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Fig. 2.1: The experiment setup. (a) Schematic description. (b) Overall view of the system during an experiment with a D=74mm flexible tube. (c) A view on the fiber clamp inserted into the sleeve, pushing the fiber inside a D=42mm flexible cylinder. (d)  Overall view of the system with a rigid (Perspex) 42mm cylinder………………………………………………………………….7
Fig. 2.2: Results of FE simulations for fiber diameter d=1.8mm and tube diameter D=42mm. (a)
Vertical (compressive) force, 
[image: image644.png], and the interaction (contact) force, 
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, versus shortening, 
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.
Inset: the deformed shape of the fiber immediately after it adopts a non-planar (3D) shape. (b)
Deformed shape of the fiber and flexible cylinder.
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Fig. 2.3: A zoom-in view on 3% of the fiber length around the midspan, showing the interaction 
(contact) region at points (4) through (7) in Fig. 2 (d=1.8mm, D=42mm).
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Fig. 2.4: Results of FE simulations for fiber diameter d=2.4mm and tube diameter D=42mm. (a) 
Vertical (compressive) force, 
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, and the interaction (contact) force, 
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Inset: the deformed shape of the fiber immediately after it adopts a non-planar (3D) shape. (b) 
Deformed shape of the fiber and flexible cylinder.
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Fig. 2.5: A zoom-in view on 3% of the fiber length around the midspan, showing the interaction 
(contact) region at points (4) through (7) in Fig. 4 (d=2.4mm, D=42mm).
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Fig. 2.6: Results of FE simulation with a rigid cylinder. d=1.8mm and D=42mm (a) Force-
displacement relation, compared to the results with a flexible cylinder in Fig. 2. (b) Deformation 
of the fiber.
16
Fig. 2.7: Schematic illustration of the laterally-unconstrained elastica model. (a) The clamped-
clamped fiber. (b) Symmetry enables considering only the left quarter of the fiber.
17
Fig. 2.8: A clamped fiber is subjected to an axial compressive force P and is laterally constrained by the flexible cylinder. The constraining cylinder is conceptually replaced here by a “springy” wall……………………………... ……………………………………………………………….18
Fig. 2.9: (a) Results of the analytical model for d=1.8mm and D=42mm. (a) The deformed shape 
of the (left half) of the fiber when subjected to lateral resistance similar to the experiment, 
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Fig. 2.10: (a) Measured vertical force versus end shortening  (b) Displacement from the axis 
measured by image processing versus end shortening for same system - d=1.8mm and (a) D=32, 
(b) D=42 (c) D=74mm.
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Fig. 2.11: (a) Measured vertical force versus end shortening (b) Displacement from the axis 
measured by image processing versus end shortening for same system - d=2.4mm and (a) D=32, 
(b) D=42 (c) D=74mm.
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Fig. 2.12: Snapshots from the experiment showing the deformation of the flexible tube. (a) At 
various levels of shortening 
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dashed curve). FEA results are shown for simulations with various values of [image: image47.wmf]A
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1 Introduction

2 THE POSTBUCKLING BEHAVIOR OF COMPRESSED ELASTICA INSIDE A FLEXIBLE TUBE: EXPERIMENTAL AND NUMERICAL INVESTIGATION
2.1 Introduction

The post-buckling behavior of an elastic fiber subjected to lateral constraints has practical importance in variety of scenarios where access to enclosed space with an elastic fiber is needed, ranging from medical procedures, such as in vivo diagnosis, to engineering applications. In oil production, for example, drilling is carried out using a long “string” or drill pipe [1-5]. When the drill is subjected to axial load, it may buckle and touch the wall of the borehole, thereby resulting in damage. Medical applications include inserting fibers for medical imaging or for cardiac catheterization, as well as inserting stents for treating arterial disease [6-8]. When the leading end of the catheter encounters a narrowing or a lesion, the catheter may bend and touch the arterial wall, sometimes causing possible harm. In invasive microsurgery, flexible catheters are manipulated to reach organs requiring treatment [9, 10]. In these applications, the mechanical behavior of the laterally constrained elastic fiber dictates the surgical outcome [11]. 

Research on fibers constrained inside a rigid cylinder began as early as the 1950s, e.g. [1, 2, 12]. It was found that the deformation of the constrained fiber involves several stages of planar deformation, as well as stages of 3-D deformation, where the segments of contact between the fiber and the cylinder vary with the external load [13-15]. The final stage, where the fiber takes a helical shape, has been studied in several works, e.g. [16-19] that focused mainly on the relation between the applied load and the geometrical features of the helix. In addition, the influence of friction, which is generated between the fiber and the cylinder, on the behavior of the fiber has been studied by, e.g. [11, 20, 21]. In inclined [22-24] and horizontal [4, 21, 25-29] cylinders, gravity breaks the symmetry and may be a significant factor. With “curved” (yet rigid) constraining channels [30, 31], the external load associated with a helical shape of the fiber is usually larger as compared to straight cylinders.

The assumption that the constraining tube is rigid is often unsuitable. For example, in medical applications such as catheterization processes or in the growth of filopodia in living cells [32-36], the constraining cylindrical wall (artery or cell membrane) is highly flexible. The behavior of such system is highly nonlinear stemming from several coupled aspects: (i) geometrical non-linearity associated with large deformations of the compressed fiber, (ii) non-linear effects due to the continuous variation in the length, location, and geometry of the contact segment(s) during the fiber deformation, and (iii) deformation of the lateral constraint (the tube) which significantly influences the other two aspects mentioned above. Currently, the literature lacks both systematic analysis of the latter and experimental study of the issue. The main goal of this paper is to make a step towards bridging this gap. In fact, only few works addressed the subject of flexible lateral constraints. Most of these have considered the deformation of planar elastica against a flexible or springy wall [37-39] or 3D fiber deformation constrained by “soft” walls [40]. The only studies that examined the behavior of fibers inside a non-rigid tube considered the rather simple limit case of a “springy cylinder” where the tube wall behaves similar to the spring foundation of the Winkler type, i.e. the reactive force exerted on the fiber is assumed to be only in the radial direction and proportional to the radial displacement of the tube wall at the contact point [41]. Besides the simplistic, and somewhat non-realistic, settings of the analysis in these papers, these studied did not provide any experiments or similar validation. The current contribution presents, apparently for the first time, a combined theoretical, numerical, and experimental investigation on that intriguing post buckling phenomenon. In particular, we study the behavior of a slender fiber that is subjected to compressive force and constrained inside a flexible cylindrical tube that undergoes stretching and bending due to the interaction (contact) with the fiber. Analytical insights provided by a simplified model of constrained elastica, assuming a perfect inextensible elastic fiber undergoing planar deformations that is laterally constrained by a nonlinear spring, are compared with numerical finite-element (FE) simulations which in turn are validated by experiments. The results highlight the fact that the behavior of a compressed fiber that is constrained by a deformable tube significantly deviates from that of a fiber constrained inside a rigid cylinder. Moreover, it is shown that the overall behavior as well as the evolution of contact between the fiber and the cylinder heavily depend on the ratio between the stiffness of the fiber and the lateral stiffness of the tube.

The paper is organized as follows. In Section 2.2, we describe the system under consideration and provide details of the experimental setup and of the numerical (FE) simulations. In Section 2.3, the results of the FE simulations (Section 2.3.1) are compared to the predictions of a simplistic analytical model (Section 2.3.2), and to the results of experiments (Section 2.3.3). The paper concludes with a discussion in Section 2.4, that summarizes the main findings and insights. 

2.2 Materials and methods
We consider a slender elastic fiber of length [image: image102.wmf]L

 and circular cross-section of diameter [image: image103.wmf]d

 that is fixed at one end while guided (free to slide longitudinally without rotation) at the other end. The fiber is uniform and straight in its stress-free configuration. It is subjected to compressive force, and its deformation is laterally constrained by a flexible cylinder (tube) of inner diameter[image: image104.wmf]D

. Before loading is applied, the centerlines of the fiber and tube coincide. The compressive force induces deformation of the fiber along with the formation of contact segments between the fiber and the inner wall of the tube. In turn, the interaction force between the two, results in deformation of the flexible tube. We consider the case where the deformation of the tube is manifested by both bending and stretching, yet changes in the geometry of the tube cross-section are small.

2.2.1 Experimental system
Experiments were performed in the material-mechanics laboratory (Faculty of Mechanical Engineering, Technion – IIT) using an Instron 4483 machine, on which the designated experimental system was installed, see Fig. 2.1. 
[image: image105.jpg]
Fig. 2.1 The experiment setup. (a) Schematic description. (b) Overall view of the system during an experiment with a D=74mm flexible tube. (c) A view on the fiber clamp inserted into the sleeve, pushing the fiber inside a D=42mm flexible cylinder. (d)  Overall view of the system with a rigid (Perspex) 42mm cylinder.
The experimental setup includes a CSN EN 10270-1 steel-wire fiber of length [image: image106.wmf]550mm

L

=

 inside a flexible tube. The experiments involved several representative combinations of fiber and tube diameters, namely fiber diameters of [image: image107.wmf]1.8,2.4mm

d

=

 and tubes with inner diameters of [image: image108.wmf]=32,42,74mm

D

. In addition, experiments with a rigid cylinder with inner diameter of [image: image109.wmf]42mm

D

=

 were performed for comparison, see Fig. 2.1d. For the flexible-tube experiments, we used tubes that are made of polymeric material and include a thin rigid wire passing helically in their circumference. Such tubes are commonly used for cladding or protection. After their manufacturing in the form of very long and straight flexible tubes, the tubes are stored in large rolls, several meters in diameter. Depending on the conditions of storage (storage length, temperature, etc.) the tube may adopt a non-zero spontaneous curvature. To reduce possible influence of this feature, we have carefully selected the rolls, and within them tube segments, with small spontaneous curvature. In addition, the (small) remaining uniform spontaneous curvature of the segment was eliminated in the experiments by fixing the ends of the tube at zero angle (aligned with the vertical axis). This results in a uniform bending moment that neutralizes the uniform curvature [42].
As a preliminary step, we performed a set of experiments designed to measure the lateral resistance (or effective lateral “spring constant”) provided by the constraining tubes. These experiments involved the application of a lateral pulling force at the midspan of each flexible cylinder. To this end, a steel cable was connected to a screw at the cylinder mid-span at one end and to the Instron machine at the other end, while the cylinder was fixed at both ends in horizontal position (more details on these experiments and their results are provided in Section 2.6.1). The corresponding force-displacement curve was measured, characterizing the lateral stiffness of the flexible cylinder.

The main experiments, which are the core of this paper, involved displacement-control compression of the abovementioned fiber inside a flexible tube. To this end, special adapters were designed and installed to impose the necessary boundary conditions at both ends of the fiber. Then, the lower adapter was fixed to the flexible cylinder while the upper one was attached to the moving arm of the Instron machine, so that the symmetry axes of the stress-free fiber and the cylinder coincide, see Fig. 2.1b. In the experiment, the distance between the two ends of the fiber was slowly decreased at a rate of [image: image110.wmf]10mm/min

 using an encoder installed on the Instron machine. This resulted in the deformation of the fiber, followed by the formation of contact between the fiber and the constraining tube, and consequently the deformation of the tube. Note that our setup, in which the distance between the two ends of the fiber is shortened while the length of the fiber remains constant, differs from fiber injection. This setup involves smaller friction and enables simpler measurement of the force exerted on the fiber. In addition, the fact that the fiber is not inserted through a sliding sleeve avoids the generation of the so-called configurationally (or Eshelby-like) force [43, 44]. 

The compressive force applied on the fiber was measured by a static load cell and synchronized with the displacement reading and with a digital MAKO G-223 camera (CMOSIS/ams CMV2000 sensor, global shutter and 50 frames per second) which was used to record the experiment. The maximum vertical displacement, hereafter termed “shortening”, was restricted to prevent plastic deformation of the fiber. In each experiment, two complementary characteristics of the response were measured: the vertical force-displacement (shortening) relation and the lateral displacement (deflection) of the flexible cylinder. The latter was achieved by analyzing the successive camera frames with MATLAB® image-processing toolbox. 
2.2.2 Finite-element simulations
FE simulations, designed to simulate the experimental system described in Section 2.2.1, were performed with the commercial software ABAQUS FEA. A nonlinear static stress analysis was performed using the hexahedral solid elements C3D8R (8-node brick) for both the fiber and the constraining tube accounting for geometrical nonlinearity. The fiber was meshed with over 50 elements in the cross-section and a total of 1600 elements. The flexible tube was meshed with over 300 elements in the cross-section and a total of 2000 elements. Preliminary simulations with high-order brick elements or with a larger number of elements (finer mesh) led to similar results.

The material of the 42mm-diameter flexible tube was modeled using the polynomial hyperelastic model (generalized Rivlin model) with coefficients (material constants) [image: image111.wmf]1001

2.715,2.348
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. The mesh was refined in areas of contact between the fiber and the cylinder. Also, to simulate the behavior of the fiber inside a rigid cylinder, a hollow polycarbonate cylinder (Young’s modulus of [image: image112.wmf]2540MPa

 and wall thickness of 3mm) was used, as in the experiments, instead of the flexible tube. A Young’s modulus of [image: image113.wmf]200Gpa

 was assigned to the fiber, in accordance with results of preliminary tensile experiments performed with the Instron machine. 

Boundary conditions were implemented by defining zero-displacement of all degrees of freedom associated with the nodes at the two ends of the fiber, with the exception of the vertical displacement (z-direction) of the upper end, which was gradually increased during the simulation. In turn, the normal (reaction) force applied at the upper end of the fiber was measured in the simulation. The interaction between the cylinder and the fiber was defined using penalty stiffness in the normal direction of the contact surfaces, pressure-overclosure with "hard" contact, and no penetration.

2.3 Experimental results
2.3.1 FE simulations
The ability to identify the contact characteristics and to measure the interaction force using FE simulations provides valuable data that is practically impossible to obtain otherwise, thus support and complement the experimental results. Here, and in what follows, non-dimensional quantities are denoted with an overbear. In particular, lengths and displacements are normalized by half of the fiber length, [image: image114.wmf]/2
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, and forces are normalized by [image: image115.wmf]2
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. Accordingly, the (non-dimensional) critical buckling force of the fixed-fixed fiber is [image: image116.wmf]2
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. 

Results of the FE simulations are shown in Fig. 2.2a for a flexible tube with [image: image117.wmf]42mm
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 along with a fiber of diameter of [image: image118.wmf]1.8
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mm. 
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Fig. 2.2: Results of FE simulations for fiber diameter d=1.8mm and tube diameter D=42mm. (a) Vertical (compressive) force, [image: image121.wmf]cr

PP

, and the interaction (contact) force, [image: image122.wmf]F

, versus shortening, [image: image123.wmf]D

. Inset: the deformed shape of the fiber immediately after it adopts a non-planar (3D) shape. (b) Deformed shape of the fiber and flexible cylinder. 

Fig. 2.4a 
shows results of a similar simulation but for a thicker fiber of diameter [image: image124.wmf]2.4mm
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. Points (1)–(7) marked on the graph indicate deformation stages of the fiber and the tube and are visually depicted in the respective panels of Fig. 2.2b and Fig. 2.4b. In each plot, the vertical (compressive) force, [image: image125.wmf]cr

PP

,  and the interaction (contact) force between the fiber and the cylinder wall, [image: image126.wmf]F

, are plotted against the shortening, [image: image127.wmf]D

. The level of shortening associated with first contact between the fiber and the cylinder wall is illustrated by the vertical dashed line, [image: image128.wmf]cn

D

. In addition, transition from planar deformation to 3-D deformation of the fiber is denoted by [image: image129.wmf]3

D

D

. The insets in Fig. 2.2a and in Fig. 2.4a show the deformed shape of the fiber immediately after it adopts a non-planar (3-D) deformation, i.e. at a shortening slightly larger than [image: image130.wmf]3

D
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. There, the different colors correspond to lateral displacement, and the view is parallel to the direction of the symmetry axis (before loading). Each simulation involves a complete loading-unloading cycle. The force-displacement curves of the loading and unloading stages completely overlap, suggesting that the deformation sequence during unloading is identical to that of the loading stage, but in a reverse order. This is contrary to the case of a fiber constrained inside a rigid cylinder [13, 45]. There, the contact characteristics between the fiber and the cylinder undergo several stages, e.g. one-point contact, two-points contact, line contact, point-line-point contact etc., that differ in the loading and in the unloading stages. Consequently, the quasi-static loading-unloading cycle (with a rigid cylinder) exhibits a significant hysteresis. On the other hand, with the flexible cylinder studied here, the contact characteristics between the fiber and the cylinder are much simpler and involve only point-contact or line-contact configurations, see Fig. 2.3 for [image: image131.wmf]1.8mm
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 and Fig. 2.5 for [image: image132.wmf]2.4mm
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, resulting in a deformation sequence that is identical for loading and unloading. 
[image: image133.png]
Fig. 2.3: A zoom-in view on 3% of the fiber length around the midspan, showing the interaction (contact) region at points (4) through (7) in Fig. 2.2 (d=1.8mm, D=42mm). 
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Fig. 2.4: Results of FE simulations for fiber diameter d=2.4mm and tube diameter D=42mm. (a) Vertical (compressive) force, [image: image136.wmf]cr

PP

, and the interaction (contact) force, [image: image137.wmf]F

, versus shortening, [image: image138.wmf]D

. Inset: the deformed shape of the fiber immediately after it adopts a non-planar (3D) shape. (b) Deformed shape of the fiber and flexible cylinder.
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Fig. 2.5: A zoom-in view on 3% of the fiber length around the midspan, showing the interaction (contact) region at points (4) through (7) in Fig. 2.3 (d=2  .4mm, D=42mm). 
A comparison between the behavior during the loading stage with a flexible or a rigid cylinder ([image: image140.wmf]42mm
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, [image: image141.wmf]1.8mm
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) is shown in Fig. 2.6a. In addition, Fig. 2.6b shows the development of the fiber deformation inside the rigid cylinder. Generally speaking, the resultant lateral force applied on the fiber by the constraining tube is larger with the rigid cylinder. In turn, the larger lateral resistance results in a larger compressive force, [image: image142.wmf]P

, for a prescribed shortening, [image: image143.wmf]D

. For example, at [image: image144.wmf]1.1%
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, which defines the transition to 3-D-deformation with a rigid cylinder, the lateral (contact) force is higher by ~200% and the compressive force by ~40%.
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Fig. 2.6: Results of FE simulation with a rigid cylinder. d=1.8mm and D=42mm (a) Force-displacement relation, compared to the results with a flexible cylinder in Fig. 2.1. (b) Deformation of the fiber. 
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2.3.2 Analytical insights from a simplified model
The deformation of the fiber can be roughly divided into three main stages: (i) Before the fiber contacts the cylinder wall. (ii) Planar deformation with contact (between the fiber and the cylinder wall). (iii) 3-D deformation with contact. In this section, we present analytical derivations for the first two stages based on a simple model. The main goal is to provide insights related to key features of the behavior, such as first contact, transition from planar deformation to 3-D deformation of the fiber, and overall stiffness at the different stages of the deformation. The analysis models the fiber as a planar elastica that undergoes elastic deformations due to a compressive force. It is further assumed that the fiber is laterally constrained by a nonlinear spring, which has an effective stiffness equivalent to that of the flexible tube in the experiment. Details regarding the characteristics of this effective stiffness and relevant experimental measurements are provided in Appendix 2.6.1. 

2.3.2.1 No contact stage

Before contacting the tube, the fiber is modeled as a perfectly clamped-clamped elastica that is subjected to a compressive force. Thus, for [image: image147.wmf]2
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PP
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, the fiber remains straight (does not bend). For [image: image148.wmf]cr
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>

, the fiber deforms, and we look for the relation between the shortening, [image: image149.wmf]D

, and the deformed shape of the fiber. In particular we are interested in finding the onset of contact between the fiber and the tube. To this end, we apply symmetry considerations that enable analyzing quarter of the fiber, as illustrated in Fig. 2.7, and use the well-established solution [46] of an inextensible elastica that is clamped at one end and free at the other. 
[image: image150.png]
Fig. 2.7: Schematic illustration of the laterally-unconstrained elastica model. (a) The clamped-clamped fiber. (b) Symmetry enables considering only the left quarter of the fiber. 

In particular, we write  
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Note that (2.1) provides the relationship between [image: image158.wmf]P
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 through a single parameter, [image: image161.wmf]b

. That is, for a given value of [image: image162.wmf]b

, each member of the above triad can be calculated directly. In addition, the non-dimensional shortening, [image: image163.wmf]/
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 [37, 47], where the first term in this expression describes the shortening associated with the compressive strain. For example, in the particular case of [image: image165.wmf]200Gpa
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. We note that one may also include in the analysis the influence of geometrical imperfections, see for example [1-3, 45]. However, small imperfections have a significant influence on the fiber behavior mainly before the fiber contacts the lateral constraint [1-3, 45]. Thus, since the imperfection analysis of unconstrained elastica is a well-studied subject and the focus of this paper is on the post-contact behavior, the influence of geometrical imperfections is not considered in the current analysis.

2.3.2.2 Post-contact behavior

In this section, we analyze the planar deformation stage after the fiber contacts the flexible-cylinder wall. To this end, we conceptually replace the constraining cylinder with an equivalent spring that exerts an identical force on the fiber (see Fig. 2.8). 
[image: image633.png][image: image634.png][image: image174]
Fig. 2.8: A clamped fiber is subjected to an axial compressive force P and is laterally constrained by the flexible cylinder. The constraining cylinder is conceptually replaced here by a “springy” wall. 
For simplicity, and in accordance with the experimental results, it is assumed that the deflection of the fiber is sufficiently small to be described by the standard linear equation of beam bending. Let us denote the initial gap between the fiber and the cylinder wall by [image: image175.wmf](
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, and recall that the fiber is subjected to an external compressive force [image: image176.wmf]P

 that results in a horizontal displacement (shortening), [image: image177.wmf]D

, as illustrated in Fig. 2.8. The post-buckled fiber contacts the wall at the midspan, [image: image178.wmf]xH
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. An increase in the external force (and consequently of [image: image179.wmf]D

) results in a larger deflection, which depends on the resistance of that spring. In a recent work [37, 38], the behavior of a slender beam subjected to compressive force and laterally constrained by a linear spring was studied theoretically and experimentally. Here we follow the analysis of [37], but extend it to account for a cubic behavior of the force-displacement relationship of the constraining spring, which corresponds to our measurements (see Appendix 2.6.1 for more details). 
The deflection of the fiber, [image: image180.wmf]y

, is governed by the non-dimensional equation
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and the horizontal displacement, [image: image182.wmf]D

, is given by
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where symmetry with respect to the midspan, [image: image184.wmf]1
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, has been used. Further, assuming a point contact between the fiber and the cylinder wall and considering only the left half of the fiber, the boundary conditions are:
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Here, [image: image186.wmf]s

P

 is the lateral force applied by the spring, which takes the form (see (2.32) in Section 2.6.1):  
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 between the bending stiffness of the tube and the bending stiffness of the fiber. The relationship between [image: image191.wmf]P
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 is obtained by solving (2.3) for [image: image193.wmf]y

, subjected the boundary conditions (2.5), and then inserting the solution in (2.4). From (2.3) and (2.5) we have that
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implying that the spring deflection at [image: image195.wmf]1
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By substituting (2.8) into (2.6), we get an equation for the spring force [image: image197.wmf]S
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. In the particular case of a linear spring, [image: image198.wmf]3
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Substituting (2.9) into (2.7) gives
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from which we obtain, using (2.4), that
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The above relations reproduce the results in [37]. Next, we repeat the analysis, but for the non-linear spring (2.6). To this end, it is convenient to introduce the quantity 
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which allows writing (2.8) as [image: image203.wmf](1)
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 and rearranging,  one obtains a cubic equation for [image: image205.wmf]S
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To enable a closed-form analytical solution we define  
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which reduces (2.13) to
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From (2.15), we conclude that 
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with 
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Fig. 2.9 shows the prediction of the analytical model and compares between the results for linear (dashed lines) or cubic (solid lines) springs. Fig. 2.9a illustrates the deformed shape of the left half of the fiber for various values of the compressive force [image: image211.wmf]P

. Here, the lateral resistance is assumed to be similar to that of the experiment ([image: image212.wmf]1
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mm). The influence of the lateral resistance is demonstrated in Fig. 2.9b-c, where the deformed shape of the fiber and the force-displacement ([image: image216.wmf]P
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) relation is shown for various values of the lateral resistance when the fiber is subjected to compressive force [image: image217.wmf]2
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Fig. 2.9: Results of the analytical model for d=1.8mm and D=42mm. (a) The deformed shape of the (left half) of the fiber when subjected to lateral resistance similar to the experiment, [image: image219.wmf]1
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(1.01, 1.5, 1.75, 2). (b) The deformed shape of the (left half) of the fiber when subjected to compressive force [image: image222.wmf]2
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, for various lateral resistances [image: image223.wmf]1
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20.58. (c) The relation between the compressive force, [image: image225.wmf]cr
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, for various lateral resistances (same values as in (b)). 
The transition from planar deformation to 3-D deformation of the fiber is predicted to occur at approximately [image: image227.wmf]2.05
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. This is understood by the following reasoning. As long as the deformation is planar, the interaction between the fiber and the flexible tube is assumed to be through a point contact (a very small region of contact), see for example Fig. 2.3 and Fig. 2.5. Attributed to the circular shape of the tube cross section combined with friction between the fiber and the tube wall, this point of contact prevents out-of-plane displacement of the mid-point of the fiber. In other words, one may think of the contact point as a simple support located at the midspan of the fiber and preventing out-of-plain displacements. The critical buckling load of such column, i.e. one that is clamped at both ends and simply supported at the midspan, is identical with the second critical load (corresponding to the second buckling mode), [image: image228.wmf](2)
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 for the clamped-clamped column. Accordingly, once the compressive force applied on the constrained fiber reaches [image: image230.wmf](2)
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, the planar configuration becomes unstable and the fiber adopts a 3-D shape. Indeed, in our FE simulations, transition to 3-D deformation of the fiber was identified to take place at [image: image231.wmf](2)
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, see  Fig. 2.2 and Fig. 2.4. It is noted however that the above approximation for the onset of transition to 3-D deformation is less accurate for fibers that experience large in-plane lateral displacements during the stage of planar deformation. For example, if the fiber is constrained by an extremely flexible tube, the onset of transition to 3-D deformation may deviate significantly from [image: image232.wmf]2.05
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. On the other hand, if the lateral in-plane deflection preceding the transition to 3-D deformation is rather small, e.g. if the fiber is constrained by a small-diameter tube that is moderately flexible, [image: image233.wmf](2)
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2.4 Discussion of the results

The experiments involved displacement-control compression of a thin steel-wire fiber of length 550mm inside a flexible tube. Six different experiments were performed, each with a different combination of fiber diameter (1.8 or 2.4 mm) and tube diameter (32, 42, or 74 mm). The results of these experiments are shown in Fig. 2.10 and Fig. 2.11 for the 1.8mm fiber and for the 2.4mm fiber, respectively. For each different tube diameter, the measured compressive force, [image: image234.wmf]P

, and the measured lateral displacement of the tube at the midspan, [image: image235.wmf]d

D

,  are displayed as function of the shortening, [image: image236.wmf]D

, for three consecutive loading-unloading cycles. 

[image: image237.png]
Fig. 2.10: (a) Measured vertical force versus end shortening (b) Displacement from the axis measured by image processing versus end shortening for same system - d=1.8mm and (a) D=32, (b) D=42 (c) D=74mm. 

[image: image238.png]
Fig. 2.11: (a) Measured vertical force versus end shortening (b) Displacement from the axis measured by image processing versus end shortening for same system - d=2.4mm and (a) D=32, (b) D=42 (c) D=74mm. 

A notable feature of the results is the existence of hysteresis, manifested by an unloading path that is significantly lower than the loading path in the force-shortening relation. This is essentially a result of friction between the fiber and the tube, which is evident by the large drop in force immediately after changing shortening direction from loading (increasing [image: image239.wmf]D

) to unloading (decreasing [image: image240.wmf]D

). Some hysteresis of the flexible tube, associated with its visco-elastic behavior, was observed. This influence, however, is estimated to be relatively small since loading-unloading cycles practically overlap. In addition, similar experiments involving three loading-unloading cycles up to a smaller level of shortening showed similar results, see Section 2.6.2. The fact that the three cycles practically overlap, also indicates that the experiments are indeed performed in the elastic regime.

The qualitative and quantitative differences between the results of experiments with different tubes or with a different fiber diameter are evident. For example, the shape of the [image: image241.wmf]d

D-D

 relation is fundamentally different for the 32mm and for the 74mm tubes, where the relation is (mathematically) convex or concave, respectively, at moderate-to-large levels of shortening. This difference is manifested in the force-shortening, [image: image242.wmf]P

-D

, relation as well. Fig. 2.12 shows snapshots from the experiment of the deformed tube. Fig. 2.12a compares between the deformed shape of the tube at different stages of the experiment with fiber diameter d=1.8mm and tube diameter D=32mm. Fig. 2.12b, on the other hand, compares the deformation of the tubes in each of the six different experiments at the same level of shortening, [image: image243.wmf]5.4%

D=

. A similar comparison, but at larger shortening of [image: image244.wmf]14.5%

D=

, is provided in Fig. 2.12c. As expected, the deflection of the flexible tube increases with shortening, where the specific magnitude of the deflection depends on the stiffness of the fiber and on the diameter of the flexible tube. The shape adopted by the tube is roughly similar in all experiments at all stages yet differs in the magnitude of the deflection at the midspan. Transition to 3-D deformation of the tube or significant deviations from the shape that resembles the first buckling mode of a clamped-clamped beam were not observed. 

[image: image245.png]
Fig. 2.12: Snapshots from the experiment showing the deformation of the flexible tube. (a) At various levels of shortening [image: image246.wmf]D=

0.5, 2.9, 7.2, 14.5, 21.8, 25.4% (from left to right). Fiber diameter d=1.8mm and tube diameter D=32mm. (b) At shortening of [image: image247.wmf]D=

5.4%. The three left images correspond to d=1.8mm with tube diameters of D=32, 42, 74mm. The last three images correspond to d=2.4mm and tube diameters of D=32, 42, 74mm. (c) Same as (b), but at shortening of [image: image248.wmf]D=

14.5%.

A comparison between the results of all six experiments is shown in Fig. 2.13 and Fig. 2.14 focusing on the first stages of the deformation. 
[image: image249.png]
Fig. 2.13: Measured vertical force versus end shortening for fiber with: d=1.8mm and 2.4mm and for three different flexible cylinders with: D=32, 42 and 74mm – compared results.

As expected, the stiffness of the fiber reduces significantly when approaching the critical buckling force. First contact between the fiber and the tube is identified by the jump in stiffness (or corner-point) around [image: image250.wmf]cr
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. This point is also observed in Fig. 2.14 where [image: image251.wmf]d
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 becomes non-zero. 
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Fig. 2.14: Displacement from axis measured by image processing versus end shortening for fiber with: d=1.8mm and 2.4mm and for three different flexible cylinders: D=32, 42 and 74mm – compared results.
The corresponding shortening, [image: image253.wmf]cn
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, agrees well with the predicted value from the analytical model and the one extracted from the FE analysis. Further increase of the shortening results in a monotonic increase of [image: image254.wmf]P
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. Transition from 2-D to 3-D deformation of the fiber is predicted to take place at a force of [image: image258.wmf]2.05
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 (see Sections 2.3.1 and 2.3.2.2). Unfortunately, this cannot be verified in the experiment since the deformation of the fiber and the region of contact between the fiber and the tube cannot be observed. In addition, the results of the experiments, see Fig. 2.13, do not reveal any significant change in overall stiffness that might indicate that such transition has occurred. Such stiffness change was also not observed in the FE simulations (D=42mm), which agrees with the experiment. It is noted that if the fiber is constrained by a rigid cylinder, transition from 2-D deformation to 3-D deformation of the fiber is manifested by a significant decrease in the overall stiffness. This has been confirmed by experiments (see also Fig. 2.15) and numerical simulations [13, 45]. Hence, it is expected that such indication would be apparent in flexible tubes that are relatively stiff. A closer look on the force-shortening curve associated with D=74mm and d=1.8mm (the pair of fiber and tube with largest ratio of stiffnesses) in Fig. 2.13 indeed reveals such behavior, which is identified at a force level close to [image: image259.wmf]2.05
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 in accordance with the analytical prediction (see Section 2.3.1). Overall, the results obtained for larger levels of shortening, Fig. 2.10 and Fig. 2.11, do not reveal additional significant features that can be used to identify/reveal changes in the deformation of the fiber or in the characteristics of the contact region(s) between the fiber and the tube.  

[image: image260.png]
Fig. 2.15: Measured vertical force versus end shortening for rigid and flexible cylinders: D=42mm and fiber: (a) d=1.8mm. (b) d=2.4mm– compared results. 
It is worth noting that the presentation of the results of the force-displacement relation may be “deceiving” in the sense that it seems as if the compressive force associated with the thinner fiber is larger than that of the thicker fiber. This is due to the normalization with respect to the critical buckling force of the fiber. As expected, the actual (dimensional) force of the thicker fiber is indeed larger. Finally, a comparison between the results of the experiments, the FE analysis, and the analytical model, is shown in Fig. 2.15 for the 42mm-tube. The agreement between the results is very good. For reference, we also show the results of experiments with a rigid tube having an inner diameter of 42mm. These results highlight the significant difference in the overall behavior associated with rigid and flexible tubes. The non-smooth force-displacement relation observed with the rigid cylinder is due to friction between the fiber and the rigid cylinder wall, which gives rise to a stick-slip-like motion of the contact region.

2.5 Summary and conclusions
We studied analytically, numerically, and experimentally the post-buckling behavior of a clamped-clamped elastic fiber that is subjected to compressive force and constrained by a flexible tube. The deformation of the tube is assumed to involve bending and stretching, while changes in the geometry of the tube cross-section are small. Accordingly, experiments were performed with specifically chosen composite tubes that comply with the abovementioned behavior. The experiments provide quantitative information related to the overall behavior of the system. In particular, the relation between the compressive force, [image: image261.wmf]P

, and the shortening of the fiber, [image: image262.wmf]D

, was measured. In addition, the lateral displacement (deflection) of the flexible tube was recorded by means of image processing of synchronized digital camera frames. Evidently, the experiments cannot provide direct information related to the deformation of the fiber or the contact that develops between the fiber and the tube wall. To complement the missing information we performed FE simulations, which were validated by comparison to measurements in the experiments and by the predictions of a simple analytical model. Once the results of the FE simulations were validated, they provide an excellent platform for investigating features of the behavior that cannot (or are complex) be studied experimentally. For example, post-processing of the FE simulations can be used to visualize and analyze the evolution of the contact region(s) between the fiber and the inner wall of the tube, or to study the deformation of the fiber inside the tube. In addition to the experiments and the FE simulations, we developed a simple mathematical model for studying the behavior of the fiber while it undergoes planar deformation. To this end, the constraining tube was conceptually replaced by a non-linear spring that applies force on the fiber at the mid-span. The nonlinear behavior of the spring was calibrated based on additional experiments and was found to be well-described by a force-displacement relation formed by the sum of a linear term and a cubic term. The main advantage of this simplistic model is that it provides valuable analytical insights regarding the first stages of the deformation, as discussed below. 

The results of the FE simulations, analytical model and the experiments are all in very good agreement. This suggests that the analytical insights provide reliable predictions. Also, FE analysis is an excellent platform for studying the intricate interaction between the fiber and the deformable wall and can be reliably used as a design tool. Overall, the results reveal that the deformation of the fiber can be roughly divided into three main stages: (i) Before the fiber contacts the cylinder wall. (ii) Planar deformation with contact (between the fiber and the cylinder wall). (iii) 3-D deformation with contact. The first stage is not different from the well-studied elastica under uniaxial compression. In this stage, the deformation of the fiber is quite sensitive to imperfections, sensitivity that is enhanced as the force approaches the critical buckling force, [image: image263.wmf]cr
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, and the overall stiffness reduces significantly. The second stage involves planar deformation of the fiber combined with interaction (contact) with the inner wall of the tube. The onset of first contact between the fiber and the tube is identified experimentally by the jump in stiffness (or corner-point) around [image: image264.wmf]cr
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 as well as the initiation of tube deflection. It may be identified from the FE simulations by means of similar considerations, or by directly examining the contact force between the fiber and the tube. The results for [image: image265.wmf]cn
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 obtained from the experiments, the FE simulations, and the analytical model, are in excellent agreement, and suggest the onset of first contact is well predicted analytically. During the second stage, the stiffness, [image: image266.wmf]/
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, gradually decreases with shortening, while the lateral deflection of the tube increases and the curvature of the fiber at the midspan decreases. Interestingly, our analytical predictions indicate that this behavior depends nonlinearly with the lateral stiffness of the flexible tube (see for example (9)-(11)). Careful analysis of the FE results shows that the contact region between the fiber and the tube, which forms at the midspan of the fiber, is very small and almost does not change its length. Hence, it can be described as a 1-point contact or a small line-contact segment. The transition from planar to 3-D deformation of the fiber is directly identified from the FE results. It has been found that the onset of this transition agrees well with the prediction of the analytical model, namely [image: image267.wmf]3
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. The corresponding shortening and lateral deflection are also found analytically from the closed-form expressions of the mathematical model. Both the FE and the experiments show that the deformation of the tube does not change significantly between stages (ii) and (iii). In particular, the deflection of the tube remains planar, with a shape that resembles that of the first buckling mode of a clamped-clamped beam. Depending on the relative bending stiffness of the fiber and the tube, the transition to 3-D deformation of the fiber may be accompanied by a significant change in overall stiffness. This is observed only if the lateral stiffness of the tube is large enough. In our experiments, such behavior was observed only in the experiment with the largest tube diameter (74mm) and the thinnest fiber (1.8mm), a combination corresponding to the largest stiffness contrast. Similar to stage (ii), the overall stiffness in stage (iii) gradually decreases with [image: image268.wmf]D

. This trend may change however for large shortening values (>10%). The contact between the fiber and the tube is maintained as a single region located at the midspan of the fiber. Nevertheless, the size of this region gradually increases with [image: image269.wmf]D

, forming a line-contact. Nevertheless, for the range of shortening considered in the FE simulations, the length of the line-contact region remains quite small, less than 3% of the fiber length. Overall, the observed evolution of contact between the fiber and the flexible tube is rather simple. This is contrary to the case of a fiber constrained inside a rigid tube, where a complex evolution of several contact stages has been observed, such as point-contact, line-contact, point-line-point contact etc. It is therefore reasonable to assume that less compliant tubes and/or more compliant fibers may give rise to contact characteristics that are more involved. A similar conclusion has been reached in [41] by assuming that the tube wall behaves similar to a Winkler-type foundation. There, it was found that complicated deformations, which change from contact to non-contact within a tight space, can exist only when the tube is almost rigid. As the tube becomes more flexible, the dramatic variation of contact and non-contact tends to ease off.

In terms of overall behavior, the experiments indeed demonstrated that different fiber stiffness as well as different tube diameter lead to significantly different behavior. Besides the differences in the force-shortening relation, the different stiffness contrast may lead to fundamentally different behavior in terms of lateral deflection of the tube. More specifically, the relation between the fiber shortening, [image: image270.wmf]D

, and the lateral deflection at the midspan, [image: image271.wmf]d
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, may be concave or convex depending on the stiffness contrast. 

Although the role of friction between the fiber and the inner wall of the tube was not systematically studied in this work, it is possible to draw some conclusions by combining the results of the FE simulations and of the experiments. The FE simulations assumed no friction and the results of a complete loading-unloading cycle showed no hysteresis. On the other hand, the results of the experiments demonstrated a notable hysteresis that stems mainly from a significant drop in force at the onset of transition from loading (increasing [image: image272.wmf]D

) to unloading (decreasing [image: image273.wmf]D

). This drop, at a constant shortening level, is attributed mainly to friction and the change of its direction. The fact that the results of the FE simulations qualitatively agree with those of the experiments suggest that, at least for the investigated system, the qualitative influence of friction on the behavior is not very significant. 

The main conclusion of the paper is that the behavior of a compressed fiber that is constrained by a deformable tube significantly depends on the ratio between the stiffness of the fiber and the stiffness of the constraining tube. Moreover, the behavior is also substantially affected by the (nonlinear) characteristics of the resistance provided by the tube. For the tubes tested in this work, the lateral resistance takes the form of a cubic force-displacement relation. A constraining tube providing a different resistance would result in a different response. The results also highlight the fundamental difference between the behaviors with a rigid tube or a flexible one. As mentioned above, the vast majority of works have considered the lateral constraints to be fixed and rigid. This work makes a significant step towards bridging this gap by performing, for the first time, experiments with flexible tubes that are complemented with numerical investigation and analytical analysis. The significance of the results combined with the relevance of the subject to a range of engineering and medical applications calls for further study. In particular, the analysis should be extended to study the influence of boundary conditions (of the fiber and of the tube), influence of slenderness (or non-slenderness) of the constraining tube, the influence of friction, the effect of geometrical imperfections (fiber or/and tube), as well as significant deformation of the tube cross-section.

2.6 Supplemental information
2.6.1 Lateral resistance generated by the tube

The purpose of this appendix is to examine the lateral resistance generated by the flexible tubes that were used in the experiment. This is then used to model the flexible tube in the FE simulations, and also to enable construction of a simple analytical model which is discussed here as well. The lateral resistance of the flexible tubes was measured experimentally. To this end, a steel cable was connected to the tube at the midspan. The lateral force vs. lateral displacement were measured by recording the tensile force applied on the cable vs. its displacement using the Instron machine, see Fig. 2.16a. The measured force-displacement relation for each of the three tubes is illustrated in Fig. 2.16b. 
[image: image637.png][image: image274]
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Fig. 2.16: (a) Experimental setup for measuring the lateral resistance of the flexible cylinder. The pulling cable is thin thus hardly visible in the figure. (b) Lateral force, F, vs. lateral displacement, , for the three different flexible tubes D=32, 42, 74mm. For each tube, the results from the experiment are compared with the analytical expression (dashed lines) of (33).
In order to better understand those results it is instructive to consider a simple model which considers the tube as a thin-walled beam with circular cross-section that is subjected to a lateral force [image: image276.wmf]F

 at the midspan, see Fig. 2.17a. The model assumes moderately large deflections that account for membrane-stress that may develop, yet approximates the curvature by [image: image277.wmf]22
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 is the beam deflection. Based on symmetry considerations, one can analyze half of the beam, see Fig. 2.17b. Accordingly, the governing equations are 


[image: image279.wmf]42

42

0

tt

dwdw

EIN

dxdx

-=


(2.18)
and 


[image: image280.wmf]2

1

2

tt

dudw

NEA

dxdx

éù

æö

=+

êú

ç÷

èø

êú

ëû


(2.19)
subjected to the following boundary conditions:
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 are the Young’s modulus, first and second area moments of the cross-section, respectively, [image: image285.wmf]N

 is the (uniform) internal tensile force, and [image: image286.wmf]u

 is the horizontal displacement of the beam centerline. Integrating both sides of (19) with respect to [image: image287.wmf]x

 and using the boundary conditions gives:
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Next, we write (2.18) and (2.21) in a non-dimensional form, where lengths and displacements are normalized by [image: image289.wmf]H
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 is equal to the (non-dimensional) radius of the tube, i.e. [image: image297.wmf]/2

rD

=

. The solution of (2.22) subjected to the corresponding boundary conditions is
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from which we obtain the deflection, [image: image299.wmf]d
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Next, by plugging (2.24) into (2.23) we get 
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Finally, inserting (2.26) into (2.25) gives
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Although it is not possible to write an explicit relation between [image: image304.wmf]F

 and [image: image305.wmf]d

, (2.26) and (2.27) provide an implicit parametric relation through [image: image306.wmf]l

. 
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Fig. 2.17: (a) A clamped-clamped beam of length 2H subjected to a lateral force F. (b) The right half of the beam.
This nonlinear force-deflection relationship is illustrated in Fig. 2.18a. It is instructive to compare this result to the linear force-displacement relationship predicted by the small-deformation analysis, [image: image308.wmf]24
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Using (2.26) and (2.27), gives
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Thus, by plugging (2.28) into (2.29), we arrive to an explicit (approximate) force-displacement relationship
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. As illustrated in Fig. 2.18a, the accuracy of this approximate relation is very good. 

[image: image321.png]
Fig. 2.18: The lateral force-displacement relation for the clamped-clamped beam. (a) A comparison with the cubic approximation (30). (b) The (in)accuracy of the linear approximation.

Recall that the purpose of the above derivations is to enable a simplistic analysis of the original problem, which involves a compressed elastica constrained inside a compliant tube, by conceptually replacing the constraining tube with an equivalent spring that exerts an identical force on the fiber, as illustrated in Fig. 2.8. Accordingly, we assume that the force in the constraining spring shown in Fig. 2.8, denoted as [image: image322.wmf]S

P

, takes the form of (2.30). Thus, we write 
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where [image: image324.wmf](1)
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 describes the (non-dimensional) lateral displacement of the fiber at the midspan and [image: image325.wmf]0
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 is the initial gap between the fiber and the cylinder wall. For convenience, we multiply both sides of relation (2.31) by [image: image326.wmf]/
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where [image: image328.wmf]EI

 is the bending stiffness of the fiber, distinguished from that of the tube [image: image329.wmf]tt
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Lastly, in terms of dimensional quantities, relation (30) is written as
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By fitting to the results of the experiments described in the beginning of this chapter, to a cubic relation of the form (2.33), we obtain [image: image333.wmf]1
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 for each of the three flexible tubes in the experiment (see Table 2.1). A comparison between the experiment results and relation (2.33) shows excellent agreement, see Fig. 2.16b.

Table 2.1: Values of 1 and 3 for the flexible tubes in the experiment

	Tube diameter, D [mm]
	1 [N/mm]
	[N/mm3]

	32
	9.6E-2
	4.5E-5

	42
	2.7E-1
	1.3E-4

	74
	2.8E-1
	2.7E-4


2.6.2 Loading-unloading experiment up to ∆ = 6%

In this appendix, we present additional results of experiments involving three loading-unloading cycles, yet up to a smaller level of shortening compared to the results shown in Fig. 2.10 and Fig. 2.11. Fig. 2.19 presents the measured force-shortening relations with a fiber diameter of 1.8mm and for three different tube diameters (32, 42, 74 mm). A similar presentation, but for a fiber diameter of 2.4mm is shown in Fig. 2.20
. 
[image: image335.png]
Fig. 2.19: Measured force-shortening relation for a fiber of diameter d=1.8mm and three different flexible cylinder: (a) D=32mm (b) D=42mm. (c) D=74mm. Each plot shows results of three loading-unloading cycles.

[image: image336.png]
Fig. 2.20: Measured force-shortening relation for a fiber of diameter d=2.4mm and three different flexible cylinder: (a) D=32mm (b) D=42mm. (c) D=74mm. Each plot shows results of three loading-unloading cycles.

Performing these experiments at a lower loading rate resulted in similar results (not shown here). The fact that all cycles practically overlap, suggests that the influence of non-elastic phenomena is small. For reference, we also show the results of similar experiments but with a rigid cylinder (D=42mm). A comparison between these results and the results of a FE simulation, assuming a rigid tube, is illustrated in Fig. 2.22. The agreement between the two provides additional indication for the ability of the FE simulations to reproduce the essence of the behavior observed in experiments. 

[image: image639.png][image: image337]
Fig. 2.21: (a) Measured force-shortening relation for a rigid cylinder: D=42mm, and fibers: (a) d=1.8mm. (b) d=2.4mm.

[image: image338.png]
Fig. 2.22: Measured vertical force versus end shortening for rigid cylinder: D=42mm and fiber: d=1.8mm. The experimental results are compared to FE simulations results (red dashed curve). 

3 Initial post-contact behavior of an axially compressed fiber constrained inside a rigid cylinder: experimental, analytical, and numerical investigations 

3.1 Introduction

The post-buckling behavior of a linearly elastic fiber subjected to lateral constraints is of practical importance in a variety of fields, ranging from medical procedures (such as in vivo diagnosis) to engineering applications. Examples of applications in the field of medical procedures include the threading of fiber for the purpose of medical imaging or for catheterization of the heart, urinary tract, and blood vessels. Understanding the nonlinear behavior of such systems, and in particular, the forces exerted by the fiber (the guidewire) on the constraining walls (artery) is important in order to ensure the safety of the procedure [9]. In rare cases, the extensive deformations of the guidewire can result in the fracture of the guidewire or cause damage to the artery during the intervention procedure [7, 8] . Other applications include the internal examination of pipe systems, the insertion of artificial fibers in industrial crimpers, drilling of wells from a platform to reach deep hydrocarbon or gas reservoirs [19], effects of delamination in composite materials [47, 48], the insertion of paper into toner, growth of plant roots [49], and the growth of filopodia in living cells [32-34, 36].

Originally, the engineering community was mainly concerned with ways of avoiding large deformations followed by buckling, and the scientific discussion concentrated on assessing critical forces [2, 46, 50-51]. During the second half of the previous century, starting in the early sixties, theoretical models of post-buckling behavior began to emerge. These early works focused on formulating and solving problems of (laterally-unconstrained) compressed columns and curved beams subjected to various types of boundary conditions [3,12]. In recent decades, the interest in post-buckling behavior of laterally constrained fibers has constantly increased. Theoretical and experimental studies have shown that a bi-laterally constrained fiber undergoing plane deformations exhibits intriguing behavior, and the studies presented a rather rich sequence of events under controlled axial end displacement [35, 47, 52-54]. This sequence includes the formation of discrete (point-contact) or continuous (line-contact) regions of contact between the fiber and the constraining walls, and the instantaneous transition from one equilibrium configuration to another due to the onset of local instability. The specific details of these events and their dependence on parameters such as slenderness of the fiber, the ratio between the fiber radius of gyration and the gap between the walls, loading rate, and friction can be found [11]. Theoretical studies have adopted various strategies and simplifying assumptions, such as fixed constraints, frictionless walls, or small deformations [19, 55], concentrating on studying the range of possible equilibrium configuration and the evolution of contact between the fiber and the constraining walls [19]. In addition, numerical methods were employed to study the planar deformation of fibers subjected to more complex lateral constraints, such as non-parallel walls, non-continuous and curved surfaces [56-62] . Only a handful of studies consider the effects of friction [19, 55], and an even smaller body of work have approached the realistic case of compliant (deformable) constraining walls, [37, 38]. 

The three-dimensional (3-D) response of a fiber constrained inside a rigid cylinder is discussed in [28]. Here, in addition to the formation of discrete and/or continuous contact regions, a transition between planar deformations and three-dimensional configurations occurs. Typically, the initially straight elastic fiber buckles into a planar wavy shape when subjected to edge-thrust. As the edge-thrust increases, the fiber contacts the cylinder wall, switches to a non-planar deformation, and eventually twists and adopts a helix-like shape. In some applications, such as for drilling oil wells, understanding the details of this behavior is crucial. In particular, once the fiber contacts the wall, the effectiveness of the drilling operation is dramatically decreased. Moreover, locking might occur when the fiber takes a helix-like shape with extensive wall contact. A similar phenomenon also occurs in stent operations [7, 8, 11, 31]. Studies of the 3-D deformation of a laterally constrained fiber have been performed in the context of delamination occurring in fiber-reinforced composites [21, 27]. 

Theoretical studies investigating the 3-D deformation of a fiber constrained inside a cylinder can be roughly divided into two main groups. The first group assumes that the constraining cylinder is slender, and the deformation of the fiber is minor, thus making the classical model of small-rotations applicable. Different formulations for the critical loads and post-critical configurations were studied, with several papers considering the effects of friction [11], gravity [16, 22], and the inclination angle of the constraining cylinder [24, 50]. In the second group of studies, finite deformations are accounted for and the elastica theory is commonly adopted to describe the nonlinear behavior of a fiber undergoing finite deformations. 

Nearly all theoretical works studying the finite deformations of a fiber constrained inside a cylinder have focused on the final stage of the fiber deformation process where almost the entire length of the fiber contacts the cylinder wall and the fiber adopts a helix-like deformation [32-34, 36]. The studies in [3, 16] are among the earliest in this direction in which an energy method was used to extract the relation between the edge-thrust and the pitch of the circular helix. To date, not much attention has been given to the initial (post-contact) stages of the fiber deformation that follow the first contact between the fiber and the cylinder wall. In this respect, the studies in [4, 14, 29] provide valuable theoretical, numerical, and experimental information; the focus therein is on extremely slender cylinders (inner radius to length ratio of ~[image: image339.wmf]4
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) and on horizontal orientation, causing nearly 90% of the fiber to be initially in contact with the cylinder even before the external load was applied. In work published recently by Chen et al. [13, 63], a rigorous theoretical model was developed to describe the post-buckling behavior of a perfectly straight fiber inside a rigid and frictionless cylinder. Before external force is applied, the fiber coincides with the center line of the cylinder, making no contact with the cylinder wall. Numerical results for a relatively large inner radius to length ratio of ~[image: image340.wmf]1
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have demonstrated the many possible equilibrium configurations of the fiber in constrained cylinder. However, there is a definite need for experimental studies that systematically investigate the post-contact behavior in such processes. 

The goal of the present paper is to present further progress towards bridging this gap. We systematically study the initial deformation stages of a fiber constrained inside a rigid cylinder by means of novel experiments as well as finite-element analysis (FEA). Special effort has been made to develop an experimental method that enables the identification of contact characteristics between the fiber and the cylinder wall. This identification is a challenging task since even if a transparent cylinder is used, the curvature of the cylinder strongly affects the optics and makes it practically impossible to realistically identify contact (or non-contact) between the fiber and the cylinder wall. The approach we have adopted is based on filling the transparent cylinder with an opaque white fluid and using a dark fiber along with post-experiment image processing. Synchronized force-displacement measurements have enabled accurate quantitative identification of the deformation pattern, including the corresponding contact behavior. Comparison of the results with the theoretical predictions of [13] provides valuable information regarding the applicability of the underlying assumptions in that model. 
3.1.1 Brief review of available theoretical predictions
Since the model and results of [13] are of immediate relevance to the current research, we briefly review its main theoretical findings and predictions in this section. In preliminary work, Chen and Fang [63] adopted the assumption of small deformations to study the post-buckling of a fiber constrained inside a rigid cylinder. The model considered a slender, isotropic, linear elastic, stress free and perfect fiber (no geometrical or material imperfections) of length [image: image341.wmf]L

 with circular cross-section of bending stiffness[image: image342.wmf]EI

- namely the flexural rigidity of the beam in the plane of bending. The effects of gravity and friction were assumed to be negligible, and clamped-clamped boundary conditions were considered, i.e., one end of the fiber is completely fixed (zero displacements and rotations) at the center of the cylinder cross-section, while the other end can only move along the axis of the cylinder. The effects of the edge-thrust on the fiber deformation and corresponding contact configuration were investigated. According to this model, the transition from 1-point contact configuration to 2-point contact configuration occurs at edge-thrust of [image: image343.wmf]22
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, which corresponds to the critical (Euler) buckling load of a clamped-clamped column of length [image: image344.wmf]2

L

. Interestingly, it was found that this transition involves a jump in the ends shortening. It has been argued that this peculiar jump phenomenon is due to the limitation of the small-deformation theory. In order to remedy this deficiency, a theory associated with the elastica model was developed in [13] (a similar approach was applied in [45, 46] to study the deformation of a fiber subjected to end-twist rather than end-thrust). The aforementioned model assumptions of [63] were adopted in [13] except for the assumption of small deformations. Also, it was found that, contrary to the small-deformation theory, the planar 1-point contact evolves to spatial (3-D) 1-point contact first and then gradually transforms to the 2-point contact configuration. Moreover, seven deformation shapes, each characterized by a different contact configuration, were identified [13]: (1) no-contact, the fiber “buckles” into a curved shape as force approaches Euler’s critical load; (2-1) contact forms between the fiber and the cylinder,  leading to a planar (2-D) 1-point contact configuration, in turn resulting in a sharp increase of the fiber response slope; (2-2) the fiber switches to a spatial (3-D) 1-point configuration, associated with a significant decrease of the slope; (3) gradual evolution of a 2-point contact configuration; (4) 3-point contact configuration; (5) point-line-point contact; (6) one-line contact; and (7) three-line contact.

In this paper, we investigate the mechanical response of a fiber undergoing large deformation inside a stiff cylinder by comparing different FE analysis, experiments, and theoretical predictions. The paper is organized as follows: In Section 3.2, we describe the methods and materials that include the experimental system, image processing, and numerical simulations to characterize the contact configuration between the fiber and the cylinder wall. In Section 3.3, we discuss the experimental, image processing, and numerical simulation results and compare them with the results from the theoretical predictions. Finally, Section 3.4 summarizes the main conclusions drawn from this study and identifies problems for future research. In addition, the influence of symmetrical and anti-symmetrical initial imperfections of the fiber shape are analyzed theoretically, whereas the symmetrical mode has been examined experimentally as well.

3.2 Materials and methods
The theoretical predictions are based on the assumptions that the thin elastic fiber of length [image: image345.wmf]L

 with circular cross-section is inextensible and unshearable; the fiber is uniform in its mechanical properties along its length [image: image346.wmf]L

 and is stress-free when it is straight and untwisted; the fiber deformation is constrained inside a straight circular cylinder with radius[image: image347.wmf]R

; and the centerline of the constraining cylinder coincides with the unstressed straight fiber. Gravity and friction force are not considered. The diameter of the fiber cross-section is negligible compared to that of the cylinder. We consider the deformation of the fiber when it is subjected at one end, to prescribe edge-thrust and bends under the constraint of the cylinder wall. It is assumed that the fiber is completely fixed at the other end and not allowed to rotate about the longitudinal axis. Thus, at the loaded end, the fiber is clamped laterally but is free to slide longitudinally. The solution method in analysis must envision at the outset what the deformation pattern is, such as 1-point contact or 2-point contact. During the early stage of the deformation sequence, one is guided by previous experience from the small-deformation theory, leading to point-line-point contact. Further on, for given fiber dimensions, the ensuing constrained elastic deformation depends on the radius of the constraining cylinder. Based on the parameter [image: image348.wmf]/
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, the ratio between cylinder radius[image: image349.wmf]R

and fiber length [image: image350.wmf]L

, it has been found that for a relatively slender cylinder, such as [image: image351.wmf]0.104
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  [44], the early stages of the deformation sequence are similar to the stages obtained from the small-deformation theory. Thus, the stages are 1-point, 2-point, 3-point, and point-line-point contact configurations. However, some fundamental differences exist between the predictions of small-deformation theory and the elastica model, even along this early stage of deformation. 

According to small-deformation theory, the 1-point contact stage exists only in planar form; while with the elastica model, the 1-point contact stage of the spatial form also exists, so in this model there is a 3-D deformation at 1-point contact stage. In addition, according to small-deformation theory, the point-line-point contact configuration is the final stage of the deformation. Also, as the radius of the constraining cylinder increases, the deformed patterns become less complicated and the number of patterns before the two end clamps meet decreases. As expected, the difference between the small-deformation theory and the elastica model increases as the radius of the constraining cylinder becomes larger. In fact, when [image: image352.wmf]e

 is larger than 0.384 [13], the constraining cylinder has no effect on the elastica deformation.

3.2.1 Experimental set up
Experiments were performed in the material-mechanics laboratory (Faculty of Mechanical Engineering, Technion – IIT) using an Instron 4483 machine, on which the designated experimental system was installed, see Fig. 3.1. The experimental system includes 6 different CSN EN 10270-1 steel wire fibers of length [image: image353.wmf]530mm
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, with three radii [image: image354.wmf](
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0.61,0.78,0.88mm
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, inside transparent cylinders (of radii [image: image355.wmf]55
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and [image: image356.wmf]100mm

). The latter have been filled with an opaque white fluid (metalworking-cooling fluid, PVR-925S, mixed with water). Due to the inherent curvature of the cylinder, which strongly affects the optics, it is practically impossible to identify the onset and progress of contact between the fiber and the cylinder wall. Filling the transparent circular cylinder with the opaque white milky fluid enables identification and tracing the progress of these contact regions, as explained below. Special adapters were designed and installed to impose clamped boundary conditions at both ends of the fiber. Then, the lower adapter was fixed to the cylinder while the upper one was attached to the moving arm of the Instron machine, so the fiber coincided with the symmetry axis of the cylinder at the start of the experiment. During the experiment, the distance between the two ends of the fiber was slowly decreased, upon lowering the upper end, by the Instron machine; this process resulted in the bending deformation of the fiber constrained by the cylinder. Our method in which the distance between the two ends of the fiber is shortened while the length of the fiber remains constant differs from the method in [27]. Therein the fiber is injected from the left to the right and pulled over two feeder rollers through a slave injector, forming a slack loop, and then pulled through a primary injector into the constraining glass cylinder. We believe that the experimental method employed in this study has advantages over previous experimental setups, including minimal friction and higher accuracy in measuring the fiber force. In our experiments reaction forces are transmitted over an air bearing slider to the force sensor. The fiber is then pulled through a channel by an idler wheel and a drive wheel, driven by a servo-stepper motor holder of an acrylic clamp holding the cylinder in place. The deformation is examined for the six different cylinders, chosen to enable a quantitative comparison with the results presented in [13], i.e., two different values of the non-dimensional ratio [image: image357.wmf]/
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 have been employed. Ends shortening (a decrease of the distance between the two clamps) was determined by the displacement of the upper clamp, that is controlled by the Instron machine, using displacement control. In this configuration, loads are applied to adapter based on the displacement, and the displacement is determined using an Encoder installed on the Instron. In this procedure, the displacement changes incrementally while the reaction force results depend on the stiffness of the structure. Edge-thrust (axial compressive force) applied on the fiber was measured by a static load cell, and together with displacement adapter both were synchronized with a digital camera (MAKO G-223 with CMOSIS/ams CMV2000 sensor, global shutter; 50 frames per second) that was used to record the experiment. The maximum level of ends shortening was restricted by the software to prevent plastic deformations. 

[image: image359.png]
[image: image360.png][image: image640.png][image: image361]
Fig. 3.1: (a) The experimental setup, with a cylinder of [image: image362.wmf]55mm

 radius (left image), or [image: image363.wmf]100mm

  radius (right image). In these images, the cylinder is not completely filled with an opaque milky fluid for the purpose of clarity. (b) Schematic description of the main experiment and system components.
In each experiment, two complementing characteristics of the response were recorded: the force displacement relation and details of contact. To determine these features, the axial force applied to the fiber was monitored along with the corresponding ends shortening. The analysis of the force-displacement relation provides the core information on the fiber loading process, revealing important aspects of the fiber behavior. The details of contact between the fiber and the cylinder were determined by analyzing the successive frames, taken by the camera, and complemented with MATLAB® assisted image processing, thus providing clear exposition of the contact region between the fiber and the cylinder wall. Synchronization between the camera and the Instron machine enables the contact configuration to be identified and combined directly with the force-displacement relation. This synchronization provides instructive qualitative and quantitative comparison between the behavior observed in the experiment and the structural response predicted by FE analysis and by the theoretical predictions of [13].

3.2.2 Image processing

Each snapshot (image) underwent image processing with MATLAB® to identify the contact region between the fiber and the inner wall of the cylinder. To this end, the following procedure was applied: First, the image converted to a digital array of scalar integers in the range of [0,255]. The array size is identical to the number of pixels in the image, and the scalar integer values represent the gray level of each pixel, where the extreme values of 0 and 255 correspond to black and white, respectively. 

Next, the image is corrected to produce a uniform background, i.e., make all pixels of the white fluid have the same gray level. The purpose of this step is to minimize the effects of non-uniform illumination due to the curvature of the cylinder wall. Without this correction, columns of the array (image) that are remote from the center are generally darker (have smaller gray-level values). That correction involves multiplying each column by a different factor such that the average values of the fluid pixels in all columns are identical. Finally, a threshold filter is applied to isolate pixels corresponding to contact between the fiber and the cylinder. The threshold level is calibrated by using the force-displacement plots, so that the image where the fiber makes first contact with the cylinder wall is identified. In that stage of deformation, the contact configuration is necessarily of “point contact” type. Thus, the threshold level is set as the gray level of that contact point, and the extent of the contact region associated with a “point contact” is determined (practically, due to effects such as imperfections and compression of the fiber against the cylinder wall, the so-called “point contact” configuration should be considered as a small region of contact). 

3.2.3 Finite-element simulations

FE analysis were performed with the commercial FEA software Abaqus®. A dynamic implicit analysis was designed to simulate the experimental system, which includes a [image: image364.wmf]530mm

fiber that is clamped at both ends and is laterally constrained by a rigid cylinder. The fiber model is meshed with hexahedral solid elements, type C3D8R (8-node brick, accounting for geometrical nonlinearity), with over 50 elements in the fiber cross-section and a total of 2700 elements in the entire fiber. Elasticity modulus of [image: image365.wmf]200GPa

was assigned to the fiber, in accordance with tensile experiments that were performed with the Instron machine. Preliminary analyses with high-order brick elements and with a larger number of elements in the mesh have resulted in similar results. 
Referring to Fig. 3.1 and Fig. 3.2, the lower end of the fiber is fixed with all displacements and rotations avoided. At the upper end of the fiber, where the force is applied, the only degree of freedom is displacement in the x direction, under a constraint that allows for a predefined displacement of 80 mm. In the numerical analysis, the vertical displacement is identified with the shortening between the two ends of the fiber. The vertical force on the upper end of the fiber, applied by the Instron machine in the experiment, was determined in the simulation. The shortening rate of the ends was[image: image366.wmf]10mm/s

, which is comparable to the rate at which the experiments were performed. Preliminary FE analysis showed that lower rates produce similar results, implying a quasi-static experimental response.

To facilitate fiber bending response from the outset, avoiding a bifurcation analysis at the first buckling load, we introduced into the analysis a realistic geometrical imperfection. Thus, the stress-free configuration of the fiber was assumed to admit on symmetric imperfection[image: image367.wmf](
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, see Fig. 3.2 as the initial deviation from the axis of symmetry of the constraining cylinder. 

[image: image368.png]
Fig. 3.2: Description of the boundary conditions and post-buckling response of the fiber in this research.

It is recognized in post buckling theory that the worst clamped-clamped geometrical imperfection are identical with the first (symmetrical) and second (anti-symmetric) buckling modes. This will be implemented in the present analysis upon combining theory, experiment and numeric. 

In the numerical analysis, contact between the cylinder and the fiber was defined using penalty stiffness in the normal direction of the contact surfaces (pressure-overclosure with "hard" contact and no penetration). In addition, tangential interaction, accounting for friction between the two bodies, was set in the model. Two values of the friction coefficient, [image: image369.wmf]0.05and0.1

m

=

 were examined, representing the estimated range of the friction coefficient between the metal fiber and the Perspex wall of the cylinder, including a greasy metalworking-cooling fluid as discussed earlier.  


3.2.4 Analytical insights of initial imperfection analysis

In this section, we present analytical derivations for the initial post-buckling response of the fiber, accounting for presence of initial imperfection, see Fig. 3.16. Both symmetric and antisymmetric components are assumed, aiming at simple, if approximate, relations for critical points along the loading path.    

3.2.4.1 End displacement for the first contact

The analysis in this section is based on the well-established elastic solution for a clamped-clamped fiber. The analytical model that describes the behavior of the fiber in presence of the initial imperfection is adopted from [46], where [image: image370.wmf](
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 is the initial wavey shape of the fiber axis, without deformation stress. When a longitudinal compressive force [image: image371.wmf]P

is applied to the axis of the fiber, an additional deflection [image: image372.wmf](
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 occurs, so the total shape of the deflection curve becomes[image: image373.wmf]01
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. In absence of lateral load, the differential equation for the column response is
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Here we assume, following [46], that the stress in the fiber occurs due to the deflection [image: image375.wmf](
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only, but the moment component is produced by the total deflection [image: image376.wmf](
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.  In (1)[image: image377.wmf]EI

 represents the flexural rigidity and [image: image378.wmf]x

 denotes the distance along the fiber, with origin located at the center of the wire (Fig. 3.2). When the load [image: image379.wmf]P

 increases beyond[image: image380.wmf]w
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, a small additional deflection [image: image381.wmf](
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 occurs in the fiber where [image: image382.wmf]w
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 is the force applied to the fiber at first wall contact. For a purpose of analytical consideration, we define the initial imperfection as a superposition of symmetric and antisymmetric modes, which represent two solutions of the general beam equation:
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Here [image: image384.wmf](
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 are the scaling amplitudes of symmetric and antisymmetric imperfection modes respectively, and [image: image385.wmf]4.493
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. By substituting (3.2) in to (3.1) and implementing clamped boundary condition[image: image387.wmf](
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 is defined as follows:
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[image: image390.wmf]cr
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is the critical (Euler) buckling force of the fixed-fixed fiber.

The total bending displacement [image: image391.wmf](
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becomes
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Eq. (3.4) demonstrates that the fiber will collapse under two critical loads, namely [image: image393.wmf]1
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 for antisymmetric modes.
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 can be assessed from experimental data. As a first approximation, we assume that [image: image396.wmf]0
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. It allows us to neglect the anti-symmetric branch at the first wall contact ([image: image398.wmf]10
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 is applied to the fiber. Using (3.4),  the symmetric imperfection amplitude[image: image401.wmf]A

can be defined as


[image: image402.wmf](

)

1

w

APR

=-






(3.5)

In order to define the antisymmetric scaling [image: image403.wmf]B

, we calculate the fiber end displacement due to bending only, using the standard geometrical relation
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Eq. (3.6), after substitution of Eqs. (3.2)-(3.4), provides the nondimensional end shortening in the following form
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Coefficients [image: image408.wmf]A

 and [image: image409.wmf]B

 can now be evaluated from [image: image410.wmf]P
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 measurements along the loading path, using relations (3.5) and (3.7), or more accurately by the best fit procedure using Eq. (3.7) for measurements of the end shortening variation versus applied load. 

In the subsequent analysis we define the nondimensional coordinate [image: image411.wmf]x
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 and rewrite the total deflection curve (3.4) as 


[image: image412.wmf](

)

(

)

(

)

00

2

11

,

122

1

AB

yfg

P

P

xxxx

p

g

=+-££

-

æö

-

ç÷

èø

   
           (3.8)

with definitions given by Eq. (3.2), 
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Next, it should be instructive to examine the [image: image414.wmf]P
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 curve in the absence of walls, as [image: image415.wmf]P

 approaches its critical value [image: image416.wmf](
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, in order to examine the configuration near the second contact point on the cylinder wall due to buckling force [image: image417.wmf]2
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 in (3.7) were calculated using the least-squares method on the experimental results. An integral formulation (3.7) of the displacement [image: image420.wmf]D

 allows us to determine its asymptotic values for two critical loads, [image: image421.wmf]1and2.046

cr

P

=

, shown as triangles and dashed lines in Fig. 3.3 (a)÷(e). Curves in Fig. 3.3 (a)÷(e) show the normalized data from the Instron device experiments, where circles represent the analytical model (3.7).
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Fig. 3.3 (a): Normalized vertical force [image: image423.wmf]P
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(circle) and to asymptotic model (triangle). 
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Fig. 3.3(b): Normalized vertical force [image: image428.wmf]P
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Fig. 3.3(c): Normalized vertical force [image: image433.wmf]P

versus end shortening [image: image434.wmf]D
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Fig. 3.3(d): Normalized vertical force [image: image438.wmf]P
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Fig. 3.3(e): Normalized vertical force [image: image443.wmf]P

 versus end shortening [image: image444.wmf]D
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 (circle) and to asymptotic model (triangle). 

In Fig. 3.4 the curves [image: image447.wmf](
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 from (3.8) are presented for five experiments where the fiber contacts the cylinder wall, together with calculated values of location and buckling force [image: image448.wmf],
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. In order to find the location and buckling force [image: image451.wmf]11
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 of the first point of contact between the fiber and the cylinder wall, we solve two equations obtained from the conditions of contact:[image: image452.wmf](
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 for  a contact between the fiber and the cylinder and its position are determined.
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Fig. 3.4: Deflection curves from the expression [image: image456.wmf](
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Assuming that contact occurs near the midpoint, i.e. for [image: image459.wmf]1
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, and using linearization, we obtain from (5) and (8) approximations for buckling force and location:
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The location of the second contact point and the buckling force [image: image461.wmf]22
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 are calculated by (3.10) and presented in Fig. 3.4.

3.2.4.2 Solution for fiber and cylinder wall in contact

Fiber under axial load undergoes planar (2-D) deformation, forming a point contact between the fiber and the cylinder. For increasing load, the end displacement of the fiber increases, but the curvature at the contact point decreases. When this curvature becomes zero, line-contact forms, which is the onset of the transition to 3-D deformation. To clarify this transition, we analyzed it by considering small deformations. In this Section, we describe the bending of the fiber, its contact with the cylinder wall, and the onset of the transition to 3-D deformation. Fig. 3.2 shows the configuration under consideration, where [image: image462.wmf]0
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 is the initial imperfection of the fiber before loading. When loading begins, the fiber deformation increases up to the first critical point at the load [image: image463.wmf]c
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, where the fiber buckles. Next, the growing load further deforms the fiber and, at some force [image: image464.wmf]w
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, a small additional deflection [image: image469.wmf]2
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 occurs in the fiber. The fiber geometry remains 2-D until a critical load [image: image470.wmf]2
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 is applied, when it becomes 3-D because of bifurcation. The fiber shape relative to the direction of the force [image: image471.wmf]P

 is defined by [image: image472.wmf]2
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, and relative to the bending is [image: image473.wmf]20
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 because no bending forces exist at [image: image474.wmf]0

y

. As a result, we obtain the following equation (see [46]), which represents a balance of the external (compressive) and internal (bending) forces exerted on the fiber:
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     (3.11)

In (3.11), [image: image476.wmf]EI

is the flexural rigidity, [image: image477.wmf]P

 is a longitudinally compressive force, and [image: image478.wmf]x

 represents the distance along the axis. When the fiber touches the cylinder wall, we obtain [image: image479.wmf](
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    (3.12)

Subtracting (3.11) from (3.12) gives
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     (3.13)

We introduce the dimensionless parameter [image: image482.wmf],,,
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Upon differentiating with respect to[image: image485.wmf]x

, (3.13) takes the form 
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(3.14)

The solution for [image: image487.wmf]w

y

 is given in (3.8). The solution of (3.14) has homogeneous and non-homogeneous parts. The fiber deformation is not symmetric about the point of contact, so we divide the solution domain into the left and right branches around the zero point (i.e., approximately in the middle of the fiber).

Next, the solutions of the left and right branches of (3.14) can be written as follows: 
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(3.15)

The solution for [image: image489.wmf]2

y

 refers only to the first contact between the fiber and the cylinder wall, i.e. for [image: image490.wmf]2

w

yRLy
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. 

The constants [image: image491.wmf]14
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 of the homogeneous part are defined by the following four boundary conditions: 
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  (3.16)

where [image: image493.wmf]11.207

b

=

.

The analytical solution of these equations provides the coefficients given below in (3.17). To present the coefficients more succinctly and clearly, we take the parts of the coefficients that depend on [image: image494.wmf]kL

 and bind them to variables [image: image495.wmf]14

to

UU

(see Section 3.5):
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We treat the right branch of the solution in a similar way by defining constants[image: image497.wmf]14
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:
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(3.18)

The analytical solution of these equations is (for variables[image: image499.wmf]14

to

UU

, see Section 3.5)
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(3.19)

 Equations (3.14) and (3.15) with constants defined by (3.17) and (3.19), allow us to calculate the curves [image: image501.wmf](
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 for different values of [image: image502.wmf]P

. The results are shown in Fig. 3.5. 
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Fig. 3.5: Deflection curves from the expression [image: image504.wmf]11
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w
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 for:[image: image505.wmf]0.88mm,R=55,100mm,L=530mm
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, for several values of [image: image506.wmf]P


The dimensionless fiber-tip displacement [image: image507.wmf]L

D=D

 (see Fig. 3.2) can be calculated using the compressive force:
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     (3.20)
When the fiber under the force[image: image509.wmf]w

P

contacts the cylinder wall, Eq. (3.20) determines the dimensionless fiber-tip displacement[image: image510.wmf]w

D

:
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(3.21)
According to Eq. (3.10), [image: image512.wmf]w

P

 may be approximated as [image: image513.wmf]1
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Combining Eqs. (3.20) and (3.21) yields 
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        (3.22)

The terms in (3.22) can be evaluated using the following assumptions: the middle part of the fiber forms a pinpoint contact with the cylinder wall, whereas some parts of the fiber protrude beyond the virtual wall because the loading at the point of contact remains constant as a result of the developing deformation. No friction exists at the point of contact. After calculating the integrals (see Section 3.5) yield:
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where integrals [image: image516.wmf]114

to

II

are given in Section 3.5.
Eq. (3.23) includes an approximation based on two asymptotes in the force range between[image: image517.wmf](
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. To describe an asymptotic behavior of the dimensionless fiber-tip displacement[image: image518.wmf]D

, we use the first significant term of the small-disturbance analysis. For [image: image519.wmf]1
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 and using (3.14), the significant term is:
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The solution of (3.24) satisfies the condition when the fiber first contacts the cylinder wall.

For [image: image521.wmf](
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 and using (14), the significant term is
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     (3.25)

The solution of Eq. (3.25) is acceptable up to 3-D deformation because we are dealing with small changes and there is one contact point and a line contact for the fiber along the cylinder wall. The curves in Fig. 3.3 show the normalized experimental results obtained by using the Instron device, and the solid circles give the results of the analytical model in Eq. (3.23), which describes the situation when the fiber touches the cylinder wall [image: image523.wmf]cn

D

. The triangles represent two asymptotic models in Eqs. (3.24) and (3.25). In addition, Fig. 3.3 shows that the calculation of the circles prior to contact and after the transition to 3-D deformation is consistent with the calculation in the previous Section in Eq. (3.7).

3.3 Results
All results herein are presented in terms of non-dimensional quantities: the fiber-tip displacement [image: image524.wmf]D

 , the axial compressive force [image: image525.wmf]P

, and the magnitude [image: image526.wmf]A

 of the symmetric initial imperfection. These quantities functions of the following real parameters: the actual fiber-tip displacement [image: image527.wmf]D

, the initial unloaded fiber length [image: image528.wmf]L

 (i.e., the vertical distance between the clamped ends of the fiber at the start of the experiment), the vertical force applied to the fiber, [image: image529.wmf]P

, the Euler buckling force [image: image530.wmf]c

P

 for a perfect clamped-clamped column, the Young’s modulus of the fiber [image: image531.wmf]E

, the moment of inertia of the fiber [image: image532.wmf]I

, the inner radius of the cylinder [image: image533.wmf]R

 and the fiber radius [image: image534.wmf]r

.

Fig. 3.6 and Fig. 3.7 show the vertical force versus fiber-tip displacement up to the first contact point between the fiber and the cylinder wall. As expected, before the first contact occurs, the height of the “plateau” region approaches the theoretically predicted value of [image: image535.wmf]1

P

=

 (ideal fiber, marked by dashed curve), as the geometrical imperfections amplitude becomes smaller. In addition, the analytical model shows the effect of the geometrical imperfection on a force before the first contact. Due to increasing [image: image536.wmf]A

  value  and no effect of [image: image537.wmf]B

, the force required to produce the plateau decreases. Note, that the theoretical predictions are obtained without the initial bending, boundary conditions differ from the analytical results and the solution in Ref. [13] is numerical. By comparing the FEA results with those of the experiment at the initial stage of a fiber deformation, we deduce that the level of imperfection in the experiment is equivalent to [image: image538.wmf]3

2.810
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 and [image: image539.wmf]4

210

B

-

»´

.  

[image: image540.png]
Fig. 3.6: Vertical force versus end shortening up to the first contact point of the fiber in the cylinder wall for: [image: image541.wmf]0.88mm,R=55mm,L=530mm,0.104

r

e

=»

. The experiment, analytical model and FE analysis results are compared to the theoretical predictions of [44]  (ideal fiber: red dashed curve). FEA results are shown for simulations with various values of [image: image542.wmf]A

  (amplitude of the deviation symmetric and anti-symmetric imperfection) and [image: image543.wmf]m

(friction coefficient). 

[image: image544.png]
Fig. 3.7: Vertical force versus end shortening up to the first contact point of the fiber in the cylinder wall for:[image: image545.wmf]0.78,0.88mm,R=100mm,L=530mm,=0.189

r

e

=

. The experiment and analytical model results are compared to the theoretical predictions of [44] (ideal fiber: red dashed curve). 

Fig. 3.8 shows the force-displacement relation measured in three experiments that differ only in the fiber radius: [image: image546.wmf]0.61,0.78,0.88mm

r

=

. All three experiments use same free fiber length [image: image547.wmf]530mm

L

=

 and the cylinder inner radius[image: image548.wmf]55mm

R

=

, providing [image: image549.wmf]0.104

e

»

. The results of the experiments are compared with the theoretical prediction (red dashed curve). The theoretical prediction may be divided into five distinct stages for the fiber-bending process that occurs over the measured range of loading. These stages are indicated in Fig. 3.8 by numbers in parentheses and are separated by the full circles that lie on the theoretical force-displacement curve. 

[image: image550]
Fig. 3.8: Measured vertical force versus end shortening for three different fiber radii: [image: image551.wmf]0.61,0.78,0.88mm,R=55mm,L=530mm,0.104

r

e
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. The experimental results are compared to the theoretical predictions of [44] for [image: image552.wmf]0.1

e

=

(ideal fiber: red dashed curve). Numbers in parentheses indicate the contact configuration in accordance with Fig. 3.1. Filled circles identify a transition from one configuration to the next.
In order to avoid plastic deformations, the fiber-tip displacement was limited in our experiments, so the theoretically predicted deformation stage (5), which is associated with the point-line-point contact configuration, could not be realized. The measured force-displacement relation for the fiber with [image: image553.wmf]0.88mm

r

=

(black curve), as one can see, are consistent with the theoretical prediction within their range of values.

The minor deviation (less than 8%) of the critical value calculated for the fiber-buckling force is apparently due to geometrical imperfections. This effect is expected to become more pronounced for thinner fibers, which are more susceptible to geometrical imperfections. In fact, the critical loads measured for fibers with r = 0.78 mm (blue curve) and [image: image554.wmf]0.61mm


 (azure curve) are below the Euler buckling load by 15% and 40%, respectively. As expected, the effect of geometrical imperfections reduces with increasing fiber-tip displacement. Once a contact occurs between the fiber and the cylinder, the effect of the initial imperfection becomes negligible for both fibers                                     ([image: image555.wmf]0.78and0.88mm

r

=

). For the [image: image556.wmf]0.61mm

r

=

fiber, however, the imperfection is so significant that it affected the fiber behavior over a large range of fiber-tip displacement, up to about [image: image557.wmf]0.1

D=

. Note that the first contact between the fiber and the cylinder wall can be deduced directly from the measured force-displacement curve; namely, it occurs at the end of the plateau region associated with [image: image558.wmf]1

P

»

, followed by a sharp increase in the slope of the loading curve. 

For all three fibers, the first contact occurs at almost the same dimensionless fiber-tip displacement [image: image559.wmf]0.024

D=

, which is consistent with the theoretical prediction. This result suggests very minor initial deviation of the as-received fibers from the straight perfect geometry. Note that the transition from planar 2-D deformation to 3-D deformation occurs at a force [image: image560.wmf]2

P

»

, in accordance with results reported in Refs. [13, 63]. The fluctuations of the measured force are presumably due to friction between the fiber and the cylinder, causing stick-slip–like behavior. The larger contact forces between the fiber and the cylinder wall cause these fluctuations to increase with increasing fiber-tip displacement. The contact configuration cannot be obtained directly from the force-displacement relation. So, we use the image-processing procedure described in Section 3.2 and shown in details in Fig. 3.9.

[image: image561.png]
Fig. 3.9: Contact between the fiber and the cylinder wall at different stages of deformation for the fibers from Fig. 3.8 ([image: image562.wmf]0.104,55mm

R

e

»=

). For each fiber, the first row shows snapshots from the experiment at different levels of end shortening, while the second row shows the same snapshot after applying the image-processing procedure. End shortening is indicated by the numbers between the two rows and also by the letters a-h that appear in the force-displacement curve.

For each of the three fibers, the top row shows side-view photographs for different fiber-tip displacements. For convenience and to enable comparison, these fiber-tip displacements and associated labels a–i are identical to those in Fig. 3.8 and in the figures that follow. Specifically, fiber-tip displacement [image: image563.wmf]0.155

D=

 associated with deformation i could not be attained for the fiber with [image: image564.wmf]0.88mm

r

=

. The application of the image-processing procedure to the photograph results in the images presented in the bottom row of Fig. 3.9. For the fibers with [image: image565.wmf]0.78and0.88mm

r

=

, the deformation stages and contact evolution are qualitatively consistent with the predictions by the theoretical model and the FE simulations, which are similar to the deformation stages described in Fig. 3.8.

Perhaps the only discrepancy with the theoretical predictions is related to the notion of point contact. Clearly, theoretical point contact cannot occur in practice. Instead, a small segment of contact may be considered equivalent to the theoretical point contact. As a result, all images (for both fibers) up to stage e reflect a single-point-contact configuration. These images also clearly show the development of two distinct regions of contact that seem to move farther apart with increasing fiber-tip displacement, as predicted by the theoretical model for stage f–h. Still, it is noteworthy that the size of these contact regions depends on the reduction in fiber length. 

Finally, the image-processing procedure reveals three separate regions of contact at stage i, which is consistent with the theoretical prediction. The good qualitative agreement, in terms of contact characteristics, between experimental results and theoretical predictions is consistent with the good quantitative agreement in terms of the force-displacement relation. In contrast, for the fiber with [image: image566.wmf]0.61mm

r

=

, the measured force-displacement curve deviates significantly from the results of the theoretical prediction, mainly because of the effects of geometrical imperfection; see Fig. 3.8.  Fig. 3.9 shows that the deviation from the theoretical prediction is also reflected in the way in which the contact evolves.

For example, after formation of the two-point contact, a further increase in fiber-tip displacement does not increase the distance between the contact points. Instead, the contact area at each of the contact points increases, resulting in what appears as a line-contact configuration. This evolution of contact, which is not identical between the two contact points, eventually evolves into almost a single line-contact configuration that connects the original point-contacts. This phenomenon and, in particular, the observed asymmetry evolves from the single line contact and is probably a consequence of significant geometrical imperfection combined with friction. 
Next, we analyzed the deformation of the constrained fiber by using FE simulations. Fig. 3.10 shows the results of the FEA for the fiber with [image: image567.wmf]0.88mm

r

=

. 
[image: image568.png]
Fig. 3.10: Vertical force versus end shortening for: [image: image569.wmf]0.88mm,R=55mm,L=530mm,0.104

r

e

=»

. The experiment and FE analysis results are compared to the theoretical predictions of [44] (ideal fiber: red dashed curve). FEA results are shown for simulations with various values of [image: image570.wmf]A

 (amplitude of the deviation) and [image: image571.wmf]m

(friction coefficient). Numbers in parentheses indicate the contact configuration in accordance with [44]. Filled circles identify a transition from one configuration to the next.

Several force-displacement relations are shown and each is associated with a different geometrical imperfection amplitude [image: image572.wmf]A

 and friction coefficient [image: image573.wmf]m

 (Coulomb-type friction in Fig. 3.10; see the black curve, black dashed curve, red dashed curve, red curve, orange dashed curves and orange curve). In addition, we included a simulation with negligible geometrical imperfection and a very small friction coefficient (red curve). The results of this simulation are completely consistent with the theoretical prediction that assumes a perfect fiber and no friction (red dashed curve). A minor discrepancy appears only for a relatively large fiber-tip displacement, for which the transverse force applied to the fiber by the wall becomes great, resulting in non-negligible friction force. These results and the results of the FEA-based analysis of the contact, increase confidence in the results of the FEA shown in Fig. 3.11, from which several conclusions can be drawn.  
[image: image574.png]
Fig. 3.11: Results of FE analysis showing the deformation of the fiber and contact with the cylinder wall, for: [image: image575.wmf]0.88mm,R=55mm,L=530mm,0.104

r

e

=»

. First row: side view, where a lighter (greenish) color indicates interaction with the wall (in these images, the schematic cylinder is shown for clarity/orientation, but the images are not at identical scale in order to allow focusing on the contact region). Second row: top view (all images are at identical scale)

Importantly, the geometrical imperfection in the latter stages of the deformation has a negligible effect for [image: image576.wmf]4

910

A

-

<´

. For larger values of  [image: image577.wmf]A

 (azure point-dashed curve and azure dashed curve in Fig. 3.6), the external force is noticeably smaller, especially during the initial stages of deformation, before two-point contact occurs. A similar trend also occurs in experiments when the behavior of fibers with different radii is compared (see Fig. 3.8). 
In addition, Fig. 3.10 reveals the effect of friction. A larger friction coefficient results in a higher external force for the same reduction in fiber length (orange curves). Contrary to the effect of geometrical imperfection, the effect of friction increases with fiber-tip displacement, and the difference between the measured force and the prediction of the theoretical model, in which friction is considered, becomes larger. This increased difference is probably a consequence of the higher normal force and larger contact area that develops in the advanced stages of fiber deformation. 

Next, for the [image: image578.wmf]0.88mm

r
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fiber, we studied the evolution of a fiber-wall contact based on the FE simulation with conditions similar to the experimental conditions; namely, [image: image579.wmf]3
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 and [image: image580.wmf]0.1

m

=

. Fig. 3.11 shows the deformation of the fiber for different fiber-tip displacements [image: image581.wmf]D

, where the labels a–i specify the corresponding locations on the force-displacement curve in Fig. 3.10. For each fiber-tip displacement, the top and bottom rows show side and top views, respectively. The following contact configurations are studied: (a) no-contact, (b, c) planar (2-D) one-point contact, (d, e) spatial (3-D) one-point contact, (f–h) two-point contact with increasing distance between the two contact points, and (i) three-point contact. These results are completely consistent with the theoretical predictions. Note that the extreme proximity of the fiber to the cylinder wall at the deformation stages that include two- or three-point contacts render the investigation of the contact characteristics extremely difficult. In fact, without the aid of the FE simulations or the unique experimental setup used in this study, one could easily and incorrectly have interpreted the contact characteristics as a continuous curve contact rather than as the actual case of two or three small areas of contact separated by a rather long segment that is extremely close to the cylinder wall but that does not interact with it. 

Further experiments investigated the behavior of the loaded fiber for [image: image582.wmf]0.189
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, see Fig. 3.12. 
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Fig. 3.12: Force-displacement relation. Measured vertical force versus end shortening for two different fiber radii: [image: image584.wmf]0.78and0.88mm,R=100mm,L=530mm,0.189

r

e

=»

. The experimental results are compared to the theoretical predictions of [44] for [image: image585.wmf]0.2

e
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(ideal fiber: red dashed curve). Numbers in parentheses indicate the deformation stage described in [44]. Filled circles identify a transition from one deformation pattern to the other

Here, we used a cylinder with an inner radius of [image: image586.wmf]100mm

R
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and fibers with [image: image587.wmf]0.78and0.88mm

r

=

(black curve and azure curve). The theoretical prediction (red dashed curve) shown in Fig. 3.12 suggest that the deformation patterns should become less complicated with increasing radius of the constraining cylinder. For [image: image588.wmf]0.189
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, the theory predicts that only deformations 1–4 should occur, whereas deformations 5–7, which occur for [image: image589.wmf]0.104
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, should not occur for [image: image590.wmf]0.189
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. In addition, the force-displacement relation for [image: image591.wmf]0.189
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 should differ significantly from that for [image: image592.wmf]0.104
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, and the first contact should occur at a larger fiber-tip displacement. More important is the prediction that, once spatial (3-D) deformation occurs (at force [image: image593.wmf]2

P

»

), the force would no longer increase but would slowly decrease. This prediction is in contrast with the case of [image: image594.wmf]0.104

e

»

, where the force increases close to [image: image595.wmf]3
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»

, whereas the deformation evolves from configuration 2-2 to configurations 3, 4, and 5 sequentially. The exception is the minor discrepancy before the first fiber-wall contact occurs; this discrepancy is associated with geometrical imperfection, as discussed earlier. The theoretical predictions are consistent with the results shown in Fig. 3.12.

Following the experimental investigation and conclusions for the case of [image: image596.wmf]0.104

e

»

, it is not surprising that the prediction of the theoretical model is consistent with the evolution of contact between fiber and cylinder wall shown in Fig. 3.13. 
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Fig. 3.13: Force-displacement relation. Measured vertical force versus end shortening loading and unloading for: [image: image598.wmf]0.88mm,R=100mm,L=530mm,0.189

r
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=»

. The experimental results are compared to the theoretical predictions of [44] for [image: image599.wmf]0.2
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(dashed curve). Numbers in parentheses indicate the deformation pattern described in [44]. Filled circles identify a transition from one deformation pattern to the other.

3.4 Summary and conclusions
We investigated the post-buckling behavior of an elastic clamped-clamped fiber constrained inside a rigid cylinder, experimentally, analytically and numerically. By using a novel experimental setup, with a transparent cylinder filled with an opaque fluid, combined with image processing and synchronized force measurements, we studied the evolution of contact between the fiber and the constraining cylinder quantitatively. Heretofore, the relevant experiments were done only with extremely slender constraining cylinders, namely [image: image600.wmf]4

10

e

-

<

, or for cases where almost the entire fiber was in contact with the cylinder. 

In contrast, this paper presents experimental results for the evolution of deformation and contact configuration due to the initial stages of deformation for non-negligible values of [image: image601.wmf]e

. Supported by FEA and analytical modeling, we determined the contribution of geometrical imperfection and friction. In general, the level of geometrical imperfection can be evaluated by analyzing the measured force-displacement relation before the fiber contacts the constraining cylinder. 

The influence of friction can be determined based on the difference between the measured force and the theoretical (i.e., no friction) prediction at advanced stages of deformation, where the effect of geometrical imperfection is relatively small. The results show that the main contribution to friction comes from increasing the force (edge thrust) associated with the reduction in fiber length and from adding to the measured force fluctuations associated with stick-slip behavior. Qualitatively, friction does not significantly affect the fiber deformation or the contact configuration. Note that this conclusion is limited to small-to-moderate values of the friction coefficient and needs to be further examined for larger values.

The results also show that the geometrical imperfection of amplitude [image: image602.wmf]3

210
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 or of a larger fiber length can significantly affect the measured force and the evolution of fiber-wall contact. When a geometrical imperfection is below this value, the experimental data, the FEA results, and the theoretical predictions that consider a perfect fiber and ignore the effect of friction are all consistent one to another. 

In addition, this study of fiber behavior inside a cylinder includes an in-depth analysis of the fiber deformation stages at different loads. Various tools were used for the analysis, including representative experiments, image processing of the experimental results, finite elements analysis used to simulate the experimental setup, and analytical models for all stages of deformation from the onset of fiber load until transition to 3-D deformation. The main purpose and contribution of this study is to characterize similar problems with a fiber in a cylinder in various engineering fields, and to better understand the modes of failure.
Future research should study the behavior of fibers subjected to boundary conditions different from those considered in the current study and should extend the investigation to a range of sizes for the constraining cylinder (i.e., different values of [image: image603.wmf]e

). In addition, larger fiber-tip displacements than those used in this study should be applied to examine more complex contact configurations, such as the point-line-point and three-line contact configurations. Cylinders and/or fibers made of several types of materials could be used by controlling their surface roughness, or perhaps by changing the fluid inside the cylinder. The replication of each experiment with different friction coefficients and other configurations would be interesting and may have practical applications.  

3.5 Supplemental information
The purpose of this Appendix is to provide some additional details regarding the calculation that appear in Section 3.2.4.2. We start from Eqs. (3.17) and (3.19) respectively, where we take the parts of the coefficients that depend on [image: image604.wmf]kL

 and bind them to variables [image: image605.wmf]14
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Calculating the integrals of Eq. (3.22)
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Here, calculating the right hand side of the first integral in (3.28) (values of [image: image609.wmf]114
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 in order of their appearance in the integral) yields 

(3.29)
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Calculating the left hand side of the first integral in (3.28) yields
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Calculating the second integral in (3.28) yields 
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