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1. Scientific background

Mathematics is key to many fields and is relevant to the vast majority of tertiary

students. Yet most students shy away from this discipline, viewing it as a field that

merely deals with quantities. Beyond being a factor in student undergraduate

course choice, this bias also limits the ability of students to realize the full potential

of the fields in which they have chosen to major. In many faculties, students are

not aware of what mathematics has to offer—that it indeed deals with quantities

but also with patterns, structures, changes and space.

Perhaps the greatest lack of undergraduate math concepts can be found in the

faculties of art and design, which usually do not include mathematical ideas in their

curriculum (other than basic geometry). Designers, especially industrial designers,

are educated in academia to innovate new products and features. They are driven

by this objective to push their boundaries with the help of other scientific domains,

including materials engineering (especially mockups in 3D printing), artificial in-

telligence, mechanics, and other fields. From my point of view, mathematics has a

variety of tools (algebra, topology, etc.) that are just waiting for the right open-

minded designer to apply them. Theoretical mathematical tools can be considered

not only for patterns in the finishing process of a given product but also in the

initial steps of planning a product. In some cases, questions such as “Is it possible

to define a product X with properties Y ?” can be answered in the planning process

using mathematical justifications, as described in [3].

This proposal will focus on both the symbiotic relationship between mathematics

and design and how the tools of each of these distinct fields can lead to scientific

innovations in the other.

My vision is to propose and establish a field similar to mathematical physics

and mathematical biology called mathematical design and show how important it

is that intermediate math is a part of the curriculum in different courses on art and

design.



2. Objectives and significance

The main objective of this project is to connect mathematics, art, and design. We

will show how mathematics with computational tools can define innovation in design

and art, and more surprisingly, how design concepts can inspire the development

of new mathematical ideas. In this proposal, the focus is on the following three

topics:

(1) Aim 1: Definition and classification of songs as three-dimensional

(3D) objects. Can a given song in Western music be modeled as a col-

lection of curves or surfaces, or even be defined as a tangible object? If

they indeed can be modeled in a pure mathematical fashion, can we sort

songs using equivalence relations? This research involves music, industrial

design, differential geometry, algebra, and topology.

(2) Aim 2: Gradient topology. A gradient is an important concept in math-

ematics, and surprisingly, this concept is also well defined from a designer’s

point of view as a gradual change in color (which contains the mathematical

definition) in a given image. Although this simple design gradient, as shown

Figure 1. A classical visual gradient in a grayscale color space.
This case can be considered to be the fundamental polygon of a
cylinder, since the upper and lower sides are in the same color
direction.

in Fig. 1, has a geometrical property, it reminds us as mathematicians of

the construction of a cylinder from the respective fundamental polygon,

which is obtained by attaching the edges with identical colors. This ob-

servation led us to wonder if it is possible to define design-gradients for



different topological surfaces (toruses, Klein bottles, etc.), and if the an-

swer is yes, whether we assign an upper and lower bound to the number of

gradients that exist for each topological surface. This research involves de-

sign, topology, combinatorics, and complexity; all are influenced by design

concepts.

(3) Aim 3: Defining dynamical tiling in industrial design. It has been

shown that algebraic structures can help designers in the planning stages to

determine if a dynamical transformation of the components can be obtained

simply by using a respective mechanism that defines movement between dif-

ferent patterns/arrangements, each of which accomplishes a different goal,

as introduced in [1, 3]. This approach can be applied to folding tables (re-

duction and expansions), lightning systems (exposure and concealment),

and other design tasks. We intend to generalize this result not only for pla-

nar patterns but also for spherical patterns and especially geodesic domes.

This research involves industrial design (3D visualization and mechanism

construction), differential geometry, and groups.

3. About the lab

The Lab for Designing Mathematics, which I head, is a multidisciplinary research

lab focused on ideas that involve advanced mathematics and design (especially in-

dustrial design). My team uses diverse tools from various faculties to achieve this

aim, from computer science to industrial design. To advance our goal, we collabo-

rate with various departments on campus, such as design (first and second degrees),

computer science (first and second degrees), and applied mathematics, as well as

other institutes. The team aims to connect research fields that are traditionally

perceived as starkly different, e.g., math and design, including music and art de-

sign. We are driven by the belief that our efforts can aid in the dissemination of

intermediate mathematics concepts among designers and artists and, of course, help

apply non-trivial mathematical ideas not only in traditionally connected fields such

as physics or computer-science, but also in the design fields. Ultimately, I believe



out lab may even instill in the average design/art student an appreciation, or even

a passion, for the field of mathematics.

4. Detailed description of the research

4.1. Aim 1: Definition and classification of songs as 3D objects. In [5, 8], a

framework was proposed for mapping a chorus onto a 3D structure by transforming

the guitar choruses of Beatles songs into their respective curves (with constraints).

It focused on exploring the total curvature of the chorus curve, which can define

the similarity between different choruses. It can also help the performer determine

the geometric representation they aim to convey through the number of loops and

the direction of the curve. In addition, viewing the curve, as shown in Fig. 2, offers

non-professional audiences a glimpse into the complexity of composing.

In this project, we intend to produce and formulate the following concepts:

• Similar to how the curves are obtained in [8], an oriented polygonal curve

will be obtained by a sequence of vertices. For each pair of adjacent vertices,

a harmonical distance will be defined. Using the help of an industrial

designer, we will define the physical curve using different materials between

the vertices that will best represent the harmonical distance. With this

approach, we hope not only to hear the song but also feel its respective

harmonics. This idea could be especially meaningful for those who suffer

from hearing loss.

• We would like to generalize the chorus-based approach in [8] for the whole

song, i.e., we wish to define curves for the chorus, verses, and so on. In this

case, we could obtain a knot-like curve structure that we believe can be

explored. Lastly, with the help of an industrial designer, we will produce

this physical object.

• We intend to generalize the idea of curves to surfaces, i.e., each song will be

approximated as a surface. From a topological point of view, each of these

surfaces is determined by properties as the Euler characteristic number,

orientability, etc., and can be produced as a physical object.



4.1.1. Rationale. This project will strive—with the help of mathematics and indus-

trial design—to transform music into a tangible physical object. Understanding the

structure of music typically requires a great deal of study. In this work, with the

help of design tools, we will convert music into objects that reflect the complexity

in a given song by relying on their respective chords. This 3D visualization can

offer non-musicians a glimpse into how complicated or simple a piece of music is.

We will explore famous songs, especially those in Western music, where the song

generally comprises a verse and chorus. We will show that some songs that sound

utterly different can, in fact, be represented by the same object.

4.1.2. Work plan. Music can be written as triads (a, b, c). The set of all 24 major

and minor triads can be thought of as an abelian group isomorphic to the group

Z12 × Z2. References [2, 9] give a mathematical formulation for triads.

This research will show that “songs” can be simulated as a collection of curves

or surfaces. In this study, the initial input will be songs composed by a sequence

of triads (without voicing).

A song in Western music is defined (generally) as a chorus and verse, each of

which defines a sequence of triads. Each chorus or verse will be considered a closed

curve (by defining the location of each triad, which can define a closed curve with a

respective total curvature) or a surface with respective topological properties, such

as a Gauss curvature or geodesic curvature (similar to the work in [4]).

From the curves point of view, an approximation to the collection of curves will

be given. In addition, this sequence of points can be approximated as a surface, and

each can be sorted topologically by properties such as Euler characteristic number,

orientability, and boundary. For more details about this classification, see [11].

The result will be the sorting of songs by the equivalence relation of curves or

surfaces; all representations will be visualized with the help of industrial designers

to represent best the harmony using a suitable material between adjacent vertices.

The team will need to determine how to exhibit these ideas as an object and portray

to diverse audiences the complexity or simplicity of music.



Figure 2. Our representation of three Beatles songs, which we
transformed into 3D physical objects. From left to right: “Hello
Goodbye,” “All You Need Is Love,” and “Like Dreamers Do.” 3D
printing Pla/Sla.

4.1.3. Preliminary results. In general, given a triad ti, where 1 ≤ i ≤ n, i.e., the

chorus has n triads, this triad can be written as the sequence t1, . . . tn, i.e., t1 →

t2, . . . , tn−1 → tn, which defines a polygonal curve. In [8], this chorus polygonal

curve has been explored using its total curvature.

In this proposition, for each chorus that is defined by a curve, we will define for

each pair of adjacent chords/vertices a harmonic distance, as has been described

in [16]. With the help of an industrial designer, each harmonic distance will be

represented by a suitable material: if the harmonic distance is “small,” the edge will

be represented by a soft material and pleasant color, and if the harmonic distance is

“large” then the edge will be represented by a rough or spiky material. The result

will be an object made of diverse materials, where touching along the object (along

the curve) will invoke a feeling of the chorus. We still need to determine the right

materials and metric to use.

4.1.4. Pitfalls. The results in [8] indicate that the aim of defining the feeling of a

chorus along a physical curve with the help of an industrial designer is reasonable.

Exploring songs as a collection of curves is challenging. In this case, the main

question is the importance of the knot. Moreover, will it give any real insights to

musicians or lead to a better understanding in non-professional audiences?

When exploring a chorus as a surface, the result will be obtained using the right

triangulation. The result in this case could contradict the results in [8].



4.1.5. Expected outcomes and impact. This research should yield a new method for

generating a tangible visualization (curves or surfaces) of songs. It will present to

a wide audience why music can be considerably complex and give an idea of how

music relates to mathematical ideas such as algebra, geometry, and topology. It

can be transformed from a hearing experience to one of touching an object that

reflects the music’s internal harmony. It can also provide musicians with a tool for

portraying the diverse nature of their music and offer avid audiences who are not

professional musicians a glimpse into the complexity of music. Ultimately, these

kinds of tools, using our technique and the right materials, may one day allow deaf

people to enjoy a song, not by hearing it but by feeling it.

4.2. Aim 2: Gradient topology. In art and design, a gradient is a smooth

transition from one color to another. It enables an artist/designer to add a soft

feel and uniqueness to their object. It also leads to eye-catching and memorable

visual designs, whereas solid colors can be thought of as stiff colors. Gradients can

be applied in cases where the artist wishes to transmit shade or light on a given

product, create a focal point, or create some other type of effect. For more details

about surface classification, see [10, 13].

It has led us (mathematicians and designers) to wonder if can we formulate

different gradients for color using a mathematical rule? Even though gradient

is usually related to geometry, our approach rests on fundamental polygons in

topology, which represent different classes of surfaces (toruses, Klein bottles, and

so on). Many studies have considered Sudoku, which can be related to a visual

gradient solution for a given matrix (see [7, 12, 17]). We believe that many ideas

and solutions can help us and vice versa. We further believe that this research

will demonstrate the importance of involving other fields that mathematicians are

not familiar with (in this case design), which will inspire the formulation of new

mathematical explorations.

4.2.1. Rationale. We will define for the first time a language of visual gradients,

which is influenced by design ideas combined with topology and combinatorics. We

will show how to construct different types of visual gradients given a fundamental



polygon for different initial states, such as Möbius strips or Klein bottles. Further,

given an initial state of a gradient (as defined in Section 4.2.3), we will show which

topological gradient constructions can be obtained.

Once we have defined a good language for gradients, we will be able to define

harder questions and obtain deeper results, and our hope is that our point of view

will open the door for systematic research in this area, both in mathematics and

design.

Lastly, topology has much to offer art and design, as demonstrated in [14, 15];

we will show how it can be a practical tool for the average designer.

4.2.2. Work plan. We first need to define a language that connects visual gradients

and fundamental polygons. We also need to define a good filter for the space of

possible initial states, which is identified using a partial defined matrix. In the next

step, we will classify which topological visual gradients could be obtained from

each step in the filtering. Lastly, the industrial designer in the team will apply our

formulation for a given product that is homeomorphic to a given surface.

4.2.3. Preliminary results. Here, we present the basic definitions and initial results.

Definition 4.1. Given a cell (i, j) in a matrix n × n. we define its neighbors

as all the cells it borders with horizontally, vertically, or diagonally as pixel(i, j),

neighbor(pixel(i, j)).

Notice that by this definition, an interior pixel has eight neighbors, as shown

in Fig. 3. In grayscale, a continuous color scale is defined that starts at zero and

Figure 3. Cell 1’s neighbors are indicated in yellow, cell 2’s neigh-
bors are blue, and the green cell is a common neighbor to both.



increases as a constant natural number C such that C · n ≤ 255; for example,

0, 1, 2, . . . 255 or 0, 5, 10 . . . 255.

Definition 4.2 (Visual Gradient). Given a pixel (i, j) and a continuous color scale,

for each pixel neighbor

∥pixel(i, j)− neighbor(pixel(i, j))∥ = 0 or C

To explore this connection, we define the following:

Definition 4.3 (Initial state for gradient topology). An initial state of a gradient

is a partial field matrix.

Definition 4.4. A matrix n×n is called a full initial state if all the borders of the

matrix are full. It is a partial initiate state if the borders are only partially given.

For example, see Fig. 5.

(a) Full initial state. This
state could lead to a Klein
bottle.

(b) Partial initial state.
This state could lead to dif-
ferent topological surfaces.

Figure 4. The initial states of a gradient can define the topolog-
ical surface.

Definition 4.5. An initial state will be called monotone if the initial values in each

row or column define a strictly monotonic sequence.

Definition 4.6. Let X be a topological surface. An initial state A will be called

an initial state of X if the edges of A define the fundamental rectangle of X.

The following definition connects the visual gradient and topology.



Definition 4.7 (Initial topological gradient). Given a topologocal surface X with

a respective fundamental polygon gradient, an initial X state for a gradient matrix

n is an initial state aligned with the fundamental polygon.

We are now ready to define visual gradients as respective topological surfaces.

We start with the most intuitive one, a cylinder.

Definition 4.8. A cylinder gradient is a gradient that is defined by the fundamental

polygon with only two parallel edges in the same direction, i.e., it represents a

cylinder ∀1 ≤ j ≤ n : pixel(1, j) = pixel(n, j). A rotation of this gradient is of the

same type.

(a) Cylinder (b) Cylinder (c) sphere

Figure 5. Examples of visual gradients for which the initial state
defines a topological surface.

In Figs. 5a and 5b, we can see that the cylinder gradient is not unique, and

this made us wonder whether we can determine an upper and lower bound to the

number of gradients that can be obtained for a given topological surface.

We here give a glimpse of the power of the language we are trying to formulate.

Proposition 4.9. Given a monotonic initial state for a given image n × n and

n ≤ 256, X must be a sphere.

We omit the proof; for an example of a sphere gradient, see Fig. 5c.

4.2.4. Pitfalls. This research involves different disciplines, each of which requires

a specialism. We may add more researchers from mathematics, computer science,

and design to the team to ensure that progress is obtained.



4.2.5. Expected outcomes and impact. The expected outcome is a systematic math

treatment for the visual gradient. This proposal has many different research out-

comes. From the design point of view, understanding the mathematics can help the

designer customize which visual gradient is best to apply in a given product. From

the mathematical point of view, our formulation connects fields which are seen as

very different from one another, e.g., geometry, topology, and combinatorics. In

addition, there are hundreds of publications exploring Sudoku, and we believe that

the scientific community in this field will be strongly interested in our language.

Equally important, it will encourage mathematicians to open their mind and learn

about diverse fields (in our case, the fields of design and art) that might not seem

related to their main research. It may also be considered in the curriculum for un-

dergraduate students in mathematics or design to demonstrate how intermediate

mathematics can be applied with the right guidelines.

4.3. Aim 3: Dynamical Tiling. Usually, industrial design innovation is related

to materials and artificial intelligence. When designers deal with mathematics, it

usually relates to the geometric properties of the product, even though mathematics

has a variety of tools that can be used, such as algebra, topology, etc. This research

shows that innovation can come from unexpected places, such as group theory,

which can define a dynamical tiling with different stages. This topic is essential

if designers are to increase their toolbox not only in the final steps of defining a

pattern but also in the initial steps of planning a product that has tiling properties.

We intend to define a geodesic dome that is obtained by a tiling group, which

can define a dynamical movement based on the respective sub-group. We may

consider defining a proper mechanism that determines the movement, as has been

done in [3]. Defined using mathematics, our dynamical tiling is not designed for a

specific task. Instead, it is a concept that can be applied to the specific demand

of a designer who intends to innovate a product with certain properties, such as

reduction/expansion or exposing/concealing.

4.3.1. Work plan. In [6], the signatures of patterns and tilings and their respective

group relationships have been defined. In this project, we intend to apply some



of these relationships and define a dynamical movement between different stages,

not just on a plane but also on spherical surfaces, especially geodesic domes. The

mathematical exploration is based on the relations of spherical patterns (which

are related to domes), i.e., the respective groups and sub-groups. To obtain the

geodesic dome, we first consider a deforming plane model, as shown in Fig. 7, which

we believe can give us the knowledge of how to define the respective mechanism.

4.3.2. Preliminary results. In [3], we discussed the relations among planar patterns,

and show how a dynamical movement can be obtained between the hexagonal

regular lattice which is defined by reflections, rotation, and translation (signature

∗632), and its sub-group, which is defined by rotation and translations (signature

632), as demonstrated in [1].

Before moving to spherical patterns, we first delve into planar patterns, since

a planar pattern can be considered to be a local approximation of a spherical

pattern. We need to decide which planar pattern and relation is best deform, not

only according to mathematics but also according to material design.

In Fig. 7, we are given a local representation of a spherical pattern with the

respective signature. Using this basic model, we attempt to evaluate what is the

“optimal” movement with the help of the respective groups.

(a) Initial state, with sig-
nature ∗632

(b) Middle state, which
leads to signature 632

(c) Open state, with signa-
ture ∗632

Figure 6. Our planar model defines, using a proper mechanism,
a dynamical movement between tilings (made from PLA). When
the mechanism reaches the end of the rail, it yields an extended
pattern of signature ∗632.



In Fig. 8, planar patterns implemented with various materials are considered.

In Fig. 8a, we consider paper and brass fasteners, which are flexible enough to

obtain a deformation. We believe that this approach will give us another avenue

in spherical pattern approximation to explore. In Fig. 8b, we use laser-cut wood

and brass fasteners; this leads to a scissor-linkage mechanism for a pentagon that

opens and closes. Since in some spherical patterns, pentagons play a major role, we

believe that this kind of experiment can lead to the desired mechanism. In Fig. 8d,

we combine the previous steps and attempt to approximate signature ∗532.

Figure 7. Our first naive experiment in a spherical pattern with
signature ∗532. By exploring the object, e.g., removing the trian-
gles, we attempt to predict the mechanism.

(a) (b) (c) (d)

Figure 8. Exploring movement, deformation, and mechanism.

4.3.3. Pitfalls. To develop a dynamical geodesic dome for real applications, the

construction needs to be efficient. For example, if the mechanism is inside the

dome, the space inside the dome will be reduced.



4.3.4. Expected outcomes and impact. This research will yield new mathematical

tools for the average industrial designer. The designer will be able to choose a

given pattern in which a movement is required in a physical object for a given

purpose. Using our mathematical language, the pattern can be transformed into

the respective fundamental area, tiling, and signature. Each such pattern has a

sub-group that will be a natural candidate for the dynamical movement required.

5. Summary

In this project, I seek to find a symbiotic relationship between design and math-

ematics. In Section 4.1, I describe how industrial design based on mathematical

foundations helps to give a tangible feel and look to music. Section 4.2 presents

how design-based definitions can help formulate new ideas in mathematics. Finally,

Section 4.3 discusses how abstract algebraic ideas can be adapted to industrial de-

sign.
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