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Human Computer Interaction Improvement by Interjection Recognition: A new speech processing task and dataset

Abstract. One of the main challenges of successful human-computer interaction is to enableenabling a natural and spontaneous dialogue between human and machine such as that experienced in human-to-human dialogue. Although the use of interjections (e.g., “mmm”, “hmm”) convey important information in colloquial speech, they are usually considered to be “non-words” by Automatic Speech Recognition (ASR) engines. Recognizing and supporting interjection in speech-based user interfaces (e.g., voice control) could result in much more natural human-machine interactions. Moreover, interjection recognition can be utilitiutilizedes for Speech Emotion Recognition (SER) in emergency call center or call centers services, including those for emergencies. In this work, we present a dataset of interjection audio records collected for the task of interjection recognition. The collected dataset is used to train and evaluate two baseline neural networks models on inter-speaker and intra- speaker interjection classification. To improve the performance, the collected dataset was extended using a mix of several augmentation techniques (e.g., tempo and pitch transformation). We show that the training based on the augmented dataset results in a significant improvement in the classification accuracy and reduces the need for a large amount number of records for training to train the models.
Keywords: Interjection, Human Computer Interaction, Data Augmentation.

[bookmark: _Toc47019580]Introduction
[bookmark: _Hlk42158492]People tend to choose an efficient form of verbal communications by leveraging common understanding of context between two parties. Interjections is are one of the major parts of speech that is frequently used to convey meaning in a specific context. Many smart systems include a speech recognition system that enables a natural dialogue between man and machine [1] (Hoy, 2018). Among well-known examples are virtual personal assistants, including Apple's Siri artificial intelligence System system Siri [2(Berdasco, et. al., 2019]), or Amazon’s Alexa [3] (Lopatovska et. al, 2019). A user of Siri or Alexa user can, withuse natural speech queries, obtain  for obtaining the information and performing various actions in several domains (e.g., checking weather or stock prices, ordering pizza, etc.).
In recent years, we are in the midst of a communications revolution in communications that expands has expanded from a basic mode of people-to-people communications to include people to-machines communications. In order to succeed, this revolution demands a high-quality interface to support successful Human Computer Interactions (HCI) (Clark et. al, 2019). [4]. However, to create successful speech-enabled applications, those systems must overcome the limitations of both current speech technologies and human cognitive processing. The challenge is not only advancing to advance technology performance, the performance of the technologies, but also to understand how to integrate these technologies into viable, easy-to-use spoken language systems.	Comment by Author: Should this be ‘person-to-person’?	Comment by Author: The previous sentence makes it sound like it is already succeeding - consider removing this phrase
	One of the limitations in HCI is that, although spontaneous conversation is optimized for human-human interactions, it different differs from the types of speech for which human language technology is often developed. Adding the interjection recognition capabilities to the voice assistants will allow to improve the human computer interactions and increasing increase the usage, with spontaneous conversation in human- machine interfaces. The improvement can be expressed by interpreting the meaning of a hard-to-understand speech, such as a heavy accent, or a sentence in which not all words are clear [31].(Gouda et. al., 2018). By understanding prominent keywords, we can understand the whole sentence. For example, when a human says “Oy, …” in a conversation, he wants to express an unexpected situation, something unfortunate, or perhaps that can be a fright from something. 
Furthermore, expressing a spontaneous feeling is one of the key features of most interjections and it can be utilities utilized for Speech Emotion Recognition (SER) [40] (Khalil et.al.., 2019). While humans can efficiently recognize the emotional aspects of speech, this ability in machines is still an ongoing subject of research. Adding the abilityEnabling machines to understand emotions to machine can provide efficient methods of detecting the emotions throughin different call centers services, emergency call centers, and many other human-machine communication users. The capability of machines to detect emotions and act accordingly is a critical factor of making machines appear and act in a human-like manner.
In another sense, voice interjections can be considered as a sort of “voice touch” signals. Similarly, to immensely successful haptic touch interfaces, the interjection-based voice touch interfaces might allow enable effortless human machine interactions with voice assistants and other voice-enabled devices. For some applications, tasks can be accomplished successfully by identifying an interjection identified and then mapped mapping it to an appropriate action or response. The interjection can be considered as a shortcut to a repeated action that requires more effort from the user and releases him from saying stating the request from to the machine in a detailed way. For example, consider a user that used toregularly request fromasks his personal assistance assistant, “What time is the next train to King's Cross from my closest station? “”, or “How long would will it take me to drive home? “”. Or another user that, every time he got in theenters his car after a day's work,, used to setsets his GPS driving for the drive home and right after that to callimmediately calls home to his wife. By letting giving the user, the ability to pick an interjection phrase from a set of interjections and map it to a desired actions, such interactions may could be facilitated by customizing and adapting the system to the needs and preferences of individual users.
It is important to emphasize that our goal is not to detects certain a specific interjection phrase within the speech, although a considerable part amountof interjections have a semantic meaning by themselves without the context of a conversation. For example, “A-ha” is a consent regardless of the context, and “wow” express impression a strong feeling or astonishementd. Moreover so, the number ofmany phrases are considered as to be interjections are very big and we are not trying to build a complete system that can recognize all interjections. The purpose of this document is to expose present a system that will form serve as a benchmark interjection identifier system which will beand a solid foundation for adding new interjections quickly and simply. Our motivation is to enrich user interface technologies that enable system designers to create habitable human machine interfaces and dialogues which that maintain natural interactions with the machine.	Comment by Author: In American English, aha expresses triumph, surprise, or derision accordign to the Merriam Webster Dictionary, so I might suggest changing this.
The collection and the preparation of the training data is a major challenge for this project. The available speech datasets are focusing focused on either word level [5] (Warden, 2018), phoneme level (Proutskova et. al., 2012)[6], or event level [7](Imoto, 2018) tasks, while the interjections lie somewhere in-between. Therefore, we collected our own unique baseline dataset by recording a relatively large set of interjections and negative examples from some speakers. 
In this work, we propose a neural network models for interjection recognition and classification. We collected datasets and used them to train, evaluate and test the models. An interjection recognizer accepts a waveform features and returns K+1 labels, where K is the number of supported interjection classes. The additional class label is reserved for non-interjection audio input. It is known that deep learning requires a large amount of data to train an accurate model. To increase the amount of training data and reduce overﬁtting, we enriched the dataset by augmenting the original data through applying the application of various artificial distortions [8](Zhou et. al., 2017). The data augmentation includes the addition of background noise [9],(Richey et. al, 2018) and pitch and tempo modifications [10] (Kulkarni & Naik, 2018).
In this paper, we present the results of several different interjection recognition baseline experiments, where relative improvement was obtained by using the proposed data augmentation methods over a state of the artstate-of-the-art Feedforward Neural Network (FNN) and Recurrent Neural Networks (RNN) classification models. Our data augmentation methods have been implemented on in the training data. By training the network on the additional deformed data, the network becomes invariant to these deformations and generalizes better to unseen data.
The rest of the paper is organized as follows:. In The next section 2 areviews previous work is reviewed with an emphasis on speech recognition, augmentation methods in speech recognition, and interjections-related research. Section 3 dedicated toThis is followed by an explanation of our contribution. In section 4Next, we describe the dataset creation process, and description of our data augmentation tool, followed by the interjection recognition models . This is followed byand the experimental setup in section 5. In section 6 weWe then discuss the results, and provide a summary of the proposed method with some possible research directions.	Comment by Author: The journal has a specific order for each submission: title page; abstract; keywords; main text introduction, materials and methods, results, discussion; acknowledgments; declaration of interest statement; references; appendices (as appropriate); table(s) with caption(s) (on individual pages); figures; figure captions (as a list).  I think you will need to revise your document to fit within these constraints. There is no indication of numbering within articles either, so I removed them.
[bookmark: _Toc47019581][bookmark: _Hlk42158643]Previous Work
[bookmark: _5l3iygby7oh]Studies regarding the p	Processing and understanding of speech and voice signals are studiedoccur in several contexts. One of the most common tasks associated with the processing speech and voice signals is Automatic Speech Recognition (ASR) [11] (Zerari et. al., 2016). 
ASR is a the task of translating audio signals into text. The main challenge is to overcome the non-stationaritity of the speech signal and the large variations in its spatiotemporal representation. As illustrates illustrated in Figure 1, the typical ASR system usually includesuding several steps. The pre-processing step, where an analog speech signal is transformed into a digital signal, includes speech/non-speech segmentation and filtering. The feature extraction step deals with the transformation of the incoming digital waveform into a vector representation of desirable speech features that emphasize linguistic information. Usually, a speech signal is broken into short (usually around 20-30 ms) segments (frames), overlapped every 10 ms, during which the signal is assumed to be stationary [13] (Majeed et. al, 2015). During the last few decades, several techniques have been developed for feature extraction from speech signals. These approaches include Mel-Frequency Cepstral Coefficients (MFCCs), Perceptual Linear prediction (PLP), Relative Spectral (RASTA), and Linear Predictive Coding (LPC) [12] (Gadekar et. al., 2019). However, probably, the mostly used is MFCCs are probably used most commonly[13]. (Majeed et. al, 2015).  
MFCCs extract spectral features by defining an analysis window (around 25 ms) and divide the speech signal into different time frames by shifting the window using with a 10 ms shifting stride of 10ms. Then Fast Fourier Transformation (FFT) is calculated for each frame to obtain the frequency features, and the logarithmic Mel-Scaled filter bank is applied to its power spectrum estimate. MFCCs calculate the Discrete Cosine Transformation (DCT) of the log energies in the corresponding frequency bands to obtain an m-dimensional coefficients vector. The measured power spectrum envelope in each frame, correlates to the shape of the vocal tract, providing an appropriate representation of the sound or phoneme being produced. This procedure results are ain feature vectors that can be arranged in a [n×m] matrix, where m is the number of coefficients and n is the number of frames. 
At the heart of an ASR system is the decoder. During this phase, feature vectors are decoded into linguistic units that make up speech. The decoding relies on acoustic and language models [14](Ghai & Singh, 2012) to recover the most probable utterance by modeling the conditional probability of the nth word, using the (n-1) earlier words. Linguistic and pronunciation dictionariesy are often used to improve the decoding performance. An acoustic model (Ghai & Singh, 2012) [14] is a fundamental part of the ASR system, where the connection between the acoustic information (e.g., feature vectors) and phonetics is established. The acoustic models are frequently implemented using various methods that includes the Hidden Markov Model (HMM) [15],(Gruhn et. al., 2011) and support vector machines (SVM) [16].(Pradhan, 2012). HMM is the most commonly used acoustic model for speech recognition in many practical applications. 
[image: ]Figure 1 around here
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[bookmark: _Toc47313973][bookmark: _Hlk83213191]Fig. 1. Automatic speech recognition system diagram.
[bookmark: _Hlk42158604][bookmark: _n03a96b6fmjm]ASR is a wide broad topic that includes sub-topics related to interjection recognition. One of those sub-topics is Keyword Spotting (KWS) [17(Chandra & Senthildevi, 2015)]. The need for enablingto provide users to havewith a fully hands-free experience that can be very useful infor situations like driving, resulted in the development of a system that listens continuously for specific keywords to initiate voice input. Keyword Spotting aims at detecting predefined keywords in an audio stream. A commonly used technique for keyword spotting is the Keyword/Filler Hidden Markov Model (HMM). One disadvantage with this technique is that it can be computationally expensive, and the model is trained separately for each keyword [18(Chen et. al., 2014)]. 
Keyword spotting is sometimes performed using a pattern matching approach where the input is compared with a few pre-recorded commands. Since, the same word might be articulated with a different speed, the Dynamic Time Warping (DTW) algorithm is used for aligningto align two sequences in an optimal way ([19Yadav & Alam, 2018)]. Recent neural network models show a significant improvement over the HMM approach. The recurrent neural networks (RNN) is used at in the Deep KWS model (Chen et. al., 2014) [18] shows good performance while keeping a reduced runtime computation, and smaller memory footprint. A Convolutional Neural Network (CNN) architecture that is described in by [20]Sainath and Parada (2015) shows improvements over FNN in a variety of small and large vocabulary tasks. The described CNN architecture generalizes more easily to different speaking styles compared to a fully connected FNN architecture.
[bookmark: _5g6ygbn8c5qy]Another sub-topic related to interjection recognition is Audio Event Detection (AED) [7] (Imoto, 2017), which is considered as a common task of processing speech and voice signals. An audio event is a specific type of sound, such as footsteps, running water, exhaust fan noise, screams, ocean waves breaking, or music. Many sound clips contain multiple acoustic events that overlap on the time axis. AED is a task in which a relatively long (several seconds to tens of seconds) sound clip including multiple acoustic events is serves as input, and the output is acoustic event labels and their time stamps (start and end times) are output. The process of AED is combined fromcreated by extracting acoustic features using MFCC in general, and then constructing classiﬁcation models using Gaussian mixture models (GMM) ( [21]Eronon et. al., 2005), HMM  [22](Chun et. al., 2013), SVM [23](Geiger et. al., 2013) or more recently models such as CNN [24](Valenti et. al., 2016) or RNN [25] (Bae et. al., 2016). Because acoustic events can often have a temporal overlap, the most diﬃcult problem in AED is how to detect active durations of acoustic events. For instance, , in [26] Lee et al. (2017) proposed an acoustic event detection based on a convolutional neural network, which calculates a posterior for the existence of acoustic events time frame by time frame.	Comment by Author: PLease confirm that this is the correct technical term
Generally, deep learning requires a large amount of labeled training data to enable accurate speech recognition. To the best of our knowledge, such a large dataset does not exist for For interjections recognition such large dataset is not existing to our best knowledge. Therefore, data augmentation is proposed, where the speech data is are artificially augmented by applying different types of distortions in a way that does not change the label. In [27]Ragni et. al. (2014) proposed data augmentation is proposed for low resource speech recognition tasks. The performance of an FNN speech recognition model depends on how well the training data matches the testing data. This can be done by increasing the generalization of a model further thanbeyond the data provided to it, and by attempting to create in the training data a similarity between the training data and the representative characteristics that are seen in real data, such as voice variability of different speakers, or different background noises. 
There are many options how for data can be augmentationed. Some of them are applied in the feature level of a neural network, and some are applied directly in the raw audio level. Vocal tract length perturbation (VTLP) [28](Jaitly & Hinton, 2013) is a popular method for doing feature level data augmentation in speech, and has shown gains on the TIMIT (TIMIT  is a corpus collection of phonemically transcribed speech of American English speechakers) phoneme recognition task. SpecAugment [29](Park et. Al., 2019) is another feature level data augmentation method for speech recognition that operates on the log Mel spectrogram of the input audio. In the raw audio level, an intuitive and practical transformationss such as Dynamic Range Compression (DRC), pitch-shifting, time stretching, and background noise combination, is applying apply audio effects to the original training audio files [30].(Salamon & Bello, 2017). 
Despite the prevalence of interjections in human speech patterns, interjections in the literature are mentioned mainly in the context of emotion where researchers seek to researchers and understanding the nature of interjections with approaches to studyingand interjectional meaning [32](Goddard, 2014). There is a difference between a formal speech and conversational speech. Conversational speech is more spontaneous and efficient and does not requires special training. Elizabeth Shriberg (2005) describes in [33] four fundamental properties of spontaneous speech that present problems for spoken language applications, such as lack of punctuation or the inability to “hear” a speaker’s emotion or state of being through speech. As stated before, SER is still an ongoing subject of research and the main traditional techniques for SER are based on feature extraction and selection relevant featureselections to identify various types of emotions [40(Khalil et. al., 2019)].	Comment by Author: I might suggest not mentioning that there are 4, specifically, unless you mention each one
No prior work, to our knowledge, has explored inserting interjections in speech recognition systems. In [34] the authorsCohn et. al. (2019) described an experiment that systematically manipulated the Amazon Alexa TTS by adding some emotional-cognitive expressions, like interjections. This experiment also examines the influence of inserting interjections with, while also examining the influence of different interjection duration and pitch levels. The conclusion was that those manipulations improved user’s ratings of their conversation across thousands of real user interactions. Likewise, aAn emotional speech recognition system that classified “fear emotion” for systems like emergency call centers is described in [35by Yoon et. al.] (2019). This system used Support Vector Machines (SVM), with an interjections feature, which can bethat classified as a type of incredulity observed in spontaneous speech when a speaker gets hyperemotional. It is important to clarify that this system can’t cannot recognized different interjections but rather knows how to classify calls into two classes: calls that includes fear and calls that do not includes fear.	Comment by Author: Please confirm that this edit accurately reflects your meaning
[bookmark: _Toc47019582][bookmark: _Hlk42158806]Our Contribution
We represent a new problem ofdifferent way of looking at the interjection classification task. We implement the classification by using a fully connected feedforward neural network (FNN) and Long Short-Term Memory Long (LSTM)	. It can be challenging to identify a sound that is a short fragment, has no context, and same interjection could be pronounced in differently various ways by the same speaker, and more likelydifferently by other various speakers.
[bookmark: _Hlk45365782]To the best of our best knowledge, there is no dataset of interjections that can be used for the research. In this work we create a new dataset of some interjection phrases using , for some different speakers. In addition, we propose the use of audio data augmentation for overcomingto overcome the disadvantage of data scarcity and explore the influence of different augmentations sets on the performance of the proposed architecture. By training the network on the additional augmentation data, we make the network becomes invariant to these deformations and more  and generalizes better able to unseen data.	Comment by Author: Please confirm that this accurately reflects your meaning
[bookmark: _Toc47019583]Method
[bookmark: _Toc47019584]Dataset
The lack of an interjection dataset of interjection required us to create one. The dataset includes a “clean” unsynthesized audio samples of the five5 labels by five5 different speakers (two2 females and three3 males) without background noises. Followed by expanding the datasetThe dataset was then expanded using the with augmentation process that artificially modified pitch, tempo, and background noise, in addition to existing recordings.	Comment by Author: Should this be ‘incorporating existing recordings’?
[bookmark: _Toc47019585]New Dataset Creation. 
	One of the prerequisites of deep learning is a high-quality collection of data that can be used for training. For this project, annotated audio datasets are needed, consisting of short sound clips, and accompanying labels that tell us the subject of the recording. This would identify each sound clip as belonging to one of a finite set of categories and enable the problem to be tackled as a supervised learning task. We choose four4 examples of interjections (Table 1) for this study. They were chosen since they are independent of language and have a semantic meaning by themselves and do not requires the a conversation for context of a conversation. The 5th fifth class of non-interjections words consists of different words that were selected by reading them from several books in a completely random order,. In addition, the words in this class are different from speaker toand vary by speaker.
Table 1 around here

[bookmark: _Toc46792077][bookmark: _Toc47314559][bookmark: _Hlk83217525]Table 1. Four selected interjections that recorded into separate sound clips.
	INTERJECTION
	ALTERNATE/SIMILAR
	TRANSLATION/MEANING

	NAH
	
	"No" - Informal no

	MMM
	mhm, uh-hu
	"Yes" - Agreement, acknowledgement

	AHAH
	Aha, ahh
	"I understand" - Understanding, 
Confirmation

	OY
	oy vay
	"Oh no..." - Mainly Jewish: Used to express self-pity, or expression of 
unexpected situation



The sound clips were recorded using Auditok [36] (https://github.com/ramya1782/auditok), which is an VAD (Voice Activity Detection) tool [37](Sahidullah & Saha, 2012) tool that enables recording and saving each sound clip as a separate wav file, with a 16000 Hz sampled rate. At the end of that process, five5 folders (four4 interjections and one negative example) were created with five5 speakers each. Table 2 lists the profile and the number of audio samples recorded per speaker. The column “Nnumber of Aaudio Ssamples” refers to a specific word, ei.ge. Sspeaker A has 850 audio samples per word and a total number of 4,250 audio samples.	Comment by Author: Should this be sampled?
Table 2 around here
[bookmark: _Toc46792078][bookmark: _Toc47314560]Table 2. Speakers profile and number of audio samples recorded for each speaker and each word.
	SPEAKER
	NUMBER OF AUDIO SAMPLES
	PROFILE

	A
	850~
	Gender: Male, Age:44, Native language: Hebrew

	B
	550~
	Gender: Female, Age:42, Native language: Hebrew

	C
	300~
	Gender: Male, Age:16, Native language: Hebrew

	D
	300~
	Gender: Female, Age:81, Native language: Spanish

	E
	300~
	Gender: Male, Age:50, Native language: Hebrew


[bookmark: _Toc47019586]Data PreprocessingNew Dataset Creation
. To extract the useful features from the audio file, we used Librosa library ([38]McFee et. al. 2015) has been used. This library is a python package for music and audio analysis that provides several methods to retrieve information from sound clips.
Feature extraction for FNN model. 
A minimum and maximum recording length was determined for dataset samples. The minimum length is 0.45 seconds, so as not to not allow short and unrelated recordings, such as background noises which that were mistakenly recorded separately, to be part of the dataset. The maximum length is 1.55 seconds, for the casein case quiet was not detected by Auditok between recordings. Recordings with lengths that is not in the range between the minimum and maximum length were removed. 
The methods from Librosa that been used to extract various features and the number of features extracted for each method are: 
MFCC (Librosa.feature.mfcc) - 40 features.
Melspectrogram (librosa.feature.melspectrogram) - 128 features. 
Chorma-stft (librosa.feature.chroma_stft) - 12 features. 
Spectral contrast (librosa.feature.spectral_contrast) - 7 features. 
Tonnetz (librosa.feature.tonnetz) - 6 features.
 The result of that process is a matrix with a row for each sample audio file, and a column for each mean feature value (193 columns).
Feature extraction for LSTM.
 All recordings remained at their original length, filtered like the recordings in FNN by a minimum length of 0.45 seconds and maximum recording length of 1.55 seconds. MFCC from Librosa has beenwas used with a default sample rate of 22 KHz kHz and analysis window of 10 KHzkHz. Each window was divided into 21 frames and 40 coefficients were extracted from each frame. The result of that process is a 3three-dimensional matrix [w, 21 (number of frames), 40 (number of coefficients)] where w is the number of windows.S
[bookmark: _Toc47019587]
Data Augmentation System (DAS). 
To extend the collected dataset, a data augmentation system (DAS) that generates a synthetically samples was developed. We used Pysox [39],(Bittner et. al., 2016), a Python library that provides a simple interface between Python and Sox, which is a popular command line tool for sound processing that can apply various effects to audio files. We tried 4 four different sound effects on our original unsynthesized (“clean data”) audio samples. Each effect wasis applied directly to the sound file prior to converting it into the input vector representation used to feed intofor the neural network. The effects for create data augmentation effects are described below:
Tempo: Changes the audio playback speed but not its pitch. This function gets theis a parameter ‘factor’ (factor > 1 speeds up the audio signal, factor < 1 slows down the audio signal). Duration of the sound file is changingchanges.
Pitch: Changes the audio pitch (but not tempo). The sensation of a frequency is commonly referred to as the pitch of a sound. A high- pitch sound corresponds to a high- frequency sound wave and a low- pitch sound corresponds to a low- frequency sound wave. One octave (the interval between one musical pitch and another) is divided into 12 semitones (tones) of 100 cents each. Typically, cents are used to express small intervals. 1200 cents equal to one1 octave. This function gets the parameter ‘n-semitones’ (The the positive or negative number of semitones to shift).
Background noise: Mixes the original “clean” audio with another recording containing background sounds from several acoustic scenes. Each sample is mixed with nine9 acoustic scenes: baby gibberish, ambulance, crowd laughing, football crowd, mall, passing bus, rain, street traffic, and tvTV. Each mix Smix was generated using Eequation 2	Comment by Author: Should this be Equation 1?
	Smix = (Worig × Sorig) + (Wbackground × Sbackground)	(1)
									  where Sorig is the original audio sample and, Sbackground is the signal of the background 				
   	 scene. Worig and Wbackground are weighting volume parameters determined under the 
    care premise that Worig + Wbackground = 1. For each Sorig audio, two2 or three3 Smix audio files  with h 
    different weights were generated, depends depending on the dataset.
Norm: Normalizes an audio file to a dB level. This function gets as a parameter the requested ‘db_level’ as a parameter. 
DAS can create a large amount number of synthetically samples from original “clean” samples. The number of synthetically samples is determined by the configuration of the methods to use (tempo, pitch, and background noise are the four 4-supported methods now, but any other method can be easily added), and by configuration of each method values. For example, if the configuration for the pitch method contains four4 different values for the semitone parameter, then the system will be generated four4 different augmented audio samples with the desired pitch level. A significant advantage in DAS is the fact that different effects can be combined for each recording. This allows us to control the size and the diversity of the dataset we want to create; ei.ge., if the desired methods are tempo (with desired factors 0.9 and 1.1) and pitch (with desired semitones 2 and -2), an additional eight8 audio samples will be created from one1 original audio (two2 audios with only tempo effect, 2 two with only pitch and four4 that are result of combining parameters of tempo and pitch parameters together).  	Comment by Author: These are three, no?
In addition, DAS can generate white noise [36](Auditok) in the background of each original audio files. This functionality was added because white noise is a type of noise that is produced by combining sounds of all different frequencies together and can be used to mask other sounds, like differentsuch as background noises.
[bookmark: _Toc47019588]Network architecture
[bookmark: _Toc47019589]FNN
. The implementation made was carried out in TensorFlow. A set of three layers was trained with 280 units and a tangent activation function, and 290 and 300 units for the second and third layers, respectively, with a sigmoid function. Since we are dealing with a multiclass classification problem, the output layer used SoftMax as its activation function, which outputs a vector that represents the probability distributions of a list of potential outcomes. The loss function used was Multi-classmulti-class cross-entropy. Training was done using the Adam optimizer with an initial learning rate of 0.009 and ~300 epochs. Every five5 epochs, we checked the F-score performance on the validation set was checked and saved the model with the best validation F-score was saved.
[image: ]Figure 2 around here






[bookmark: _Toc47313975][bookmark: _Hlk83220621]Fig. 2. Feedforward neural network architecture.
[bookmark: _Toc47019590]LSTM. 
[bookmark: _Hlk45410886]The implementation made was carried in TensorFlow. A set of two LSTM layers with 50 units each was used. The output used SoftMax as its activation function and multi-class cross-entropy as t. The loss function used was Multi-class cross-entropy. Training was done using the Adam optimizer with an initial learning rate of 0.008 and ~300 epochs, while inand during each epoch a mini-batch of approximately size of 10% from of the  trainingtotal length is was trained. Every five5 epochs, we checked the F-score performance on the validation set was checked and saved the model with the best validation F-score was saved.
Figure 3 around here
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[bookmark: _Toc47313976][bookmark: _Hlk83220932]Fig. 3. LSTM architecture. x<t> is the input at time t. y<t> is the input at time t. a[l]<t> is the input of cell at time t+1 from layer l.
[bookmark: _Toc47019591]Experimental Setup
[bookmark: _Toc47019592]Creating Different Datasets By using DAS
It i’s important to choose the augmentation parameters such that the semantic validity of the label is maintained. The parameters we choose toTo create our augmentation sets, we chose several parameters are: for tempo, a factor in the range of 0.86-1.14 for tempo, ; for pitch, a semitone in the range of (-2.4)-2.4; and for background noises,  for pitch, Worig in the range of 0.83-0.93 and Wbackground in the range of 0.07-0.17 for background noises. We claim that each of the augmentation is helpful, but their combination gives better results. The resulting augmentation sets are described in the next table.:
Table 3 around here

[bookmark: _Toc46792079][bookmark: _Toc47314561][bookmark: _Hlk83221187]Table 3. Description of the different augmentation sets created.
	
	ORIGINAL SAMPLES PER CLASS
	USED EFFECTS
	GENERATED SAMPLES PER CLASS AND PER SPEAKER

	1
	120
	Pitch
	2520

	2
	120
	Tempo
	2520

	3
	100
	Background
	2900

	4
	60
	Tempo + Pitch
	4860

	5
	40
	Pitch + Background
	6880

	6
	40
	Tempo + Background
	6880

	7
	10
	Tempo + Pitch + Background
	9320

	8
	50
	Pitch + Norm
	1500

	9
	1
	Tempo + Pitch + Norm + Background
	932


[bookmark: _Hlk42253500]
For each speaker, 120 different audio samples were used from our original dataset (600 files altogether from four4 interjections folders and one1 folder of negative examples), whose overall length is about eight8 minutes, to generate seven 7 augmentation sets with a total amount of 180,000 audio samples, whose overall length wais about 78 hours. To For all speakers, the system generateds more than 300 hours of augmentation data from 32 minutes of original recordings. Depending Based on the results obtained in the experiments, at a more advanced stage,  of those experiments an additional function was needed. The ‘Norm’ method was added to DAS and 2 two additional data sets (datasets 8 and 9) have beenwere created, which are described later in this paper.
[bookmark: _Toc47019593]Scenario 
In this section, we describe scenarios using different configurations, while training and test sets have been kept separate. The F-score, which is a commonly used measure of classification accuracy that gives equal weight to precision (how many instances were correctly predicted, given all the predicted labels for a given class X), and recall (how many instances were correctly captured, from all instances that should have a label X), were used for computing the score of the recognition process. The F-Score equation is shown below:
		(2)
Where TP (True true positive) is the number of correct classifications by the classifier and, FN (False false negative) is the number of misclassified predictions, where the model incorrectly predicts it’ is not from label X, but it is. And FP (False false positive) is the number of misclassified predictions where the model incorrectly predicts it’ is from label X, but it’s not. The choice was based on the intuition that a good classifier should maximize both precision and recall simultaneously. So, a model with good precision and recall will score better than a model that has extremely good performance on just one of them. 	Comment by Author: Decision, perhaps? Intuition makes it sound like a somewhat emotional choice
We evaluate the performance of our models on scenarios that testing previously unseen speakers. In each scenario, the model is trained with each of the data augmentation sets described in Ttable 3, while the F-score for each data set is computed by the mean F-score of of run it seven7 timesruns.
[bookmark: _Toc47019594]Scenario description.
 The goal is to check how augmentation improves the results for the previously unseen speaker. The first step of this scenario was to train the model with clean unsynthesized data fromof two speakers (one1 female and one1 male) and then validate and test it separately on clean unsynthesized data fromof two2 unseen speakers (one1 female and one1 male). Next, we trained it separately on each of our seven7 -data augmentation sets, and then validated and tested it the same way as in the first step, i.e., on the same unsynthesized data of from each unseen speakers.
We extended this scenario for the LSTM model and trained the model not only with two2 speakers, but also with one1 and 3three  different speakers. The testing was done separately on unsynthesized data of the same two2 unseen speakers. Depending Based on the results obtained for the experiments described above, another extension and important test were done with only one1  recording of ten10 speakers. Ten10 different speakers of both genders (ages 11 to 75) were recorded only once for each word. One new dataset augmented by tempo, pitch, and background methods was created from those ten10 -speaker’s audio recordings to train the model, and again as in the previous tests, the testing was done separately on unsynthesized data of the same two2 unseen speakers.
[bookmark: _Toc47019596]Results and Discussion
The experiment was conducted in our study for each model (FNN and LSTM). The accuracy assessment was measured by compared comparing the baseline (unsynthesized, clean dataset) F-score with the F-score of each of the proposed augmentation datasets. First, the model was trained by two speakers and better results were obtained by the LSTM model. Because ofFor this reason, it was decided to extend the experiment in this model to train it with one and three different speakers as well. InBy doing so, we wishedant to examine the impact of the number of trained speakers on the F-score.
FNN Results
Results of the FNN model are presented in the tables below. The model was trained twice with samples of two2 speakers (speaker A and speaker B). ItThen,  was first validated on unseen speaker C and tested on speakers D and E separately (table Table 4), thenand in addition validated on unseen speaker D and tested on speakers C and E separately (Ttable 5). We can realize see that almost each every one of the augmented methods significantly improves the F-score relativelye to the baseline F-score that trained with original unprocessed samples. Except for a few cases, each of the augmentation sets were helpful in this scenario, and in four4 of six6 columns, the highest classification F-score improvement for each unseen speaker was achieved by the dataset combined with at least two2 augmentation methods. 
Table 4 around here
[bookmark: _Toc46792080][bookmark: _Toc47314562]Table 4. Results of the first scenario for FNN model where validation made on unseen speaker C and test made on speaker D and E. The percentages within the parentheses present the F-score improvement/decrease compared to the baseline original unsynthesized dataset F-score.
	FNN: TRAIN WITH 2 SPEAKERS AND VALIDATE WITH UNSEEN SPEAKER C

	TRAINING DATASET 
(SPEAKERS A+B)
	VALIDATE F-SCORE (SPEAKER C)
	TEST F-SCORE (SPEAKER D)
	TEST F-SCORE (SPEAKER E)

	Unsynthesized Data
	0.42
	0.443
	0.208

	Pitch
	0.516 (↑ 22.9%)
	0.425 (↓ 4.2%)
	0. 24 (↑ 15.4%)

	Tempo
	0.485 (↑ 15.5%)
	0.45 (↑ 1.6%)
	0. 252 (↑ 21.2%)

	Background
	0.504 (↑ 20%)
	0.401 (↓ 10.5%)
	0.3 (↑ 44.2%)

	Tempo + Pitch
	0.538 (↑ 28.1%)
	0.425 (↓ 4.2%)
	0.25 (↑ 20.2%)

	Pitch + Background
	0.544 (↑ 29.5%)
	0.445 (↑ 0.4%)
	0.247 (↑ 18.8%)

	Tempo + Background
	0.521 (↑ 24%)
	0.447 (↑ 0.9%)
	0.304 (↑ 46.2%)

	Tempo + Pitch + Background
	0.631 (↑ 50.2%)
	0.503 (↑ 13.5%)
	0.23 (↑ 10.6%)



In As seen in Ttable 5, the best F-score for speakers C and E was accepted achieved by one1 method, but not far from the best F-scorebehind, the second highest F-score was accepted achieved by a combination of at least two2 methods. The F-score of unseen speaker E was very low relativeed to accepted the F-score achieved forof tested speakers D and C. Still, all augmented datasets significantly improved the F-score.	Comment by Author: Please confirm that this accurately reflects your meaning
Table 5 around here
[bookmark: _Toc46792081][bookmark: _Toc47314563]Table 5. Results of the first scenario for FNN model where validation made on unseen speaker D and test made on speaker C and E. The percentages within the parentheses present the F-score improvement/decrease compared to the baseline original unsynthesized dataset F-score.
	FNN: TRAIN WITH 2 SPEAKERS AND VALIDATE WITH UNSEEN SPEAKER D

	TRAINING DATASET 
(SPEAKERS A+B)
	VALIDATE F-SCORE (SPEAKER D)
	TEST F-SCORE (SPEAKER C)
	TEST F-SCORE (SPEAKER E)

	Unsynthesized Data
	0.521
	0.333
	0.213

	Pitch
	0.525 (↑ 0.8%)
	0.455 (↑ 36.6%)
	0. 266 (↑ 24.9%)

	Tempo
	0.521 (0%)
	0.528 (↑ 58.6%)
	0. 247 (↑ 16%)

	Background
	0.506 (↓ 3%)
	0.466 (↑ 40%)
	0.298 (↑ 40%)

	Tempo + Pitch
	0.534 (↑ 2.5%)
	0.505 (↑ 51.7%)
	0.282 (↑ 32.4%)

	Pitch + Background
	0.497 (↓ 4.8%)
	0.404 (↑ 21.3%)
	0.254 (↑ 19.2%)

	Tempo + Background
	0.539 (↑ 3.5%)
	0.38 (↑ 14.1%)
	0.282 (↑ 32.4%)

	Tempo + Pitch + Background
	0.591 (↑ 13.4%)
	0.525 (↑ 57.7%)
	0.274 (↑ 28.6%)


[bookmark: _Toc47019599]LSTM Results
Results of the LSTM model are presented in the next subsequent tables. Tables 6 and 7 presents the results where the model trained with audio samples of one1 speaker (speaker A). Tables 7 8 and 8 9 presents the results where the model trained with audio samples of two2 speakers (speaker A and B), and Ttables 9 and 10 presents the results where the model trained with audio samples of three3 speakers. After training, models were first validated on previously unseen speaker C and tested on speakers D and E, and in addition,additionally validated on previously unseen speaker D and tested on speakers C and E (Except except for the case where the model trained on three3 speakers and tested only on speaker E).	Comment by Author: Table 7 has only 1 speaker. Is a table missing? Please check.	Comment by Author: IS a table missing?

Training By One1 Speakers. 
In Ttable 6, each of the augmented methods significantly improves the validation F-score relatively to the baseline F-score that trained with original, unprocessed samples. The test F-score of speaker D also achieved significantly improvement except for the pitch method, and the test F-score of speaker E achieved lowers results than speaker D and improvement only in some cases, but for all speakers the best result accepted was achieved by a combination of methods (22.3% and 23.2% with Tempo+Pitch for speakers D and E, and 21% improvement with three3 methods for speaker C). 
Table 6 around here

[bookmark: _Toc46792082][bookmark: _Toc47314564][bookmark: _Hlk83226944]Table 6. Results of the first scenario for LSTM model where validation made on unseen speaker C and test made on speaker D and E. The percentages within the parentheses present the F-score improvement/decrease compared to the baseline original unsynthesized dataset F-score.
	LSTM: TRAIN WITH 1 SPEAKER AND VALIDATE WITH UNSEEN SPEAKER C

	TRAINING DATASET 
(SPEAKERS A)
	VALIDATE 
F-SCORE (SPEAKER C)
	TEST 
F-SCORE (SPEAKER D)
	TEST 
F-SCORE 
(SPEAKER E)

	Unsynthesized Data
	0.501
	0.403
	0.297

	Pitch
	0.603 (↑ 20.4%)
	0.454 (↑ 12.7%)
	0. 365 (↑ 22.9%)

	Tempo
	0.503 (↑ 0.4%)
	0.392 (↓ 2.8%)
	0. 302 (↑ 1.7%)

	Background
	0.54 (↑ 7.8%)
	0.431 (↑ 6.9%)
	0.249 (↓ 19.3%)

	Tempo + Pitch
	0.595 (↑ 18.8%)
	0.424 (↑ 5.2%)
	0.265 (↓ 12.1%)

	Pitch + Background
	0.58 (↑15.8%)
	0.493 (↑ 22.3%)
	0.366 (↑ 23.2%)

	Tempo + Background
	0.562 (↑ 12.2%)
	0.419 (↑ 4%)
	0.275 (↓ 8%)

	Tempo + Pitch + Background
	0.606 (↑ 21%)
	0.478 (↑ 18.6%)
	0.296 (↓ 0.3%)



In Ttable 7, most of the methods improves the F-score for speakers C and D (validated), and improvements for speaker E are only seen in three3 augmented datasets. Unlike Ttable 6, the best improvement for all speakers accepted was achieved by only one1 method (pitch), but also combined datasets for speaker C and D also achieved very significant improvement. A pPossible explanation that as to why pitch is such an important factor in Ttable 7 is that the model trained only with one1 speaker and was validated by speaker that iswith very different in its characteristics (44  years- old male and 81 years -old female).
Table 7 around here
[bookmark: _Toc46792083][bookmark: _Toc47314565]Table 7. Results of the first scenario for LSTM model where validation made on unseen speaker D and test made on speaker C and E. The percentages within the parentheses present the F-score improvement/decrease compared to the baseline original unsynthesized dataset F-score.
	LSTM: TRAIN WITH 1 SPEAKER AND VALIDATE WITH UNSEEN SPEAKER D

	TRAINING DATASET 
(SPEAKERS A)
	VALIDATE 
F-SCORE (SPEAKER D)
	TEST 
F-SCORE (SPEAKER C)
	TEST 
F-SCORE 
(SPEAKER E)

	Unsynthesized Data
	0.494
	0.378
	0.351

	Pitch
	0.576 (↑ 16.6%)
	0.58 (↑ 53.4%)
	0. 443 (↑ 26.2%)

	Tempo
	0.493 (↓ 0.2%)
	0.411 (↑ 8.7%)
	0. 323 (↓ 8.7%)

	Background
	0.502 (↑ 1.6%)
	0.448 (↑ 18.5%)
	0.235 (↓ 49.4%)

	Tempo + Pitch
	0.537 (↑ 8.7%)
	0.552 (↑ 46%)
	0.389 (↑ 10.8%)

	Pitch + Background
	0.57 (↑ 15.4%)
	0.536 (↑ 41.8%)
	0.341 (↓ 2.9%)

	Tempo + Background
	0.493 (↓ 0.2%)
	0.498 (↑ 31.7%)
	0.228 (↓ 53.9%)

	Tempo + Pitch + Background
	0.559 (↑ 13.2%)
	0.533 (↑ 41%)
	0.35 (↓ 0.3%)



Training By Two2 Speakers. 
Results in Ttables 8 and 9 are analogous, in terms of trained speakers, to the results of the FNN model in Ttables 4 and 5. The column “FNN” presents improvementincrease/decrease compared to the results of the same dataset in Ttables 4 and 5. As shown in Ttable 8, the highest greatest improvement was achieved significantly by combining all three augmentation methods for all unseen speakers C, D, and E. Each of the augmented datasets (except a small decrease for the Tempo + BckGrd dataset for tested speaker D) had a significantly improveds F-score relatively to the baseline F-score, and also exceededover the results of the corresponding dataset that shown in Ttable 4. The bBest validation F-score achieved in LSTM for speaker C was 0.631, which is equal to the best validation F-score achieved for speaker C in FNN, butbut the F-score of tested speakers D and E was higher compares compared to the analogous FNN F-score. The efficiency of DAS is noticeable when looking at the results of speaker D. The F-score of Speaker D with an unsynthesized dataset in LSTM was 5.2% lower in 5.2% than the corresponding F-score in FNN, but six6 of seven7 augmented datasets in LSTM produce a much higher F-score in LSTM, corresponding to the analogous F-score in the FNN model.
Table 8 around here
[bookmark: _Toc46792084][bookmark: _Toc47314566]Table 8. Results of first scenario for LSTM where validation made on unseen speaker C and test made on speaker D and E. The percentages within the parentheses present improvement/decrease compared to the baseline clean dataset F-score. The columns “FNN” present improvement/decrease compared to the results of the same dataset in Table 4. (BckGrd = Background)
	LSTM: TRAIN WITH 2 SPEAKERS AND VALIDATE WITH UNSEEN SPEAKER C

	TRAINING DATASET 
(SPEAKERS A+B)
	VALIDATE 
F-SCORE 
(SPEAKER C)
	FNN
	TEST 
F-SCORE 
(SPEAKER D)
	FNN
	TEST 
F-SCORE 
(SPEAKER E)
	FNN

	Unsynthesized Data
	0.516
	↑22.9%
	0.421
	↓5.2%
	0.279
	↑34.1%

	Pitch
	0.573 (↑11%)
	↑11%
	0.492 (↑9.2%)
	↑15.8
	0.381 (↑36.6%)
	↑58.8%

	Tempo
	0.568 (↑10.1%)
	↑17.1%
	0.481 (↑4.9%)
	↑6.9%
	0.382 (↑36.9%)
	↑51.6%

	BckGrd
	0.593 (↑14.9%)
	↑17.7%
	0.452 (↑4.7%)
	↑12.7%
	0.323 (↑15.8%)
	↑7.7%

	Tempo + Pitch
	0.575 (↑11.4%)
	↑6.9%
	0.521 (↑6.5%)
	↑22.6%
	0.398 (↑42.7%)
	↑59.2%

	Pitch + BckGrd
	0.588 (↑14%)
	↑8.1%
	0.528 (↑10.3%)
	↑18.7%
	0.372 (↑33.3%)
	↑50.6%

	Tempo + BckGrd
	0.526 (↑1.9%)
	↑1%
	0.432 (↓0.2%)
	↓3.5%
	0.326 (↑16.8%)
	↑7.2%

	Tempo + Pitch + BckGrd
	0.631 (↑22.3%)
	0%
	0.566 (↑22.6%)
	↑12.5%
	0.401 (↑43.7%)
	↑74.3%

	Pitch + Norm
	0.59 (↑14.3%)
	
	0.557 (↑32.3%)
	
	0.476 (↑70.6%)
	



In Ttable 9, all augmented datasets improve the F-score for speakers C and D (except a small decrease for the Tempo + BckGrd dataset for validatinge speaker D) and improvements for speaker E were achieved only in two2 augmented datasets. The highest classification F-score improvement for unseen speakers C and D was achieved by the dataset combined with all three augmentation methods (36.3% for speaker C and 22.6% for speaker D), while the best F-score improvement for speaker E was achieved by the pitch dataset. The F-score in this table shows a consistent growth of the LSTM F-score for speakers D and E comparing compared to the F-score of corresponding speakers in FNN. For speaker C the results are slightly different, while four4 of seven7 augmented datasets, including the dataset with the best F-score, achieved a lower result comparing compared to the baseline dataset.
Table 9 around here
[bookmark: _Toc46792085][bookmark: _Toc47314567]Table 9. Results of first scenario for LSTM where validation made on unseen speaker D and test made on speaker C and E. The percentages within the parentheses present improvement/decrease compared to the baseline clean dataset F-score. The columns “FNN” present improvement/decrease compared to the results of the same dataset in Table 5. (BckGrd = Background)
	LSTM: TRAIN WITH 2 SPEAKERS AND VALIDATE WITH UNSEEN SPEAKER C

	TRAINING DATASET 
(SPEAKERS A+B)
	VALIDATE 
F-SCORE 
(SPEAKER D)
	FNN
	TEST 
F-SCORE 
(SPEAKER C)
	FNN
	TEST 
F-SCORE 
(SPEAKER E)
	FNN

	Unsynthesized Data
	0.535
	↑2.7%
	0.372
	↑1.2
	0.426
	↑100%

	Pitch
	0.584 (↑9.2%)
	↑11.2%
	0.481 (↑29.3%)
	↑5.7
	0.457 (↑7.3%)
	↑71.8%

	Tempo
	0.561 (↑4.9%)
	↑7.7%
	0.382 (↑2.7%)
	↓38.2%
	0.37 (↓15.1%)
	↑49.8%

	BckGrd
	0.56 (↑4.7%)
	↑10.7%
	0.429 (↑15.3%)
	↓8.6%
	0.343 (↓24.2%)
	↑15.1%

	Tempo + Pitch
	0.57 (↑6.5%)
	↑6.7%
	0.449 (↑20.7%)
	↓12.5%
	0.452 (↑6.1%)
	↑60.3%

	Pitch + BckGrd
	0.59 (↑10.3%)
	↑18.7%
	0.488 (↑31.2%)
	↑20.8%
	0.397 (↓7.3%)
	↑56.3%

	Tempo + BckGrd
	0.534 (↓0.2%)
	↓0.9%
	0.43 (↑15.6%)
	↑13.2%
	0.385 (↓10.6%)
	↑36.5%

	Tempo + Pitch + BckGrd
	0.656 (↑22.6%)
	↑11%
	0.507 (↑36.3%)
	↓3.6%
	0.396 (↓7.6%)
	↑44.5%

	Pitch + Norm
	0.589 (↑10.1%)
	
	0.533 (↑43.3%)
	
	0.506 (↑18.8%)
	



Following the much lower results ofBecause speaker E had poorer results relative to the results of baseline dataset resultss in Ttables 6,7, and 9, and relative to the results of tested speakers C and D, an examination was performed to understand the cause for itwe sought to investigate the reasons.	 	From examiningation of several audio samples waveforms of speakers A to E, it waswe discerned that the amplitude level varies greatly between speakers like as seen in Ffigure 5, even though all speakers recorded in the same conditions and environment. All the models were trained on speakers A-D, validated on speakers C or D, and tested on speakers C, D and E. Speaker E was the only Speaker C
Speaker D
Speaker E
Speaker A
Speaker B

[bookmark: _Toc47313977]Fig. 4. Unsynthesized waveforms of speakers A-E saying “ahah”.
speaker that was functioned only solely as a tested speaker, and he was tested on models that trained and validated on speakers with a much lower amplitude level. In order to improve the results for speaker E, the goal was to find a way to adjust the training dataset to for better classification of speakers with different amplitude levels. The “norm” method that added to DAS was intended to make this adjustment by normalize normalizing an audio sample to a particular dB (decibel) level. 
Dataset number 8 from Ttable 3 was created to examine the effect of the ‘norm” method on the results described in Ttables 8 and 9, and. 5 dB level values (-1,0,1,2,3) were tried in this dataset. As can be seen in Ttables 8 and 9, the F-score of speaker E with the new dataset including the “norm” method outperforms the best F-score achieved without the norm method (0.476 instead of 0.401 in Ttable 8, and 0.506 instead of 0.457 in Ttable 9). For speakers C and D in both tables, the “norm” dataset achieved an F-score that generally mostly was close to or even better thanexceeded the best F-score without “norm”. Adding this new method illustrates the effectiveness of DAS: it  that can be adjusted and easily made become more efficient very easily by adding new methods and applying different characteristics to the dataset.

Training By Three3 Speakers. 
The third phase of this scenario, where the model trained with three3 speakers and was tested with an unseen speaker, supports the claim that augmentation is helpful for improving the model F-score. For validation sets, the combination of the three methods achieved the highest F-score. Speaker C achieved a 23.1% improvement in F-score (0.751) over the F-score of the basic unsynthesized dataset, and speaker D achieved an improvement of 13%. Testing the models was done only on speaker E, and although the F-score was much lower than the validation F-score, still, DAS managed to greatly improve the F-score relative to the baseline dataset F-score. As in the case of training the model with two2 speakers, the assumption is that the F-score of speaker E can be improved by using a different configuration that includes the “norm” method. Another thing that can be noticedAlso of note is the improvement of test F-score comparing compared to the corresponding F-score achieved in Ttables 8 and 9, where the model trained with two2 speakers.
Table 10 around here
[bookmark: _Toc46792086][bookmark: _Toc47314568]Table 10. Results of the first scenario for LSTM model. The percentages within the parentheses present improvement/decrease compared to the baseline clean dataset F-score.
	LSTM: TRAINING WITH 3 SPEAKERS AND VALIDATING WITH 2 UNSEEN SPEAKERS

	
	TRAINING (SPEAKERS A + B + D)
	TRAINING (SPEAKERS A + B + C)

	DATASET 
	VALIDATE 
F-SCORE 
(SPEAKER C)
	TEST F-SCORE 
(SPEAKER E)
	VALIDATE 
F-SCORE 
(SPEAKER D)
	TEST F-SCORE 
(SPEAKER E)

	Unsynthesized Data
	0.61
	0.425
	0.592
	0.446

	Pitch
	0.712 (↑16.7%)
	0.506 (↑19.1%)
	0.636 (↑7.4%)
	0.481 (↑7.8%)

	Tempo
	0.606 (↓0.6%)
	0.48 (↑12.9%)
	0.625 (↑5.6%)
	0.549 (↑23.1%)

	Background
	0.609 (↓0.2%)
	0.448 (↑5.4%)
	0.568 (↓4.2%)
	0.408 (↓9.3%)

	Tempo+Pitch
	0.666 (↑9.2%)
	0.543 (↑27.8%)
	0.619 (↑4.6%)
	0.515 (↑15.5%)

	Pitch+Background
	0.67 (↑9.8%)
	0.458 (↑7.8%)
	0.636 (↑7.4%)
	0.422 (↓5.7%)

	Tempo+Background
	0.6 (↓1.7%)
	0.406 (↓4.7%)
	0.548 (↓8%)
	0.434 (↓2.8%)

	Tempo+Pitch+Background
	0.751 (↑23.1%)
	0.377 (↓12.7%)
	0.669 (↑13%)
	0.418 (↓6.7%)


													
The F-Score gives some perspective to look aton the quality of the model, but its main problem is that it hides the detail we need to better understand the performance of our classification model. For example, we may get a classification F-score of 85%, but we do n’ot know if that is because all classes are being predicted equally well or whether one or two classes are being neglected by the model. By knowing the true labels, we can use another important metric – a confusion matrix, where each column represents the number of instances in a predicted class and each row represents the instances in an actual class. This metric helps to determine where the system is confusing becoming confused between two classes by comparing the predicted classes with the actual classes. 

	Figure 6 shows two pairs, one pair for each speaker C and D, of confusion matrices taken from training with three3 speakers in the first experiment. Each pair includes one matrix trained by original unsynthesized data, and another matrix trained by all three methods. Table 11 presents the recall and precision values for each matrix. 
For speaker C, labels 0 (“negative example”) and 3 (“nah”) were poorly predicted with unsynthesized data. Recall of label 3 is 0.296, i.e., from all labels of class 3, only 45 instances (29.6%) were correctly captured (64.5%, which are 98 instances predicted as negative examples, 6 predicted as “oy”, and 3 predicted as “mmm”). Precision The precision of label 3 is 0.455, i.e., from 99 instances that predicted as “nah”, only 45 instances are really from that class (52 belongs to the “ahah” class and 2 are negative examples). With synthesized data, recall and precision significantly improved to 0.983 and 0.871 respectively. Recall of label 0 is 0.418, i.e., from all labels of class 0, only 79 instances (41.8%) were correctly captured (51.9%, which are 98 predicted as “oy”). Precision The precision of label 0 is 0.403, i.e., from 196 instances that predicted as negative examples, only 79 instances are really from that class (98 belongs to the “nah” class and 15 to “oy”). With synthesized data, recall and precision improved to 0.57 and 0.643 respectively. In the same way the recall of label 1 (“ahah”) was improved from 0.566 to 0.81. Except of for the recall of label 4 (“oy”), which that significantly decreased from 0.877 to 0.583, all other values have not changed significantly.	Comment by Author: The author's guide wants the tables to not be fully repeated in the text. Please consider whether all of these numbers are necessary within the text.
For speaker D, a significantly improvesment between the datasets were was detected in the precision of label 0 (negative examples); while 45.9% with unsynthesized data increases to 0.678 in synthesized data and recall of 0.463 for class 1 (“ahah”), and 0.39 for class 2 (“mmm”) increases to 0.612 and 0.917 respectively. However, a decrease was detected in the recall of negative examples, from 0.753 to 0.534, and in the precision of class 2 (“mmm”) from 0.93 to 0.79.
Table 11 around here
[bookmark: _Toc46792087][bookmark: _Toc47314569]Table 11. Recall and precision values for matrices shown in figure 2.
	
	SPEAKER C
	SPEAKER D

	
	UNSYNTHESIZED
	SYNTHESIZED
	UNSYNTHESIZED
	SYNTHESIZED

	CLASS
	RECALL
	PRECISION
	RECALL
	PRECISION
	RECALL
	PRECISION
	RECALL
	PRECISION

	negative
	0.418
	0.403
	0.57
	0.643
	0.753
	0.459
	0.534
	0.678

	ahah
	0.566
	0.925
	0.81
	0.967
	0.463
	0.747
	0.612
	0.775

	mmm
	0.968
	0.932
	0.984
	0.824
	0.39
	0.93
	0.917
	0.79

	nah
	0.296
	0.455
	0.983
	0.871
	0.56
	0.471
	0.602
	0.514

	oy
	0.877
	0.546
	0.583
	0.589
	0.75
	0.665
	0.743
	0.614




[bookmark: _Toc47313978]Fig. 5.    Top left matrix: Trained by unsynthesized data - Validation F-score for speaker C - 0.621. Top right matrix: Trained by synthesized data - Validation F-score for speaker C: 0.771. Bottom left matrix: Trained by unsynthesized data - Validation F-score for speaker D - 0.57. Bottom right matrix: Trained by synthesized data - Validation F-score for speaker D: 0.677. 

DAS greatly improves recall and precision of the trained model compared to the trained model with unsynthesized data. Still, most of the higher values outside the diagonal line are belongs to the row or column of negative examples, which means that a lot ofmany samples that belongs ing to the negative class incorrectly captured to this class and a lot ofmany samples that predicted as belongs belonging to the negative class actually belongs to another class. To improve that, we suggest increasing the number of samples in the negative class, especially with labels samples of words that is are similar to interjections wordss from other classes.
Figure 6 around here
	The second issue examined is the impact of the number of trained speakers on the F-score of the previously unseen speaker. In each case of training with one, two, and three1 speaker, 2 speakers and 3 speakerss, the average validation F-score of speakers C and D was calculated among all eight8 datasets (one1 oOriginal unsynthesized dataset and seven7 augmented datasets). Figure 7 shows the average of each datasets compared between among the different amounts of number of speakers. Improvement can be noticed as the number of trained speakers increases. The F-score of all eight8 datasets trained on three3 speakers is larger than the corresponding dataset trained on 2 two speakers, and the F-score of 7 from 8 datasets trained on 2 two speakers is larger than the corresponding dataset trained on 1 one speaker. The claim that the combination of three methods achieved the higher improvement of F-score in relation to userelative to only unsynthesized data is also getting supported also inby this figure.
[bookmark: _Toc47313979]Fig. 6.  The average F-score of both speakers C and D according to the number of trained speakers. The dark blue bar indicates the average F-score of dataset trained on 3 speakers. Beneath it, the blue bar indicates the average F-score of dataset trained on 2 speakers, and the orange bar indicates the average F-score of dataset trained on 1 speaker.
Training By 10 Ten Speakers. 
The strong impact effect of the number of trained speakers on the F-score of previously unseen speakers convinced us to do one test with a dataset created from only one1 unsynthesized audio sample for each word. The unsynthesized audio file was recorded among ten10 different speakers, as mentioned in the scenario description. In most cases, of validation and testingt set in the previous experiments with 1, 2, and 3 speakers ,yielded  the best results obtained by combining the three effects (tempo, pitch, and background). So firstInitially, this test was made with a new dataset created from ten 10 speaker’s audio samples with the same parameters of the corresponding dataset created for 1, 2, and 3 speakers. The first line in Ttables 12 and 13 shows the results of this experiment. A great improvement can be seen in validation F-scores and test F-scores for speakers C and D, but on the other side, the test F-score on speaker E was much lower from that obtain in Ttable 10. where the model trained with an audio sample of three3 speakers.
To improve it the model, we built a new dataset thatincluding all four  includes all 4 effects that provided by DAS can provide, was build (dataset 9 from Ttable 3). Table 12 shows a great improvement both for speakers D and E, and in Ttable 13, the F-score of speaker C was decreased a bit to 0.665, but a great notable improvement was achieved for speaker E. 
Table 12 around here
Table 13 immediately after
[bookmark: _Toc46792088][bookmark: _Toc47314570]Table 12. Results of first scenario for LSTM trained on 10 speakers where validation made on unseen speaker C and test made on speaker D and E. The percentages within the parentheses present improvement/decrease compared to the test done with 3 speakers.
	LSTM: TRAIN WITH 10 SPEAKERS AND VALIDATE WITH UNSEEN SPEAKER C

	TRAINING DATASET 
(10 SPEAKERS)
	VALIDATE F-SCORE (SPEAKER C)
	TEST F-SCORE 
(SPEAKER D)
	TEST F-SCORE 
(SPEAKER E)

	Tempo + Pitch + Background
	0.805 (↑ 7.2%)
	0.7
	0.463 (↓ 17.3%)

	Tempo + Pitch + Norm +Background
	0.695
	0.742
	0.543


[bookmark: _Toc46792089][bookmark: _Toc47314571]Table 13. Results of first scenario for LSTM trained on 10 speakers where validation made on unseen speaker D and test made on speaker C and E. The percentages within the parentheses present improvement/decrease compared to the test done with 3 speakers.
	LSTM: TRAIN WITH 10 SPEAKERS AND VALIDATE WITH UNSEEN SPEAKER D

	TRAINING DATASET 
(10 SPEAKERS)
	VALIDATE F-SCORE (SPEAKER D)
	TEST F-SCORE 
(SPEAKER C)
	TEST F-SCORE 
(SPEAKER E)

	Tempo + Pitch + Background
	0.781 (↑ 16.7%)
	0.681
	0.464 (↓ 18.3%)

	Tempo + Pitch + Norm +Background
	0.765
	0.665
	0.532



  There are two important findings of this test. great importance of this test is in two aspects. The first aspect is thatIt confirms and supports the claim that the more the model is trained with additionalmore speakers, the further its thus his F-score increases, gets approval and support. The second aspect is thatSecond, our data augmentation system is an essential and very necessarycritical tool because it allows for better results with very small amount ofminimal data, and allows for to adjust the training data, as in the case of speaker E.
Figure 7 around here
	Figure 7 shows confusing matrices of two2 tests for speaker E: One one for testing of speaker E on dataset 7 without the “norm” method, and the other for testing of speaker E again but with on dataset 9 with the “norm” method. As shown in figure Figure 8, the main problem is in classifying the negative example word. The pPrecision of label 0 without the “norm” method is 0.209, i.e., from all instances that were predicted as negative, only 21% of instances are really from that class. The “norm” method partially fixed it while increasing precision to 0.52. As a result of it, classification of classes 1 and 2 were improved, but still, a lot ofmany samples that belongings to class 3 moved towere incorrectly predicted as belongsing to class 0 without the “norm” effect, and wereto incorrectly predicted as belongsing to class 2 with the “norm” effect. We believe that better DAS configuration for DAS can offer further improved mentit much more.	Comment by Author: The text does not include Figure 8
[bookmark: _Toc47313980]Fig. 7. Left: Trained by synthesized dataset 7 with 10 speakers - Test F-score for speaker E - 0.45. Right: Trained by synthesized dataset 9 with 10 speakers - Test F-score for speaker E: 0.543. 
Finally, the models seem to be more robust when using a combination of at least two effects. More precisely, in 7 from of 9 cases the combination of three methods achieved the a higher improvement of in F-score in relation to use compared to using only original unsynthesized data. It This implies that using some differentvaried settings for each effect can improve the results even more than the resultsbeyond what we obtained in the scenarios described. 
In future experiments, we will add a preprocessing phase for selecting augmentation hyperparameters, which will create effects and combinations of effects with several different settings. Each setting will generate a new dataset that will be trained on the model. This pre-eprocessing can be helpful in selecting the most effective data augmentation set that is most effective to for the appropriate scenario. Another extension can be to addadding a new augmentation method beyond the four4 methods that we mentioned in our work.
[bookmark: _Toc47019603]Conclusions
In this work we proposed a new problem definition for interjection classification implemented by using two2 network architectures: a fully connected feedforward neural network (FNN) and Long Short-Term Memory (LSTM), which in combination with a set of audio data augmentations, produces state-of-the-art results for interjections classification. We showed that the improved performance stems from the combination of a basic classification model and an augmented training set. This combination outperformed the proposed architectures without no augmentation at all. 
We conducted an experiment to explore the influence of different sets of four4 data augmentation methods on unsynthesized audio samples. We observed that influence of combining between thethose augmentation methods gives better results than each alonethe influence of each of them apart. As shown in Ttable 14, in validation sets, 7 from of 8 cases achieved the best F-Score by combination combiningof three3 methods, and 8 from of 14 cases in test sets achieved the best F-Score by combination ofcombining at least two2 methods. Three3 of four4 cases where the best F-Score was achieved by one1 method were of from tested speaker E. In one of this these three3 cases the best F-Score was achieved by the pitch method (table Table 9). we We saw in that case that combining the norm method with the pitch method improved the best top F-Score. We suggest that the performance of the model could be improved further by applying new functionality for better selection of more appropriate data augmentation sets for the desired scenario.
Table 14. Number of used effects that achieved the higher F-Score.
	VALIDATE SET
	TEST SET

	1 EFFECT
	2 EFFECTS
	3 EFFECTS
	1 EFFECT
	2 EFFECTS
	3 EFFECTS

	0 of 2
	0 of 2
	2 of 2
	2 of 4
	1 of 4
	1 of 4

	1 of 6
	0 of 6
	5 of 6
	4 of 10
	3 of 10
	3 of 10


Table 14 around here 
As part of the experiment, we showed the positive impact of the number of trained speakers on the F-score of previously unseen speakers by training the LSTM model with 1 speaker, 2 speakers and 3one, two, and three speakers. This positive impact, in addition to the importance of data augmentation, have received approval confirmation after the second extension of the second scenario in which the LSTM model trained with a new dataset made by ten10 different speakers recorded only once for each word.	Comment by Author: I might suggest ending with something that points to more applications or future research directions, or gives a broader ‘take-away’ point
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Table 1. Four selected interjections that recorded into separate sound clips.
	INTERJECTION
	ALTERNATE/SIMILAR
	TRANSLATION/MEANING

	NAH
	
	"No" - Informal no

	MMM
	mhm, uh-hu
	"Yes" - Agreement, acknowledgement

	AHAH
	Aha, ahh
	"I understand" - Understanding, 
Confirmation

	OY
	oy vey
	"Oh no..." - Mainly Jewish: Used to express self-pity, or expression of 
unexpected situation





Table 2. Speaker profiles and number of audio samples recorded for each speaker and word.
	SPEAKER
	NUMBER OF AUDIO SAMPLES
	PROFILE

	A
	850~
	Gender: Male, Age:44, Native language: Hebrew

	B
	550~
	Gender: Female, Age:42, Native language: Hebrew

	C
	300~
	Gender: Male, Age:16, Native language: Hebrew

	D
	300~
	Gender: Female, Age:81, Native language: Spanish

	E
	300~
	Gender: Male, Age:50, Native language: Hebrew






Table 3. Description of the different augmentation sets created.
	
	ORIGINAL SAMPLES PER CLASS
	USED EFFECTS
	GENERATED SAMPLES PER CLASS AND PER SPEAKER

	1
	120
	Pitch
	2520

	2
	120
	Tempo
	2520

	3
	100
	Background
	2900

	4
	60
	Tempo + Pitch
	4860

	5
	40
	Pitch + Background
	6880

	6
	40
	Tempo + Background
	6880

	7
	10
	Tempo + Pitch + Background
	9320

	8
	50
	Pitch + Norm
	1500

	9
	1
	Tempo + Pitch + Norm + Background
	932






Table 4. Results of the first scenario for the FNN model, validated on unseen speaker C and tested on speakers D and E. The percentages within the parentheses present the F-score increase/decrease compared to the baseline, original, unsynthesized dataset F-score.
	FNN: TRAIN WITH 2 SPEAKERS AND VALIDATE WITH UNSEEN SPEAKER C

	TRAINING DATASET 
(SPEAKERS A+B)
	VALIDATE F-SCORE (SPEAKER C)
	TEST F-SCORE (SPEAKER D)
	TEST F-SCORE (SPEAKER E)

	Unsynthesized Data
	0.42
	0.443
	0.208

	Pitch
	0.516 (↑ 22.9%)
	0.425 (↓ 4.2%)
	0. 24 (↑ 15.4%)

	Tempo
	0.485 (↑ 15.5%)
	0.45 (↑ 1.6%)
	0. 252 (↑ 21.2%)

	Background
	0.504 (↑ 20%)
	0.401 (↓ 10.5%)
	0.3 (↑ 44.2%)

	Tempo + Pitch
	0.538 (↑ 28.1%)
	0.425 (↓ 4.2%)
	0.25 (↑ 20.2%)

	Pitch + Background
	0.544 (↑ 29.5%)
	0.445 (↑ 0.4%)
	0.247 (↑ 18.8%)

	Tempo + Background
	0.521 (↑ 24%)
	0.447 (↑ 0.9%)
	0.304 (↑ 46.2%)

	Tempo + Pitch + Background
	0.631 (↑ 50.2%)
	0.503 (↑ 13.5%)
	0.23 (↑ 10.6%)






Table 5. Results of the first scenario for the FNN model with validation performed on unseen speaker D and testing performed on speaker C and E. The percentages within the parentheses present the F-score increase/decrease compared to the baseline original unsynthesized dataset F-score.
	FNN: TRAIN WITH 2 SPEAKERS AND VALIDATE WITH UNSEEN SPEAKER D

	TRAINING DATASET 
(SPEAKERS A+B)
	VALIDATE F-SCORE (SPEAKER D)
	TEST F-SCORE (SPEAKER C)
	TEST F-SCORE (SPEAKER E)

	Unsynthesized Data
	0.521
	0.333
	0.213

	Pitch
	0.525 (↑ 0.8%)
	0.455 (↑ 36.6%)
	0. 266 (↑ 24.9%)

	Tempo
	0.521 (0%)
	0.528 (↑ 58.6%)
	0. 247 (↑ 16%)

	Background
	0.506 (↓ 3%)
	0.466 (↑ 40%)
	0.298 (↑ 40%)

	Tempo + Pitch
	0.534 (↑ 2.5%)
	0.505 (↑ 51.7%)
	0.282 (↑ 32.4%)

	Pitch + Background
	0.497 (↓ 4.8%)
	0.404 (↑ 21.3%)
	0.254 (↑ 19.2%)

	Tempo + Background
	0.539 (↑ 3.5%)
	0.38 (↑ 14.1%)
	0.282 (↑ 32.4%)

	Tempo + Pitch + Background
	0.591 (↑ 13.4%)
	0.525 (↑ 57.7%)
	0.274 (↑ 28.6%)






Table 6. Results of the first scenario for the LSTM model where validation was performed on unseen speaker C and testing was performed on speaker D and E. The percentages within the parentheses present the F-score increase/decrease compared to the baseline original unsynthesized dataset F-score.
	LSTM: TRAIN WITH 1 SPEAKER AND VALIDATE WITH UNSEEN SPEAKER C

	TRAINING DATASET 
(SPEAKERS A)
	VALIDATE 
F-SCORE (SPEAKER C)
	TEST 
F-SCORE (SPEAKER D)
	TEST 
F-SCORE 
(SPEAKER E)

	Unsynthesized Data
	0.501
	0.403
	0.297

	Pitch
	0.603 (↑ 20.4%)
	0.454 (↑ 12.7%)
	0. 365 (↑ 22.9%)

	Tempo
	0.503 (↑ 0.4%)
	0.392 (↓ 2.8%)
	0. 302 (↑ 1.7%)

	Background
	0.54 (↑ 7.8%)
	0.431 (↑ 6.9%)
	0.249 (↓ 19.3%)

	Tempo + Pitch
	0.595 (↑ 18.8%)
	0.424 (↑ 5.2%)
	0.265 (↓ 12.1%)

	Pitch + Background
	0.58 (↑15.8%)
	0.493 (↑ 22.3%)
	0.366 (↑ 23.2%)

	Tempo + Background
	0.562 (↑ 12.2%)
	0.419 (↑ 4%)
	0.275 (↓ 8%)

	Tempo + Pitch + Background
	0.606 (↑ 21%)
	0.478 (↑ 18.6%)
	0.296 (↓ 0.3%)






Table 7. Results of the first scenario for the LSTM model where validation is performed on unseen speaker D and testing is performed on speaker C and E. The percentages within the parentheses present the F-score increase/decrease compared to the baseline original unsynthesized dataset F-score.
	LSTM: TRAIN WITH 1 SPEAKER AND VALIDATE WITH UNSEEN SPEAKER D

	TRAINING DATASET 
(SPEAKER A)
	VALIDATE 
F-SCORE (SPEAKER D)
	TEST 
F-SCORE (SPEAKER C)
	TEST 
F-SCORE 
(SPEAKER E)

	Unsynthesized Data
	0.494
	0.378
	0.351

	Pitch
	0.576 (↑ 16.6%)
	0.58 (↑ 53.4%)
	0. 443 (↑ 26.2%)

	Tempo
	0.493 (↓ 0.2%)
	0.411 (↑ 8.7%)
	0. 323 (↓ 8.7%)

	Background
	0.502 (↑ 1.6%)
	0.448 (↑ 18.5%)
	0.235 (↓ 49.4%)

	Tempo + Pitch
	0.537 (↑ 8.7%)
	0.552 (↑ 46%)
	0.389 (↑ 10.8%)

	Pitch + Background
	0.57 (↑ 15.4%)
	0.536 (↑ 41.8%)
	0.341 (↓ 2.9%)

	Tempo + Background
	0.493 (↓ 0.2%)
	0.498 (↑ 31.7%)
	0.228 (↓ 53.9%)

	Tempo + Pitch + Background
	0.559 (↑ 13.2%)
	0.533 (↑ 41%)
	0.35 (↓ 0.3%)






Table 8. Results of first scenario for LSTM where validation is performed on unseen speaker C and testing is performed on speakers D and E. The percentages within the parentheses present increase/decrease compared to the baseline clean dataset F-score. The “FNN” columns present improvement/decrease compared to the results of the same dataset in Table 4. (BckGrd = Background)
	LSTM: TRAIN WITH 2 SPEAKERS AND VALIDATE WITH UNSEEN SPEAKER C

	TRAINING DATASET 
(SPEAKERS A+B)
	VALIDATE 
F-SCORE 
(SPEAKER C)
	FNN
	TEST 
F-SCORE 
(SPEAKER D)
	FNN
	TEST 
F-SCORE 
(SPEAKER E)
	FNN

	Unsynthesized Data
	0.516
	↑22.9%
	0.421
	↓5.2%
	0.279
	↑34.1%

	Pitch
	0.573 (↑11%)
	↑11%
	0.492 (↑9.2%)
	↑15.8
	0.381 (↑36.6%)
	↑58.8%

	Tempo
	0.568 (↑10.1%)
	↑17.1%
	0.481 (↑4.9%)
	↑6.9%
	0.382 (↑36.9%)
	↑51.6%

	BckGrd
	0.593 (↑14.9%)
	↑17.7%
	0.452 (↑4.7%)
	↑12.7%
	0.323 (↑15.8%)
	↑7.7%

	Tempo + Pitch
	0.575 (↑11.4%)
	↑6.9%
	0.521 (↑6.5%)
	↑22.6%
	0.398 (↑42.7%)
	↑59.2%

	Pitch + BckGrd
	0.588 (↑14%)
	↑8.1%
	0.528 (↑10.3%)
	↑18.7%
	0.372 (↑33.3%)
	↑50.6%

	Tempo + BckGrd
	0.526 (↑1.9%)
	↑1%
	0.432 (↓0.2%)
	↓3.5%
	0.326 (↑16.8%)
	↑7.2%

	Tempo + Pitch + BckGrd
	0.631 (↑22.3%)
	0%
	0.566 (↑22.6%)
	↑12.5%
	0.401 (↑43.7%)
	↑74.3%

	Pitch + Norm
	0.59 (↑14.3%)
	
	0.557 (↑32.3%)
	
	0.476 (↑70.6%)
	






Table 9. Results of first scenario for LSTM where validation is performed on unseen speaker D and testing performed on speaker C and E. The percentages within the parentheses present increase/decrease compared to the baseline clean dataset F-score. The “FNN” columns present increase/decrease compared to the results of the same dataset in Table 5. (BckGrd = Background)
	LSTM: TRAIN WITH 2 SPEAKERS AND VALIDATE WITH UNSEEN SPEAKER C

	TRAINING DATASET 
(SPEAKERS A+B)
	VALIDATE 
F-SCORE 
(SPEAKER D)
	FNN
	TEST 
F-SCORE 
(SPEAKER C)
	FNN
	TEST 
F-SCORE 
(SPEAKER E)
	FNN

	Unsynthesized Data
	0.535
	↑2.7%
	0.372
	↑1.2
	0.426
	↑100%

	Pitch
	0.584 (↑9.2%)
	↑11.2%
	0.481 (↑29.3%)
	↑5.7
	0.457 (↑7.3%)
	↑71.8%

	Tempo
	0.561 (↑4.9%)
	↑7.7%
	0.382 (↑2.7%)
	↓38.2%
	0.37 (↓15.1%)
	↑49.8%

	BckGrd
	0.56 (↑4.7%)
	↑10.7%
	0.429 (↑15.3%)
	↓8.6%
	0.343 (↓24.2%)
	↑15.1%

	Tempo + Pitch
	0.57 (↑6.5%)
	↑6.7%
	0.449 (↑20.7%)
	↓12.5%
	0.452 (↑6.1%)
	↑60.3%

	Pitch + BckGrd
	0.59 (↑10.3%)
	↑18.7%
	0.488 (↑31.2%)
	↑20.8%
	0.397 (↓7.3%)
	↑56.3%

	Tempo + BckGrd
	0.534 (↓0.2%)
	↓0.9%
	0.43 (↑15.6%)
	↑13.2%
	0.385 (↓10.6%)
	↑36.5%

	Tempo + Pitch + BckGrd
	0.656 (↑22.6%)
	↑11%
	0.507 (↑36.3%)
	↓3.6%
	0.396 (↓7.6%)
	↑44.5%

	Pitch + Norm
	0.589 (↑10.1%)
	
	0.533 (↑43.3%)
	
	0.506 (↑18.8%)
	






Table 10. Results of the first scenario for the LSTM model. The percentages within the parentheses present increase/decrease compared to the baseline clean dataset F-score.
	LSTM: TRAINING WITH 3 SPEAKERS AND VALIDATING WITH 2 UNSEEN SPEAKERS

	
	TRAINING (SPEAKERS A + B + D)
	TRAINING (SPEAKERS A + B + C)

	DATASET 
	VALIDATE 
F-SCORE 
(SPEAKER C)
	TEST F-SCORE 
(SPEAKER E)
	VALIDATE 
F-SCORE 
(SPEAKER D)
	TEST F-SCORE 
(SPEAKER E)

	Unsynthesized Data
	0.61
	0.425
	0.592
	0.446

	Pitch
	0.712 (↑16.7%)
	0.506 (↑19.1%)
	0.636 (↑7.4%)
	0.481 (↑7.8%)

	Tempo
	0.606 (↓0.6%)
	0.48 (↑12.9%)
	0.625 (↑5.6%)
	0.549 (↑23.1%)

	Background
	0.609 (↓0.2%)
	0.448 (↑5.4%)
	0.568 (↓4.2%)
	0.408 (↓9.3%)

	Tempo+Pitch
	0.666 (↑9.2%)
	0.543 (↑27.8%)
	0.619 (↑4.6%)
	0.515 (↑15.5%)

	Pitch+Background
	0.67 (↑9.8%)
	0.458 (↑7.8%)
	0.636 (↑7.4%)
	0.422 (↓5.7%)

	Tempo+Background
	0.6 (↓1.7%)
	0.406 (↓4.7%)
	0.548 (↓8%)
	0.434 (↓2.8%)

	Tempo+Pitch+Background
	0.751 (↑23.1%)
	0.377 (↓12.7%)
	0.669 (↑13%)
	0.418 (↓6.7%)






Table 11. Recall and precision values for matrices shown in Figure 2.
	
	SPEAKER C
	SPEAKER D

	
	UNSYNTHESIZED
	SYNTHESIZED
	UNSYNTHESIZED
	SYNTHESIZED

	CLASS
	RECALL
	PRECISION
	RECALL
	PRECISION
	RECALL
	PRECISION
	RECALL
	PRECISION

	negative
	0.418
	0.403
	0.57
	0.643
	0.753
	0.459
	0.534
	0.678

	ahah
	0.566
	0.925
	0.81
	0.967
	0.463
	0.747
	0.612
	0.775

	mmm
	0.968
	0.932
	0.984
	0.824
	0.39
	0.93
	0.917
	0.79

	nah
	0.296
	0.455
	0.983
	0.871
	0.56
	0.471
	0.602
	0.514

	oy
	0.877
	0.546
	0.583
	0.589
	0.75
	0.665
	0.743
	0.614






Table 12. Results of first scenario for LSTM trained on ten speakers where validation was performed on unseen speaker C and testing was performed on speakers D and E. The percentages within the parentheses present the increase/decrease compared to the test done with three speakers.
	LSTM: TRAIN WITH 10 SPEAKERS AND VALIDATE WITH UNSEEN SPEAKER C

	TRAINING DATASET 
(10 SPEAKERS)
	VALIDATE F-SCORE (SPEAKER C)
	TEST F-SCORE 
(SPEAKER D)
	TEST F-SCORE 
(SPEAKER E)

	Tempo + Pitch + Background
	0.805 (↑ 7.2%)
	0.7
	0.463 (↓ 17.3%)

	Tempo + Pitch + Norm +Background
	0.695
	0.742
	0.543






Table 13. Results of first scenario for LSTM trained on ten speakers where validation was performed on unseen speaker D and testing was performed on speaker C and E. The percentages within the parentheses present the increase/decrease compared to the test done with three speakers.
	LSTM: TRAIN WITH 10 SPEAKERS AND VALIDATE WITH UNSEEN SPEAKER D

	TRAINING DATASET 
(10 SPEAKERS)
	VALIDATE F-SCORE (SPEAKER D)
	TEST F-SCORE 
(SPEAKER C)
	TEST F-SCORE 
(SPEAKER E)

	Tempo + Pitch + Background
	0.781 (↑ 16.7%)
	0.681
	0.464 (↓ 18.3%)

	Tempo + Pitch + Norm +Background
	0.765
	0.665
	0.532






Table 14. Number of effects used that achieved the higher F-Score.
	VALIDATE SET
	TEST SET

	1 EFFECT
	2 EFFECTS
	3 EFFECTS
	1 EFFECT
	2 EFFECTS
	3 EFFECTS

	0 of 2
	0 of 2
	2 of 2
	2 of 4
	1 of 4
	1 of 4

	1 of 6
	0 of 6
	5 of 6
	4 of 10
	3 of 10
	3 of 10





Figure 1. Automatic speech recognition system diagram.
Figure 2. Feedforward neural network architecture.
Figure 3. LSTM architecture. x<t> is the input at time t. y<t> is the input at time t. a[l]<t> is the input of cell at time t+1 from layer l.
Figure 4. Unsynthesized waveforms of speakers A-E saying “ahah”.
Figure 5. Top left matrix: trained by unsynthesized data - validation F-score for speaker C - 0.621. Top right matrix: trained by synthesized data - validation F-score for speaker C: 0.771. Bottom left matrix: trained by unsynthesized data - validation F-score for speaker D - 0.57. Bottom right matrix: trained by synthesized data - validation F-score for speaker D: 0.677. 
Figure 6. The average F-score of both speakers C and D according to the number of trained speakers. The dark blue bar indicates the average F-score of datasets trained on 3 speakers. Beneath it, the blue bar indicates the average F-score of datasets trained on 2 speakers, and the orange bar indicates the average F-score of datasets trained on 1 speaker.
Figure 7. Left: Trained by synthesized dataset 7 with 10 speakers - Test F-score for speaker E - 0.45. Right: Trained by synthesized dataset 9 with 10 speakers - Test F-score for speaker E: 0.543. 
[image: Diagram

Description automatically generated]










[image: Diagram

Description automatically generated]















[image: Diagram

Description automatically generated]
















Speaker C
Speaker D
Speaker E
Speaker A
Speaker B


























































Richey, C., Barrios, M. A., Armstrong, Z., Bartels, C., Franco, H., Graciarena, M., ... & Gamble, P. (2018). Voices obscured in complex environmental settings (voices) corpus. arXiv preprint arXiv:1804.05053.‏

Kulkarni, K. R., & Naik, S. R. R. (2018). A Review of Music Analysis Techniques.‏

Zerari, N., Yousfi, B., & Abdelhamid, S. (2016). Automatic Speech Recognition: A Review. Int. Acad. Res. J. Bus. Technol., 2(2), 63-68.‏
Gadekar, P., Kaldane, M. H., Pawar, D., Jadhav, O., & Patil, A. (2019). Analysis of speech recognition techniques.‏
Majeed, S. A., Husain, H., Samad, S. A., & Idbeaa, T. F. (2015). MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC) FEATURE EXTRACTION ENHANCEMENT IN THE APPLICATION OF SPEECH RECOGNITION: A COMPARISON STUDY. Journal of Theoretical & Applied Information Technology, 79(1).‏


Pradhan, A. (2012). Support vector machine-A survey. International Journal of Emerging Technology and Advanced Engineering, 2(8), 82-85.‏
Dr. E. Chandra, K.A. Senthildevi. (2015). Keyword Spotting: An Audio Mining Technique in Speech Processing – A Survey, IOSR Journal of VLSI and Signal Processing (IOSR-JVSP).‏
Chen, G., Parada, C., & Heigold, G. (2014, May). Small-footprint keyword spotting using deep neural networks. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4087-4091). IEEE.‏
Yadav, M., & Alam, A. (2018). Dynamic time warping (DTW) algorithm in speech: a review. Int. J. Res. Electron. Comput. Eng, 6.‏
Sainath, T. N., & Parada, C. (2015). Convolutional neural networks for small-footprint keyword spotting. In Sixteenth Annual Conference of the International Speech Communication Association.‏
Eronen, A. J., Peltonen, V. T., Tuomi, J. T., Klapuri, A. P., Fagerlund, S., Sorsa, T., ... & Huopaniemi, J. (2005). Audio-based context recognition. IEEE Transactions on Audio, Speech, and Language Processing, 14(1), 321-329.‏
Chum, M., Habshush, A., Rahman, A., & Sang, C. (2013). IEEE AASP scene classification challenge using hidden Markov models and frame-based classification. IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events.‏
Geiger, J. T., Schuller, B., & Rigoll, G. (2013, October). Large-scale audio feature extraction and SVM for acoustic scene classification. In 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4). IEEE.‏
Valenti, M., Diment, A., Parascandolo, G., Squartini, S., & Virtanen, T. (2016, September). DCASE 2016 acoustic scene classification using convolutional neural networks. In Proc. Workshop Detection Classif. Acoust. Scenes Events (pp. 95-99).‏
Bae, S. H., Choi, I., & Kim, N. S. (2016, September). Acoustic scene classification using parallel combination of LSTM and CNN. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop (DCASE2016) (pp. 11-15).‏
Lee, D., Lee, S., Han, Y., & Lee, K. (2017). Ensemble of convolutional neural networks for weakly-supervised sound event detection using multiple scale input. Detection and Classification of Acoustic Scenes and Events (DCASE).‏
Ragni, A., Knill, K., Rath, S. P., & Gales, M. (2014). Data augmentation for low resource languages.‏
Jaitly, N., & Hinton, G. E. (2013, June). Vocal tract length perturbation (VTLP) improves speech recognition. In Proc. ICML Workshop on Deep Learning for Audio, Speech and Language (Vol. 117).‏
Park, D. S., Chan, W., Zhang, Y., Chiu, C. C., Zoph, B., Cubuk, E. D., & Le, Q. V. (2019). Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv:1904.08779.‏
Salamon, J., & Bello, J. P. (2017). Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Processing Letters, 24(3), 279-283.‏
Gouda, S. K., Kanetkar, S., Harrison, D., & Warmuth, M. K. (2018). Speech Recognition: Keyword Spotting Through Image Recognition. arXiv preprint arXiv:1803.03759.‏
Goddard, C. (2014). Interjections and emotion (with special reference to “surprise” and “disgust”). Emotion Review, 6(1), 53-63.‏
Shriberg, E. (2005). Spontaneous speech: How people really talk and why engineers should care. In Ninth European Conference on Speech Communication and Technology.‏
Cohn, M., Chen, C. Y., & Yu, Z. (2019, September). A Large-Scale User Study of an Alexa Prize Chatbot: Effect of TTS Dynamism on Perceived Quality of Social Dialog. In Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue (pp. 293-306).‏
Yoon, S. A., Son, G., & Kwon, S. (2019). Fear emotion classification in speech by acoustic and behavioral cues. Multimedia Tools and Applications, 78(2), 2345-2366.‏
Auditok - An audio/acoustic activity detection and audio segmentation tool - https://github.com/ramya1782/auditok
Sahidullah, M., & Saha, G. (2012). Comparison of speech activity detection techniques for speaker recognition. arXiv preprint arXiv:1210.0297.‏
McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., & Nieto, O. (2015, July). librosa: Audio and music signal analysis in python. In Proceedings of the 14th python in science conference (Vol. 8).‏
Bittner, R., Humphrey, E., & Bello, J. (2016, August). Pysox: Leveraging the audio signal processing power of sox in python. In Proceedings of the International Society for Music Information Retrieval Conference Late Breaking and Demo Papers.‏
Khalil, R. A., Jones, E., Babar, M. I., Jan, T., Zafar, M. H., & Alhussain, T. (2019). Speech emotion recognition using deep learning techniques: A review. IEEE Access, 7, 117327-117345.‏


0.498	0.59	0.498	0.52100000000000002	0.56600000000000006	0.57499999999999996	0.52800000000000002	0.58299999999999996	Avg. 1 speakers	Original Unsynthesized	Pitch	Tempo	BackGround	Tempo + Pitch	Pitch + BackGround	Tempo + BackGround	Pitch + Tempo + BackGround	0.52300000000000002	0.57899999999999996	0.56499999999999995	0.57699999999999996	0.57299999999999995	0.58899999999999997	0.53	0.64400000000000002	Avg. 2 speakers	Original Unsynthesized	Pitch	Tempo	BackGround	Tempo + Pitch	Pitch + BackGround	Tempo + BackGround	Pitch + Tempo + BackGround	0.60099999999999998	0.67399999999999993	0.61599999999999999	0.58899999999999997	0.64300000000000002	0.65300000000000002	0.57400000000000007	0.71	Avg. 3 speakers	Original Unsynthesized	Pitch	Tempo	BackGround	Tempo + Pitch	Pitch + BackGround	Tempo + BackGround	Pitch + Tempo + BackGround	



0.498	0.59	0.498	0.52100000000000002	0.56600000000000006	0.57499999999999996	0.52800000000000002	0.58299999999999996	Avg. 1 speakers	Original Unsynthesized	Pitch	Tempo	BackGround	Tempo + Pitch	Pitch + BackGround	Tempo + BackGround	Pitch + Tempo + BackGround	0.52300000000000002	0.57899999999999996	0.56499999999999995	0.57699999999999996	0.57299999999999995	0.58899999999999997	0.53	0.64400000000000002	Avg. 2 speakers	Original Unsynthesized	Pitch	Tempo	BackGround	Tempo + Pitch	Pitch + BackGround	Tempo + BackGround	Pitch + Tempo + BackGround	0.60099999999999998	0.67399999999999993	0.61599999999999999	0.58899999999999997	0.64300000000000002	0.65300000000000002	0.57400000000000007	0.71	Avg. 3 speakers	Original Unsynthesized	Pitch	Tempo	BackGround	Tempo + Pitch	Pitch + BackGround	Tempo + BackGround	Pitch + Tempo + BackGround	



image1.png
Feature
Processing [~ = | Extraction [Tt
Vectors

Speech

Pronunciation| [ Language

Acou:

ic
Models Dictionary Model





image2.png
o e e

\\V/ \\'// \\“\VI[ :
A\\ //A\\ //A
—glelle”

L ====




image3.png
LSTM

y<r y

[2)<1> i<

[1]<1> [1]<2>
alfl<o> a R

X< X




image4.png




image5.png




image6.png




image7.png




image8.png




image9.png




image10.png




image11.png




image12.png




image13.png




image14.png
True label

0 negative ex

1 ahah

2 mmm

3 nah

Predicted label

250

200

150

100

50




image15.png
True label

0 negative ex

1 ahah

2 mmm

Predicted label

140
120
100
80
60
40
20




image16.png
True label

0 negative ex

1 ahah

Predicted label

600
500
400
300
200

100




image17.png
True label

0 negative ex

1 ahah

2 mmm

3 nah

Predicted label

300

250

200

150

100

50




image18.png
True label

0 negative ex

1 ahah

2 mmm

3 nah

Predicted label

250

200

150

100

50




image19.png
True label

0 negative ex

1 ahah

2 mmm

Predicted label

140
120
100
80
60
40
20




image20.png
True label

0 negative ex

1 ahah

Predicted label

600
500
400
300
200

100




image21.png
True label

0 negative ex

1 ahah

2 mmm

3 nah

Predicted label

300

250

200

150

100

50




image22.png
True label

0 negative ex
1 ahah

2 mmm

3 nah

4oy

e
=~
S

Predicted label

800

600

400

200




image23.png
True label

0 negative ex 358 89 110 86 83
1 ahah 3 15 8 3
2mmm{ 59 4 a 2

3 nah 144 2 27 1

4oy 123 96 50 110 162

#@J S,&“ D RO

Predicted label

800

700

600

500

400

300

200

100




image24.png
True label

0 negative ex
1 ahah

2 mmm

3 nah

4oy

e
=~
S

Predicted label

800

600

400

200




image25.png
True label

0 negative ex 358 89 110 86 83
1 ahah 3 15 8 3
2mmm{ 59 4 a 2

3 nah 144 2 27 1

4oy 123 96 50 110 162

#@J S,&“ D RO

Predicted label

800

700

600

500

400

300

200

100




