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When AI Gets Old: The Effect of Asymmetric Aging in
Deep Learning Accelerators

ABSTRACT

Deep neural networks (DNNs) offer phenomenal performance
in an ever-increasing number of applications, such as com-
puter vision, natural language processing, video analytics,
and mission-critical systems. The growing computational
complexity of such models has propelled the development
of specialized accelerators that offer improved performance
and energy efficiency. Advanced VLSI process nodes have
further intensified the development of machine learning (ML)
accelerators by providing remarkable transistor miniaturiza-
tion and power efficiency. Nonetheless, these process nodes
are vulnerable to transistor aging, which can lead to a gradual
decline in the performance, prediction accuracy, and reliabil-
ity of ML accelerators and introduce significant reliability
concerns. In this work, we present a comprehensive study
of how aging affects systolic arrays, which are at the core of
many ML accelerators, such as Google’s Tensor Processing
Unit. Our experimental analysis indicates that systolic arrays
undergo asymmetric aging, where logical elements age at
different rates. In addition, we show that asymmetric aging
produces persistent and transient errors that manifest in the
datapath of a systolic array, which in turn may cause major
faults in their overall operation and thereby severely degrade
the resiliency of the ML model. For example, considering
less than 1% of the overall transient failure events, the top-1
prediction accuracy of the Res-Net-18 model drops by 40%.
We introduce hardware mechanisms and design flow solu-
tions that mitigate the impact of asymmetric aging reliability
on ML accelerators and achieve the original top-1 prediction
accuracy of the DNN model.

1. INTRODUCTION
Deep neural networks (DNNs) play a major role in numer-
ous applications, such as recommendation systems, natural
language processing, and vision recognition. DNN models
can learn and recognize complex patterns and features in
large data sets. They are also computationally intensive and
require significant processing resources for both training and
inference. DNNs consist of multiple layers, where each layer
comprises a large-scale matrix multiplication or a convolu-
tion operation, which is usually followed by an activation
function. Both matrix multiplications and convolutions incur
numerous multiply and accumulate (MAC) operations and
constitute the lion’s share of many machine learning (ML)
processing workloads. For example, GoogLeNet [42] and
ResNet-101 [15] require approximately 1.5 and 7.8 billion
MAC operations, respectively, for a single inference assum-

ing an image resolution of 224×224 pixels.
The deployment of DNNs in diverse platforms with different
processing capabilities, real-time requirements, and energy
constraints has encouraged the development of specialized
accelerators [20, 24]. In addition, DNNs have also been
used recently in mission-critical systems such as autonomous
vehicles, medical appliances, finance, and security systems
[18, 25, 27, 36]. All these new applications set a high bar
for DNN resiliency and reliability, which are enforced by
regulatory agencies and industry standards [13].
Over the last decade, the semiconductor industry has con-
tinued to push the boundaries of VLSI technologies, with
several notable trends: New process nodes have continued
to keep pace with Moore’s law and miniaturize transistors to
nanometric dimensions. New materials and devices that offer
improved performance and reduced power consumption have
been developed. However, the latest advances have exposed
the susceptibility of semiconductors to reliability concerns,
particularly concerns regarding transistor aging. Transistor
aging is the gradual degradation over time of a transistor’s
performance due to hot carrier injection (HCI) and the bias
temperature instability (BTI) [4, 31, 44], which are described
in Section 2. This study focuses on BTI, which is widely ac-
knowledged as the predominant aging mechanism in modern
integrated circuits.
Transistor aging significantly affects the reliability of DNN
accelerators, resulting in substantial performance degradation
and serious circuit failures due to setup-timing violations.
Asymmetric aging [10] occurs when the aging degradation
is unevenly distributed among logical elements, resulting in
more severe reliability issues that can lead to overall system
failure. Asymmetric aging intensifies setup-timing violations
and introduces hold-timing violations, which cannot be miti-
gated by reducing the clock frequency.
This paper uses SAs as a case study to determine how asym-
metric aging affects DNN accelerators. We demonstrate that
asymmetric aging causes persistent and transient faults in
DNNs, thereby decreasing prediction accuracy and confi-
dence levels. In mission-critical systems, such faults can
have catastrophic consequences, potentially even violating
functional safety. Our experimental analysis uses three frame-
works: (i) functional simulations that use different workloads
to extract the aging profile of SAs; (ii) detailed timing analy-
sis coupled with aging models run on a physical implemen-
tation of a SA to pinpoint the failure points resulting from
asymmetric aging; and (iii) an error-injection model that rep-
resents asymmetric aging transient and persistent errors to
evaluate the overall impact on DNN performance.
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The experimental results indicate that SA DNN accelerators
can experience asymmetric aging, which results in persistent
transient errors that propagate in the datapath of the array,
which not only causes significant faults in the SA but also
severely impacts the resiliency of ML models. In addition,
our analysis reveals four primary mechanisms that encourage
asymmetric aging in SAs: (i) DNN sparsity, (ii) underutiliza-
tion of the dynamic range for value representation, (iii) clock
gating, and (iv) lack of symmetry between logical-cell delays
and wire delays.
Our study proposes both hardware and design flow approaches
to address the impact of asymmetric aging on ML acceler-
ators. We evaluate the effectiveness and overhead of our
solutions on an SA. Our area and power analyses show that,
with nearly 1% logical-cell area overhead and 7.85% power
overhead, we can fully mitigate the effect of asymmetric ag-
ing on the prediction accuracy of model top-1. In addition, we
show that a 7% reduction in the SA clock frequency avoids
power overhead.
The primary contributions of this paper are as follows:

1. We use SAs as a case study to analyze in-depth tran-
sistor aging in DNN accelerators and demonstrate that
asymmetric aging can lead to major faults and reliability
concerns.

2. We determine that data sparsity, power-saving measures,
underutilization of dynamic range of values, and asym-
metry in timing delays between wires and cells promote
asymmetric aging.

3. Our analysis shows that the spatial location of PEs
contributes significantly to the likelihood of incurring
asymmetric-aging-related faults.

4. We identify the internal elements and logical paths of a
PE that are susceptible to asymmetric aging.

5. The proposed fault model indicates that asymmetric
aging transient errors can accumulate within the PE and
spread to neighboring PEs and successive DNN layers.

6. We offer hardware- and design-flow solutions to mit-
igate asymmetric aging in SAs and demonstrate that
our techniques avoid degrading the top-1 prediction
accuracy of the DNN model.

2. BACKGROUND AND PRIOR WORKS
This section overviews SA architecture, transistor aging,
asymmetric aging, and DNN-resiliency-related works.

2.1 Deep Neural Network Accelerators
DNN hardware accelerators are specialized devices designed
to accelerate the execution of DNN models. Several types of
DNN hardware accelerators exist, such as graphical process-
ing units [21], application-specific integrated circuits [28],
which are custom-designed for specific applications, and Ten-
sor Processing Units (TPUs) [20], which use SAs [24] for
both ML training and inference.
A SA, which we use in our case study of DNN accelerators,
is a homogeneous two-dimensional grid of processing ele-
ments (PEs), usually built from multiply and MACs that work
coherently together to implement matrix multiplication. The
inputs are passed from one PE to its neighbors, and every
PE conducts a multiply-accumulate operation between the
inputs and stores the intermediate result locally, then trans-

Figure 1: Output-stationary systolic array.

mits the inputs for the adjacent PEs for the next cycle. Given
the well-defined interactions between neighboring PEs, tasks
can be executed efficiently and data reuse and scalability are
possible [12].
SAs have different forms and shapes and may be used for
various tasks. In our work, we use the output stationary
(OS) SA variant, which is used to accelerate and efficiently
execute matrix multiplication in many different DNN- and
ML-related applications. Figure 1 shows the state-of-the-art
OS-SA architecture.
DNNs are computation and memory intensive, raising the
demand for DNN hardware acceleration to a critical level.
SA-based DNN hardware accelerator can offer a significant
performance and throughput boost compared with a CPU [20].
MIT Eyeriss is another example of a SA accelerator for con-
volutional neural networks [9]. Another commercially used
SA implementation is Tesla’s full self-driving chip [43]. In
addition, SAs have been used in multiple fields, for exam-
ple, for neurocomputing [41], language recognition [?], and
character string manipulation [26].

2.2 Transistor Aging
Transistor aging is the deterioration over time of transistors in
logical elements. Two physical mechanisms govern transistor
aging: HCI and BTI [4, 31, 44]. HCI occurs when high
kinetic current flows through a transistor, whereas BTI occurs
when a static voltage (logical state) is applied to the gate of
a transistor without current flow for a long period, typically
ranging from 10 s to several weeks [45]. Both BTI and HCI
increase the transistor threshold voltage, which increases the
switching delay. This study focuses on BTI because it is
the dominant aging mechanism in modern integrated circuits
[2,37]. The BTI aging model we use to represent the increase
in threshold voltage is based on the reaction-diffusion model,
which is the main model used by the semiconductor industry
[1, 2, 5, 6]. The threshold voltage increment ∆Vth due to BTI
stress is

−∆Vth ∝ e
Ea
kT (t − t0)1/6 (1)

where Ea is a constant, T is the operating temperature, k
is Boltzmann’s constant, t0 is the time when the BTI stress
starts, and t is the overall time. p-type transistors are more
susceptible to BTI (known as NBTI) than n-type transistors
(known as PBTI) [39]. Therefore, logical gates with a con-
stant idle state of logical 0 are most vulnerable to aging. A
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common method to measure the BTI stress profile on logical
elements is the signal probability (SP). The SP represents the
likelihood that a signal will have a logical value of 1, and it
is the ratio of the time a signal spends in the logical 1 state to
the overall time. Decreasing the SP increases the likelihood
of BTI in the circuit and degrades the circuit performance
over time or even causes failure.
BTI can significantly degrade the performance of a logical
circuit, and if the degradation is symmetric among all logical
elements, it can be mitigated by reducing the clock frequency.
However, degradation due to asymmetric aging may produce
even more severe reliability concerns.

2.3 Asymmetric Aging
Asymmetric aging occurs when the transistor degradation is
nonuniformly distributed between logical elements such as
flip flops, gates, clock tree buffers, and memory cells. The
high complexity of asymmetric aging presents significant
challenges for integrated circuits in terms of modeling, analy-
sis, prediction, and prevention, making it a major reliability
concern. Moreover, incorporating detailed timing analysis
that considers aging is nontrivial because it depends on the
workload and operating conditions, a capability that is absent
in conventional design tools [45].
In the next three sections, we identify four primary mecha-
nisms that promote asymmetric aging in SAs: clock gating,
DNN sparsity, and asymmetrical delay between logical el-
ements and wires. Each of these mechanisms can indepen-
dently lead to asymmetric aging, eventually causing severe
timing violations and permanent as well as transient faults.
The following discussion provides more insight into each of
these mechanisms.

2.3.1 Clock gating
One widely accepted method for dynamic power saving is
clock gating [40], which involves selectively blocking the
clock signal in currently unused parts of the circuit, thereby
reducing dynamic power consumption. By turning off the
clock in idle parts of the circuit, unnecessary switching and
associated power consumption are eliminated. Clock gating
is typically implemented by using a clock gate cell containing
an AND or OR gate. When the clock is enabled, the clock
signal is allowed to pass through the clock gate cell. When the
clock is disabled, the output of the gate is held at a constant
logic value, blocking the clock signal from passing through
the gate.
Clock gating induces BTI because it intensifies the idleness
on the clock network and on combinational circuits. In addi-
tion, it encourages asymmetric aging, as illustrated in Figs.
2(a) and 2(b). In Fig. 2(a), the clock gate is used in the
launch path, causing greater aging in the launch path than in
the capture path. This asymmetry can lead to setup-timing
violations. Conversely, in Fig. 2(b), using the clock gate in
the capture path intensifies the aging in that path compared
with the launch path, resulting in hold-timing violations.

2.3.2 Asymmetry between logical-cell delays and wire
delays

Another cause of asymmetric aging is the asymmetry between
the accumulated delay of logical cells and wires. Although
logical cells are affected by BTI, wires are not. When launch

Figure 2: (a) Possible violation due to asymmetric aging
induced by (a) launch path clock gate, (b) capture path
clock gate, and (c) the asymmetry between the accumu-
lated delay of logical cells and wires.
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and capture paths have different accumulated logical-cell
delays, BTI can induce asymmetric aging, as shown in Fig.
2(c). If the accumulated logical-cell delay in the launch path
is greater than that in the capture path, setup-timing violations
may occur. Conversely, if the accumulated cell delay in the
launch path is smaller than that in the capture path, it may
cause hold-timing violations. As illustrated in Fig. 2(c), both
launch and capture clocks are balanced with 170 ps clock
latency. However, the accumulated clock buffer delay in the
capture path is 150 ps, whereas the clock buffer total delay
in the launch path is 100 ps. Such asymmetry between the
accumulated cell and wire delay in conjunction with BTI
may result in hold-timing violations due to the delay shift in
the capture clock. Previous works such as [3] have ignored
wire delays; however, our experimental analysis shows that
this phenomenon can contribute significantly to asymmetric
aging.

2.3.3 Deep neural network sparsity
DNNs can exhibit a high degree of sparsity for several rea-
sons, including

1. the use of certain activation functions, such as ReLU
[30];

2. various DNN optimizations to avoid overfitting, such as
dropout regularization, pruning, and weight decay [16];

3. sparsity in the DNN model [16];
4. when the dynamic range for value representation is not

fully utilized (e.g., when the data type used is 16-bit
wide, but weights and activations use 8 bits).

As noted earlier, the constant voltage bias of the logical 0
state can promote BTI in DNN accelerators, particularly those
induced by sparsity. Moreover, since sparsity is not uniformly
distributed across all logical elements and paths in the SA,
asymmetric aging may result. For example, if the most sig-
nificant bits in activations and weights exhibit a high degree
of sparsity, aging may intensify on those logical paths with
respect to other elements in the SA.

2.4 DNN-Resiliency-Related Works
The need for reliable DNNs accelerators has motivated nu-
merous researchers to study the robustness against both per-
manent and transient faults of SA-based DNN accelerators.
Permanent faults in data paths were studied in multiple works.
For example, in [47, 48] the authors showed that, even for
fault rates as low as 0.003%, the DNN’s accuracy drops sig-
nificantly from 74.13% to 39.69%. In addition, the authors
proposed two techniques to enhance fault tolerance: fault-
aware pruning and fault-aware pruning and retraining. Both
techniques allow TPUs to work with fault rates as high as
50%. By using the discrete-time Markov chain formalism,
the authors of [23] analyzed permanent manufacturing faults
and revealed that the accuracy drops from 97.72% to 10.15%
in some cases.
Conversely, [14, 32] explore how transient faults affect SAs
and DNN models’ inference accuracy, along with proposing,
high-performance, energy-efficient design for fault predic-
tion and mitigation in near-threshold operation mode for
TPUs. Reference [33] examined timing error arising from
near-threshold computing. Additionally, Kundu et al. in [22]
provided a comprehensive study of both permanent and tran-

sient faults for quantized DNNs in SA-based accelerators and
assessed in detail their performance in the presence of these
errors. Moreover, the authors comparatively analyzed how
the decrease in accuracy depends on fault location and pro-
posed efficient methods for in-field functional testing. First,
they showed that stuck-at-1 faults produce a much larger ef-
fect on accuracy than stuck-at-0 faults. Second, faults in the
most significant bits have a larger impact than faults in the
least significant bits. Finally, they found that faults in the first
two layers have a greater impact than those in lower layers.
Nevertheless, none of the works mentioned above examined
the impact of aging-induced faults.
Aging-induced faults in SAs have been mentioned in only
a few prior works. Reference [38]proposed a new quantiza-
tion method to eliminate aging guard bands, thus minimiz-
ing aging-induced frequency degradation. As part of their
work [17] to accelerate timing simulations in SA-based ac-
celerators, Holst et al. proposed a new method to measure
DNN accuracy losses caused by arbitrary timing faults. They
also discussed how injecting one small-delay random defect
in different numbers of PEs affects the inference accuracy.
Additional works such as [19, 29, 34] comprehensively re-
view the manifestation and mitigation techniques (hardware
and software) of soft errors induced from multiple sources
such as radiation, process variations, temperature, and ag-
ing in DNN accelerators, including SA-based accelerators.
However, none of these works discussed faults induced by
asymmetric aging.
Thus, no previous work appears to have studied asymmetric-
aging-induced timing errors in SAs or how they affect DNN
inference accuracy. Other works have approached the asym-
metric-aging phenomenon from different directions: [10] in-
troduced an asymmetric-aging-aware microarchitecture to
mitigate the impact of asymmetric aging on execution units,
register files, and memory hierarchy in microprocessors with
minimal overhead. Furthermore, [3] proposed an algorithm
for analyzing the static timing of asymmetric aging in clock
networks.

3. ASYMMETRIC-AGING-INDUCED
FAULTS IN SYSTOLIC ARRAYS

Detecting faults induced by asymmetric aging in SAs involves
two experimental phases. In the first phase, we analyze the
aging profile of the SA architecture and DNN models by eval-
uating the SP of the microarchitectural elements in the SA.
In the second phase, we fully implement the SA, including
synthesis, place, route, and timing analysis, by using aging
models that represent BTI timing degradation. Through tim-
ing analysis, we pinpoint the logical paths that suffer from
asymmetric-aging-induced timing violations.
Figure 3 shows a PE cell in the SA under examination. The
weight and activation inputs are sampled by registers and
forwarded to the neighboring PEs. To reduce clock cycle
time, the MAC operation of the PE is pipelined such that the
multiplier output is sampled by a register and used in the next
clock cycle by the accumulator. The illustrated PE uses three
clock gates to save energy consumption in the following two
scenarios:

1. Given that certain PEs may not be involved in matrix
multiplication operations (as described later), clock gate
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Figure 3: Systolic array processing element.

A is used to disable the clock f the PE.
2. Given zero activation or zero weight, clock gate B dis-

ables the clock of the output multiplier sampling regis-
ter. Clock gate C disables the clock to the accumulator
register in the next clock cycle.

3.1 Experimental Environment
Our experimental analysis is based on two environments: a
simulation environment that emulates the operation of an
OS-SA and extracts the aging profile and a detailed timing
analysis electronic design automation environment that ex-
amines the impact of asymmetric aging based on the aging
profile.
For the aging profile extraction, we have run a co-simulation
that consists of a C++ SA simulator that runs in conjunction
with a PyTorch-based DNN model written in Python. Our SA
simulator is configured to simulate a 128×128 OS SA. As a
case study we use pre-trained ResNet-18 and ResNet-50 [?]
DNN models in PyTorch. The models’ weights and acti-
vations are quantized to 8-bit signed and unsigned integers,
respectively. In addition, we assumed an 8× 8-bit integer
multiplier and a 32-bit integer accumulator. For the infer-
ence process, we used 100 images chosen randomly from the
ImageNet dataset [21].
For the timing analysis, we coded the SA in SystemVer-
ilog and synthesized it for 28 nm process technology using
Cadence® Genus®. For the place-and-route, we used the
Cadence® Innovus® implementation tool. We assumed a
SA clock frequency of 340 MHz and adopted as our aging
model the reaction-diffusion model, which is widely accepted
by industry and research as the preferred model for BTI ag-
ing [1,5,7,8]. The timing analysis with the aging model is like
the method used in [10,11]. Their corresponding degradation
factors derate the propagation delay of logical elements as a
function of their SP extracted in Sec. 3.2.
Figure 4 shows the delay shift of gates under different SPs
using our aging model. It also presents the absolute delay
shift of gates under variable SPs relative to gates that are
symmetrically aged with SP = 0.5. The comparison demon-
strates the asymmetrical delay shift of logical elements under
constant BTI stress compared with other elements within a
logical circuit that are symmetrically aged. The results show
that gates with constant stress (when SP = 0 or 1) experience

Figure 4: Frequency degradation and absolute asymmet-
ric delay shift over a ten-year lifetime.

a 2.0%–2.5% asymmetric delay shift relative to gates with
SP = 0.5. These results reveal that gates with a static stress
of 1 may also suffer from this phenomenon despite having
minor BTI stress. However, when compared with gates with
SP = 0.5, the delay shift becomes significant. The observed
asymmetric delay shift, even one as small as 2%–3%, can
significantly impact circuit reliability.

3.2 Systolic Array Aging Profile
The measured SP and the idleness of logical elements within
every PE describe the aging profile of the SA. Figure 5 shows
a sample of heatmaps for activations, weights, multiplier
output, and accumulator for ResNet-18 and ResNet-50, re-
spectively, on a subset of ImageNet images. One of our first
observations is that matrix multiplications and convolutions
within the DNN do not exploit the full spatial dimension of
the SA. For example, when the dimensions of a matrix multi-
plication are smaller than those of the SA, unused rows and
columns are clock-gated due to power-saving considerations
and therefore kept idle. As a result, PEs in the upper rows and
columns are significantly less utilized, which can encourage
asymmetric aging relative to all other PEs. We partition each
SA into four regions: Region A contains the 68 lower rows
and columns, region B contains the 68 lower rows and 64
upper columns, region C contains the 60 upper rows and 64
lower columns, and region D contains the remaining rows
and columns.
Our experimental study suggests that logical elements within
the SA may experience asymmetric BTI stress, and thereby
age differently while inducing critical timing violations.
We summarize in Table 1 the root causes for these potential
violations, which we group into the following classes:

1. SA utilization. Our observations indicate that SA re-
gions B, C, and D are underutilized, which incurs idle-
ness and BTI stress. Therefore, they can become sus-
ceptible to asymmetric aging, which can induce both
setup- and hold-timing violations.

2. Dynamic range. Underutilizing the dynamic range of
value representation increases the likelihood that certain
bits or signals are in a constant logical state and thereby
incur asymmetric aging. This encourages BTI stress on
logical computational elements, increases their propa-
gation delay, and results in setup-timing violations.

3. Sparsity. Exploiting sparsity can save unneeded oper-
ations and reduce power consumption. However, our
analysis indicates that sparsity encourages BTI stress on
logical elements and the SA gated clocks. When applied
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Figure 5: ResNet-18 (top) and ResNet-50 (bottom) signal
probability heatmaps for a sample of ImageNet images in-
ference: (a) accumulator bits 0—15, (b) accumulator bits
16—31, (c) weight bits 0-–7, (d) activation bits 0—5, (e)
activation bits 6–7, (f) multiplier bit 0, and (g) multiplier
bits 1—15.

to logical elements, BTI stress may cause setup-timing
violations. In addition, in the case of gated clocks, BTI
stress promotes hold-timing violations.

Activations. In region A, the SP of activation bits 0—5
ranges from 15%—19%, while bits 6 and 7 have a signifi-
cantly lower SP (<0.25%) because (i) the full dynamic range
of the Int8 representation is underused, and (ii) high spar-
sity. In regions B, C, and D, the SP of all activations is even
smaller than 5%, which is attributed to the low utilization of
these regions.

Weights. Unlike the activations, the SP of weights is approx-
imately 50% in region A. However, in regions B, C, and D,
SP is less than 15% due to the low utilization of these regions.

Multiplier output. The SP of bit 0 and bits 1–15 of the mul-
tiplier output in the SA falls within the range of 2%–10% and
4%–20%, respectively. The least significant bit of the multi-
plication product has a lower SP than the other higher-order
bits because the likelihood of the product of two arbitrary in-
tegers being even is 0.75. Our analysis indicates that the low
overall SP of the multiplier can be attributed to the following
factors: (i) relatively low utilization of regions B, C, and D,
(ii) high sparsity of activations, and (iii) low utilization of the
16-bit value range.

Accumulator. The SP of the accumulator is distributed over
a much broader range than the multiplier output: 13%–50%
and 15%–72% for bits 0–15 and bits 16–31, respectively.
The high-order bits have a higher SP for two reasons: (i) the
accumulator values are spread across a broad dynamic range
of values, and (ii) the two’s complement representation for
negative values both increase the likelihood of ones in the
most significant bits. In addition, regions B, C and D have
lower SP relative to region A due to their lower utilization.

Gated clock. Figures 6(a) and 6(b) show the toggle rate of
the accumulator and multiplier gated clock for ResNet-18
and ResNet-50, respectively. The gated clock toggle rate is
governed by the sparsity of weights and activations in the
DNN (i.e., whenever the weight or activation is zero, the
clock is gated). While clock gating can help reduce energy
consumption by the SA, it intensifies the BTI stress on the
gated clock tree branch and may encourage asymmetric aging.
Although region A has the highest toggle rate of nearly 40%,
it is significantly less than the maximum toggle rate of a free-
running clock (100%). This is explained by the extremely
sparse activation, which encourages clock gating. The other
regions have toggle rates within the range of 5%–27% be-
cause of lower utilization by the DNN model and extremely
sparse activations.

3.3 Timing Analysis
The second phase of our experimental analysis involves de-
tailed timing analysis using aging models. We analyze all
logical paths in the SA and partition them into the following
groups, as shown in Fig. 7:

1. A2A: The logical paths between the sampling register of
the input activation and the neighbor activation register.
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Weights A 7–0 50%
Weights B–D 7–0 <15% +

Multiplier A 0 <10% + +
A 15–1 16%–20% + +

Multiplier B–D 0 <7% + + +
B–D 15–1 <12% + + +

Accumulator A 15–0 30%–50% +
A 31–16 40%–72%

Accumulator B–D 15–0 13%–30% + +
B–D 31–16 15%–40% + +
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Gated clock 30%–40% +
Gated clock 5%–27% + +

Table 1: ResNet-18 summary of SP and gated clock tog-
gle rate distribution with potential to asymmetric aging
timing violations.

Figure 6: Accumulator and multiplier gated clock toggle
rate: (a) Res-Net-18 and (b) ResNet-50.

Figure 7: Timing path groups for PE timing.

2. W2W: The logical paths between the sampling register
of the input weight and the neighbor cell weight register.

3. AW2M: The logical paths that start from the activa-
tion sampling register or the weight sampling register,
propagate through the multiplier, and terminate at the
multiplier sampling register.

4. M2AC: The logical paths that start from the multiplier
sampling register, go through the adder, and end at the
accumulator register.

5. AC2AC: The logical paths that start from the accumu-
lator register, go through the adder, and return to the
accumulator register.

Table 2 summarizes the detailed timing analysis results for
the SA with asymmetric aging. The setup-timing analysis
indicates that the path group from the 32-bit accumulator
output to the accumulator input (AC2AC) is the most suscep-
tible to BTI since it is the critical timing group of the SA.
Table 2 shows that the AC2AC group experiences the highest
degradation in worst negative slack (WNS) in all regions,
dropping from 0 to −174 ps. Table 2 also shows that the
number of setup-timing violations for the AC2AC group is
in the range of 14 000 to 17 000 in every region. The M2AC
group also experiences setup violations due to aging, but its
WNS and the number of violating paths are less than those
introduced by the AC2AC group. The remaining group paths
do not exhibit any setup violations; however, since their WNS
decreased, their resiliency is degraded.
Table 2 also presents the results of the hold-timing analysis
of the SA. As opposed to setup-timing violations, which
can be mitigated by reducing the SA clock frequency, hold-
timing violations cannot be mitigated and thereby are even
more severe than setup-timing violations. In the hold-timing
analysis, asymmetric aging affects two opposing mechanisms.
The following discussion summarizes our observations for
each path group:
A2A: The A2A group incurs hold-timing violations in all
regions with a WNS of −4 ps, with regions B and D having
the highest number of hold-timing violations. Our timing
analysis indicates that, despite the high utilization of region A,
it also experiences hold-timing violations. This is attributed
to the asymmetry between the accumulated wire delay and
the logical-cell delay in certain paths, as discussed in Sec.
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2.3. In addition, the timing violations in regions B and D are
induced by the low utilization of these regions in conjunction
with the asymmetry between the accumulated wire delay
and the logical-cell delay. Our timing analysis indicates
that all activation signals traversing from the boundary of
regions A to B and C to D make additional contributions to the
timing violations in these regions. This is due to the capture
clock in regions B and D, which incurs a greater delay shift
than the launch clock in regions A and C, resulting in hold-
timing violations. The hold-timing violations in region C are
also due to its low utilization and the asymmetry between
logical and wire cell delays. Region C has fewer violations
than region A because it has fewer rows. Our setup-timing
analysis indicates that the A2A group incurs no setup-timing
violations due to aging because it has a significant positive
timing slack.
W2W: The W2W group also incurs hold-timing vio-lations
in all regions with WNS in the range −2 to −1 ps. The
asymmetry between the accumulated cell and wire delay

causes hold-timing violations in all regions. These violations
in regions B–D are also due to their low utilization. All
weight signal crossing from regions A and B to regions C and
D, respectively, encounter hold-timing violations. The low
utilization of regions C and D creates a bigger delay shift in
the capture clock with respect to the launch clock. The more
numerous rows in regions A and B compared with regions
C and D contributes to the increased number of hold-timing
violations.
AW2M: The AW2M group has a hold WNS of −3 ps in
all regions, where regions A and B have a greater number
of hold-timing violations due to their more numerous rows.
Our timing analysis indicates that hold-timing violations are
induced by (i) activation sparsity and (ii) asymmetry between
the accumulated wire delay and cell delay. In both cases,
the capture clock incurs a larger delay shift, which results in
hold-timing violations. The AW2M group presents no setup
violations due to asymmetric aging, however, its positive
timing slack is reduced in approximately 130 ps.

Logical path Setup WNS [ps] before and after asymmetric aging Hold WNS [ps] before and after asymmetric aging
Region A Region B Region C Region D Region A Region B Region C Region D
2605/2598 2605/2598 2605/2598 2605/2599 0/−2 0/−4 0/−3 0/−3

W2W 2576/2573 2576/2571 2576/2571 2576/2571 0/−1 0/−1 0/−2 0/−1
1038/910 1038/906 1038/908 1038/905 0/−3 0/−3 0/−3 0/−3

M2AC 119/−32 119/−44 119/−38 119/−49 0/−1 0/−2 0/−2 0/−2
AC2AC 0/−155 0/−170 0/−162 0/−174 30 / 31 30 / 31 30 / 31 30 / 32

Number of violated setup paths Number of violated setup paths
0 0 0 0 8606 9150 7680 12,000

W2W 0 0 0 0 8606 8606 7872 7680
0 0 0 0 4303 4303 3840 3840

M2AC 4303 4303 3840 3840 8606 47 333 34 560 42 240
9822 12 909 11 520 11 520 0 0 0 0

Total
(% of violating paths) 14125 (0.00014%)

17212

(0.00017%)
15360 (0.00015%) 15360 (0.00015%) 30121 (0.0003%) 69392 (0.0007%) 53952 (0.0005%) 65760 (0.00065%)

Table 2: Summary of the Worst Negative Slack (WNS) and total number of timing violations in the SA due to asymmetric
aging.

M2AC: The M2AC path group has a hold WNS of −2 ps
and the largest number of violating paths. In this group, both
the launch clock and the capture clock are governed by the
same control logic, so all clock buffers on the launch and
capture clock branches age symmetrically. However, our
timing analysis indicates that all regions incur hold-timing
violations due to the asymmetry between the accumulated
cell and wire delays. This asymmetry is emphasized by the
high sparsity, which intensifies the aging on both the launch
and capture clocks. In addition, the low utilization in regions
B–D further encourages clock tree aging, resulting in an even
greater number of violations than in region A. The M2AC
group also presents setup-timing violations with a WNS of
−49 ps. Our timing analysis indicates that this is attributed to
the high sparsity on the accumulator path, which accelerates
the timing degradation on the logical elements in the M2AC
path.
AC2AC: The AC2AC path group is the longest path in the
SA and therefore incurs the most severe setup violations due
to the aging of the 32-bit ad-der. The setup violations are
ascribed to (i) the low utilization of regions B–D and (ii) the
lack of utili-zation of the full 32-bit dynamic range in all
re-gions. Additionally, this path group has no hold-timing

violation even when asymmetric aging is considered. In this
case, both launch and capture paths of the clock tree are the
same since the path begins and ends in the same register,
and as a re-sult, they degrade symmetrically. In addition, the
aging slows the logical path between the accumu-lator output
to the accumulator input, so it con-tributes to improve hold
margins.

4. FAULT ANALYSIS
Our fault injection experimental model examines how timing
violations due to asymmetric aging affect the prediction accu-
racy of the DNN model. Violation of timing paths may cause
flip-flops to transform into metastable states, resulting in bit
flips. In severe cases, when the data consistently miss the
boundaries of the flip-flop sampling window, they may mani-
fest as persistent errors. The rate at which a metastable state
is entered in a flip-flop when timing constraints are violated
is [35]

Failure Rate = TWFCFDe−S/τ , (2)
where S is a pre-determined time for metastability resolution,
FC is the clock frequency, and FD is the data transition rate.
Both τ and TW are intrinsic flip-flop circuit parameters that
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Path group Number of failure events in an inference
A2A 0.01
W2W 0.01
AW2M 853
M2AC 853
AC2AC 853

Table 3: Failure events per single flip-flop with timing
violations in an inference for every path group.

represent the resolution time constant and the metastability
window width, respectively. When plugging in the design
parameters of our 28 nm SA into Eq. (2) and considering
the resolution time available for every path group to resolve
the failure events, we obtain the failure rate as summarized
in Table 3 per a single flip flop with timing violation. When
considering both setup- and hold-timing violations for our
fault injection model, the overall number of flip-flop failure
events can reach up to 190 million per single inference. We
perform a sensitivity analysis of the DNN model prediction
accuracy to the number of flip-flop failure events in every
inference. In our sensitivity analysis, we increase the num-
ber of failure events in every inference in steps of 10 000
[0.00526% of the overall number of failure events predicted
by Eq. (2)]. Additionally, the failure events are distributed
randomly over all DNN layers, excluding the first and last
layers. Within a model layer, all flip-flop failure events are
randomly distributed over time. We run every image infer-
ence five times and calculate the average prediction accuracy.
Figure 8(a) presents the sensitivity of ResNet-18 prediction
accuracy when the fault injection model is considered. It can
be observed that by considering less than 0.00001% of the
overall failure events, the prediction accuracy of the model
drops by 40%. In addition, when less than 0.00005% of the
failure events are considered, the model prediction accuracy
drops to nearly 0%. In addition, such faults can also have a
major impact on DNN confidence level [46].
The next step in our fault injection analysis considers only
hold timing violations, assuming that setup violations can be
mitigated by reducing the clock frequency. The hold fault
injection analysis is performed with a failure event distribu-
tion similar to the combined setup-and-hold analysis. In the
case of hold-related faults, the overall number of flip-flop fail-
ure events can reach up to 127 million per single inference.
In our analysis, we increase the number of failure events in
every inference in steps of 10 000, which is 0.008% of the
overall number of failure events predicted by Eq. (2). Fig-
ure 8(b) illustrates the sensitivity of ResNet-18 prediction
accuracy when hold-related faults are considered. It can be
observed that by considering less than 0.7% of the overall
failure events, the prediction accuracy of the model drops
by 40%. Such a significant reduction in prediction accuracy,
even when setup violations are excluded and only a small por-
tion of the overall hold failure events are considered, suggests
that asymmetric aging can induce catastrophic functionality
failures in SAs and DNN models. Therefore, developing miti-
gation techniques for asymmetric aging is crucial to maintain
the resiliency of DNNs.

Figure 8: ResNet-18 Prediction accuracy with fault injec-
tion: (a) setup and hold faults and (b) hold faults.
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5. STRATEGIES TO MITIGATE ASYMMET-
RIC AGING

We identify several approaches to mitigate asymmetric aging
in ML accelerators. We demonstrate these techniques on SAs;
however, they are applicable to ML accelerators in general.
Our mitigation techniques are

1. introducing a new clock gate circuitry to alleviate asym-
metric aging of clock buffers;

2. adding timing guard bands to the clock cycle time to
mitigate setup violations;

3. using selective hold-timing violation fixes;
4. presenting a completed design flow for ML accelerators

that integrates the flows and analysis described herein.

5.1 Symmetric Clock Gate
This study shows that clock gate circuitry promotes asym-
metric aging on clock branches, resulting in severe timing
violations. Figure 9(a) shows a common clock gate circuit,
which consists of a latch and an AND gate. When the en-
able signal En is set to logical 1, the clock signal is allowed
to propagate through the clock branch. However, when the
enable signal En is set to logical 0, the clock path is main-
tained under a constant logical state of 0, which promotes
BTI stress. To overcome the limitation of the common clock
gate, we propose the symmetric clock gate circuit shown in
Figure 9(b). In this clock gate, the logical state of the gated
clock is controlled by the mode signal. When the mode is
set to logical 0, the symmetric clock gate operates like the
original clock gate, i.e., the logical state of the gated clock is
0. However, when the mode is set to logical 1 the gated clock
state is logical 1. The proposed clock gate is free from static
hazards, allowing the mode signal to be toggled at a low rate
by the SA control logic. This ensures that, when the clock is
gated, it spends nearly an equal amount of time in logical 1
as it does in logical 0.
Our aging profiling simulation shows that the utilization of
the symmetric clock gate produces an SP of approximately
50% on the gated clock. In addition, the timing analysis of
the SA with the symmetric clock gate is summarized and
compared with the conventional clock gate in Table 4. The
results show that the symmetric clock gate improves the hold
WNS by 50% in most of the violated path groups. In addi-
tion, it reduces the number of hold-timing violations by 55%.
The timing analysis also shows that the symmetric clock
gate negligibly affects setup violations. Our synthesis and
place-and-route analysis indicates that symmetric clock gates
introduce an overhead of 1% on the total cell area, which can
be absorbed by the implementation tools with no overhead to
the overall floorplan area. In addition, the symmetric clock
gate power overhead is nearly 0.09% of the total SA power.

5.2 Clock Cycle Time Guard Band
Overcoming setup-timing violations requires tightening the
clock cycle time and considering aging degradation in timing
closure. Our timing results, summarized in Table 4, indicate
that the setup WNS is −174 ps, which can be mitigated by
tightening the clock cycle time by 7%. Table 5 presents the
results of our power analysis, which indicate that such a miti-
gation strategy introduces a 1.3%, 8%, and 7.25% increase in
leakage power, dynamic power, and total power, respectively.

Figure 9: (a) A typical clock gate circuitry and (b) a
Symmetric clock gate circuitry.

Path groups WNS with conventional (Table 2)
symmetric clock gate [ps]
Setup Hold

A2A 2598/2569 4/2
W2W 2571/2573 2/1
AW2M 905/904 3/2
M2AC −49/−50 2/1
AC2AC −174/−174 31/31

Number of violated paths with conventional
(Table 2) symmetric clock gate [ps]
Setup Hold

A2A 0 / 0 37436 / 32572 (−13%)
W2W 0 / 0 32764 / 16286 (−51%)
AW2M 0 / 0 16286 /16286 (0%)
M2AC 16286 / 16286 132739 / 32572 (−75%)
AC2AC 45771 / 45771 0 / 0 (0%)
Total 62057 / 62057 219225 / 97716 (−55%)

Table 4: Path groups failure rate per single flip-flop with
timing violations.
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SA Leakage power Dynamic power Total power
Original 156.4 mW 1249 mW 1405.4 mW
With aging clock cycle 158.51 mW 1348.8 mW 1507.3 mW
guard band (+1.3)% (+8%) (+7.25%)

Table 5: Power consumption of SA with aging guard band
with respect to original SA.

Figure 10: Asymmetric-aging-aware design flow for ML
accelerators.

In addition, our SA area analysis indicates that this approach
involves negligible area overhead since logical cells on the
critical path are swapped with lower Vth cells that have a
similar area footprint. An alternative approach for tightening
the clock cycle is to compromise SA performance and reduce
its clock frequency by 7%.

5.3 Selective Hold Timing Violation Fixes
The remaining timing violations after employing the previ-
ously described techniques are the hold-timing violations that
are not solved by the symmetric clock gate. This time, we
selectively fix hold-timing violations based on their contri-
bution to the failure rate. Table 3 shows that both A2A and
W2W failures occur at a relatively low rate. Additionally, our
fault-injection simulations also indicate that such faults do not
affect the DNN prediction accuracy. Therefore, we consider
fixing only the AW2M and M2AC hold-timing violations.
The remaining hold-timing violations are fixed by adding a
delay buffer to the violated logical path. Our area and power
analyses indicate that these remaining fixes incur 0.07% and
0.01% area and power overhead, respectively, with no impact
on clock cycle time.

5.4 A Complete Design Flow
Finally, we summarize the complete design flow for ML
accelerators, which integrates the flow and analysis described
herein.
The full flow is depicted in Fig. 11 and consists of the follow-
ing stages:

1. dataset preparation;
2. simulation of DNN accelerator on the related dataset.
3. aging profile produced by functional simula-tion con-

sisting of SP measurement for the building blocks of
the DNN accelerator;

Power overhead Area overhead
Symmetric clock gate 0.09% 1%
Clock cycle guard band 7.25% 0%
Selective hold-timing fixes. 0.01% 0.07%
Total 7.85% 1.07%

Table 6: Overhead of asymmetric aging mitigation.

4. synthesis and place-and-route of DNN accel-erator Hard-
ware Description Language (HDL) model.

5. timing analysis combined with aging libraries and the
aging profiles produced in stage 3;

6. generation of timing reports for all setup and hold tim-
ing violations;

7. fault injection analysis, which combines DNN accelera-
tor functional simulation with fault injec-tions for the
violated paths;

8. failure rate report, which details the impact of faults on
the overall accuracy of the model;

9. timing fixes, which combine symmetric clock gating,
clock cycle guard band, and selective fixes for hold-
timing violations (the necessary timing fixes are then
pushed to the place-and-route tool to be implemented
in the design).

Stages 4–9 are repeated until the design is free from timing
violations that affect model accuracy. Table 6 summarizes
the overall power and area overhead for these techniques to
mitigate asymmetric aging on the SA case study.

6. SUMMARY
This paper uses systolic arrays as a case study to comprehen-
sively study how asymmetric aging affects ML accelerators.
We demonstrate that asymmetric aging can cause major faults
in DNNs, severely impacting their resiliency and decreasing
their prediction accuracy, which can lead to functional safety
violations in mission-critical systems. We develop herein
a complete flow for simulating, analyzing, and mitigating
asymmetric aging in ML accelerators, which encompasses
(i) aging-profile extraction from functional simulation, (ii) a
timing analysis with aging models, and (iii) a fault injection
model to evaluate the DNN’s performance under asymmetric-
aging conditions.
Our analysis reveals four primary mechanisms that promote
asymmetric aging in systolic arrays: (i) DNN sparsity, (ii)
underutilization of the dynamic range for value representa-
tion, (iii) clock gating, and (iv) a lack of symmetry between
logical-cell delays and wire delays. In addition, our analysis
shows that the spatial location of PEs contributes significantly
to the likelihood of incurring asymmetric-aging-related faults.
We propose mitigation techniques that combine a novel sym-
metric clock gate circuitry, selective hold violation fixes, and
clock cycle guard band adjustment. These techniques elimi-
nate asymmetric-aging reliability concerns in SAs.
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