ax.plot(my_distance , c_eq, linewidth=2, color=’#ff464a’, label =’

Equilibrium Profile’)
40 ax.plot(my_distance , c_init,linewidth=2, color=’#342a77’, label=

’Initial Profile’)
41
42 # The numerical solution start here
43 colors = [’#4881e9’,’#e99648’,’#e9486e’]
44 t_final_weeks = np.array([4,10,21])
45
46 for t_w, color in zip(t_final_weeks ,colors):
47
48 C_Mg_new = np.full(len(c_eq),0.)
49 d2AN = np.full(len(c_eq),0.)
50 d2C_Mg = np.full(len(c_eq),0.)
51 dD_Mg = np.full(len(c_eq),0.)
52 dC_Mg = np.full(len(c_eq),0.)
53 dAn = np.full(len(c_eq),0.)
54
55 C_Mg = c_init
56 t_final = int(604800 * t_w/dt)
57 for i in range(t_final):
58 # boundary conditions: Rims are at equilibrium with melt
59 C_Mg_new[0] = c_eq[0]
60 C_Mg_new[len(c_eq)-1] = c_eq[len(c_eq)-1]
61
62 # Finite difference sol. of Eq. 7 in Costa et al., 2003
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63 d2AN[1:-1] = (An_smoothed[2:] - 2 * An_smoothed[1:-1] +
An_smoothed[:-2])

64 d2C_Mg[1:-1] = C_Mg[2:] - 2 * C_Mg[1:-1] + C_Mg[:-2]
65 dD_Mg[1:-1] = (D_Mg[2:]-D_Mg[:-2])/2
66 dC_Mg[1:-1] = (C_Mg[2:]-C_Mg[:-2])/2
67 dAn[1:-1] = (An_smoothed[2:]-An_smoothed[:-2])/2
68
69 C_Mg_new[1:-1] = C_Mg[1:-1] + R * ( (D_Mg[1:-1] * d2C_Mg

[1:-1] + dD_Mg[1:-1] * dC_Mg[1:-1]) - (A/RT) * (D_Mg[1:-1] *
dC_Mg[1:-1] * dAn[1:-1] + C_Mg[1:-1] * dD_Mg[1:-1] * dAn
[1:-1] + D_Mg[1:-1] * C_Mg[1:-1] * d2AN[1:-1]) )

70 C_Mg = C_Mg_new
71 ax.plot(my_distance , C_Mg_new , linestyle=’--’, linewidth=1,

label= str(t_w) + ’ weeks at 1200 Celsius deg.’)
72
73 ax.scatter(my_distance , Mg_C, marker=’o’, c=’#c7ddf4’, edgecolors

= ’k’, s=50, label=’Analytical Deteminations’, zorder=100,
alpha=0.7)

74 ax.set_ylim(0.19,0.27)
75
76 time_sec = t_final * dt
77 time_weeks = time_sec / 604800
78 ax.legend(title=r’$\bf{4202\_1-Pl1}$ (Moore et al., 2014)’, ncol

=2, loc=’lower center’)
79 ax.set_xlabel(r’Distance [$\mu m$]’)
80 ax.set_ylabel(’MgO [wt %]’)
81 fig.tight_layout()

Listing 8.9 Implementation of Eq. (8.22) in Python. Data are from Moore et al. (2014).
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Fig. 8.8 Result of code listing 8.9.
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Chapter 9
Probability Density Functions and Their Use in
Geology

9.1 Probability Distribution and Density Functions

Everitt (2006) defines the probability distribution for discrete random variables as
the mathematical formula that gives the probability for the variables to take on any
given value. For a continuous random variable, this function is graphically described
by a curve in the (G, H) plane. For a specific interval [G1, G2], the area under the curve
(i.e., the definite integral) provides the probability that the investigated variable
falls within [G1, G2] (Everitt, 2006). The term “probability density” also refers to a
probability distributions (Everitt, 2006).

Definition: A probability density function (PDF) is a function associated with
a continuous random variable whose value at any point in the sample space (i.e.,
the set of values possible for the random variable) is an estimate of the likelihood
of occurrence for that specific value. All PDFs share the following properties and
indexes (Hughes & Hase, 2010):

• the PDF is normalized when
∫ ∞
−∞ PDF(G)3G = 1;

• the probability that G lies between the values G1 6 G2 is %(G) =
∫ G2
G1

PDF(G)3G;
• the mean ` is

∫ ∞
−∞ GPDF(G)3G;

• the median "4 is given by
∫ "4

−∞ PDF(G)3G = 1
2 ;

• the variance f2 is
∫ ∞
−∞ (G − `)

2PDF(G)3G;
• the skewness `3 is

∫ ∞
−∞ (G − `)

3PDF(G)3G.

The second point tells us that, to solve a definite integral in the interval [G1, G2]
for a variable G describing a geological process with a known PDF, we define
the probability for the occurrence of the process between G1 and G2. For example,
knowing from zircon dating the PDF of age estimates for a sequence of eruptive
events, we can define the probability of eruption between two specific ages. A
specific example is given later in the chapter. Unfortunately, the PDF is rarely known
a priori. Under specific conditions, our measurements could follow a known PDF.
For example, the different formulations of the Central Limit Theorem tell us the

139
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circumstances under which the estimates of a sample mean converge to a normal
distribution (Section 9.6).

9.2 The Normal Distribution

Normal probability density function

The normal distribution is a bell-shaped PDF that occurs naturally inmany situations.
For example, it is applied to calibrate an analytical device, in error propagation
(Section 10), and, generally speaking, to interprete data sets resulting from a field
campaign (e.g., as a consequence of the Central Limit Theorem; see Section 9.6).
The normal probability density function (PDFN) is defined as follows:

PDFN (G, `, f) =
1

√
2cf2

4
− (G−`)

2

2f2 , (9.1)

where ` and f are the mean and the standard deviation, respectively. The following
list gives the main characteristics of the normal distribution:

• A normal distribution is bell-shaped with points of inflection at ` ± f.
• The mean, mode, and median are all the same.
• The curve is symmetric about its the center (i.e., around the mean `).
• All normal curves are non-negative for all G.
• Exactly half of the values are to the left of the center and exactly half of the values

are to the right.
• The limit of PDFN (G, `, f) as G goes to positive or negative infinity is zero.
• The height of any normal curve is maximal at G = `.
• The total area under the curve is unity.
• The shape of any normal curve depends on its mean ` and standard deviation f

(see code listing 9.1 and Fig. 9.1).
• The standardized normal PDF has a standard deviation of unity and a mean of

zero.

The ScyPy library provides the PDF for a normal, or Gaussian, distribution
through the function scipy.stats.norm.pdf(), but we can also define it by using the
def statement (i.e., define our own function; see code listing 9.1 and Fig. 9.1).

To get the probability of occurrence for a normally distributed entity G between
G1 and G2, we must solve the definite integral

%(G1 ≤ G ≤ G2) =
∫ G2

G1

PDFN (G, `, f)3G =
1

√
2cf2

∫ G2

G1

4
− (G−`)

2

2f2 3G. (9.2)

Equation 9.2 has no analytical solution, but given its importance, mathematicians
have developed a specific function to solve it: the error function.
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1 from scipy.stats import norm
2 import matplotlib.pyplot as plt
3 import numpy as np
4
5
6 # I’m going to define my normal PDF...
7 def normal_pdf(x, mean, std):
8 return 1/(np.sqrt(2*np.pi*std**2))*np.exp(-0.5*((x - mean)

**2)/(std**2))
9
10
11 x = np.arange(-12, 12, .001)
12
13 pdf1 = normal_pdf(x, mean=0, std=2)
14
15 #the built-in norm PDF in scipy.stats
16 pdf2 = norm.pdf(x, loc=0, scale=2)
17
18 fig = plt.figure(figsize=(7,9))
19 ax1 = fig.add_subplot(3, 1, 1)
20 ax1.plot(x,pdf1, color=’#84b4e8’, linestyle="-", linewidth=6,

label="My normal PDF")
21 ax1.plot(x,pdf2, color=’#ff464a’, linestyle="--", label="norm.

pdf() in scipy.stats ")
22 ax1.set_xlabel("x")
23 ax1.set_ylabel("PDF(x)")
24 ax1.legend(title = r"Normal PDF with $\mu$=0 and 1$\sigma$=2")
25
26
27 ax2 = fig.add_subplot(3, 1, 2)
28 for i in [1, 2, 3]:
29 y = normal_pdf(x,0,i)
30 ax2.plot(x, y, label=r"$\mu$ = 0, 1$\sigma$ = " + str(i))
31 ax2.set_xlabel("x")
32 ax2.set_ylabel("PDF(x)")
33 ax2.legend()
34
35 ax3 = fig.add_subplot(3, 1, 3)
36 for i in [-3, 0, 3]:
37 y = normal_pdf(x, i, 1)
38 ax3.plot(x, y, label=r"$\mu$ = " + str(i) + ", 1$\sigma$

= 1")
39 ax3.set_xlabel("x")
40 ax3.set_ylabel("PDF(x)")
41 ax3.legend()
42
43 fig.tight_layout()

Listing 9.1 The normal PDF.

The error function erf(G) is defined as
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erf(G) = 2
√
c

∫ G

0
4−C

2
3C. (9.3)

Consequently, the solution of the definite integral in Eq. (9.2) (i.e., a normal PDF in
the interval [G1,G2] with G1 ≤ G2) has the form

%(G1 ≤ G ≤ G2) =
1

√
2cf2

[
erf

(
G2 − `√

2cf2

)
− erf

(
G1 − `√

2cf2

)]
. (9.4)

Also, Eq. (9.2) can be solved numerically by using the techniques given in Chap-
ter 7. The code listing 9.2 gives the solution of Eq. (9.2) using both Eq. (9.4)
and the numerical methods trapz() [Eq. (7.14)] and sims() [Eq. (7.15)] available in
scipy.integrate.
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Fig. 9.1 Result of code listing 9.1.
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1 from scipy.stats import norm
2 import numpy as np
3 from scipy import special
4 from scipy import integrate
5
6 def integrate_normal(x1, x2, mu, sigma):
7 sup = 0.5*((special.erf((x2-mu)/(sigma*np.sqrt(2))))-(

special.erf((x1-mu)/(sigma*np.sqrt(2)))))
8 return sup
9
10 my_mu = 0
11 my_sigma = 1
12
13 my_x1 = 0
14 my_x2 = my_sigma
15
16 # The expected value is equal to 0.3413...
17 my_sup = integrate_normal(x1= my_x1, x2= my_x2, mu = my_mu,

sigma = my_sigma)
18
19 x = np.arange(my_x1, my_x2, 0.0001)
20 y = norm.pdf(x, loc=my_mu, scale= my_sigma) # normal_pdf(x,

mean = my_mu, std = my_sigma)
21
22 sup_trapz = integrate.trapz(y,x)
23 sup_simps = integrate.simps(y,x)
24
25 print("Solution Using erf: {:.9f}".format(my_sup))
26 print("Using the trapezoidal rule, trapz: {:.10f}".format(

sup_trapz))
27 print("Using the composite Simpson rule, simps: {:.10f}".

format(sup_simps))
28
29 ’’’
30 Output:
31 Solution Using erf: 0.341344746
32 Using the trapezoidal rule, trapz: 0.3413205476
33 Using the composite Simpson rule, simps: 0.3413205478
34 ’’’

Listing 9.2 Solving Eq. (9.2) using Eq. (9.4) and numerical methods.

Generating a normal sample distribution

The function numpy.random.normal(loc=0.0, scale=1.0, size=None) generates ran-
dom samples from a normal distribution (code listing 9.3). Generating a random
sample with a specific distribution has many applications. This chapter uses it to
demonstrate the properties of the various distributions. Random samples can be also
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used to perform modeling in Earth Sciences. For example, random sampling is at
the foundations of error propagation in the Monte Carlo method (Section 10.4).

1 import numpy as np
2 from scipy.stats import norm
3 import matplotlib.pyplot as plt
4
5 mu = 0 # mean
6 sigma = 1 # standard deviation
7 normal_sample = np.random.normal(mu, sigma, 15000)
8
9 # plot the histogram of the sample distribution
10 fig, ax = plt.subplots()
11 ax.hist(normal_sample , bins=’auto’, density=True, color=’#c7ddf4’

, edgecolor=’#000000’, label=’Random sample with normal
distribution’)

12
13 # probability density function
14 x = np.arange(-5,5, 0.01)
15 normal_pdf = norm.pdf(x, loc= mu, scale = sigma)
16 ax.plot(x, normal_pdf , color=’#ff464a’, linewidth=1.5, linestyle=

’--’, label=r’Normal PDF with $\mu$=0 and 1$\sigma$=1’)
17 ax.legend(title=’Normal Distribution’)
18 ax.set_xlabel(’x’)
19 ax.set_ylabel(’Probability Density’)
20 ax.set_xlim(-5,5)
21 ax.set_ylim(0,0.6)
22
23 # Descriptive statistics
24 aritmetic_mean = normal_sample.mean()
25 standard_deviation = normal_sample.std()
26
27 print(’Sample mean equal to {:.4f}’.format(aritmetic_mean))
28 print(’Sample standard deviation equal to {:.4f}’.format(

standard_deviation))
29
30 ’’’
31 Output: (your results will be sighly different because of the

pseudo-random nature of the distribution)
32 Sample mean equal to -0.0014
33 Sample standard deviation equal to 1.0014
34 ’’’

Listing 9.3 Generating a random sample with normal distribution (` = 0 and 1f = 1) and a
normal PDF having the same ` and 1f as the random sample.

Note that Monte Carlo simulations form the basis of many geological studies
involving estimates of uncertainties in the field of mineral exploration mapping
(Wang et al., 2020), slope stability (Tobutt, 1982), and groundwater hydrology
(Ballio & Guadagnini, 2004).
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Code listing 9.3 shows how to generate a random sample of 15 000 elements
characterized by ` = 0 and f = 1. Also, code listing 9.3 produces a normal PDF
with the same ` and 1f as the random sample.
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Fig. 9.2 Result of code listing 9.3.

9.3 The Log-Normal Distribution

The log-normal (or lognormal) distribution is a continuous probability distribution
of a random variable whose logarithm is normally distributed. The log-normal
distribution is often invoked as a fundamental rule in geology (Ahrens, 1953).Despite
its pitfalls, it remains widely used by geologists today (Reimann & Filzmoser, 2000).
The PDF for a log-normal distribution is given by

logPDFN (G, `=, f=) =
1
G

1√
2cf2

=

exp
{
− [log(G) − `=]

2

2f2
=

}
, (9.5)

where `= and f= are the mean and the standard deviation of the normal distribution
and are obtained by calculating the natural logarithm of the random variable. To
generate a log-normal distribution, the scipy.stats.lognorm() method requires that B
and the scale parameters corresponding to f= and 4`= , respectively, be specified.
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1 import matplotlib.pyplot as plt
2 import numpy as np
3 from scipy.stats import norm, lognorm
4
5 colors = [’#342a77’, ’#ff464a’, ’#4881e9’]
6 normal_mu = [0,0.5,1]
7 normal_sigma = [0.5,0.4,0.3]
8 x = np.arange(0.001, 7, .001) # for the log-normal PDF
9 x1 = np.arange(-2.5, 2.5, .001) # for the normal PDF
10
11 fig, (ax1, ax2) = plt.subplots(nrows = 2, ncols = 1, figsize =

(8,9))
12
13 for mu_n, sigma_n, color in zip(normal_mu , normal_sigma , colors):
14 lognorm_pdf = lognorm.pdf(x, s=sigma_n, scale=np.exp(mu_n))
15 r = lognorm.rvs(s=sigma_n, scale=np.exp(mu_n), size=15000)
16 ax1.plot(x, lognorm_pdf , color=color, label=r"$\mu_n$ = " +

str(mu_n) + r" - $\sigma_n$ = " + str(sigma_n))
17 ax1.hist(r, bins=’auto’, density=True, color=color,

edgecolor=’#000000’, alpha=0.5)
18 logr= np.log(r)
19 normal_pdf = norm.pdf(x1, loc= mu_n, scale = sigma_n)
20 ax2.plot(x1, normal_pdf , color=color, label=r"$\mu_n$ = " +

str(mu_n) + r" - $\sigma_n$ = " + str(sigma_n))
21 ax2.hist(logr, bins=’auto’, density=True, color=color,

edgecolor=’#000000’, alpha=0.5)
22 my_mu = logr.mean()
23 ax2.axvline(x=my_mu, color=color, linestyle="--", label=r"

calculated $\mu_n$ = " + str(round(my_mu ,3)))
24 my_sigma = logr.std()
25 print("Expected mean: " + str(mu_n) + " - Calculated mean: "

+ str(round(my_mu ,3)))
26 print("Expected std.dev.: " + str(sigma_n) + " - Calculated

std.dev.: " + str(round(my_sigma ,3)))
27
28 ax1.legend(title="log-normal distributions")
29 ax1.set_xlabel(’x’)
30 ax1.set_ylabel(’Probability Density’)
31 ax2.legend(title="normal distributions")
32 ax2.set_xlabel(’ln(x)’)
33 ax2.set_ylabel(’Probability Density’)
34
35 fig.tight_layout()

Listing 9.4 Generating random samples with log-normal distributions.
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Fig. 9.3 Result of code listing 9.4.

9.4 Other Useful PDFs for Geological Applications

The scipy.statsmodule allows themanagement ofmany probability distributions, that
are useful in geological applications. Examples include the Poisson, Pareto, and the
Student’s t distributions, which find use in fields such as geochemical determinations
(Ulianov et al., 2015), metal exploration (Agterberg, 2018), and geophysical investi-
gations (Troyan & Kiselev, 2010). Table 9.1 reports various probability distributions
from the scipy.stats module.

9.5 Density Estimation

Estimating density consists of reconstructing PDFs from the observed data (Gra-
macki, 2018; Silverman, 1998). I describe two main approaches to achieve this goal:
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Table 9.1 Selected statistical functions from the scipy.stats module.

Function Distribution Function Distribution

alpha() Alpha cont. random var. arcsine() Arcsine cont. random var.
beta() Beta cont. random var. bradford() Bradford cont. random var.
cauchy() Cauchy cont. random var. chi() Chi cont. random var.
chi2() Chi-squared cont. random var. cosine() Cosine cont. random var.
dgamma() Double gamma cont. random var. dweibull() Double Weibul cont. random var.
erlang() Erlang cont. random var. expon() Exponential cont. random var.
halfcauchy() Half-Cauchy cont. random var. halfnorm() Half-normal cont. random var.
laplace() Laplace cont. random var. levy() Levy cont. random var.
logistic() Logistic cont. random var. loggamma() Log gamma cont. random var.
loglaplace() Log-Laplace cont. random var. loguniform() Loguniform cont. random var.
maxwell() Maxwell cont. random var. pareto() Pareto cont. random var.
pearson3() Pearson type III cont. random var. powerlaw() Power-function cont. random var.
rayleigh() Rayleigh cont. random var. skewnorm() Skew-normal cont. random var.
t() Student’s t cont. random var. uniform() Uniform cont. random var.
bernoulli() Bernoulli discr. random var. binom() Binomial discr. random var.
boltzmann() Boltzmann discr. random var. dlaplace() Laplacian discr. random var.
geom() Geometric discr. random var. poisson() Poisson discr. random var.

The first approach is parametric and consists of selecting a known PDF and fitting
the observed data by varying its governing parameters (Gramacki, 2018; Silverman,
1998). For example, to fit a bell-shaped distribution with a normal PDF, we start
by estimating its mean ` and standard deviation f. Next, the obtained ` and f are
used to reconstruct a normal PDF and fit the observed distribution. The processes of
fitting described in code listings 9.3 and 9.4 are all examples of parametric density
estimations.

Although intriguing for its simplicity, the parametric approach is not always
the best choice (Gramacki, 2018; Silverman, 1998). For example, popular PDFs
are mostly unimodal, but many practical examples in geology involve multimodal
distributions. Also, choosing a specific known PDF is not always straightforward
when working with real geological applications. Consequently, the so-called non-
parametric approach is often the best choice (Gramacki, 2018; Silverman, 1998): it
estimates the density directly from the data, without making any parametric assump-
tions about the underlying distribution (Gramacki, 2018; Silverman, 1998).

A density histogram is the simplest form of a non-parametric density estimation
(Gramacki, 2018; Silverman, 1998). We encountered density histograms earlier in
this book in Section 4.2. The development of a density histogram is quite easy: it
consists of dividing the the sample space into intervals called bins (Gramacki, 2018;
Silverman, 1998) and then estimating the density of each bin by using (Gramacki,
2018; Silverman, 1998)

5̂ (G8 − ℎ/2 ≤ G < G8 + ℎ/2) =
:8

=ℎ
, (9.6)
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where G8 is the G value at the center of each bin, (i.e., the interval [G8−ℎ/2, G8 +ℎ/2]),
:8 is the number of observations in the interval G8 − ℎ/2 ≤ G8 < G8 + ℎ/2, = is the
number of bins, and ℎ is the bin width (i.e., ℎ = G8 − G8+1 = (Gmax − Gmin)/=. Note
that the symbol 5̂ refers to the empirical estimate of the PDF.

To estimate a PDF starting from experimental data, a more evolved method
than the density histograms is the kernel density estimation (KDE). A KDE is a
non-parametric way to estimate the PDF of a random variable. To understand, let
(G1, G2, G8 , . . . , G=) be a univariate, independent, and identically distributed sample
(i.e., all G8 have the same probability distribution) belonging to a distribution with an
unknown PDF.We are interested in estimating the shape 5̂ of this PDF. The equation
defining a KDE is

5̂ (G) = 1
=ℎ

=∑
8=1

 

(
G − G(8)

ℎ

)
, (9.7)

where  is the kernel, a non-negative function that integrates to unity [i.e.,∫ ∞
−∞  (G)3G = 1], and ℎ > 0 is a smoothing parameter called the bandwidth. A
range of kernel functions are commonly used: normal, uniform, triangular, biweight,
triweight, Epanechnikov, and others (code listing 9.5 and Fig. 9.4).

Python offers many different implementations for the development of a KDE
(Table 9.2).

1 from statsmodels.nonparametric.kde import KDEUnivariate
2 import matplotlib.pyplot as plt
3 import numpy as np
4
5 kernels = [’gau’, ’epa’, ’uni’, ’tri’, ’biw’, ’triw’]
6 kernels_names = [’Gaussian’, ’Epanechnikov’, ’Uniform’, ’

Triangular’, ’Biweight’, ’Triweight’]
7 positions = np.arange(1,9,1)
8
9 fig, ax = plt.subplots()
10
11 for kernel, kernel_name , pos in zip(kernels, kernels_names ,

positions):
12
13 # kernels
14 kde = KDEUnivariate([0])
15 kde.fit(kernel= kernel, bw=1, fft=False, gridsize=2**10)
16 ax.plot(kde.support, kde.density, label = kernel_name ,

linewidth=1.5, alpha=0.8)
17
18 ax.set_xlim(-2,2)
19 ax.grid()
20 ax.legend(title=’kernel functions’)

Listing 9.5 Kernel functions available in KDEUnivariate().
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Fig. 9.4 Result of code listing 9.5.

Table 9.2 Selection of kernel density estimators in Python.

Package Function Description

Scipy gaussian_kde() Kernel-density estimate using Gaussian kernels
Statsmodels KDEUnivariate() Univariate kernel density estimator
Statsmodels KDEMultivariate() Multivariate kernel density estimator
Scikit-Learn KernelDensity() Multivariate kernel density estimator
Seaborn kdeplot() Plot univariate or bivariate distributions using kernel

density estimation

Code listing 9.6 and Fig. 9.5 show the application of theKDEUnivariate() function
to geochemical data and how the bandwidth affects the resulting KDE estimate.

As an example application of density histograms and KDEs for unravelling PDFs
in geological applications, the code listing 9.7 and Fig. 9.6 show the reconstruction
of 238U/206Pb zircon ages for the last 1500 My. The data are from Puetz (2018). Due
to the recent re-rising linking magmatism to mass extinction (Davies et al., 2017;
Liu et al., 2017; Tegner et al., 2020), the largest extinction events are also reported.

1 from statsmodels.nonparametric.kde import KDEUnivariate
2 import pandas as pd
3 import numpy as np
4 import matplotlib.pyplot as plt
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5
6 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
7
8 x = my_dataset.Zr
9 x_eval = np.arange(0, 1100, 1)
10
11 fig = plt.figure()
12
13 ax1 = fig.add_subplot(2, 1, 1)
14 # Density Histogram
15 ax1.hist(x, bins=’auto’, density=True, label=’Density Histogram’,

color=’#c7ddf4’, edgecolor=’#000000’)
16 kde = KDEUnivariate(x)
17 kde.fit()
18 my_kde = kde.evaluate(x_eval)
19 ax1.plot(x_eval, my_kde, linewidth=1.5, color=’#ff464a’, label=’

gaussian KDE - auto bandwidth selection’)
20 ax1.set_xlabel(’Zr [ppm]’)
21 ax1.set_ylabel(’Probability density’)
22 ax1.legend()
23
24 ax2 = fig.add_subplot(2, 1, 2)
25 # Density Histogram
26 ax2.hist(x, bins= "auto", density = True, label=’Density

Histogram’, color=’#c7ddf4’, edgecolor=’#000000’)
27
28 # KDE
29 # Effect of bandwidth
30 for my_bw in [10,50,100]:
31
32 kde = KDEUnivariate(x)
33 kde.fit(bw = my_bw)
34
35 my_kde = kde.evaluate(x_eval)
36 ax2.plot(x_eval, my_kde, linewidth = 1.5, label=’gaussian KDE

- bw: ’ + str(my_bw))
37
38 ax2.set_xlabel(’Zr [ppm]’)
39 ax2.set_ylabel(’Probability density’)
40 ax2.legend()
41
42 fig.tight_layout()

Listing 9.6 Example application of KDE in geology.
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1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import numpy as np
4 from statsmodels.nonparametric.kde import KDEUnivariate
5
6 # import Zircon data from Puetz (2010)
7 my_data = pd.read_excel(’1-s2.0-S1674987117302141 -mmc1.xlsx’,

sheet_name=’Data’)
8 my_data = my_data[(my_data.age206Pb_238U >0)&(my_data.

age206Pb_238U <1500)]
9 my_sample = my_data.age206Pb_238U
10
11 # Plot the Density Histogram
12 fig, ax = plt.subplots(figsize=(8,5))
13 bins = np.arange(0,1500,20)
14 ax.hist(my_sample , bins, color=’#c7ddf4’, edgecolor=’k’,

density=True, label=’Density Histogram - bins = 20 My’)
15
16 # Compute and plot the KDE
17 age_eval = np.arange(0,1500,10)
18 kde = KDEUnivariate(my_sample)
19 kde.fit(bw=20)
20 pdf = kde.evaluate(age_eval)
21 ax.plot(age_eval , pdf, label =’Gaussian KDE - bw = 20 Ma’,

linewidth=2, alpha=0.7, color=’#ff464a’)
22
23 # Adjust diagram parameters
24 ax.set_ylim(0,0.0018)
25 ax.set_xlabel(’Age (My)’)
26 ax.set_ylabel(’Probability Densisty’)
27 ax.legend()
28 ax.grid(axis=’y’)
29
30 # Plot mass extinction annotations
31 mass_extinction_age = [444, 359, 252, 66, 0]
32 pdf_mass_extinction_age = kde.evaluate(mass_extinction_age)
33 mass_extincyion_name = ["Ordovician -Silurian", "Late Devonian"

, "Permian-Triassic", "Cretaceous -Paleogene", "Men’s
Triggered?"]

34 y_offsets = [0.0001, 0.0001, 0.0002, 0.0002, 0.0004]
35 y_texts = [30, 105, 15, 62, 160]
36 x_texts = [30, 30, 30, 30, 30]
37
38 for x, y, name, x_text, y_text, y_offset in zip(

mass_extinction_age , pdf_mass_extinction_age ,
mass_extincyion_name , x_texts, y_texts, y_offsets):

39 ax.annotate(name, xy=(x, y + y_offset), xycoords=’data’,
40 xytext=(x_text, y_text), textcoords=’offset points’,
41 arrowprops=dict(arrowstyle="->",
42 connectionstyle="angle, angleA=0, angleB=90, rad=10"))
43
44 fig.tight_layout()

Listing 9.7 Example application of KDE in geology.
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Fig. 9.5 Result of code listing 9.6.

Fig. 9.6 Result of code listing 9.7.
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9.6 The Central Limit Theorem and Normal Distributed Means

The Central Limit Theorem can be stated in different ways, the easiest of which is
that given by Hughes and Hase (2010): “the sum of a large number of independent
random variables, each with finite mean and variance, will tend to be normally
distributed, irrespective of the distribution function of the random variable.”

To familiarize ourselves with the Central Limit Theorem, code listing 9.8 and
Fig. 9.7 replicate part of the experiment shown in Fig. 3.7 of Hughes and Hase
(2010).
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Fig. 9.7 Result of code listing 9.8.

In detail, code listing 9.8 starts from three different distributions of the random
variable (i.e., uniform, normal, and Laplace; see Table 9.1) to create (1) the relative
PDF (first column of Fig. 9.7), (2) 1000 randomly generated occurrences of the
random variable (second column of Fig. 9.7), and (3) the estimate of the mean value
of the distribution based on 1000 attempts using three randomly selected occurrences
of the random variable (third column of Fig. 9.7).

In accordance with the Central Limit Theorem, the histograms of the estimated
means are normally distributed (third column of Fig. 9.7) with a peak mean at 1.5.
Also, the distribution of the means (third column of Fig. 9.7) is narrower than the
original distributions (second column of Fig. 9.7) by a factor

√
# . Further details

and some geological implications of the Central Limit Theorem are presented and
discussed in Chapter 10.
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1 import numpy as np
2 import scipy.stats as stats
3 import matplotlib.pyplot as plt
4
5 fig = plt.figure(figsize=(8,6))
6
7 dists = [stats.uniform(loc=0.5, scale=2), stats.norm(loc=1.5,

scale=0.5), stats.laplace(loc=1.5, scale=0.6)]
8 names = [’Uniform’, ’Normal’, ’Laplace’]
9 x = np.linspace(0,3,1000)
10
11 for i, (dist, name) in enumerate(zip(dists, names)):
12
13 # Probability Density Function (pdf)
14 pdf = dist.pdf(x)
15 ax1 = fig.add_subplot(3, 3, 3*i+1)
16 ax1.plot(x, pdf, color=’#4881e9’, label= name + ’ PDF’)
17 ax1.set_xlim(0,3)
18 ax1.set_ylim(0,1.5)
19 ax1.set_xlabel(’Variable, x’)
20 ax1.set_ylabel(’Prob. Dens.’)
21 ax1.legend()
22
23 #Distribution (rnd) of the Random Variable based on the

selected pdf
24 rnd = dist.rvs(size=5000)
25 ax2 = fig.add_subplot(3, 3, 3*i+2)
26 ax2.hist(rnd, bins=’auto’, color=’#84b4e8’, edgecolor=’

#000000’)
27 ax2.set_xlim(0,3)
28 ax2.set_ylim(0,400)
29 ax2.set_xlabel(’Variable, x’)
30 ax2.set_ylabel(’Occurrences’)
31
32 ax3 = fig.add_subplot(3, 3, 3*i+3)
33 mean_dist = []
34 for _ in range(1000):
35 mean_dist.append(dist.rvs(size=3).mean())
36 mean_dist = np.array(mean_dist)
37 ax3.hist(mean_dist , density=True, bins=’auto’, color=’#84

b4e8’, edgecolor=’#000000’)
38 normal = stats.norm(loc= mean_dist.mean(), scale=

mean_dist.std())
39 ax3.plot(x, normal.pdf(x), color=’#ff464a’)
40 ax3.set_xlim(0,3)
41 ax3.set_ylim(0,1.5)
42 ax3.set_xlabel(’Mean’)
43 ax3.set_ylabel(’Prob. Dens.’)
44
45 fig.tight_layout()

Listing 9.8 The Central Limit Theorem (Hughes & Hase, 2010).





Chapter 10
Error Analysis

10.1 Dealing with Errors in Geological Measurements

As reported by Hughes and Hase (2010), the aim of error analysis is to quantify
and record the errors associated with the inevitable spread in a set of measurements.
This is also true for geological estimates. The following definitions are taken from
the book “Measurements and their Uncertainties” by Hughes and Hase (2010). Two
fundamental terms describe the uncertainties associated with a set of measurements:
precision and accuracy. An accurate measurement is one in which the results of
the experiments are consistent with the accepted value. A precise result is one
where the spread of measurements is “small” either relative to the average results
or in absolute magnitude. This chapter also discusses the standard error (i.e., the
uncertainty in estimates of the mean) and how to propagate uncertainties by using
either the linear method or the Monte Carlo approach.

Precision and accuracy

To introduce the concepts of precision and accuracy, I use a practical example: the
estimate of the figure of merit of an instrument used to chemically characterize
geological samples. The definition of the precision and the accuracy of an analytical
device is typically obtained by using a reference material such as a homogeneous
chemical sample of known composition (better if certified), analyzed as an unknown.
The following results were obtained during repeated analyses of the USGS BCR2G
reference material at the LA-ICP-MS facility of Perugia University over about five
years. These results were obtained in very comfortable operating conditions using a
large beam diameter (80 `m), a frequency of 10Hz, and a laser fluence of≈3.5 J/cm2.
The chemical element reported here is lanthanum (La), which is present at a concen-
tration of 25.6± 0.5 ppm (Rocholl, 1998). Data are stored in the USGS_BCR2G.xls
file.

157
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1 import pandas as pd
2 import scipy.stats as stats
3 import matplotlib.pyplot as plt
4 import numpy as np
5
6 my_dataset = pd.read_excel(’USGS_BCR2G.xls’, sheet_name=’Sheet1’)
7
8 fig, ax = plt.subplots()
9 ax.hist(my_dataset.La, bins=’auto’, density=True, edgecolor=’

#000000’, color=’#c7ddf4’, label="USGS BCR2G")
10 ax.set_xlabel("La [ppm]")
11 ax.set_ylabel("Probability Density")
12
13 x = np.linspace(23,27.5,500)
14 pdf = stats.norm(loc=my_dataset.La.mean(), scale=my_dataset.La.

std()).pdf(x)
15
16 ax.plot(x,pdf, linewidth=2, color=’#ff464a’, label=’Normal

Distribution’)
17
18 ax.legend()

Listing 10.1 LA-ICP-MS determinations of La in the USGS BCR2G reference material.
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Fig. 10.1 Result of code listing 10.1.
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Specifically, accuracy measures the agreement of our estimates with real values.
Typically, the accuracy of an analytical device (LA-ICP-MS in our case) is estimated
by evaluating the agreement between the estimates and the accepted values of a
reference material. The deviation of the mean ` of the measurements from the
accepted value ' is an estimate of accuracy:

Accuracy =
` − '
'
× 100%. (10.1)

The precision of a set ofmeasurements is the spread in the distribution ofmeasured
values and can be estimated by using an index of dispersion (Chapter 5). Typically,
the standard deviation serves as the metric of dispersion and is often expressed in
percent:

Precision =
f

'
× 100%. (10.2)

1 my_mean = my_dataset.La.mean()
2 R = 25.6
3 accuracy = 100 * (my_mean - R) / R
4 my_std = my_dataset.La.std()
5 precision = 100 * my_std / R
6
7 fig, ax = plt.subplots(figsize=(6,5))
8 ax.hist(my_dataset.La, bins = ’auto’, density = True, edgecolor =

’#000000’, color = ’#c7ddf4’, label = ’USGS BCR2G’)
9 ax.set_xlabel(’La [ppm]’)
10 ax.set_ylabel(’Probability Density’)
11
12 ax.axvline(x=my_dataset.La.mean(), color=’#ff464a’, linewidth=3,

label=’Mean of the Measurements:’ + str(round(my_mean, 1)) +
’[ppm]’)

13 ax.axvline(x = R, color=’#342a77’, linewidth=3, label=’Accepded
Value’)

14
15 ax.axvline(x = my_mean - my_std, color = ’#4881e9’, linewidth =

1)
16 ax.axvline(x = my_mean + my_std, color = ’#4881e9’, linewidth =

1)
17 ax.axvspan(my_mean - my_std, my_mean + my_std, alpha = 0.2,

color = ’#342a77’, label = r’$1\sigma$’)
18 ax.legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.15),

fancybox=False, shadow=False, ncol=2, title = ’Accuracy =
{:.1f} % - Precision = {:.1f} %’.format(accuracy , precision))

19
20 fig.tight_layout()

Listing 10.2 Accuracy and precision.
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Fig. 10.2 Result of code listing 10.2.

Confidence intervals

As a consequence of the Central Limit Theorem, a sufficiently large set of measure-
ments of the same target will approach a normal distribution due to the many random
sources of (small) uncertainty (Fig. 10.1; see Section 9.6 for further details).

The normal distribution enables us to verify the probability of La measurements
to lie within one (68.27%), two (95.45%), or three standard deviations (99.27%)
around the mean value obtained using Eq. (9.4) (code listing 10.3 and Fig. 10.3).
Therefore, to provide a complete picture of our estimates for a quantity G, the results
should be provided using the mean value `G and the confidence intervals (Hughes
& Hase, 2010; Taylor, 1997):

` ± =fG , (10.3)

with = = 1, 2, 3, . . . corresponding to confidence intervals of 68.27%, 95.45%,
99.27%, . . . , respectively.
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1 import numpy as np
2 import matplotlib.pyplot as plt
3
4
5 def normal_pdf(x, mu, sigma):
6 pdf = 1/(sigma*np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*

sigma**2))
7 return pdf
8
9 signa_levels = [1, 2, 3]
10 confidences = [68.27, 95.45, 99.73]
11
12 fig = plt.figure(figsize=(7,8))
13
14 my_mean = my_dataset.La.mean()
15 my_std = my_dataset.La.std()
16
17 x_pdf = np.linspace(my_mean - 4 * my_std, my_mean + 4 * my_std

, 1000)
18 my_pdf = normal_pdf(x_pdf, my_mean, my_std)
19
20 for signa_level , confidence in zip(signa_levels ,confidences):
21 ax = fig.add_subplot(3, 1, signa_level)
22 ax.hist(my_dataset.La, bins=’auto’, density=True,

edgecolor=’#000000’, color=’#c7ddf4’, label=’USGS BCR2G’,
zorder=0)

23 x_confidence = np.linspace(my_mean - signa_level * my_std,
my_mean + signa_level * my_std, 1000)

24 ax.plot(x_pdf, my_pdf, linewidth=2, color=’#ff464a’, label
=’Normal Distribution’, zorder=1)

25 ax.fill_between(x_confidence , normal_pdf(x_confidence ,
my_mean, my_std), y2=0, color=’#ff464a’, alpha=0.2, label=
’prob. = {}’.format(confidence) + ’ %’, zorder=1)

26 ax.legend(ncol=3, loc=’upper center’, title=r’$\mu~ \pm ~$
’ + str(signa_level) + r’$ ~ \sigma ~ $ = ’ + ’{:.1f}’.
format(my_mean) + r’$~ \pm ~$’ + ’{:.1f}’.format(
signa_level * my_std))

27 ax.set_ylim(0,1.6)
28 ax.set_xlabel(’La [ppm]’)
29 ax.set_ylabel(’prob. dens.’)
30
31 fig.tight_layout()

Listing 10.3 Confidence intervals.

Uncertainties of mean estimates: Standard error

The standard deviation of the mean, or standard error (� , is a measure of the
uncertainty in the location of the mean of a set of measurements (Hughes & Hase,
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Fig. 10.3 Result of code listing 10.3.

2010):
(� =

fB√
=
. (10.4)

Consequently, mean estimates `B should be reported as (Hughes & Hase, 2010;
Taylor, 1997)

`B ± (� = `B ±
fB√
=
. (10.5)

The significance of Eq. (10.4) can be evaluated in light of the Central Limit
Theorem. Assume you are sampling a homogeneous material (e.g., a geological
reference material like the USGS BCR2G) characterized by a perfectly known target
value of 1.5 (the units are not important here) using a well-calibrated analytical
device (i.e., no accuracy biases).
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1 import numpy as np
2 import scipy.stats as stats
3 import matplotlib.pyplot as plt
4
5 mean_value = 1.5
6 std_dev = 0.5
7 dist = stats.norm(loc=mean_value , scale=std_dev)
8 x = np.linspace(0, 3, 1000)
9 fig = plt.figure(figsize=(6,8))
10
11 # Distribution of the Random Variable based on the normal PDF
12 pdf = dist.pdf(x)
13 ax1 = fig.add_subplot(3, 1, 1)
14 ax1.plot(x, pdf, color=’#84b4e8’, label =r’$\mu_p$ = 1.5 - 1$\

sigma_p$ = 0.5’)
15 ax1.set_xlim(0,3)
16 ax1.set_ylim(0,1)
17 ax1.set_xlabel(’Variable, x’)
18 ax1.set_ylabel(’Prob. Dens.’)
19 ax1.legend(title = ’Parent Distribution’)
20
21 # Dependence of the SE on the Central Limit Theorem
22 ax2 = fig.add_subplot(3, 1, 2)
23 std_of_the_mean = []
24 ns = [2, 10, 100, 500]
25
26 for n in ns:
27 # Mean Estimation Based on 1000 attempts using N values
28 mean_dist = []
29 for _ in range(1000):
30 mean_dist.append(dist.rvs(size=n).mean())
31 mean_dist = np.array(mean_dist)
32 std_of_the_mean.append(mean_dist.std())
33 normal = stats.norm(loc=mean_dist.mean(), scale=mean_dist.

std())
34 ax2.plot(x, normal.pdf(x), label=’N = ’ + str(n))
35 ax2.set_xlim(0, 3)
36 ax2.set_xlabel(’Mean’)
37 ax2.set_ylabel(’Prob. Dens.’)
38 ax2.legend(title=’Standard Deviation of the Means’, ncol=2)
39
40 # SE estimates and the empirically derived std of the Means
41 ax3 = fig.add_subplot(3, 1, 3)
42 ax3.scatter(ns, std_of_the_mean , color=’#ff464a’, edgecolor=’

#000000’, label=’Standard Deviation of the Means’, zorder
= 1)

43 n1 = np.linspace(1, 600, 600)
44 se = std_dev / np.sqrt(n1)
45 ax3.plot(n1 , se, c=’#4881e9’, label=’Standard Error (SE)’,

zorder=0)
46 ax3.set_xlabel(’N’)
47 ax3.set_ylabel(’Standard Error, SE’)
48 ax3.legend()
49 fig.tight_layout()

Listing 10.4 Standard error estimate.
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Fig. 10.4 Result of code listing 10.4.

Given the numerous random uncertainties associated with the analytical device,
the target population (i.e., the set of all possible measurements) will assume a
normal distribution, in agreement with the Central Limit Theorem (see upper panel
of Fig. 10.4). To make the analysis, we start sampling the target population. What is
the uncertainty associatedwith themean estimate based on = estimates? The standard
error is a measure of this uncertainty and is measured either by using Eq. (10.4) or by
repeating the mean estimate many times (1000 in the case of code listing 10.4) with
# measurements and estimating the standard deviation of the set of means obtained
(see middle panel of Fig. 10.4). Being geologists, we only trust the evidence, so
the bottom panel of Fig. 10.4 compares the (� obtained using Eq. (10.4) with the
distribution of the standard deviation of the mean obtained in the above experiment.
Code listing 10.4 shows the procedure to unravel the meaning of the (� and create
Fig. 10.4.
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But what information is provided by the (�? To answer this, consider code
listing 10.4 and Fig. 10.4, where we are sampling (e.g., analyzing an unknown
geological material, or sampling a geological quantity such as a deep or strike) the
same normal population of Fig. 10.4 characterized by a mean and standard deviation
of 1.5 and 0.5, respectively. Making only three estimates gives mean and standard-
deviation estimates of 1.56 and 0.51, respectively. In this case, (� = 0.23, so we
should write `B = 1.56±0.23 and fB = 0.51. Note that three parameters are required
to define our measurements. Upon increasing =, (� decreases progressively, with
`B becoming a more robust estimate of the mean value of the parent distribution
(Fig. 10.4).

Always remember that the standard deviation is a measure of the spread of the
sampled distribution. It highlights how accurately the mean represents the sampled
distribution. In contrast, the standard error measures how far the sample mean `B
of the measurements is likely to be from the true population mean `? . Finally, note
that (� is always less than fB .

10.2 Reporting Uncertainties in Binary Diagrams

Errors are always present in empirical estimates (e.g., geological samplings and
analytical determinations). Consequently, uncertainties should always be taken into
account during data visualization and modeling. Assuming a normal distribution of
our estimates (cf. the Central Limit Theorem described in Section. 9.6), we can set
confidence levels at 68%, 95%, and 99.7% using 1f, 2f, and 3f, respectively.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 my_dataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
5
6 x = my_dataset1.Zr
7 y = my_dataset1.Th
8 dx = my_dataset1.Zr * 0.1
9 dy = my_dataset1.Th * 0.1
10
11 fig, ax = plt.subplots()
12 ax.errorbar(x, y, xerr=dx, yerr=dy, marker=’o’, markersize=4,

linestyle=’’, color=’#c7ddf4’, markeredgecolor=’k’, ecolor=’
0.7’, label=’Recent CFC activity’)

13 ax.set_xlabel(’Zr [ppm]’)
14 ax.set_ylabel(’Th [ppm]’)
15 ax.legend(loc=’upper left’)

Listing 10.5 Reporting errors in binary diagrams.
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1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.array([250,300,360,480,570,770,870,950])
5 y = np.array([20,25,30,40,50,70,80,100])
6
7
8 fig = plt.figure(figsize=(6,8))
9
10 # xerr and yerr reported as single value
11 dx = 50
12 dy = 10
13 ax1 = fig.add_subplot(3,1,1)
14 ax1.errorbar(x, y, xerr=dx, yerr=dy, marker=’o’, markersize=6,

linestyle = ’’, color=’#c7ddf4’, markeredgecolor=’k’, ecolor=
’0.7’, label=’single value for xerr and yerr’)

15 ax1.legend(loc=’upper left’)
16
17 # xerr and yerr reported as 1D array
18 dx = np.array([25,35,40,120,150,30,30,25])
19 dy = np.array([8,8,6,7,7,35,40,40])
20
21 ax2 = fig.add_subplot(3,1,2)
22 ax2.errorbar(x, y, xerr=dx, yerr=dy, marker=’o’, markersize=6,

linestyle = ’’, color=’#c7ddf4’, markeredgecolor=’k’, ecolor=
’0.7’, label=’xerr and yerr as 1D array’)

23 ax2.set_ylabel(’Th [ppm]’)
24 ax2.legend(loc=’upper left’)
25
26 # xerr and yerr reported as 2D array
27 dx = np.array

([[80,60,70,100,150,150,20,100],[20,25,30,30,30,30,90,30]])
28 dy = np.array([[10,4,10,15,15,20,5,5],[2,8,4,4,6,7,10,20]])
29
30 ax3 = fig.add_subplot(3,1,3)
31 ax3.errorbar(x, y, xerr=dx, yerr=dy, marker=’o’, markersize=6,

linestyle = ’’, color=’#c7ddf4’, markeredgecolor=’k’, ecolor=
’0.7’, label=’xerr and yerr as 2D array’)

32 ax3.set_xlabel(’Zr [ppm]’)
33 ax3.legend(loc=’upper left’)
34
35 fig.tight_layout()

Listing 10.6 Reporting errors in binary diagrams.

In binary diagrams, errors can easily be reported by using the errorbar() function
of the matplotlib.pyplot sub-package (code listing 10.5 and Fig. 10.5).

The errorbar() function accepts all arguments available to plot(), plus xerr, yerr,
and the related arguments. xerr and yerr refer to the error on the G and H axes,
respectively. They can be a floating point number (i.e., a number defining the same
error for all the measurements).
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Fig. 10.5 Result of code listing 10.5.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.array([200, 300, 360, 480, 570, 770, 870, 950])
5 y = np.array([10, 15, 30, 40, 50, 70, 80, 100])
6 dx = 40
7 dy = 10
8
9 fig = plt.figure()
10 ax1 = fig.add_subplot(2, 1, 1)
11 ax1.errorbar(x, y, xerr=dx, yerr=dy, marker=’o’, markersize=4,

linestyle=’’, color=’k’, ecolor=’0.7’, elinewidth=3,
capsize=0, label=’Recent activity of the CFC’)

12 ax1.legend(loc=’upper left’)
13 ax1.set_xlabel(’Zr [ppm]’)
14 ax1.set_ylabel(’Th [ppm]’)
15
16 ax2 = fig.add_subplot(2,1,2)
17 ax2.errorbar(x, y, xerr=dx, yerr=dy, marker=’o’, markersize=6,

linestyle=’’, color=’#c7ddf4’, markeredgecolor=’k’,
ecolor=’k’, elinewidth = 0.8, capthick=0.8, capsize=3,
label=’Recent activity of the CFC’)

18 ax2.legend(loc=’upper left’)
19 ax2.set_xlabel(’Zr [ppm]’)
20 ax2.set_ylabel(’Th [ppm]’)

Listing 10.7 Reporting errors in binary diagrams.
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Fig. 10.6 Result of code listing 10.6.

Also, they can be a one- or two-dimensional arrays. Using one-dimensional arrays
(e.g., Fig. 10.5), a symmetrical error (i.e., G ± G4AA) is defined for each single point.
Finally, by reporting xerr and yerr as a two-dimensional array, we can report non-
symmetrical errors (Fig. 10.6 ).
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1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4
5 def plot_errorbar(x,y, dx, dy, xoffset, yoffset, text, ax):
6 ax.errorbar(x,y, xerr=dx, yerr=dy, marker=’’, linestyle =

’’, elinewidth = .5, capthick=0.5, ecolor=’k’, capsize=3)
7 ax.text(x + xoffset, y + yoffset, text)
8
9 my_dataset1 = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
10
11 x = my_dataset1.Zr
12 y = my_dataset1.Th
13
14 dx = 60
15 dy = 7
16
17 errorbar_x = x.max() - x.max() * 0.1
18 errorbar_y = y.min() + y.max() * 0.1
19
20 fig, ax1 = plt.subplots()
21 ax1.scatter(x, y, marker=’o’, color=’#4881e9’, edgecolor=’k’,

alpha=0.8, label=’Recent activity of the CFC’)
22
23 plot_errorbar(errorbar_x , errorbar_y , dx, dy, dx/4, dy/4, r’2$

\sigma$’, ax1)
24
25 ax1.legend(loc=’upper left’)
26 ax1.set_xlabel(’Zr [ppm]’)
27 ax1.set_ylabel(’Th [ppm]’)

Listing 10.8 Reporting errors in binary diagrams.

10.3 Linearized Approach to Error Propagation

Whenusing a linearized approximation (i.e., a first-order Taylor series expansion) and
assuming uncorrelated and statistically independent variables (i.e., the independent
variables are uncorrelated with the magnitude and the error of all other parameters),
the general formula for error propagation takes the form (Hughes & Hase, 2010;
Taylor, 1997)

fI =

√(
mI

m0

)2
(f0)2 +

(
mI

m1

)2
(f1)2 +

(
mI

m2

)2
(f2)2 + · · ·, (10.6)
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Fig. 10.7 Result of code listing 10.7.

where I is a multi-variable function I = 5 (0, 1, 2, . . . ) that depends on the measured
variables 0 ± f0, 1 ± f1 , 2 ± f2 , etc. Table 10.1 shows the result of applying
Eq. (10.6) to some simple, common equations that are often useful to solve geological
problems. If correlations between the variables involved cannot be neglected (i.e.,
they are not independent), additional terms should be added. For example, given the
function I = 5 (G, H), which depends on measured quantities G ±fG and H ±fH , with
covariance fGH between G and H, the uncertainty in I is

fI =

√(
mI

mG

)2
(fG)2 +

(
mI

mH

)2 (
fH

)2 + 2
mI

mG

mI

mH
fGH . (10.7)
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Fig. 10.8 Result of code listing 10.8.

Table 10.1 Error propagation for common equations that are often useful to solve geological
problems. Modified from Hughes and Hase (2010).

Function I Error Function I Error

I = 1/0 fI = I
2f0 I = exp(0) fI = If0

I = ln(0) fI = f0/0 I = 100 fI = f0/[0 ln(10) ]

I = 0= fI =
��=0=−1

�� f0 I = log10 (0) fI = 100 ln(10)f0

I = sin(0) fI = |cos(0) | f0 I = cos(0) fI = |sin(0) | f0

I = 0 + 1 fI =
√
(f0)2 + (f1)2 I = 0 − 1 fI =

√
(f0)2 + (f1)2

I = 01 fI = I

√
( f0

0
)2 + ( f1

1
)2 I = 0/1 fI = I

√
( f0

0
)2 + ( f1

1
)2
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Keep in mind that the reported linearized approach, based on the first-order Taylor
series expansion, assumes that the magnitude of the error is small (Hughes & Hase,
2010; Taylor, 1997). Consequently, it is only valid when the uncertainties involved
are sufficiently small (e.g., less than ≈10%) to provide a rough estimate (Hughes &
Hase, 2010; Taylor, 1997).

In the simplest cases, you could develop and run Python functions to propagate
errors. Code listing 10.9 shows two practical examples (i.e., sum and division) based
on the rules listed in Table 10.1.

1 import numpy as np
2
3 def sum_ab(a, b, sigma_a, sigma_b):
4 z = a + b
5 sigma_z = np.sqrt(sigma_a**2 + sigma_b**2)
6 return z, sigma_z
7
8 def division_ab(a, b, sigma_a, sigma_b):
9 z = a / b
10 sigma_z = z * np.sqrt((sigma_a/a)**2 + (sigma_b/b)**2)
11 return z, sigma_z

Listing 10.9 Example application of rules reported in Table 10.1 for sum and division.

Also, you could use the symbolic approach to solve Eq. (10.6) or Eq. (10.7). For
example, code listing 10.10 uses SymPy to propagate errors through Eq. (10.6).

1 import sympy as sym
2
3 a, b, sigma_a, sigma_b = sym.symbols("a b sigma_a sigma_b")
4
5 def symbolic_error_prop(func, val_a, val_sigma_a , val_b=0,

val_sigma_b=0):
6
7 z = sym.lambdify([a,b],func, ’numpy’)
8 sigma_z = sym.lambdify([a, b, sigma_a, sigma_b], sym.sqrt((

sym.diff(func, a)**2 * sigma_a**2)+(sym.diff(func, b)**2 *
sigma_b**2)), ’numpy’)

9 val_z = z(a=val_a, b=val_b)
10 val_sigma_z = sigma_z(a=val_a, b=val_b, sigma_a=val_sigma_a ,

sigma_b=val_sigma_b)
11
12 return val_z, val_sigma_z

Listing 10.10 Example application of symbolic approach to solving Eq. (10.6).
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1 my_a = np.array([2, 3, 5, 7, 10])
2 my_sigma_a = np.array([0.2, 0.3, 0.4, 0.7, 0.9])
3 my_b = np.array([2, 3, 6, 4, 8])
4 my_sigma_b = np.array([0.3, 0.3, 0.5, 0.5, 0.5])
5
6 # errors propagated using custom functions
7 my_sum_ab_l , my_sigma_sum_ab_l = sum_ab(a=my_a, b=my_b,

sigma_a=my_sigma_a , sigma_b=my_sigma_b)
8 my_division_ab_l , my_sigma_division_ab_l = division_ab(a=my_a,

b=my_b, sigma_a=my_sigma_a , sigma_b=my_sigma_b)
9
10 # errors propagated using the symbolic approach
11 my_sum_ab_s , my_sigma_sum_ab_s = symbolic_error_prop(func=a+b,

val_a=my_a, val_sigma_a=my_sigma_a , val_b=my_b,
val_sigma_b=my_sigma_b)

12 my_division_ab_s , my_sigma_division_ab_s = symbolic_error_prop
(func=a/b, val_a=my_a, val_sigma_a=my_sigma_a , val_b=my_b,
val_sigma_b=my_sigma_b)

13
14 fig = plt.figure(figsize=(8, 8))
15 ax1 = fig.add_subplot(2, 2, 1)
16 ax1.errorbar(x=my_a, y=my_sum_ab_l , xerr=my_sigma_a , yerr=

my_sigma_sum_ab_l , linestyle=’’, marker=’o’, ecolor=’k’,
elinewidth=0.5, capsize=1, label=’Errors by the custom
functions’)

17 ax1.set_xlabel(’a’)
18 ax1.set_ylabel(’a + b’)
19 ax1.legend()
20 ax2 = fig.add_subplot(2, 2, 2)
21 ax2.errorbar(x=my_a, y=my_sum_ab_s , xerr=my_sigma_a , yerr=

my_sigma_sum_ab_s , linestyle=’’, marker=’o’, ecolor=’k’,
elinewidth=0.5, capsize=1, label=’Errors by the symbolic
approach’)

22 ax2.set_xlabel(’a’)
23 ax2.set_ylabel(’a + b’)
24 ax2.legend()
25 ax3 = fig.add_subplot(2, 2, 3)
26 ax3.errorbar(x=my_a, y=my_division_ab_l , xerr=my_sigma_a , yerr

=my_sigma_division_ab_l , linestyle=’’, marker=’o’, ecolor=
’k’, elinewidth=0.5, capsize=1, label=’Errors by custom
function’)

27 ax3.set_xlabel(’a’)
28 ax3.set_ylabel(’a / b’)
29 ax3.legend()
30 ax4 = fig.add_subplot(2,2,4)
31 ax4.errorbar(x=my_a, y=my_division_ab_s , xerr=my_sigma_a , yerr

=my_sigma_division_ab_s , linestyle=’’, marker =’o’, ecolor
=’k’, elinewidth=0.5, capsize=1, label=’Errors by the
symbolic approach’)

32 ax4.set_xlabel(’a’)
33 ax4.set_ylabel(’a / b’)
34 ax4.legend()
35 fig.tight_layout()

Listing 10.11 Error propagation by custom functions reported in code listing 10.9 and by
solving Eq. (10.6) by the symbolic approach (code listing 10.10).
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Finally, code listing 10.11 and Fig. 10.9 compare the results obtained by propa-
gating errors through custom functions based on the rules listed in Table 10.1 and by
the symbolic approach. As expected, the results reported in Fig. 10.9 are identical.
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Fig. 10.9 Result of code listing 10.11.

To provide a geological example, consider plotting the ratio Rb/Th versus La for
tephras from the recent volcanic activity of the Campi Flegrei Caldera using the
linearized approach for error propagation (code listing 10.12 and Fig. 10.10).
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1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import sympy as sym
4
5 a, b, sigma_a, sigma_b = sym.symbols("a b sigma_a sigma_b")
6
7 def symbolic_error_prop(func, val_a, val_sigma_a , val_b=0,

val_sigma_b=0):
8
9 z = sym.lambdify([a, b], func, ’numpy’)
10 sigma_z = sym.lambdify([a, b, sigma_a, sigma_b], sym.sqrt

((sym.diff(func, a)**2 * sigma_a**2)+(sym.diff(func,b)**2
* sigma_b**2)), ’numpy’)

11 val_z = z(a=val_a, b=val_b)
12 val_sigma_z = sigma_z(a=val_a, b=val_b, sigma_a=

val_sigma_a , sigma_b=val_sigma_b)
13
14 return val_z, val_sigma_z
15
16 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
17
18 ratio_y, sigma_ratio_y = symbolic_error_prop(a/b, val_a=

my_dataset.Rb, val_sigma_a=my_dataset.Rb*0.1, val_b=
my_dataset.Th, val_sigma_b=my_dataset.Th*0.1)

19
20 my_dataset[’Rb_Th’] = ratio_y
21 my_dataset[’Rb_Th_1s’] = sigma_ratio_y
22
23 epochs = [’one’,’two’,’three’,’three-b’]
24 colors = [’#afbbb5’, ’#f10e4a’, ’#27449c’, ’#f9a20e’]
25
26 fig, ax = plt.subplots()
27 for epoch, color in zip(epochs, colors):
28 my_data = my_dataset[(my_dataset.Epoch == epoch)]
29 ax.errorbar(x=my_data.La, y=my_data.Rb_Th, xerr=my_data.La

*0.1, yerr=my_data.Rb_Th_1s, linestyle=’’, markerfacecolor
= color, markersize=6, marker=’o’, markeredgecolor=’k’,
ecolor=color, elinewidth=0.5, capsize=0, label="Epoch " +
epoch)

30
31 ax.legend(title=’CFC Recent Activity’)
32 ax.set_ylabel(’Rb/Th’)
33 ax.set_xlabel(’La [ppm]’)

Listing 10.12 Rb/Th ratio versus La for tephras belonging to recent volcanic activity of Campi
Flegrei Caldera. Error propagated using linearized approach.
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Fig. 10.10 Result of code listing 10.12.

10.4 The Mote Carlo Approach to Error Propagation

Monte Carlo (MC) numerical modeling, named after the casino in the Principality
of Monaco, simulates complex probabilistic events using simple random events
(Barbu&Zhu, 2020).MCmethods rely on true-random number generators (TRNGs)
or pseudo-random number generators (PRNGs) to produce sample distributions
simulating a target PDF (Barbu & Zhu, 2020; Johnston, 2018).

What is the difference between TRNGs and PRNGs? TRNGs are devices, gen-
erally hardware based, that produce real (i.e., non-deterministic) random numbers
(Johnston, 2018). Conversely, PRNGs are deterministic algorithms that generate a
“random looking” sequence of numbers (Johnston, 2018). However, given the same
starting conditions (i.e., the same seeding), a PRNG will return the same sequence
of numbers (Johnston, 2018).

In NumPy 1.19, the default PRNG that provides the random sampling of a wide
range of distributions (e.g., uniform, normal, etc.) is PCG641. It is a 128-bit imple-
mentation of O’Neill’s permutation congruential generator (O’Neill, 2014).

1 https://www.pcg-random.org
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1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 def normal_pdf(x, mu, sigma):
5 pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 /

(2*sigma**2))
6 return pdf
7
8 def unifrom_pdf(x, a, b):
9 pdf = np.piecewise(x, [(x>=a) & (x<=b), (x<a) & (x>b)],

[1/(b-a), 0])
10 return pdf
11
12 # Random sampling of a normal distribution
13 my_mu, my_sigma = 0, 0.1 # mean and standard deviation
14 sn = np.random.default_rng().normal(loc=my_mu, scale=my_sigma ,

size=10000)
15 fig = plt.figure()
16 ax1 = fig.add_subplot(2, 1, 1)
17 ax1.hist(sn, density=True, bins=’auto’, edgecolor=’k’, color=’

#c7ddf4’, label=’Random Sampling of the Normal
Distribution’)

18 my_xn = np.linspace(my_mu - 4 * my_sigma, my_mu + 4 * my_sigma
, 1000)

19 my_yn = normal_pdf(x=my_xn, mu=my_mu, sigma=my_sigma)
20 ax1.plot(my_xn, my_yn,linewidth=2, linestyle=’--’, color=’#

ff464a’, label=’Target Normal Probability Density Function
’)

21 ax1.set_ylim(0.0, 7.0)
22 ax1.set_xlabel(’x’)
23 ax1.set_ylabel(’Prob. Density’)
24 ax1.legend()
25
26 # Random sampling of a uniform distribution
27 my_a, my_b = -1, 1 # lower and upper bound of the uniform

distribution
28 su = np.random.default_rng().uniform(low=my_a, high=my_b, size

=10000)
29 ax2 = fig.add_subplot(2, 1, 2)
30 ax2.hist(su, density=True, bins=’auto’, edgecolor=’k’, color=’

#c7ddf4’, label=’Random Sampling of the Uniform
Distribution’)

31 my_xu = np.linspace(-2, 2, 1000)
32 my_yu = unifrom_pdf(x=my_xu, a=my_a, b=my_b)
33 ax2.plot(my_xu, my_yu, linewidth=2, linestyle=’--’, color=’#

ff464a’, label=’Target Uniform Probability Density
Function’)

34 ax2.set_ylim(0, 1)
35 ax2.set_xlabel(’x’)
36 ax2.set_ylabel(’Prob. Density’)
37 ax2.legend()
38
39 fig.tight_layout()

Listing 10.13 Random sampling of normal and uniform distributions.
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PCG-64 has a period of 2128 and supports advancing an arbitrary number of steps
as well as 2127 streams.2

Code listing 10.13 provides an example on how to perform a random sampling
of specific PDFs by showing how to generate a random sequence of numbers (i.e.,
a random sample distribution) that simulates normal and uniform PDFs. Code list-
ing 10.13 uses the np.random.default_rng() statement (line 14), which is based on
the PCG64 PRNG (O’Neill, 2014).

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
x

0

1

2

3

4

5

6

7

Pr
ob

. D
en

sit
y

Target Normal Probability Density Function
Random Sampling of the Normal Distribution

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

. D
en

sit
y

Target Uniform Probability Density Function
Random Sampling of the Uniform Distribution

Fig. 10.11 Result of code listing 10.13.

Other PRNGs currently available in NumPy are listed in Table 10.2.
Code listing 10.14 shows how to use a PRNG other than PCG64 to obtain the

same normal distribution as in Fig. 10.11 characterized by a mean ` and a standard
deviation f of 0 amd 0.1, respectively. Figure 10.12 shows the results of code
listing 10.14.

2 https://numpy.org/doc/stable/reference/random/bit_generators/
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1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 def normal_pdf(x, mu, sigma):
5 pdf = 1/(sigma * np.sqrt(2 * np.pi)) * np.exp( - (x - mu)

**2 / (2 * sigma**2))
6 return pdf
7
8 fig = plt.figure(figsize=(6,9))
9
10 # Random sampling of a normal distribution
11 my_mu, my_sigma = 0, 0.1 # mean and standard deviation
12
13 bit_generators = [np.random.MT19937(), np.random.Philox(), np.

random.SFC64()]
14 names = [’Mersenne Twister PRNG (MT19937)’, ’Philox (4x64)

PRNG (Philox)’, ’Chris Doty-Humphrey\’s SFC PRNG (SFC64)’]
15 indexes = [1,2,3]
16
17 for bit_generator , name, index in zip(bit_generators , names,

indexes):
18 sn = np.random.Generator(bit_generator).normal(loc = my_mu

, scale = my_sigma, size = 10000)
19 ax = fig.add_subplot(3, 1, index)
20 ax.hist(sn, density=True, bins=’auto’, edgecolor=’k’,

color=’#c7ddf4’, label=name)
21 my_xn = np.linspace(my_mu - 4 * my_sigma, my_mu + 4 *

my_sigma , 1000)
22 my_yn = normal_pdf(x=my_xn, mu=my_mu, sigma=my_sigma)
23 ax.plot(my_xn, my_yn, linewidth=2, linestyle=’--’, color=’

#ff464a’, label =’Target Normal PDF’)
24 ax.set_ylim(0.0, 7.0)
25 ax.set_xlim(my_mu - 6 * my_sigma , my_mu + 6 * my_sigma)
26 ax.set_xlabel(’x’)
27 ax.set_ylabel(’Probability Density’)
28 ax.legend()
29
30 fig.tight_layout()

Listing 10.14 Random sampling of normal distribution created by different PRNGs.

For most basic tasks in geological modeling (e.g., basic error propagation), all
PRNGs listed inTable 10.2work satisfactorily, so I suggest using the default generator
for simplicity of use.

In error propagation, the MC approach is a proficient technique to be considered
when Eq. (10.6) or its corrected forms [e.g., Eq. (10.7)] are inconvenient (Schwartz,
1975).
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Table 10.2 Pseudo random number generators (PRNG) available in NumPy ver. 1.19.

PRNG Reference Description

PCG64 O’Neill (2014) 128-bit implementation of O’Neill’s permutation con-
gruential generator

MT19937 Haramoto et al. (2008) Mersenne Twister pseudo-random number generator

Philox Salmon et al. (2011) 64-bit counter-based PRNG using weaker (and faster)
versions of cryptographic functions

SFC64 http://pracrand.
sourceforge.net

Implementation of Chris Doty-Humphrey’s Small Fast
Chaotic PRNG

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 def gaussian(x, mean, std):
5 return 1/(np.sqrt(2*np.pi*std**2))*np.exp(-0.5*(((x - mean

)**2)/(std**2)))
6
7 my_a, my_sigma_a = 40, 8
8 my_b, my_sigma_b = 20, 2
9
10 n = 10000
11 a_normal = np.random.default_rng().normal(my_a, my_sigma_a , n)
12 b_normal = np.random.default_rng().normal(my_b, my_sigma_b , n)
13
14 # Linearized Method
15 my_sum_ab_l , my_sigma_sum_ab_l = sum_ab(a=my_a, b=my_b,

sigma_a=my_sigma_a , sigma_b=my_sigma_b)
16 my_x = np.linspace(20, 100, 1000)
17 my_sum_ab_PDF = gaussian(x=my_x, mean=my_sum_ab_l , std=

my_sigma_sum_ab_l)
18
19 # Monte Carlo estimation
20 my_sum_ab_mc = a_normal + b_normal
21 my_sum_ab_mc_mean = my_sum_ab_mc.mean()
22 my_sigma_sum_ab_mc_std = my_sum_ab_mc.std()
23
24 fig, ax = plt.subplots()
25 ax.hist(my_sum_ab_mc , bins=’auto’, color=’#c7ddf4’, edgecolor=

’k’, density=True, label= r’a+b sample distribution by MC
($\mu_{a+b} = $’ + "{:.0f}".format(my_sum_ab_mc_mean) + r’
- 1$\sigma_{a+b}$’ + "{:.0f}".format(

my_sigma_sum_ab_mc_std) + ’)’)
26 ax.plot(my_x, my_sum_ab_PDF , color=’#ff464a’, linestyle=’--’,

label=r’a+b PDF by linearized error propagation’)
27 ax.set_xlabel(’a + b’)
28 ax.set_ylabel(’Probability Density’)
29 ax.legend(title=’Error Propagation’)
30 ax.set_ylim(0,0.07)

Listing 10.15 Error propagation by MC.
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Fig. 10.12 Result of code listing 10.14.

Recall that the application of Eq. (10.6) is based on the following strong as-
sumptions (Schwartz, 1975): (a) the errors involved are statistically uncorrelated,
(b) the variables involved are independent, and (c) the errors must be sufficiently
small relative to the corresponding means. A more difficult problem arises when the
derivative elements in Eq. (10.6) or Eq. (10.7) can be solved only with great effort
or perhaps not at all (Schwartz, 1975). This problem, however, could be attacked
by numerical methods such as MC error propagation (Schwartz, 1975). To provide
a detailed description of the MC method is beyond the scope of this introductory
text. Here I limit the discussion to the very simple case of the sum of two variables
affected by errors with a normal distribution (code listing 10.15 and Fig. 10.13).



182 10 Error Analysis

This example highlights the power and simplicity of the MC approach for error
propagation. Code listing 10.15 shows that, after defining a sample distribution for
each parameter (lines 14 and 15), the error propagation by MC can be accomplished
in one line of code (line 25) without using any additional equation other than the
equation of interest, which is the sum in our case.
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Fig. 10.13 Result of code listing 10.15.
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Chapter 11
Introduction to Robust Statistics

11.1 Classical and Robust Approaches to Statistics

All statistical methods and techniques are based explicitly or implicitly on assump-
tions (Huber & Ronchetti, 2009; Maronna et al., 2006). One widely adopted assump-
tion is that the observed (i.e., sampled) data follow a normal (Gaussian) distribution
(Huber & Ronchetti, 2009; Maronna et al., 2006). This assumption is the basis for
all classical methods in regression, analysis of variance, and multivariate analysis.
However, as is true for many geological cases, although a sample of data may mostly
follow a normal distribution, some data within the sample may follow a non-normal
distribution.

Such atypical data are called outliers. A single outlier can strongly distort sta-
tistical methods based on the normal-distribution assumption (e.g., the King-Kong
effect in linear regression). Also, if the data are assumed to be normally distributed
but their actual distribution diverges from normality, then classical tests may return
unreliable results (Huber & Ronchetti, 2009; Maronna et al., 2006).

Definition: “The robust approach to statistical modeling and data analysis aims at
deriving methods that produce reliable parameter estimates and associated tests and
confidence intervals, not only when the data follow a given distribution exactly, but
also when this happens only approximately in the sense just described” (Maronna et
al., 2006). A “robust” model should converge to the results of classical methods when
the assumptions behind them (e.g., normal distribution) are satisfied. A complete
treatment of robust statistics is beyond the scope of this text, so the interested reader
may wish to consult more specialized sources. In the following, I focus on

1. how to check if a sample is normally distributed (i.e., normality tests);
2. robust descriptive statistics;
3. robust linear regression;
4. the application of robust statistics in geochemistry.

185
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11.2 Normality Tests

No standard procedure exists to determine whether a sample follows a normal dis-
tribution. However, a reasonable procedure consists of (1) conducting a preliminary
qualitative inspection of the histogram plot fit by a normal PDF (see Section 9.5),
(2) inspecting a quantile-quantile plot, and (3) applying the selected statistical tests
of normality (Thode, 2002). Note that a reasonably large number of observations
is needed to detect deviations from normality (Huber & Ronchetti, 2009; Maronna
et al., 2006).

Histogram plots and parametric fitting

As reported in Section 9.5, plotting the probability density histogram is an easy
way to qualitatively determine the shape of a sample distribution. For a normal
distribution, we expect the histogram to form a symmetric, bell-shaped curve. Fitting
parametrically to a normal PDF then allows us to better evaluate the similarities and
differences between the sample studied and a normal distribution characterized by
the same mean and standard deviation.
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Fig. 11.1 Result of code listing 11.1.
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1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from scipy.stats import norm
4 import numpy as np
5
6 my_dataset_majors = pd.read_excel(’Smith_glass_post_NYT_data.

xlsx’, sheet_name=’Supp_majors’, engine=’openpyxl’)
7 my_dataset_traces = pd.read_excel(’Smith_glass_post_NYT_data.

xlsx’, sheet_name=’Supp_traces’, engine=’openpyxl’)
8
9 fig = plt.figure()
10
11 # MnO
12 MnO = my_dataset_majors.MNO
13
14 ax1 = fig.add_subplot(2, 1, 1)
15 ax1.hist(MnO, bins=’auto’, density=True, color=’#4881e9’,

edgecolor=’k’, label=’MnO’, alpha=0.8)
16 a_mean = MnO.mean()
17 std_dev = MnO.std()
18 x = np.linspace(a_mean -4*std_dev, a_mean+4*std_dev ,1000)
19 pdf = norm.pdf(x, loc=a_mean, scale=std_dev)
20 ax1.plot(x, pdf, linewidth=1.5, color=’#ff464a’,label=’Normal

PDF’)
21 ax1.set_xlabel(’MnO [wt %]’)
22 ax1.set_ylabel(’Probability density’)
23 ax1.legend()
24
25 #Pb
26 Pb = my_dataset_traces.Pb
27 Pb = Pb.dropna(how=’any’)
28 ax2 = fig.add_subplot(2, 1, 2)
29 ax2.hist(Pb, bins=’auto’, density=True, color=’#4881e9’,

edgecolor=’k’, label=’Pb’, alpha=0.8)
30 a_mean = Pb.mean()
31 std_dev = Pb.std()
32 x = np.linspace(a_mean -4*std_dev, a_mean+4*std_dev ,1000)
33 pdf = norm.pdf(x, loc=a_mean, scale=std_dev)
34 ax2.plot(x, pdf, linewidth=1.5, color=’#ff464a’, label=’Normal

PDF’)
35 ax2.set_xlabel(’Pb [ppm]’)
36 ax2.set_ylabel(’Probability density’)
37 ax2.legend()
38
39 fig.align_ylabels()
40 fig.tight_layout()

Listing 11.1 Histogram of distribution with a parametric fit to assess the normality of the
sample distribution.

For example, consider the distributions of the MnO and Pb data sets reported by
Smith et al. (2011), which clearly depart from a normal distribution for Pb: note the
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tail extending to the right, which gives a positive skewness, and the strong outlier
near 790 ppm (code listing 11.1 and Fig. 11.1). Conversely, the MnO probability
density histogram is nearly symmetric with no outliers except for a single data point
near 0.39 wt %.

The parametric fitting of the two distributions with a Gaussian PDF (code list-
ing 11.1 and Fig. 11.1) confirms a strong departure from normality for Pb and a
near-normal distribution for MnO.

Given that this is a qualitative analysis, the plot of the density histogram and
the parametric fitting to a normal distribution can only detect significant departures
from a normal distribution. Consequently, although we can state with certainty that
the Pb sample does not follow a normal distribution, we cannot do the same for the
MnO distribution (Thode, 2002).

Quantile-quantile plots

The next step in the investigation of normality of a sample distribution is a quantile-
quantile (Q-Q) plot (Palettas, 1992). The Q-Q plot is a graphical representation used
to determine whether two data sets come from populations characterized by the same
distribution. When used to test for the normality of a sample distribution, one of the
two data sets serves as the investigated sample, and the other derives from a normal
PDF. In detail, we develop a binary diagram where the quantiles of the investigated
data set are plotted against the quantiles of a normal distribution.
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Fig. 11.2 Result of code listing 11.2.
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1 import statsmodels.api as sm
2
3 fig = plt.figure()
4
5 ax1 = fig.add_subplot(1, 2, 1)
6 sm.qqplot(data=MnO, fit = True, line="45", ax=ax1,

markerfacecolor=’#4881e9’, markeredgewidth=’0.5’,
markeredgecolor=’k’, label=’MnO’)

7 ax1.set_aspect(’equal’, ’box’)
8 ax1.legend(loc=’lower right’)
9
10 ax2 = fig.add_subplot(1, 2, 2)
11 sm.qqplot(data=Pb, fit = True, line="45", ax=ax2,

markerfacecolor=’#4881e9’, markeredgewidth=’0.5’,
markeredgecolor=’k’, label=’Pb’)

12 ax2.set_aspect(’equal’, ’box’)
13 ax2.legend(loc=’lower right’)
14
15 fig.tight_layout()

Listing 11.2 Q-Q diagrams for MnO and Pb.

If the investigated data set comes from a population with a normal distribution,
the standardized quantiles (i.e., derived after subtracting the mean and dividing by
the standard deviation) should fall approximately along a 1 : 1 reference line.

The greater the departure from this reference line, the greater is the evidence that
the investigated data set does not come from a normal population. As an example,
Fig. 11.2 (code listing 11.2) shows Q-Q plots for the MnO and Pb samples. As
expected, the Q-Q plot for Pb departs strongly from the reference line, demonstrating
further the non-normality of the sample. The Q-Q plot for MnO, however, shows that
the sample quantiles are mostly consistent with the theoretical quantiles. However, at
least one observation (the outliers at 0.29 wt % on the extreme right side of Fig. 11.1)
in the Q-Q plot departs from linearity. Can we assume that MnO follows a normal
distribution? Answering this question requires further statistical tests.

Statistical tests

Typically, a statistical test for normality initially assumes that the sample derives
from a normal (Gaussian) population (Thode, 2002). This initial assumption is the
so-called null hypothesis �0. Tests then elaborate data and return one or more
statistical parameters and one or more threshold values to determine whether we can
accept �0 (Thode, 2002).

The Shapiro-Wilk (S-W) test is a statistical procedure for testing a sample data
set for normality (Shapiro & Wilk, 1965). Specifically, the S-W test relies on the
, parameter, which is determined by dividing the square of an appropriate linear
combination of the sample order statistics by the usual symmetric estimate of vari-
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ance (Shapiro &Wilk, 1965). The maximum value of, is unity, corresponding to a
normal distribution. Thus, the closer, is to unity, the closer the sample approaches
a normal distribution. A small value for, indicates that the sample is not normally
distributed. In practice, you can reject the null hypothesis if, is less than a certain
threshold.

TheD’Agostino-Pearson (DA-P) test evaluates two descriptive statistics, the skew-
ness and kurtosis, to test for normality (R. D’Agostino & Pearson, 1973; R. B.
D’Agostino, 1971). In detail, this test estimates the ?-value, combining the two
metrics to quantify the departure from a Gaussian distribution (R. D’Agostino &
Pearson, 1973; R. B. D’Agostino, 1971). As with the S-W test, you can reject the null
hypothesis that your population is normally distributed if the ?-value is less than a
certain threshold.

The Anderson-Darling (A-D) test is a modification of the Kolmogorov-Smirnov
(K-S) test (Stephens, 1974). Rather than returning a single ?-value as in the case of
the DA-P test, the A-D test returns statistics (i.e., a series of computed values and
a list of critical values). If the returned statistic exceeds the reference critical value,
then, for the given significance level, the null hypothesis that the data come from the
chosen distribution (the normal distribution in our case) can be rejected (Stephens,
1974).

Code listing 11.3 shows how to implement S-W, DA-P, and A-D tests in Python
for a geological data set.

1 def returns_normal_tests(my_data):
2
3 from scipy.stats import shapiro, anderson , normaltest
4
5 print(’---------------------------------------------’)
6 print(’’)
7 stat, p = shapiro(my_data)
8 alpha = 0.05
9 if p > alpha:
10 print(’Shapiro test fails to reject H0: looks normal :)’)
11 else:
12 print(’Shapiro test rejects H0: not normal :(’)
13 print(’’)
14 stat, p = normaltest(my_data)
15 alpha = 0.05
16 if p > alpha:
17 print("D′Agostino and Pearson′s test fails to reject H0:

looks normal :)")
18 else:
19 print("D′Agostino and Pearson′s test rejects H0: not normal

:(")
20 print(’’)
21 result = anderson(my_data)
22 print(’Anderson-Darling test:’)
23 for sl, cv in zip(result.significance_level , result.

critical_values):
24 if result.statistic < cv:
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25 print(’%.3f: fails to reject H0: Sample looks normal :)’
% (sl))

26 else:
27 print(’%.3f: rejects H0: Sample does not look normal :(’

% (sl))
28 print(’---------------------------------------------’)
29 print(’’)
30
31 # Original MnO sample
32 print(’Original MnO sample’)
33 returns_normal_tests(MnO)
34
35 # Removing the outliers above 0.27 wt %
36 print(’MnO sample without observations above 0.27 wt %’)
37 MnO_no_outliers = MnO[MnO < 0.27]
38 returns_normal_tests(MnO_no_outliers)
39
40 ’’’ Results:
41 Original MnO sample
42 ---------------------------------------------
43
44 Shapiro test rejects H0: not normal :(
45
46 D′Agostino and Pearson′s test rejects H0: not normal :(
47
48 Anderson -Darling test:
49 15.000: rejects H0: Sample does not look normal :(
50 10.000: rejects H0: Sample does not look normal :(
51 5.000: rejects H0: Sample does not look normal :(
52 2.500: rejects H0: Sample does not look normal :(
53 1.000: rejects H0: Sample does not look normal :(
54 ---------------------------------------------
55
56 MnO sample without observations above 0.27 wt %
57 ---------------------------------------------
58
59 Shapiro test fails to reject H0: looks normal :)
60
61 D′Agostino and Pearson′s test fails to reject H0: looks normal :)
62
63 Anderson -Darling test:
64 15.000: fails to reject H0: Sample looks normal :)
65 10.000: fails to reject H0: Sample looks normal :)
66 5.000: fails to reject H0: Sample looks normal :)
67 2.500: fails to reject H0: Sample looks normal :)
68 1.000: fails to reject H0: Sample looks normal :)
69 -----------------------------------------------------------
70 ’’’

Listing 11.3 Performing statistical tests of normality for the MnO sample.
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11.3 Robust Estimators for Location and Scale

Chapter 5 reviews the classical estimators of location and scale (or spread) for a
sample distribution, which are the building blocks of descriptive statistics. Examples
include the sample mean and standard deviation as estimators for the location and
scale, respectively. However, outliers may cause these estimators to fail. In such
cases, robust estimators are a better choice (Huber & Ronchetti, 2009; Maronna
et al., 2006). The following provides a brief introduction to robust estimators for
the location and scale of univariate sample distributions and their implementation
in Python. The interested reader may consult more specialized books for a more
thorough treatment of the topic (Huber & Ronchetti, 2009; Maronna et al., 2006).

Robust and weak estimators for location

Of the classical estimators for location, the arithmetic mean is the most used and the
most widely recognized (cf. Chapter 5). However, the arithmetic mean is strongly
affected by outliers (Huber & Ronchetti, 2009; Maronna et al., 2006). For example,
considering the Pb distribution in the data set reported by Smith et al. (2011), we
find a positive tail and a strong outlier at 790 ppm (Fig. 11.3). The arithmetic mean
for Pb is 81 ppm; this is greater than most observations, which range from 50 to 80
ppm (Fig. 11.3). This result is due to the strong influence on the arithmetic mean of
positive outliers. Consequently, the arithmetic mean is considered a weak estimator
of location in the presence of outliers.

In contrast, the median is 67 ppm (Fig. 11.3), which is centered within the interval
containing most observations (i.e., 50–80 ppm) and corresponds to the modal bin in
Fig. 11.3. This is because the median is less affected by outliers than the arithmetic
mean, making the median a robust estimator for location in the presence of outliers.

Another approach to obtain a robust estimate for the location of a sample distribu-
tion is through the trimmed mean (Huber & Ronchetti, 2009; Maronna et al., 2006),
which consists in defining a criterion to discard a fraction of the largest and smallest
values, as follows: let U ∈ [0, 1/2] and < = [=U], where [·] returns the integer part
and = is the total number of observations. We define the U-trimmed mean as (Huber
& Ronchetti, 2009; Maronna et al., 2006)

`U = ¯IU =
1

= − 2<

=−<∑
8=<+1

I (8) , (11.1)

where I (8) denotes ordered observations. The limiting cases U = 0 and U → 0.5
correspond to the sample mean and median, respectively.

The U-Winsorized mean `Wins is similar to the U-trimmed mean but, instead of
deleting extreme values as in the trimmed mean, it shifts them toward the bulk of
the data [Eq. (11.2)]:
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1 import pandas as pd
2 import numpy as np
3 from scipy.stats.mstats import winsorize
4 from scipy.stats import trim_mean
5 import matplotlib.pyplot as plt
6
7 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=1, engine=’openpyxl’)
8
9 el = ’Pb’
10 my_sub_dataset = my_dataset[my_dataset.Epoch == ’three-b’]
11 my_sub_dataset = my_sub_dataset.dropna(subset=[el])
12
13 fig, ax = plt.subplots()
14 a_mean = my_sub_dataset[el].mean()
15 median = my_sub_dataset[el].median()
16 trimmed_mean = trim_mean(my_sub_dataset[el], proportiontocut

=0.1)
17 winsorized_mean = np.mean(winsorize(my_sub_dataset[el], limits

=0.1))
18
19 delta = 100 * (a_mean-median) / median
20
21 bins = np.arange(50,240,5)
22 ax.hist(my_sub_dataset[el], density=True, edgecolor=’k’,

color=’#4881e9’, bins=bins, label = ’Lead (Pb), Epoch
Three’)

23 ax.axvline(a_mean, color=’#ff464a’, linewidth=2, label=’
Arithmetic Mean: {:.0f} [ppm]’.format(a_mean))

24 ax.axvline(median, color=’#ebb60d’, linewidth=2, label=’Median
: {:.0f} [ppm]’.format(median))

25 ax.axvline(trimmed_mean , color=’#8f10b3’, linewidth=2, label=r
’Trimmed Mean ($\alpha = 0.1$):’ + ’{:.0f} [ppm]’.format(
trimmed_mean))

26 ax.axvline(winsorized_mean , color=’#07851e’, linewidth=2,
label=r’Winsored Mean ($\alpha = 0.1$):’ + ’{:.0f} [ppm]’.
format(winsorized_mean))

27
28 ax.set_xlabel(el + " [ppm]")
29 ax.set_ylabel(’probability density’)
30 ax.legend()
31 ax.annotate(’Large oulier at about 800 ppm’, (240, 0.02),

(220, 0.02), ha="right", va="center", size=9, arrowprops=
dict(arrowstyle=’fancy’))

32 ax.annotate(’Deviation of the arithmetic\nmean from the median
: {:.1f} %’.format(delta), (a_mean + 3, 0.03), (a_mean +
25, 0.03), ha="left", va="center", size=9, arrowprops=dict
(arrowstyle=’fancy’))

Listing 11.4 Weak and robust estimates for location.
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Fig. 11.3 Result of code listing 11.4.

`Wins =
1
=

(
<I (<) + <I (=−<+1) +

=−<∑
8=<+1

I (8)

)
, (11.2)

where < and I (8) are defined as for the trimmed mean [Eq. (11.1)]. In Python, the
trimmed and Winsorized means can be easily estimated by using the trim_mean()
and winsorize() methods in scipy.stats and scipy.stats.mstats, respectively (code list-
ing 11.4 and Fig. 11.3).

Robust and weak estimators for the scale

Chapter 5 also reviewed the main estimators for the scale of a distribution. One of the
weaker scale estimators is the range (Fig. 11.4). In addition, the standard deviation
is strongly affected by the presence of outliers (Fig. 11.4). Another scale estimator
discussed in Chapter 5 is the Inter-Quartile Range (IQR; Fig. 11.4). Here, I introduce
an additional robust scale estimator called the “median absolute deviation about the
median” (MAD), which is defined as

MAD(z) = MAD(I1, I2, . . . , I=) = Me {|z −Me(z) |}. (11.3)
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1 import pandas as pd
2 import numpy as np
3 from scipy import stats
4 import matplotlib.pyplot as plt
5
6 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=1, engine=’openpyxl’)
7 el = ’Pb’
8 my_sub_dataset = my_dataset[my_dataset.Epoch == ’three-b’]
9 my_sub_dataset = my_sub_dataset.dropna(subset=[el])
10
11 a_mean = my_sub_dataset[el].mean()
12 median = my_sub_dataset[el].median()
13 range_values = [my_sub_dataset[el].min(), my_sub_dataset[el].max

()]
14 std_dev_values = [a_mean - my_sub_dataset[el].std(), a_mean +

my_sub_dataset[el].std()]
15 IQR_values = [np.percentile(my_sub_dataset[el], 25, interpolation

= ’midpoint’), np.percentile(my_sub_dataset[el], 75,
interpolation = ’midpoint’)]

16 MADn_values = [median - stats.median_abs_deviation(my_sub_dataset
[el], scale=’normal’), median + stats.median_abs_deviation(
my_sub_dataset[el], scale=’normal’)]

17
18 scales_values = [range_values , std_dev_values , IQR_values ,

MADn_values]
19 scale_labels = [’Range’, ’Standard Deviation’, ’Inter Quartile

Range’, ’Median Absolute Deviation’]
20 locations = [a_mean, a_mean, median, median]
21 location_labels = [’Arithmetic Mean’, ’Arithmetic Mean’, ’Median’

, ’Median’]
22 binnings = [’auto’, np.arange(0,300,5),np.arange(50,150,5),np.

arange(50,150,5)]
23 indexes = [1,2,3,4]
24
25 fig = plt.figure(figsize=(8,6))
26 for scale_values , location, scale_label , location_label , bins,

index in zip(scales_values , locations , scale_labels ,
location_labels , binnings , indexes):

27 ax = fig.add_subplot(2, 2, index)
28 ax.hist(my_sub_dataset[el], density=True, edgecolor=’k’,

color=’#4881e9’, bins=bins)
29 ax.axvline(location , color=’#ff464a’, linewidth=1, label=

location_label)
30 ax.axvline(scale_values[0], color=’#ebb60d’)
31 ax.axvline(scale_values[1], color=’#ebb60d’)
32 ax.axvspan(scale_values[0], scale_values[1], alpha=0.1, color

=’orange’, label=scale_label)
33 ax.set_xlabel(el + " [ppm]")
34 ax.set_ylabel(’probability density’)
35 ax.set_ylim(0, 0.1)
36 ax.legend(loc = ’upper right’)
37 fig.tight_layout()
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Listing 11.5 Weak and robust estimates for scale.
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Fig. 11.4 Result of code listing 11.5.

The MAD uses the sample median twice, first to estimate the location of the data
set [i.e., Me(z)], and then to compute the sample median of the absolute residuals
from the estimated location [i.e., {|z − "4(z) |}]. To make the MAD comparable to
f, the normalized MAD (MADn) is defined as

MADn (z) =
MAD(z)
0.6745

. (11.4)

The rationale behind this choice is that the number 0.6745 is the MAD of a
standard normal random variable, so a variable # (`, f) has MADn = f. In Python,
the MAD can be easily computed by using the scipy.stats.median_abs_deviation()
function. To calculate the MADn as defined by Eq. (11.4), we need to explicitly set
the scale parameter to ‘normal’ when calling the median_abs_deviation() function.
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M estimators of location and scale

The jointly robust estimate of location and scale proposed by Huber (1966) (i.e.,
“Huber’s proposal 2”) consists of the solution of a location–dispersion model with
two unknown parameters ˆ̀ and f̂:

1 import pandas as pd
2 import numpy as np
3 import statsmodels.api as st
4 import matplotlib.pyplot as plt
5
6 my_dataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=1, engine=’openpyxl’)
7 el = ’Pb’
8
9 my_sub_dataset = my_dataset[my_dataset.Epoch == ’three-b’]
10 my_sub_dataset = my_sub_dataset.dropna(subset=[el])
11
12 norms = [st.robust.norms.HuberT(t=1.345), st.robust.norms.

Hampel(a=2.0, b=4.0, c=8.0)]
13 loc_labels = [r"Huber’s T function", r"Hampel function"]
14 indexes = [1,2]
15
16 fig = plt.figure(figsize=(6,6))
17
18 for norm, loc_label , index in zip(norms, loc_labels , indexes):
19
20 huber_proposal_2 = st.robust.Huber(c= 1.5, norm = norm)
21 h_loc, h_scale = huber_proposal_2(my_sub_dataset[el])
22 ax = fig.add_subplot(2, 1, index)
23 bins = np.arange(50,250,5)
24 ax.hist(my_sub_dataset[el], density = True, edgecolor=’k’,

color=’#4881e9’, bins=bins)
25 ax.axvline(h_loc, color = ’#ff464a’, linewidth = 2, label=

loc_label + " as $\psi$: location at {:.1f} [ppm]".format
(h_loc))

26 ax.axvline(h_loc + h_scale, color = ’#ebb60d’)
27 ax.axvline(h_loc - h_scale, color = ’#ebb60d’)
28 ax.axvspan(h_loc + h_scale, h_loc - h_scale, alpha=0.1,

color=’orange’, label="Huber’s estimation for the scale:
{:.1f} [ppm]".format(h_scale))

29 ax.set_xlabel(el + " [ppm]")
30 ax.set_ylabel(’probability density’)
31 ax.set_ylim(0, 0.1)
32 ax.legend(loc = ’upper right’)
33 ax.annotate(’Large oulier at about 800 ppm’, (253, 0.04),

(230,0.04), ha=’right’, va=’center’, size=9, arrowprops=
dict(arrowstyle=’fancy’))

34 fig.tight_layout()
Listing 11.6 M estimators for location and scale: “Huber’s proposal 2.”



198 11 Introduction to Robust Statistics

=∑
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(
G1 − ˆ̀
f̂

)
= 0,

=∑
8=1

k2
(
G1 − ˆ̀
f̂

)
= (= − 1)V, (11.5)

where ˆ̀ and f̂ are the maximum likelihood estimators of ` and f, respectively. In
Python, Huber’s proposal 2 is implemented by the statsmodels.robust.scale.Huber()
function. By default, it uses the Huber’s ) as k, but other k can be selected (e.g.,
Hampel 17A, Ramsay’s Ea, etc.).
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Fig. 11.5 Result of code listing 11.6.
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11.4 Robust Statistics in Geochemistry

The present section reviews the main conclusions reported by (Reimann & Filz-
moser, 2000) on the use of robust statistics in geochemistry. For example, Reimann
and Filzmoser (2000) claim that most of the variables in large data sets from re-
gional geochemical and environmental surveys show neither normal nor log-normal
distribution.

Even after a transformation devoted to producing a normal-distribution data set,
many of these data sets do not approach a Gaussian distribution (Reimann & Filz-
moser, 2000). Typically, the distributions investigated by Reimann and Filzmoser
(2000) are skewed and contain outliers. Reimann and Filzmoser (2000) concluded
that, when dealing with regional geochemical or environmental data, normal or log-
normal distributions are an exception and not the rule. The conclusions reported by
Reimann and Filzmoser (2000) have significant consequences for the further statis-
tical treatment of geochemical and environmental data, mostly requiring a robust
approach.

Why are geochemical and environmental data not normally distributed? Reimann
and Filzmoser (2000) argue that geochemical and environmental data have a spatial
dependence, and spatially dependent data typically are not normally distributed.
Also, trace-element data approaching the detection limit are often truncated, which
means that a significant number of observations are not characterized by a true
measured value (Reimann & Filzmoser, 2000). Furthermore, the precision of the
analytical determinations deteriorates as the element concentration decreases, so
values are less precise when approaching detection limits (Reimann & Filzmoser,
2000). Finally, these data sets often contain outliers, possibly due to analytical issues
or due to a population other than the main population of the data (Reimann &
Filzmoser, 2000).

Table 11.1 is a modification of Table 3 from Reimann and Filzmoser (2000) and
lists the frequently used statistical parameters, tests, and multivariate methods and
their suitability for regional geochemical and environmental data that have neither a
normal or log-normal distribution.
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Table 11.1 Application of robust statistics in geochemistry. Developed from Table 3 of Reimann
and Filzmoser (2000).

Location Recommendation Here

Arithmetric mean Should only be used in special cases Yes

Geometric mean Can be used, but may be problematic in some cases Yes

Median Should be the first choice as location estimator Yes

Hampel or Huber means Can be used Yes

Dispersion Recommendation Here

Standard deviation Should not be used if data outliers exist Yes

Mad (medmed) Can be used Yes

Hinge spread Can be used No

Robust spread Can be used Yes

Tests for means and variances Recommendation Here

C-test Should not be used No

� -test Should not be used No

Notches in boxplot Can be used, very easy and fast Yes

Non-parametric tests Can be used Yes

Robust tests Can be used No

Multivariate methods Recommendation Here

Correlation analysis Should not be used with the original (untrans-
formed) data

Yes

Regression analysis Should not be used with the original (untrans-
formed) data

Yes

Robust regression analysis Can be used, preferably on log-transformed data No

Non-parametric regression Can be used, preferably on log-transformed data Yes

PCA Very sensible to outlying observations, Should not
be used

No

Robust PCA Can be used, preferably with log-transformed data No



Chapter 12
Machine Learning

12.1 Introduction to Machine Learning in Geology

Machine learning (ML) is a sub-field of Artificial Intelligence (AI) and concerns
the use of algorithms and methods to detect patterns in large data sets and the use
these patterns to predict future trends, to classify, or to make other types of strategic
decisions (Murphy, 2012).

The field of ML has grown significantly over the past two decades, evolving from
a “niche approach” to a robust technology with broad scientific and commercial
use (Jordan & Mitchell, 2015). For example, ML is now used in several fields
such as speech recognition, computer vision, robot control, and natural language
processing (Jordan & Mitchell, 2015). In principle, any complex problem described
by a sufficiently large number of input samples and features may be treated by
ML (Jordan & Mitchell, 2015). Over the last decade, numerous researchers have
started investigating the application of ML methods in the Earth Sciences (Abedi
et al., 2012; Cannata et al., 2011; Goldstein & Coco, 2014; Huang et al., 2002;
Masotti et al., 2006; Petrelli et al., 2017; Petrelli et al., 2020; Petrelli & Perugini,
2016; Petrelli et al., 2003; Zuo & Carranza, 2011). This section introduces the basics
of ML in Python and highlights a case study in the field of Earth Sciences.

A common characteristic of ML applications is that they are not developed to
process a conceptual model defined a priori but instead attempt to uncover the
complexities of large data sets through a so-called learning process (Bishop, 2006;
Shai & Shai, 2013). The goal of the process is to convert experience into “expertise”
or “knowledge” (Shai & Shai, 2013). Note that this is analogous to how humans
learn from past experiences.

For example, children begin learning the alphabet by observing the world around
them where they find sounds, written letters, words, or phrases. Then, at school,
they learn the significance of the alphabet and how to combine the different letters.
Similarly, the experience for a ML algorithm is the training data and the output is
the learned expertise, such as a model that can perform a specific task (Shai & Shai,
2013).

201
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Fig. 12.1 Workflow for the application of ML techniques in petrology and mineralogy (Petrelli &
Perugini, 2016).

Broadly speaking, the learning process inML can be divided into twomain fields:
(a) unsupervised learning and (b) supervised learning. In unsupervised learning, the
training data set consists of several input vectors or arrays, with no corresponding
target values. Conversely, in supervised learning, the training data set is labeled,
meaning that the algorithm learns through examples (Bishop, 2006).

Figure 12.1 shows a flowchart, modified from Petrelli and Perugini (2016), depict-
ing the main areas of ML (classification, clustering, regression, and dimensionality
reduction) and their possible use to solve typical mineralogical and petrological
problems. As shown in Fig. 12.1, the use of ML requires the availability of a sig-
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nificant number of data (ideally more than 501). The main aim of Fig. 12.1 is to
determine which ML field is best suited to approach the problem (classification,
clustering, regression, or dimensionality reduction). The procedure entails a range
of choices about the nature of the question under investigation.

If the problem involves categories, the first step is to select between labeled and
unlabeled data. If the learning data set is labeled, the training process is supervised
and will involve a “classification” problem (Kotsiantis, 2007). An example of a
classification problem in petrology is petro-tectonic identification using geochemical
data (Petrelli & Perugini, 2016). If the training data set is unlabeled, the problem is
about “clustering” (Jain et al., 1999). The field of clustering has been investigated
in petrology since the 1980s (Le Maitre, 1982). For example, Le Maitre (1982)
discusses the basics of clustering in petrology. If the problem does not include a
categorization, the next step is to establish whether a quantity must be predicted. If
so, we are in the field of “regression” (Smola & Schölkopf, 2004). An example of
an application in petrology of ML regression is provided by Petrelli et al. (2020).
Finally, if we are not predicting a quantity, we are in the field of “dimensionality
reduction” (Lee & Verleysen, 2009). Dimensionality reduction is particularly useful,
for example, in the context of visualization of high-dimensional geological data.

12.2 Machine Learning in Python

To introduce the application of ML techniques to Earth Sciences, I will use Scikit-
learn.2 Scikit-learn is a Python library that contains a wide range of state-of-the-art
ML algorithms (Pedregosa et al., 2011). This package focuses on bringing ML to
non-specialists via a general-purpose high-level language such as Python (Pedregosa
et al., 2011).

Scikit-learn is a robust framework for solvingEarth Sciences problems in the fields
of clustering, regression, dimensionality reduction, and classification (Fig. 12.1).
Other examples of Python libraries for the development of ML applications are
TensorFlow,3 Keras,4 and PyTorch.5

1 https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
2 https://scikit-learn.org
3 https://www.tensorflow.org
4 https://keras.io
5 https://pytorch.org



204 12 Machine Learning

12.3 A Case Study of Machine Learning in Geology

Pyroxene thermobarometry

Determining pre-eruptive temperatures and storage depths in volcanic plumbing
systems is a fundamental issue in petrology and volcanology (Devine et al., 1998;
Putirka, 2008; Putirka et al., 2003). To date, the development of geo-thermometers
and barometers has been based on the thermodynamic characterization of the mag-
matic system, which provides a robust framework that is widely applied to estimate
pre-eruptive magma temperature and storage depths (Masotta et al., 2013; Neave
et al., 2019; Nimis, 1995; Nimis & Ulmer, 1998; Putirka, 2008; Putirka et al., 2003).
As reported by Petrelli et al. (2020), the conventional calibration procedure for CPX
thermometers and barometers consists of five main steps:

1. recognize chemical equilibria associated with large variations of entropy and
volume (Putirka, 2008);

2. retrieve a statistically robust experimental data set with known ) and % (e.g., the
LEPR data set (Hirschmann et al., 2008));

3. determine the CPX components from chemical analyses;
4. define a regression procedure;
5. validate the model (Putirka, 2008).

In 2020, Petrelli et al. (2020) proposed a newMLmethod to retrieve magma temper-
ature and storage depths on the basis of melt-clinopyroxenes and clinopyroxene-only
chemistry. The ML approach proposed by Petrelli et al. (2020) starts from the same
basis as the classical approach but is not based on a model defined a priori, thereby
allowing the algorithm to retrieve the elements that are involved in variations of
entropy and volume. But what is the main difference between classical approaches
and ML approaches? In a few words, classical approaches are based on a simplified
thermodynamic framework that provides equations with which to fit the experimen-
tal data (typically using linear regression). Conversely, ML methods are based on
the statistical relationships that relate variations in the chemistry of CPXs (or CPX-
melt couples) to the target variables (i.e., % and )), without necessarily providing a
thermodynamic framework. In agreement with the workflow reported in Fig. 12.1,
the investigations of Petrelli et al. (2020) fall into the ML field of regression.

Experimental data set for training

The experimental data set used by Petrelli et al. (2020) to train the model consisted
of 1403 experimentally produced clinopyroxenes in equilibrium with a wide range
of silicate melt compositions at pressures and temperatures in the range 0.001–40
kbar and 952–1883 K. As input parameters, Petrelli et al. (2020) used the major
element compositions of melt (SiO2, TiO2, Al2O3, FeOt, MnO, MgO, CaO, Na2O,
K2O, Cr2O3, P2O5, H2O) and clinopyroxene (SiO2, TiO2, Al2O3, FeOt, MnO, MgO,
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CaO, Na2O, K2O, Cr2O3) phases. We now import and visualize the data set shared
by Petrelli et al. (2020) by using code listing 11.6 and Figs. 12.2 and 12.3.

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 from sklearn.preprocessing import StandardScaler
6 from sklearn.ensemble import ExtraTreesRegressor
7 from sklearn.metrics import mean_squared_error
8 from sklearn.metrics import r2_score
9
10 # Import The Training Data Set
11 my_training_dataset = pd.read_excel(’

GlobalDataset_Final_rev9_TrainValidation.xlsx’, usecols = "A:
M,O:X,Z:AA", skiprows=1, engine=’openpyxl’)

12 my_training_dataset.columns = [c.replace(’.1’, ’cpx’) for c in
my_training_dataset.columns]

13 my_training_dataset = my_training_dataset.fillna(0)
14
15 train_labels = np.array([my_training_dataset.Sample_ID]).T
16 X0_train = my_training_dataset.iloc[:, 1:23]
17 Y_train = np.array([my_training_dataset.T_K]).T
18
19 fig = plt.figure(figsize=(8,8))
20 x_labels_melt = [r’SiO$_2$’, r’TiO$_2$’, r’Al$_2$O$_3$’, r’

FeO$_t$’, r’MnO’, r’MgO’, r’CaO’, r’Na$_2O$’, r’K$_2$O’, r’
Cr$_2$O$_3$’, r’P$_2$O$_5$’, r’H$_2$O’]

21 for i in range(0,12):
22 ax1 = fig.add_subplot(4, 3, i+1)
23 sns.kdeplot(X0_train.iloc[:, i],fill=True, color=’k’,

facecolor=’#c7ddf4’, ax = ax1)
24 ax1.set_xlabel(x_labels_melt[i] + ’ [wt. %] the melt’)
25 fig.align_ylabels()
26 fig.tight_layout()
27
28 fig1 = plt.figure(figsize=(6,8))
29 x_labels_cpx = [r’SiO$_2$’, r’TiO$_2$’, r’Al$_2$O$_3$’, r’FeO$_t$

’, r’MnO’, r’MgO’, r’CaO’, r’Na$_2O$’, r’K$_2$O’, r’
Cr$_2$O$_3$’]

30 for i in range(0,10):
31 ax2 = fig1.add_subplot(5, 2, i+1)
32 sns.kdeplot(X0_train.iloc[:, i+12],fill=True, color=’k’,

facecolor=’#c7ddf4’, ax = ax2)
33 ax2.set_xlabel(x_labels_cpx[i] + ’ [wt. %] in cpx’)
34 fig1.align_ylabels()
35 fig1.tight_layout()

Listing 12.1 Importing and visualizing the training data set from Petrelli et al. (2020).
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Fig. 12.2 Chemical composition of melt phase in training data set of Petrelli et al. (2020).

Standardization

A standardized data set is a common requirement for many ML estimators.
For instance, many ML algorithms assume that all features are centered on zero

and that their variance is of the same order. If a feature has a variance that is orders
of magnitude greater than the others, it might play a dominant role and prevent the
algorithm from correctly learning other features.

The easiest way to normalize a data set is to subtract the mean and scale to unit
variance [Eq. (12.1)]:

G̃84 =
G84 − `4
f4?

, (12.1)

where G̃84 and G84 are the transformed and original components, respectively, belonging
to the sample distribution of the chemical analysis of element e (i.e., SiO2, TiO2,
etc.), which is characterized by a mean `4 and a standard deviation f4? .

Scikit-learn implements Eq. (12.1) in the sklearn.preprocessing.StandardScaler()
class, which is a set of methods (i.e., functions) to scale both the training data set
and unknown samples.
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Fig. 12.3 Chemical composition of clinopyroxene phase in training data set of Petrelli et al. (2020).

In addition, scikit-learn implements additional scalers and transformers. In scikit-
learn, scaler and transformers perform linear and nonlinear transformations, respec-
tively. For example, MinMaxScaler() scales all feature belonging to the data set
between 0 and 1. Table 12.1 summarizes the main scalers and the transformers
available in scikit-learn.

QuantileTransformer() provides nonlinear transformations that shrinks distances
between marginal outliers and inliers. Finally, PowerTransformer() provides nonlin-
ear transformations in which data are mapped to a normal distribution to stabilize
variance and minimize skewness.
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Table 12.1 Scalers and trasformers in Scikit-learn. Descriptions are taken from the official docu-
mentation of Scikit-learn.

Scaler Description

sklearn.preprocessing.StandardScaler() Standardize features by removing the mean and
scaling to unit variance [Eq. (12.1)].

sklearn.preprocessing.MinMaxScaler() Transform features by scaling each feature to a
given range. The default range is [0,1].

sklearn.preprocessing.RobustScaler() Scale features using statistics that are robust against
outliers. This scaler removes the median and scales
the data according to the quantile range. The default
quantile range is the inter-quartile range.

Tranformer Description

sklearn.preprocessing.PowerTransformer() Apply a power transform feature-wise to make data
more Gaussian-like. Power transforms are a fam-
ily of parametric, monotonic transformations that
make data more Gaussian-like. As of the writing
of this book, PowerTransformer supports the Box-
Cox transform and the Yeo-Johnson transform.

sklearn.preprocessing.QuantileTransformer() Transform features using quantile information.
This method transforms features to follow a uni-
form or normal distribution. Therefore, for a given
feature, this transformation tends to spread out the
most frequent values. It also reduces the impact
of (marginal) outliers, making it therefore a robust
preprocessing scheme.

Petrelli et al. (2020) processed the data set by using StandardScaler(). To better
understand, see lines 1 and 2 of code listing 12.2, which show how to apply the
StandardScaler() to the data displayed in Figs. 12.2 and 12.3.

In addition, Figs. 12.4 and 12.5 show the result of StandardScaler() implemented
in code listing 12.2 for the melt and clinopyroxene data, respectively. All features
(i.e., the oxides of each chemical element) are characterized by zero mean and unit
variance. Note that the tree-based methods described in the following section and
used here as a ML proxy in geology do not strictly require standardization. However,
standardizing helps for data visualization and is useful when applying different meth-
ods to the same problem to compare performances with scale-sensitive algorithms,
such as support vector machines (Hearst et al., 1998). Generally speaking, algorithms
that depend on measures of distance between predictors require standardization.

1 scaler = StandardScaler().fit(X0_train)
2 X_train = scaler.transform(X0_train)
3
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4 fig2 = plt.figure(figsize=(8,8))
5 for i in range(0,12):
6 ax3 = fig2.add_subplot(4, 3, i+1)
7 sns.kdeplot(X_train[:, i],fill=True, color=’k’, facecolor=’#

ffdfab’, ax = ax3)
8 ax3.set_xlabel(’scaled ’ + x_labels_melt[i] + ’ the melt’)
9 fig2.align_ylabels()
10 fig2.tight_layout()
11
12 fig3 = plt.figure(figsize=(6,8))
13 for i in range(0,10):
14 ax4 = fig3.add_subplot(5, 2, i+1)
15 sns.kdeplot(X_train[:, i+12],fill=True, color=’k’, facecolor=

’#ffdfab’, ax = ax4)
16 ax4.set_xlabel(’scaled ’ + x_labels_cpx[i] + ’ in cpx’)
17 fig3.align_ylabels()
18 fig3.tight_layout()

Listing 12.2 Application of StandardScaler() to the data reported in Figs. 12.2 and 12.3.
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Fig. 12.4 Result of applying StandardScaler() to the data reported in Fig. 12.2.
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Fig. 12.5 Result of applying StandardScaler() to the data reported in Fig. 12.3.

Training and testing the model

Similar to the way humans learn from the experience, ML algorithms learn from
data. The role of the scaled training data set is to provide the learning experience for
the ML algorithm.

Petrelli et al. (2020) evaluated numerousMLmethods to find the best regressor for
problems under investigation.According to their results, the best regressors are Single
Decision Trees (Breiman et al., 2017), Random Forest (Breiman, 2001), Stochastic
Gradient Boosting (Friedman, 2002), Extremely Randomized Trees (Geurts et al.,
2006), and :-nearest neighbors (Bentley, 1975). How do these regressors work?
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Single Decision Trees. A single decision tree model (Breiman et al., 2017) par-
titions the feature space into a set of regions, and then fits a simple model in each
region (Zhang & Haghani, 2015). To understand how the decision tree model works
for a regression problem, consider the example provided by Zhang and Haghani
(2015), which has a continuous response variable . and two independent variables
-1 and -2. The first step of the regression consists of splitting the space defined by
-1 and -2 into two regions and modeling the response. (mean of . ) individually in
each region. Next, the process continues with each region being split in two until a
predetermined stopping rule is satisfied. During each partition, the best fit is achieved
through the selection of variables and a split-point (Zhang & Haghani, 2015). The
single tree algorithm forms the base of the random forest, gradient boosting regres-
sion, and extremely randomized tree methods. More details on the single decision
tree model are available in (Breiman et al., 2017).

Random Forest. The Random Forest algorithm (Breiman, 2001) combines two
established ML principles (Zhang & Haghani, 2015): Breiman’s “bagging” predic-
tors (Breiman, 1996) and the random selection of features (Ho, 1998). Bagging is
a method for producing multiple versions of a predictor and using these to get an
aggregated predictor (Breiman, 1996). The multiple versions are created by making
bootstrap replicates of the learning set and using these as new learning sets (Breiman,
1996). In the Random Forest algorithm, the bagging predictors generate a diverse
subset of data for training-based models (Zhang & Haghani, 2015). For a given
training data set with sample size =, bagging produces : new training sets, each
with sample size =, by uniformly sampling from the original training data set with
replacement (Zhang & Haghani, 2015). By sampling with replacement (i.e., boot-
strapping), some observations appear more than once in the sample produced, while
other observations are left out of the sample (Zhang & Haghani, 2015). Next, :
base models are trained by using the : newly created training sets and coupled by
averaging for regression or majority voting for classification (Zhang & Haghani,
2015). A detailed description of the Random Forest algorithm is available in the
literature (Breiman, 2001; Natekin & Knoll, 2013; Zhang & Haghani, 2015).

Gradient Boosting. In contrast with bagging predictors, the boosting method
creates base models sequentially (Friedman, 2002; Zhang & Haghani, 2015). In the
Gradient Boosting algorithm, the prediction capability is progressively improved by
sequentially developing multiple models and focusing on the training cases that are
difficult to estimate (Zhang & Haghani, 2015). A key feature in the boosting process
is that examples that are hard to estimate using the previous base models appear
more often in the training data than those that are correctly estimated (Friedman,
2002; Zhang & Haghani, 2015). Thus, each successive base model is designed to
correct the errors made by the previous base models (Zhang & Haghani, 2015). A
detailed description of the Gradient Boosting algorithm can be found in (Friedman,
2002; Zhang & Haghani, 2015).

Extremely Randomized Trees. The Extremely Randomized Trees algorithm builds
an ensemble of regression trees by using the top-down procedure proposed by Geurts
et al. (2006). The two main differences compared with other tree-based ensemble
methods are that (1) it splits nodes by choosing fully random cut points and (2) it uses
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the entire learning sample rather than a bootstrapped replica to grow the trees (Geurts
et al., 2006). It has two main parameters: the number of attributes randomly selected
at each node and theminimum sample size for splitting a node (Geurts et al., 2006). It
works several times with the (full) original learning sample to generate an ensemble
model (Geurts et al., 2006). The predictions of the trees are aggregated to yield
the final prediction—by majority vote in classification problems and by arithmetic
averaging in regression problems (Geurts et al., 2006). A complete description of
the Extremely Randomized Trees algorithm is given in (Geurts et al., 2006).
:-nearest neighbors. :-nearest neighbors is a simple algorithm that collects all

available cases and predicts the numerical target based on an estimate of similarity,
such as distance functions (Bentley, 1975). In detail, it typically uses an inverse-
distance-weighted average of the :-nearest neighbors (Bentley, 1975). The weight of
each training instance can be uniform or computed by using a kernel function, which
could depend on the distance (as opposed to the similarity) between itself and the
test instance. Note that the prediction using a single neighbor is just the target value
of the nearest neighbor (Bentley, 1975). The Euclidean distance metric is commonly
used to measure the distance between two instances. A detailed description of the
:-nearest neighbors algorithm is available in (Bentley, 1975).

Table 12.2 lists the scikit-learn implementation of SingleDecision Trees (Breiman
et al., 2017), Random Forests (Breiman, 2001), Stochastic Gradient Boosting (Fried-
man, 2002), Extremely Randomized Trees (Geurts et al., 2006), and :-nearest neigh-
bors (Bentley, 1975).

Table 12.2 ML regressors reported by Petrelli et al. (2020).

Algorithm scikit-learn

Single Decision Trees class sklearn.tree.DecisionTreeRegressor()

Random Forest class sklearn.ensemble.RandomForestRegressor()

Gradient Boosting class klearn.ensemble.GradientBoostingRegressor()

Extremely Randomized Trees class sklearn.ensemble.ExtraTreesRegressor()

:-nearest neighbors class sklearn.neighbors.KNeighborsRegressor()

The training and test processes can be easily done by using scikit-learn, as shown
in code listing 12.3, which proceeds in the following steps:

1. define and train the algorithm (in our case, the Extremely Randomized Trees
method, see lines 2 and 5);

2. import the test data set and scale it in accordance with the rules used for the train
data set (lines 8–17);

3. predict the test data set (line 20);
4. select one or more metrics to evaluate the results (lines 23 and 24);
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5. evaluate the results (lines 27–33) shown in Fig. 12.6.

1 # Define the regressor , in our case the Extra Tree Regressor
2 regr = ExtraTreesRegressor(n_estimators=550, criterion=’mse’,

max_features=22, random_state=280) # random_state fixed for
reproducibility

3
4 # Train the model
5 regr.fit(X_train, Y_train.ravel())
6
7 # Import the test data set
8 my_test_dataset = pd.read_excel(’GlobalDataset_Final_rev9_Test.

xlsx’, usecols = "A:M,O:X,Z:AA", skiprows=1, engine=’openpyxl
’)

9 my_test_dataset.columns = [c.replace(’.1’, ’cpx’) for c in
my_test_dataset.columns]

10 my_test_dataset = my_test_dataset.fillna(0)
11
12 X0_test = my_test_dataset.iloc[:, 1:23]
13 Y_test= np.array([my_test_dataset.T_K]).T
14 labels_test = np.array([my_test_dataset.Sample_ID]).T
15
16 # Scale the test dataset
17 X_test_scaled = scaler.transform(X0_test)
18
19 # Make the prediction on the test data set
20 predicted = regr.predict(X_test_scaled)
21
22 # Evaluate the results using the R2 and RMSE
23 r2 = r2_score(Y_test, predicted)
24 rmse = np.sqrt(mean_squared_error(predicted , Y_test))
25
26 # Plot data
27 fig, ax = plt.subplots(figsize=(6,6))
28 ax.plot([1050,1850],[1050,1850], c=’#000000’, linestyle=’--’)
29 ax.scatter(Y_test,predicted , color=’#ad1010’, edgecolor=’#000000’

, label=r"ExtraTreesRegressor - R$^2$=" + "{:.2f}".format(r2)
+ " - RMSE="+ "{:.0f}".format(rmse) +" K")

30 ax.legend()
31 ax.axis(’scaled’)
32 ax.set_xlabel(’Expected Temperature values [K]’)
33 ax.set_ylabel(’Predicted Temperature values [K]’)

Listing 12.3 Training and testing the ExtraTreesRegressor() algorithm to predict temperature.
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Fig. 12.6 Result of code listing 12.3.
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Appendix A
Python Packages Specifically Developed for
Geologists

pyrolite

pyrolite1 is a set of tools to handle and visualize geochemical data. The Python
package includes functions to work with compositional data and to transform geo-
chemical variables (e.g., elements to oxides), functions for common plotting tasks
(e.g., spiderplots, ternary diagrams, bivariate and ternary density diagrams), and
numerous auxiliary utilities.

ObsPy

ObsPy2 is an open-source project dedicated to providing a Python framework for
processing seismological data. It provides parsers for common file formats, clients
to access data centers, and seismological signal-processing routines that enable the
manipulation of seismological time series.

APSG

APSG3 defines several new Python classes to easily manage, analyze, and visualize
orientational structural geology data.

1 https://pyrolite.readthedocs.io/en/master/
2 https://github.com/obspy/obspy/wiki
3 https://apsg.readthedocs.io/en/stable/index.html
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GemPy

GemPy4 is a tool for generating three-dimensional structural geological models in
Python. It allows the user to create complex combinations of stratigraphical and struc-
tural features such as folds, faults, and unconformities. It was furthermore designed
to enable probabilistic modeling to address parameter and model uncertainties.

Segyio

Segyio5 is a small LGPL licensed C library for easy interaction with SEG-Y and
Seismic Unix formatted seismic data, with language bindings for Python andMatlab.
Segyio is an attempt to create an easy-to-use, embeddable, community-oriented
library for seismic applications. Features are added as they are needed; suggestions
and contributions of all kinds are very welcome.

Pyrocko

Pyrocko6 is an open source seismology toolbox and library.Most of Pyrocko is coded
in the Python programming language, with a few parts coded in C.

gprMax

gprMax7 is open-source software that simulates electromagnetic wave propagation.
It solves Maxwell’s equations in three dimensions by using the finite-difference
time-domain method. gprMax was designed for modeling ground-penetrating radar
but can also be used to model electromagnetic wave propagation for many other
applications.

Lasio, welly, and PetroPy

Lasio8 is a Python package to read and write Log ASCII Standard (LAS) files, which
are used for borehole data such as geophysical, geological, or petrophysical logs. It
is compatible with versions 1.2 and 2.0 of the LAS file specification, published by
the Canadian Well Logging Society. Support for LAS 3 is ongoing. In principle, it is
designed to read as many types of LAS files as possible, including those containing

4 https://www.gempy.org
5 https://github.com/equinor/segyio
6 https://git.pyrocko.org/pyrocko/pyrocko
7 https://www.gprmax.com
8 https://github.com/kinverarity1/lasio/
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common errors or non-compliant formatting. Sometimes we want a higher-level
object, for example, to contain methods that have nothing to do with LAS files. We
may want to handle other well data, such as deviation surveys, tops (aka picks),
engineering data, striplogs, synthetics, and so on. This is where welly9 comes in.

Welly uses lasio for data input and output but hides much of it from the user.
I recommend that you look at both projects before deciding if you need the “well-
level” functionality that welly provides. Welly is a family of classes to facilitate the
loading, processing, and analysis of subsurface wells and well data, such as striplogs,
formation tops, well log curves, and synthetic seismograms.

PetroPy10 is a python petrophysics package allowing scientific Python computing
of conventional and unconventional formation evaluation. It uses lasio to read las files
and includes a petrophysical workflow and a log viewer based on XML templates.

SimPEG

Simulation and Parameter Estimation in Geophysics (SimPEG)11 is a python package
for simulation and gradient-based parameter estimation in the context of geophysical
applications.

Devito

Devito12 is a Python package to implement optimized stencil computation (e.g.,
finite differences, image processing, machine learning) from high-level symbolic
problem definitions. Devito builds on SymPy and uses automated code generation
and just-in-time compilation to execute optimized computational kernels on several
computer platforms, including CPUs, GPUs, and clusters thereof.

pyGIMLi

pyGIMLi13 is an open-source library for modeling and inversion and in geophysics.
The object-oriented library provides management for structured and unstructured
meshes in two and three dimensions, finite-element and finite-volume solvers, vari-
ous geophysical forward operators, as well as Gauss-Newton–based frameworks for
constrained, joint, and fully coupled inversions with flexible regularization.

9 https://github.com/agile-geoscience/welly
10 https://github.com/toddheitmann/PetroPy
11 https://github.com/simpeg/simpeg
12 http://www.devitoproject.org
13 https://www.pygimli.org
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HyVR

The Hydrogeological Virtual Reality simulation package (HyVR)14 is a Python
module that helps researchers and practitioners generate subsurface models with
multiple scales of heterogeneity that are based on geological concepts. The simulation
outputs can then be used to explore groundwater flow and solute transport behavior.
This is facilitated by HyVR outputs in the input formats of common flow simulation
packages. Given that each site is unique, HyVR has been designed for users to take
the code and extend it to suit their particular simulation needs.

Landlab

Landlab15 is an open-source Python package for numerical modeling of Earth surface
dynamics. It contains (1) a gridding engine that represents the model domain and
that supports regular and irregular grids; (2) a library of process components, each
of which represents a physical process (e.g., generation of rain, erosion by flowing
water); (3) utilities that support general numerical methods, file input and output,
and visualization. In addition Landlab contains a set of Jupyter notebook tutorials
that introduce core concepts and give examples of use.

pyGeoPressure

pyGeoPressure is an open-source Python package designed for pore-pressure pre-
diction from both well log data and seismic velocity data. Though light weight,
pyGeoPressure performs the entire workflow, from data management to pressure
prediction. The main features of pyGeoPressure are (1) it makes overburden (or
lithostatic) pressure calculations; 2) it uses Eaton’s method and parameter optimiza-
tion; 3) it uses Bowers’ method and parameter optimization; and (4) it implements a
multivariate method with parameter optimization.

14 https://github.com/driftingtides/hyvr
15 https://github.com/landlab/landlab



Appendix B
Introduction to Object Oriented Programming

B.1 Object-oriented programming

Definition: "Object-oriented programming (OOP) is a programming paradigmbased
on the concept of “objects,” which can contain data and code. The data take the
form of fields (often known as attributes or properties), and code takes the form of
procedures (often known as methods).1.

The main building blocks of OOP are classes and objects.
A class is an abstract description of objects; it details the possible data types

that the objects can contain and their methods (i.e., functionality). Typically, classes
represent broad categories, like the items of an online shop or physical objects that
share similar attributes. All objects created from a specific class share the same
attributes (e.g., color, size, etc.). In practice, a class is the blueprint, whereas an
object contains real data and is built from a class. The creation of a new object from
a class is called “instantiating” an object.

For example, we could define a class for the items of an online shop containing
the following attributes: color, size, description, and price. We could then instantiate
numerous objects, each characterized by a specific color, size, description, and price.
When we define a Dataframe or a Figure in Python, we are creating objects using
the class pandas.DataFrame() and matplotlib.figure.Figure().

Classes also contain functions, which are called methods in OOP. Methods are
definedwithin the class and perform actions or computations using the data contained
within the given object. For example, .var() and .mean() are methods available for
the objects belonging to the class pandas.DataFrame().

1 https://en.wikipedia.org/wiki/Object-oriented_programming
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B.2 Defining classes, attributes, and methods in Python

The class statement followed by a unique class name and a colon define a class. By
convention, Python class names are written in capitalized words (e.g., MyClass).
For example, the code listing B.1 defines a class named Circle after importing the
NumPy library that will be required in the subsequent development of the class.

1 import numpy as np
2
3 class Circle:
4 # Attributes an methods here

Listing B.1 Defining a new class in Python.

The attributes of the class are defined in the method called .__init__(), which can
contain many parameters. However, the first parameters is always a variable called
“self.”

For example, in code listing B.2, we define the attribute radius for the class Circle.

1 import numpy as np
2
3 class Circle:
4
5 def __init__(self, radius):
6 self.radius = radius

Listing B.2 Adding attributes to a class.

Finally, methods are functions that are defined inside a class and can only be called
from an object belonging to that specific class. The code listing B.3 implements the
methods description(), area(), circumference(), and diameter().

1 import numpy as np
2
3 class Circle:
4
5 def __init__(self, radius):
6 self.radius = radius
7
8 # my first Instance method
9 def description(self):
10 return "circle with radius equal to {:.2f}".format(self.

radius)
11
12 # my secong instance method
13 def area(self):
14 return np.pi * self.radius ** 2
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15
16 # my secong instance method
17 def circumference(self):
18 return 2 * np.pi * self.radius
19
20 # my tird instance method
21 def diameter(self):
22 return 2 * np.pi

Listing B.3 Adding methods to a class.

Finally, code listing B.4 shows how to create (i.e., instantiate) a new Circle object
called my_Circle, print its description, and calculate its area.

1 import numpy as np
2
3 class Circle:
4
5 def __init__(self, radius):
6 self.radius = radius
7
8 # my first Instance method
9 def description(self):
10 return "circle with radius equal to {:.2f}".format(self.

radius)
11
12 # my secong instance method
13 def area(self):
14 return np.pi * self.radius ** 2
15
16 # my secong instance method
17 def circumference(self):
18 return 2 * np.pi * self.radius
19
20 # my tird instance method
21 def diameter(self):
22 return 2 * np.pi
23
24
25 my_Circle = Circle(radius=2)
26
27 # Description
28 print(my_Circle.description())
29
30 # Calculate and report the area
31 my_Area = my_Circle.area()
32
33 # Reporting the area of my_Circle
34 print("The area of a {} is equal to {:.2f}".format(my_Circle.

description(), my_Area))

Listing B.4 Instantiating an object of the Circle class and using its methods (i.e., functions).





Appendix C
The Matplotlib Object Oriented API

C.1 Matplotlib Application Programming Interfaces

As reported in Section 3.1, there are two main Application Programming Interfaces
(APIs) to use Matplotlib:

OO-style: Using the OO-style, you explicitly define the objects governing the con-
tent and the aesthetics of a diagram (i.e., figures and axes) and call methods on them
to create your diagram.

pyplot style: This is the simplest way of plotting in matplotlib. Using the pyplot
style, you rely on pyplot to automatically create and manage the objects governing
your diagram. You also use pyplot functions for plotting.

Regarding the use of a specific style, the official documentation of matplolib
states (Feb, 2021) “Matplotlib’s documentation and examples use both the OO and
the pyplot approaches (which are equally powerful), and you should feel free to
use either (however, it is preferable pick one of them and stick to it, instead of
mixing them). In general, we suggest to restrict pyplot to interactive plotting (e.g.,
in a Jupyter notebook), and to prefer the OO-style for non-interactive plotting (in
functions and scripts that are intended to be reused as part of a larger project).”1

C.2 Matplotlib Object Oriented API

As reported is Section 1.2 and in Appendix B, when using the OOP paradigm,
everything is an object instantiated from a class. The following descriptions are
taken and adapted from the matplotlib official documentation:2

The main classes governing a diagram in matplotlib are listed below.

1 https://matplotlib.org/stable/tutorials/introductory/usage.html
2 https://matplotlib.org
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Fig. C.1 Anatomy of a matplotlib figure.

Figure. The Figure object embeds the whole diagram and keeps track of all child
axes, art (e.g., titles, figure legends, etc.), and the canvas. A Figure can contain any
number of Axes, but will typically have at least one.

Axes. Axes are what you typically think of when using the word “plot.” It is the
region of the Figure where you plot your data. A given Figure can host many Axes,
but a specific Axes object can be in only a single Figure.

Axis: The Axis takes care of setting the graph limits and generating the ticks (i.e.,
the marks on the axis) and ticklabels (i.e., strings labeling the ticks). The location
of the ticks is determined by an object called Locator, and the ticklabel strings are
formatted by a Formatter. Tuning the Locator and Formatter gives very fine control
over tick locations and labels. Data limits can be also controlled via the Axes.
Axes.set_xlim() and axes.Axes.set_ylim() methods). Each Axes has a title (set via
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set_title()), an G label set via set_xlabel() and a H label set via set_ylabel(). Note that
Axes and Axis are two different type of objects in matplotlib.

Artists: An artist is any object that you can see within a Figure. Artists includes
Text objects, Line2D objects, collections objects, and many others. When a Figure
is rendered, all Artists are drawn on the canvas.

Figure C.1 (generated by using a script available in the official documentation3)
shows the main anatomy of a matplotlib Figure. It highlights the main objects that
you can personalize further to make a matplotlib diagram.

C.3 Fine Tuning Geological Diagrams using the OO-style

Using the OO-style, we can access any class in matplotlib. These classes provide
numerous attributes and methods to fine tune a geological diagram.

For example, code listing C.1 highlights, with embedded referencing to the official
documentation, how to further personalize a geological diagram we developed in
this book (Fig. 4.2). Fine tuning this diagram further improves the quality of our
artwork. Figure C.2 shows the result of code listing C.1.

1 import matplotlib.pyplot as plt
2 import matplotlib as mpl
3 from matplotlib.ticker import MultipleLocator , FormatStrFormatter

, AutoMinorLocator
4 import pandas as pd
5 import numpy as np
6
7 myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx’,

sheet_name=’Supp_traces’)
8
9 fig, ax = plt.subplots()
10 # Figure managment
11 # https://matplotlib.org/stable/api/_as_gen/matplotlib.figure.

Figure.html
12
13 # Axes managment
14 # https://matplotlib.org/stable/api/axes_api.html
15
16 # select your style
17 # https://matplotlib.org/stable/gallery/style_sheets/

style_sheets_reference.html
18 mpl.style.use(’ggplot’)
19
20 # Make the plot
21 ax.hist(myDataset.Zr, density=True, bins=’auto’, color=’Tab:blue’

, edgecolor=’k’, alpha=0.8, label = ’CFC recent activity’)

3 https://matplotlib.org/stable/gallery/showcase/anatomy.html
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22
23 # Commonnly used personalizations
24 ax.set_xlabel(’Zr [ppm]’)
25 ax.set_ylabel(’Probability density’)
26 ax.set_title(’Zr sample distribution’)
27 ax.set_xlim(-100, 1100)
28 ax.set_ylim(0,0.0055)
29 ax.set_xlabel(r’Zr [$\mu \cdot g^{-1}$]’)
30 ax.set_ylabel(’Probability density’)
31 ax.set_xticks(np.arange(0, 1100 + 1, 250)) # adjust the x tick

frequency
32 ax.set_yticks(np.arange(0, 0.0051, .001)) # adjust the y tick

frequency
33
34
35 # Major and minor ticks
36 # https://matplotlib.org/stable/gallery/ticks_and_spines/

major_minor_demo.html
37
38 ax.xaxis.set_minor_locator(AutoMinorLocator())
39
40 ax.tick_params(which=’both’, width=1)
41 ax.tick_params(which=’major’, length=7)
42 ax.tick_params(which=’minor’, length=4)
43
44 ax.yaxis.set_minor_locator(MultipleLocator(0.0005))
45
46 ax.tick_params(which=’both’, width=1)
47 ax.tick_params(which=’major’, length=7)
48 ax.tick_params(which=’minor’, length=4)
49
50
51 # Spine management
52 # https://matplotlib.org/stable/api/spines_api.html
53
54 ax.spines["top"].set_color("#363636")
55 ax.spines["right"].set_color("#363636")
56 ax.spines["left"].set_color("#363636")
57 ax.spines["bottom"].set_color("#363636")
58
59 # Spine placement
60 # https://matplotlib.org/stable/gallery/ticks_and_spines/

spine_placement_demo.html
61
62 # Advanced Annotations
63 # https://matplotlib.org/stable/tutorials/text/annotations.html#

plotting -guide-annotation
64 ax.annotate("Mean Value",
65 xy=(myDataset.Zr.mean(), 0.0026), xycoords=’data’,
66 xytext=(myDataset.Zr.mean() + 250, 0.0035),

textcoords=’data’,
67 arrowprops=dict(arrowstyle="fancy",
68 color="0.5",
69 shrinkB=5,
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70 connectionstyle="arc3,rad=0.3",
71 ),
72 )
73
74 ax.annotate("Modal \n value ",
75 xy=(294, 0.0045), xycoords=’data’,
76 xytext=(0, 0.005), textcoords=’data’,
77 arrowprops=dict(arrowstyle="fancy",
78 color="0.5",
79 shrinkB=5,
80 connectionstyle="arc3,rad=-0.3",
81 ),
82 )
83
84 # Legend
85 # https://matplotlib.org/stable/api/legend_api.html
86 ax.legend(title = ’My Legend’)
87
88 fig.tight_layout()

Listing C.1 Advanced personalization of matplotlib diagrams.
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Fig. C.2 Result of personalization of code listing C.1.





Appendix D
Working with pandas

D.1 How to perform common operations in pandas

Importing an Excel file:

1 In [1]: import pandas as pd
2
3 In [1]: myDataset = pd.read_excel(’Smith_glass_post_NYT_data.xlsx

’, sheet_name=’Supp_traces’)

Importing a .csv file:

1 In [1]: import pandas as pd
2
3 In [1]: myDataset = MyData = pd.read_csv(’DEM.csv’)

Get the column labels:

1 In [3]: myDataset.columns
2 Out[3]: Index([’Analysis no.’, ’Strat. Pos.’, ’Eruption’, ’

controlcode’, ’Sample’, ’Epoch’, ’Crater size’, ’Date of
analysis’, ’Si/bulk cps’, ’SiO2* (EMP)’, ’Sc’, ’Rb’, ’Sr’, ’Y
’, ’Zr’, ’Nb’, ’Cs’, ’Ba’, ’La’, ’Ce’, ’Pr’, ’Nd’, ’Sm’, ’Eu’
, ’Gd’, ’Tb’, ’Dy’, ’Ho’, ’Er’, ’Tm’, ’Yb’, ’Lu’, ’Hf’, ’Ta’,
’Pb’, ’Th’, ’U’],dtype=’object’)
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Get the shape (i.e., height and width) of a DataFrame:

1 In [4]: myDataset.shape
2 Out[4]: (370, 37)

Select a single column:

1 In[5]: myDataset[’Rb’]
2 Out[5]:
3 0 355.617073
4 1 367.233701
5 2 293.320592
6 3 344.871192
7 4 352.352196
8 ...
9 365 358.479709
10 366 405.655463
11 367 328.080366
12 368 333.859656
13 369 351.240272
14 Name: Rb, Length: 370, dtype: float64

or
1 In[6]: myDataset.Rb
2 Out[6]:
3 0 355.617073
4 1 367.233701
5 2 293.320592
6 3 344.871192
7 4 352.352196
8 ...
9 365 358.479709
10 366 405.655463
11 367 328.080366
12 368 333.859656
13 369 351.240272
14 Name: Rb, Length: 370, dtype: float64

Select the first two rows of the whole DataFrame:

1 In[7]: myDataset[0:2]
2 Out[7]:
3 Analysis no. ... Pb Th U
4 0 ... 60.930984 35.016435 9.203411
5 1 ... 59.892427 34.462577 10.459280
6 [2 rows x 37 columns]
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Select the first four rows of a single column:

1 In[8]: myDataset[’Rb’][0:4]
2 Out[8]:
3 0 355.617073
4 1 367.233701
5 2 293.320592
6 3 344.871192
7 Name: Rb, dtype: float64

Convert the first four rows of a single column to a NumPy array:

1 Out[9]: myDataset.Rb[0:4].to_numpy()
2 Out[9]: array([355.61707274, 367.23370121, 293.32059158,

344.87119168])

Select a single cell:

1 In[10]: myDataset[’Rb’][4]
2 Out[10]: 352.3521959503882

or, use row an column indexes (note that rows and columns are reversed with respect
to the previous example):

1 In[11]: myDataset.iloc[4,11]
2 Out[11]: 352.3521959503882

Sort:

1 In[12]: myDataset.sort_values(by=’SiO2* (EMP)’, ascending=False)
2 Out[12]:
3 Analysis no. ... SiO2* (EMP) ... Th U
4 228 ... 62.410000 ... 56.114101 15.548608
5 236 ... 62.410000 ... 47.402098 12.345041
6 ... ... ... ... ... ...
7 304 ... 54.425402 ... 16.539421 5.256582
8 318 ... 54.425402 ... 16.539421 5.256582
9 [370 rows x 37 columns]

Filter:
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(1) define a sub DataFrame containing all the samples with zirconium above 400

1 In[13]: myDataset1 = myDataset[myDataset.Zr > 400]

(2) define a sub DataFrame containing all the samples with zirconium between 400
and 450

1 In[14]: myDataset2 = myDataset[((myDataset.Zr > 400)&(myDataset.
Zr < 500))]

Managing missing data:
(1) drop any rows that have missing data

1 In[15]: myDataset3 = myDataset.dropna(how=’any’)
2 In[16]: myDataset.shape
3 Out[16]: (370, 37) <- the original data set
4 In[17]: myDataset3.shape
5 Out[17]: (366, 37) <- 4 samples contained missing data

(2) replace missing data with a fixed value (e.g., 5)
1 In[18]: myDataset4 = myDataset.fillna(value=5)
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