
Advice Explanation in Complex Repeated Decision-Making Environments

Abstract
Humans that need to make decisions repeatedly1

in complex environments can benefit from advice2

given by an automated assisting agent. However,3

due to the complexity of the environment and the4

long-term effect of a given piece of advice, the5

decision-maker may dismiss the advice and not6

take full advantage of its benefits. Advice explana-7

tion may improve the extent to which the decision-8

maker is satisfied with and trusts the advice. We9

consider an automated assisting agent that inte-10

grates two deep learning-based models – an up-11

stream prediction and a downstream Q-learning-12

based policy. As both models influence the ad-13

vice, we propose considering both when explaining14

it to the decision-maker. We propose reducing the15

state shown to the user, making the policy transpar-16

ent through the precomputed policy, and compos-17

ing them with an explanation of the upstream pre-18

diction model. We demonstrate our approach for19

idle taxi repositioning and show its effectiveness20

through computational experiments and a game-21

based user study. Although the study participants22

do not follow the advice more often when com-23

pared to a baseline, they are significantly more sat-24

isfied, achieve a higher reward in the game, take25

less time to select an action, and use the explana-26

tions of both models.27

1 Introduction28

Making decisions repeatedly in a dynamic environment is29

very challenging. An intelligent agent could improve human30

decision-making by providing advice. We consider an agent31

that provides advice through a learned policy that integrates32

two models that are based on Deep Learning (DL) – an up-33

stream prediction and a downstream Q-learning-based pol-34

icy. Humans, in general, quite often do not follow machine-35

learning-based advice [?] and in particular, when the advice36

is based on two levels of DL models. Providing explanations37

may improve their acceptance and trust in the advice [?].38

Most of the related work on eXplainable RL (XRL) focuses39

on the environment and algorithm-specific explanations, of-40

ten not necessarily targeted at the general public but rather41

aimed at domain experts or researchers [Heuillet et al., 2021; 42

?]. Consequently, we focus on developing an explanation ap- 43

proach that is generic and user-focused. In particular, we pro- 44

pose an explanation approach that consists of four parts and 45

their composition. First, we propose a way to choose the up- 46

stream prediction functions so that they are closely related to 47

the advice. Then, we propose a condensed representation of 48

these functions to reduce the information load on the user. 49

To present the policy, we propose presenting future expected 50

actions to help the user understand the long-term effect of 51

his current advised action. Finally, we propose explaining 52

the upstream prediction model via a classical local post-hoc 53

perturbation-based eXplainable AI (XAI)-method like SHAP. 54

We also propose a visualization method to present all four 55

components to the user in an easy-to-follow GUI. 56

In Section 4, we present our four-component generalizable 57

and modular approach to explaining multi-black box Deep 58

RL (DRL)-based systems to users. In Section 5, we apply it 59

to idle taxi repositioning – along with matching and routing 60

– one central function of ride-sharing. We select this appli- 61

cation area because (1) it is an advising system that directly 62

affects users – the drivers – (2) it requires the latter to make 63

repositioning decisions repeatedly, (3) it uses DRL or more 64

specifically typically Deep Q-learning (DQN) [Farazi et al., 65

2021] – enabling transferability to other cities and a longer 66

time-horizon for optimization [Qin et al., 2020] – and (4) ad- 67

ditional upstream black-box models like a request estimator. 68

We demonstrate the effectiveness of our approach via compu- 69

tational experiments (Section 6) and a game-based user study 70

(Section 7). We discuss the major findings together with lim- 71

itations and potential future work in Section 8. 72

Motivating example. Given an idle driver in a taxi service 73

such as Uber or DiDi, location advice might be provided to 74

her because the service aims to redistribute its fleet proac- 75

tively to future customers. To determine this advice, the 76

taxi service can consider the future locations of its other taxi 77

drivers – derived from their known schedules. However, the 78

number of requests for each region can only be predicted via 79

some potentially black-box model based on previously col- 80

lected data. Both the number of taxis and requests per region 81

can be fed into a DRL-based repositioner that computes the 82

advice. As the driver loses time and money on the way to the 83

proposed location and is not guaranteed to get a ride there, she 84

might desire an explanation of the advice. As both models – 85
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request estimator and repositioner – influence the advice, the86

explanation needs to consider both.87

2 Related Work88

Although the field of Reinforcement Learning (RL) is hetero-89

geneous but established, the field of XRL is also the former,90

but not the latter. [Puiutta and Veith, 2020] attempt to struc-91

ture the literature in XRL by introducing two dimensions. In92

the first dimension they differentiate whether an approach is93

intrinsically explainable by using a transparent model or is94

explainable post-hoc; in the second dimension they distin-95

guish approaches that explain locally or globally. As we ex-96

plain the advice given to a user for an existing model, we97

focus on local post-hoc explanations. However, none of the98

approaches included in [Puiutta and Veith, 2020] is composed99

of several DL models or explanations.100

Very few works in XRL generate multiple explanations for101

one DRL agent. [Huber et al., 2021] combine a local saliency102

map-based explanation with a global strategy summary ex-103

planation for an Atari agent. Both [Bayani and Mitsch,104

2022] and [Sreedharan et al., 2020] offer explanations to an105

agent via a preset answer of questions with varying levels106

of abstraction in the answers. While [Bayani and Mitsch,107

2022] explain DRL-based agents acting in toy environments,108

[Sreedharan et al., 2020] explain multiple non-DRL-based109

components for a loan approval application. Other non DRL-110

based approaches that do generate multiple explanations are111

proposed by [Liao et al., 2021]; the authors use multiple XAI112

methods such as feature importance to make the risk of hospi-113

tal admission transparent and present their results side by side114

to one another. To explain the recognition of vocal emotions,115

[Zhang and Lim, 2022] build five additional DL models and116

apply multiple XAI techniques, such as showing a saliency117

map. The only work we found that provides multiple ex-118

planations for multiple models is the one from [El-Sappagh119

et al., 2021]: The authors first predict whether a person has120

Alzheimer’s disease and attach another model to predict the121

stage of the disease. To explain this, they use SHAP, the fea-122

ture importance of the underlying random forest, and fuzzy123

rules to explain the predictions locally and globally.124

In general, the number of approaches that generate multiple125

explanations for one or multiple DL models is very limited126

and heterogeneous. While some works provide advice [Liao127

et al., 2021; El-Sappagh et al., 2021], the majority explains128

some DL models that do not provide advice to users [Huber et129

al., 2021; Bayani and Mitsch, 2022; Sreedharan et al., 2020;130

Zhang and Lim, 2022]. Some focus on explaining to end131

users [Huber et al., 2021; Sreedharan et al., 2020; Zhang and132

Lim, 2022] and others target expert users [Bayani and Mitsch,133

2022; Liao et al., 2021; El-Sappagh et al., 2021]. While134

the majority of the approaches considered evaluate the gener-135

ated explanations without people [Bayani and Mitsch, 2022;136

Sreedharan et al., 2020; Liao et al., 2021; El-Sappagh et al.,137

2021], only two evaluate with people [Huber et al., 2021;138

Zhang and Lim, 2022]. In addition, most of the works fo-139

cus on explaining non-DRL-based agents [Sreedharan et al.,140

2020; Liao et al., 2021; Zhang and Lim, 2022; El-Sappagh et141

al., 2021], and while two explain DRL-based agents – [Huber142

et al., 2021; Bayani and Mitsch, 2022], these works also ex- 143

plain agents in toy environments rather than those interacting 144

in real-world applications. 145

Consequently, we consider the explanation of an advising 146

system with a DRL agent and one or more upstream DL mod- 147

els as an open research gap. To limit the scope of this paper, 148

we will focus on local post-hoc explanations for real-world 149

applications, like the idle taxi repositioning in our motivat- 150

ing example, and end users, such as taxi drivers, while de- 151

veloping our explanation approach. In relation to the DRL 152

approach, we focus on DQN which is commonly used for the 153

repositioning of taxis [Farazi et al., 2021] and in the field of 154

autonomous driving. 155

3 Problem Definition 156

We consider a human user that can move in an undirected 157

graph G = (V,E) with V being a set of vertices and E a 158

set of edges. The human goal is to maximize a reward. At 159

every time step, the human is located at location l ∈ V and 160

can take action a ∈ A attempting to move on graph G. A 161

state s ∈ S is associated with the properties of the entire en- 162

vironment and with the properties of the vertices in V . We 163

use the notation gi(s),∀s ∈ S for features that do not de- 164

pend on the vertices and fj(s, v),∀s ∈ S,∀v ∈ V for fea- 165

tures of the state that are relevant to vertex v. l(s) ∈ V 166

indicates the location of the user in state s. The state tran- 167

sition function P (s, a, s′),∀s, s′ ∈ S,∀a ∈ A from s to 168

s′ when taking action a is stochastic. The reward function 169

R(s, a, s′),∀s, s′ ∈ S, ∀a ∈ A depends on state s, action a, 170

and the new state s′. 171

When considering the example of an idle taxi reposition- 172

ing, G represents the road map of a city. At every point 173

in time, the taxi driver selects action a, like moving south 174

from l(s). This decision can be based on the state which is 175

composed of a set of global features {g1, g2, ..., gm} like the 176

day of the week and another set of location-dependent fea- 177

tures {f1, f2, ..., fn}, such as the number of requests at the 178

vs around l(s). When collecting a passenger, the taxi driver 179

receives a reward; for example, 25 dollars. 180

To make a decision, the human can consider (1) its knowl- 181

edge of the current state s ∈ S and (2) advice provided 182

through a learned policy π : s 7→ a, a ∈ A,∀s ∈ S that 183

maps each state s to action a. In particular, the policy has two 184

levels: in the first level, there is a set of functions ψj ∈ Ψ; 185

each function, given state s and vertex v, associates v with a 186

value; that is, ψj(s, v),∀s ∈ S, ∀v ∈ V . Some of these func- 187

tions are estimated using DL. On the second level, the output 188

of this first-level function is used by aQ value function that is 189

learned via DRL: QΨ(s, l(s), a),∀s ∈ S, ∀l(s) ∈ V,∀a ∈ A. 190

The advice given to the human is argmaxaQΨ(s, l(s), a). 191

In repositioning an idle taxi, we have two functions on the 192

first level: ψd that extracts the demand for taxis and ψr that 193

estimates the number of requests based on the previous num- 194

ber of requests via a neural network. QΨ receives these out- 195

puts, l(s), and an a learned via deep Q-learning. 196

Explanation problem. Given the aforementioned sequen- 197

tial human-decision making problem in which a user u re- 198

ceives advice provided by a policy π : s 7→ a, a user might 199
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have less information available – for example, Ψ is not known200

by the user – or smaller computational capabilities. Conse-201

quently, the user’s policy results is πu : s 7→ au with a ̸= au.202

The explanation problem tackled in this paper aims to pro-203

duce an explanation ε so that πu : s
ε−→ a.204

4 Explanation Approach205

Understanding advice is challenging because, (1) π is repre-206

sented via QΨ and both Q and at least a subset of Ψ are DL207

models, which are often hard for users to understand, (2) es-208

pecially when with a larger |V | the size of the state |s| might209

be overwhelming for users, and (3) users need to repeatedly210

make decisions with a potential long-term effect. Therefore,211

in the following, we propose an explanation approach that212

consists of four parts and their composition.213

4.1 Model Choices for Ψ214

An important decision is to carefully choose the functions215

ψ ∈ Ψ. Previous approaches, like that of [Qin et al., 2020;216

Haliem et al., 2021] or the pipeline architecture described by217

[Grigorescu et al., 2020] compute the values of ψ simultane-218

ously for all v ∈ V . That is, the functions are of the form219

ψ(f1, . . . , fn), which results in values for all v ∈ V . In this220

case, it is difficult to extract the contribution of each feature221

for the value associated with v. Therefore, we propose call-222

ing ψ separately for each v, selecting features that are under-223

standable by users, and making it return only one value for v;224

that is, ψ(g1, . . . , gm, f1, . . . , fn).225

For example, when [Haliem et al., 2021] reposition idle226

taxis, they make use of function ψ to estimate the number of227

requests in the next time step across the whole city based on228

the previous demand. In this example, we propose using an229

alternative ψ that estimates the number of requests on only230

one location based on fewer and more meaningful input fea-231

tures.232

4.2 Condensed Representation of Ψ233

Presenting all values that the functions ψj ∈ Ψ associate234

with each vertex v ∈ V can be overwhelming. Therefore,235

we propose integrating these values using some index I that236

compresses the number of values for each vertex. That is,237

I(s, v) = ρ(ψ1(s, v), . . . , ψ|Ψ|(s, v)).238

For example, in idle taxi repositioning, ρ could be the dif-239

ference between the number of requests and taxis at v in state240

s; identifying a v with an undersupply becomes easier via ρ.241

4.3 Transparent Policy242

In order to reveal the long-term strategy of the policy, we243

propose presenting the advice to the user at any location244

v ∈ V and not only at l(s). Consequently, we compute245

the advice â = argmaxaQΨ(s, l(s), a) for each location246

v ∈ V and not only at l(s). Similar to [Amir and Amir,247

2018] we also make the certainty of the network in â trans-248

parent by computing the delta to the least promising action249

via â − argminaQΨ(s, l(v), a). In addition, we compute a250

potential future path of limited length for the agent when fol-251

lowing the advice while keeping everything in s fixed except252

for l(s).253

request estimation† Repositioning‡

Haliem et al.∗ 1.22 6.85
Ours 1.26 7.24
∗ adapted; † MAE in trips per cell; ‡ mean reward per step

Table 1: Agents performance; while for both – the request estimator
and the repositioner – the test data is used for evaluation, for the
repositioner, the mean reward per step is calculated over 100 runs.

Realizing this part of our explanation in idle taxi reposi- 254

tioning is relatively straightforward by showing the advice 255

using arrows for the whole city; the certainty of the advice 256

can be incorporated into the color of the arrows. 257

4.4 Explaining Ψ 258

Another important component of the advising system is the 259

subset of functions in Ψ that are represented via DL. For these 260

ψs, we propose presenting those features of s that contributed 261

to ψ’s value at vertices v. This is possible, given the way we 262

defined ψ that outputs a value separately for each v. Such a 263

function of ψ can be explained via a classical local post-hoc 264

perturbation-based XAI-method like SHAP. We recommend 265

limiting the number of vs for which the corresponding expla- 266

nation is shown. 267

When we estimate the number of requests at a location v, 268

we can show the most contributing features to a user to make 269

the corresponding ψ more transparent 270

4.5 Compose the Explanation Parts 271

Besides carefully choosing Ψ, we present the user of the ad- 272

vising system three aspects of the underlying policy: (1) the 273

condensed representation of the ψis together, (2) the transpar- 274

ent policy, and (3) the explanations of the ψis. We propose 275

presenting (1) and (2) on graph G; the former via arrows as 276

advice with different color intensity for certainty and color 277

for each v via the index I(s, v). Further, we propose pre- 278

senting the explanations of Ψ along the potential future path 279

computed in (2) to limit the explanation size |ε| shown to the 280

user; the user can only query the locations available on this 281

path. 282

5 Explaining Idle Taxi Repositioning 283

Before explaining idle taxi repositioning, we rebuild a repo- 284

sitioning approach based on one from the literature. Mostly, 285

idle taxi repositioning is part of a system that also incorpo- 286

rates matching, scheduling, and routing. We favor the ap- 287

proach of [Haliem et al., 2021] over others, as it was de- 288

veloped over multiple papers, has – in contrast to most, like 289

[Qin et al., 2020] – made (at least most of) its source code 290

available, and uses an accessible dataset. We show the re- 291

sults of the approach adapted to our environment and the one 292

we modified to add explanations in Table 1; the details of the 293

implementation are described in the Appendix. 294

5.1 Rebuilding a Repositioning Agent 295

Dataset. We select the NYC taxi dataset. After removing 296

outliers, around 186M trips between January 2015 and June 297
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2016 remain. We generalize the degree-based start and end298

locations of trips to the indices of a grid; in particular, a 500m299

square grid. We use 26K 10-minute time steps. We sepa-300

rate the last two months for testing and split the remaining301

16 months for training and validation with an 80/20 ratio; the302

latter two are split to enable learning Q based on Ψ.303

Environment. In our environment, a taxi agent moves304

around in a city – represented by a 20 × 20 grid – aiming305

to serve requests. The taxi can move up to two cells in each306

direction or remain in its current location. The agent receives307

the state s, which consists of the previous number of requests308

rt−4:t and the number of taxis dt+1 at every v as well as its309

location l(s). Each episode lasts 54 ten-minute steps or a310

nine-hour shift. In respect to the reward function R: When311

r − t ≥ 2, the agent receives a reward of 20 for two passen-312

gers; when r − t = 1 the reward is 10 for one passenger;313

if r > 0 and r ≤ d – the agent competes with other taxis314

with a chance of r
t a reward of 10 being given; in case the315

agent does (not) move the agent receives a reward of -1 (0).316

Whenever the reward is > 0, the agent is relocated to a loca-317

tion randomly chosen from the distribution of drop-off loca-318

tions. In each episode, the taxi starts at a random location and319

time. Our implementation of the environment is inspired by320

the OpenAI taxi environment.321

Request estimation. [Haliem et al., 2021] use ψd to extract322

the number of taxis from s and ψr to estimate the number of323

requests in 10 minutes at each v. ψr was learned via a three-324

layer convolutional neural network and achieved a Mean Ab-325

solute Error (MAE) of 1.22 trips per cell on the test data.326

Repositioning. We train the repositioner via DRL in the327

repositioning environment. In particular, we use dueling dou-328

ble deep Q-learning as proposed by [Wang et al., 2016] as it329

is closer to the state-of-the-art in RL than the double DQN330

approach used by [Haliem et al., 2021]. After training, the331

repositioner consumes ψd, ψr, l(s) and achieves an average332

reward of 6.85 per step on the test data.333

5.2 Explaining Repositioning Advice334

Here, we apply our composed explanation approach proposed335

in Section 4 to explain advice to taxi drivers in idle taxi repo-336

sitioning. Afterward, we also introduce a baseline explana-337

tion to which we compare ours. An example of both explana-338

tions is shown in Figure 1.339

Replacing ψr. To explain the model ψr that estimates the340

number of requests at every v ∈ V , one could use a common341

XAI method like SHAP [Lundberg and Lee, 2017], produc-342

ing an explanation size of |ε| = 4×20×20×20×20 = 640K.343

Besides being large, such an explanation would be noisy and344

far from what a user expects. Therefore, we reduce the num-345

ber of output features by making ψr only estimate the number346

of requests for one v. Further, we replace the original input347

features rt−4:t at every v by the location-dependent features348

index of v, rt−4:t at v, and the number of points of interest at349

v as well as location-independent time-related features, like350

the day of the week and weather-related features. Next, we351

replace the convolutional neural network with a feed-forward352

fully-connected one. Thereby, we achieve an MAE of 1.26353

trips per cell, which is only a slight increase of 0.04, while 354

reducing the input size of ψr from 1600 to 20, the output size 355

from 400 to 1, and |ε| when applying an XAI method like 356

SHAP from 64K to 20. After retraining the repositioner with 357

the new ψr, the mean reward increases to 7.24 per step. 358

RT-index. To reduce the size of the input in Q with an in- 359

tuitive representation, we propose the request-taxi index (RT- 360

index). It combines the ratio between the estimated number 361

of requests ψr and the number of taxis ψd as all taxi drivers 362

compete for requests and the ratio between the mean num- 363

ber of requests r̄ and ψr as the chance for getting a request 364

is higher at locations with more requests. We weigh the two 365

ratios via α ∈ [0, 1]. We set alpha to 0.75 even though with 366

another dataset a different value might be preferable. The 367

corresponding formula is: 368

IΨ(s, v) = ψr(s, v)

(
α

ψd(s, v)
+

1− α

r̄

)
for α = 0.75

As a visual representation, we choose a heatmap that shows 369

the RT-index for each location on a color scheme from red for 370

0 to green for values ≥ 3. 371

Transparent policy. To make the policy transparent, we it- 372

erate over all possible taxi locations l ∈ V and pass the corre- 373

sponding location with s to argmaxaQΨ(s, l, a). Therefore, 374

we collect the most promising action for each l. To visualize 375

these, we plot an arrow from each location with the length 376

and direction of the corresponding action. To incorporate the 377

certainty of the agent, we also collect 378

∆l = max
a

QΨ(s, l, a)−min
a
QΨ(s, l, a)

for each l. As a visual representation, we select black for ar- 379

rows on top of the heatmap generated via the RT-index with a 380

high action certainty and let the color fade away with decreas- 381

ing certainty. To make the color consistent over all locations, 382

we use min-max normalization with ∆l for the local and ∆g 383

for the global delta: 384

∆l −min∆g

max∆g −min∆g

Further, we compute a potential future path for up to five lo- 385

cations. The resulting locations are plotted on the map via 386

the letters B,C, . . . (A is reserved for the location of the taxi) 387

and selectable via buttons that update a table with the six most 388

important features. 389

Explaining ψr. After replacing ψr, we can simply apply 390

SHAP to the single-cell request estimation model. To reduce 391

the mental load of the users, we list the six most important 392

features as well as their order while omitting their actual val- 393

ues and influence. We generate this explanation for each v 394

along the potential future path and allow the user to select 395

one of the corresponding explanations via buttons. 396

5.3 Baseline 397

In our composed explanation, we have a compositional view 398

of the advising system explaining each component of the ad- 399

vising system solely and then joining the explanations. In 400

contrast to our compositional view, related work generally 401
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(a) Composed explanation (b) Baseline explanation

Figure 1: We show the composed explanation without its request estimation part in (a) and the baseline explanation for the number of taxis
in 10 minutes – the explanations for the request over the last 40 minutes are of a similar kind – in (b)

has a one-model view that does not differentiate between402

ψ1, ψ2, . . . , ψ|Ψ| and Q but takes the whole system as one403

function. In the following, we describe the selection of such404

a baseline XAI method, the configuration of the selected405

method, and our chosen visual representation. An example406

explanation via the baseline is shown in Figure 1.407

Selection. As we explain locally and post-hoc, we select a408

corresponding XAI method. Because our composed explana-409

tion is mainly visual, we select a corresponding baseline. As410

the state s is relatively big and image-like, and others also use411

perturbation-based XAI methods to generate saliency maps412

for DRL [see Huber et al., 2022], we also select such an ap-413

proach. Based on the results of [Huber et al., 2022], who414

compare several potential XAI methods, we first tried Sarfa,415

a method proposed by [Puri et al., 2020]. Unfortunately, these416

results were not reasonable with QΨ. Another XAI method417

included by [Huber et al., 2022] is LIME [see Lundberg and418

Lee, 2017]. LIME allowed us to explain only the advice, pro-419

duced more reasonable explanations than Sarfa, and takes a420

reasonable time to explain.421

Configuration. The explanation size is 2000, as we have422

one value for the number of taxis and four for the number of423

requests at each v ∈ V and fix the taxi location as well as the424

advice. We select the number of perturbation samples con-425

sidered for explaining to be 1000, as this produces reasonable426

explanations in a decent time – Mean (M) of 10.35 seconds.427

The background data is taken from the dataset used for train-428

ing and we select 25 samples at a similar hour and day as the429

time that shall be explained.430

Visual representation. When using saliency maps, many431

approaches plot those on top of the state. As the saliency432

values would make the state invisible, we present the expla-433

nations beside the state. We decided to exclude the actual434

influence values and show a scale from negative to positive435

influence instead to reduce the mental load for the user; while436

a negative/positive value refers to a negative/positive influ- 437

ence of the corresponding state value on taking the advice 438

when at the given location. 439

6 Experimental Results 440

Here, we report the size of the networks (request estimator 441

and repositioner) the number of input features given to the 442

explanation models, the explanation size, and the execution 443

time with several variants of the environment for idle taxi 444

repositioning. In particular, we vary the size of the city in 445

the environment and thereby indirectly the number of states 446

|S|. As |S| = 15010
2×2 ≈ 1.65 ∗ 10435 for |V | = 100, 447

we only report the number of nodes |V | instead of |S|. The 448

highest |V | we consider is 6400, which would correspond to 449

a grid cell size of 125m when we consider the same area. The 450

second variation of the environment is the modification of the 451

action size |A|. While |A| = 9 refers to the agent’s ability to 452

move one cell in each direction, |A| = 25 refers to moving 453

up to two cells in each direction. 454

Network size, input features, and explanation size. As 455

shown in Table 2, the network size is primarly influenced by 456

|V | and not by the explanation setting – composed or baseline 457

– or |A|. As the baseline uses a whole-city request estimator, 458

the network size is slightly larger compared to the single-cell 459

case. As the influence of |A| on the network size is small 460

and there is none on the number of input features and the 461

explanation size, we do not list |A| for |V | > 100 in Table 2. 462

Obviously, the number of input features and the explanation 463

size increases linearly with |V |. The size of the composed 464

explanation is always smaller than that of the baseline. In all 465

composed settings, the size is mainly driven by the RT-Index 466

and the arrows – the table-based explanation of the upstream 467

request estimator has a low influence on the number of input 468

features and the explanation size. These results are limited 469

because in reality the performance of an agent also depends 470
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Network size #input features Explanation size

|V | |A| Composed Baseline Composed Baseline Composed Baseline

100 9 3.31M 3.35M 0.32K (0.20K, 0.20K, 0.12K) 0.50K 0.24K (0.10K, 0.10K, 36) 0.50K
100 25 3.33M 3.37M 0.32K (0.20K, 0.20K, 0.12K) 0.50K 0.24K (0.10K, 0.10K, 36) 0.50K
400 9 21.14M 21.18M 0.52K (0.80K, 0.80K, 0.12K) 2K 0.84K (0.40K, 0.40K, 36) 2K
1600 9 120.23M 120.27M 3.32K (3.20K, 3.20K, 0.12K) 8K 3.24K (1.60K, 1.60K, 36) 8K
6400 9 361.14M 361.18M 12.92K (12.8K, 12.8K, 0.12K) 32K 12.84K (6.40K, 6.40K, 36) 32K

Table 2: Network size, number of input features given to the explanation approach, and size of the explanation depending on the number of
nodes |V | and actions |A| in the environment; for the number of input features and the explanation size, we show the values for the RT-index,
the arrows, and the table separately in brackets.

|V | |A| Composed (M±SD) Baseline (M±SD)

100 9 0.87±0.44 7.20±0.86
100 25 0.98±0.27 7.42±0.52
400 9 1.30±0.36 10.00±0.71
1600 9 5.89±0.31 18.28±0.68
6400 9 25.51±1.91 41.18±1.13

Table 3: M is the mean execution time in seconds over 10 runs and
SD the corresponding standard deviation with varying number of
nodes |V | and actions |A| for the explanations.

on the network architecture; a larger state space might require471

more trainable parameters, and therefore a network size larger472

than the one listed in the table.473

Execution time. As shown in Table 3, (1) our approach can474

be applied to different environments, (2) its execution time475

is lower than that of the baseline in all considered cases, and476

(3) the size of our composed explanation is in all cases less477

than half compared to that of the baseline explanation. The478

execution time of the baseline depends on the number of sam-479

ples considered for perturbation – 1000 in our case; the larger480

this number, the larger the execution time of the baseline.481

Similar to before we omit more options for |A|, as the number482

of actions only slightly depends on |A|.483

7 Game-Based User Study with Questionnaire484

7.1 Study Design485

When designed appropriately, explanations have the potential486

to increase properties like the satisfaction of a user that inter-487

acts with an AI-based system. To evaluate the effectiveness of488

our explanation approach, we developed a game – see the Ap-489

pendix – in which participants of our study can drive through490

a city aiming to maximize their reward as taxi drivers. In this491

game, the participants receive advice provided by an agent492

that has learned QΨ and an explanation – either ours or the493

baseline. At each time step a participant can either follow the494

advice or select one of the other actions. Besides observing495

the achieved reward, the degree to which advice is followed,496

and the time taken to select an action, we conduct a question-497

naire with 31 questions.498

Participants. We recruited 28 participants through univer-499

sity courses and social networks that are fluent in English,500

over the age of 18, and do not have color blindness – the lat- 501

ter might affect their ability to see the generated explanations 502

correctly. The M age of the participants is 28.96 years with a 503

Standard Deviation (SD) of 8.27 years – 39% of the partici- 504

pants reported are female, 61% are male. A majority of 64% 505

of the participants reported living in Germany. The study was 506

conducted in December 2022 and January 2023. 507

Independent variables. Our within-subject study shows 508

two explanation settings in one scenario to each participant – 509

starting date and time of day. Consequently, each participant 510

plays twice in the game before answering questions about 511

both explanation settings. The order in which the two expla- 512

nations are shown to the participants is switched after every 513

participant. To gain better insights into the behavior of par- 514

ticipants, we ask them to rate how confident they were about 515

choosing a better option than the provided advice and what 516

their strategy was. 517

Dependent measures. Based on [Hoffman et al., 2019], we 518

evaluated the generated explanations via the satisfaction scale 519

with each explanation presented according to understanding, 520

satisfaction, detail, completeness, usage, usefulness, accu- 521

racy, and trust. We asked the participants to rate all ques- 522

tions related to satisfaction with the explanation on a five- 523

point Likert scale. Further, we measured the achieved reward, 524

the degree to which the participants followed the advice, and 525

how much time they took to perform a step. As the execution 526

time for creating the baseline explanation is on average 9.21 527

seconds higher than that of the composed one, we subtract 528

this extra time in the res enable a fair comparison between 529

the two explanation settings. 530

Structure. During the study, participants go through the 531

following steps: (1) Introduction to the study and the 532

game, (2) ten steps of playing with one explanation method, 533

(3) questions related to the subjective usage of the adivce, 534

(4) ten steps of playing with the other explanation method, 535

(5) questions related to the subjective usage of the adivce, 536

(6) questions related to the explanations provided, and (7) de- 537

mographic questions To ensure data quality, after the descrip- 538

tion of the game, we incorporate three attention-check ques- 539

tions about a participant’s understanding of the environment. 540

Hypothesis. With the described study, we investigated the 541

following hypotheses: 542

• H1: The proposed composed explanation for reposition- 543

ing achieves a higher satisfaction [see Hoffman et al., 544
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Figure 2: Questionnaire results for dimensions of the satisfaction
scale by [Hoffman et al., 2019] as boxplot for our composed ex-
planation (top/pink) and the baseline (bottom/blue) – the median is
represented via a gold line, the mean via a triangle, ∗∗ indicates
0.001 < p ≤ 0.01, and ∗∗∗ indicates p ≤ 0.001.

2019] than the baseline alternative.545

• H2: Compared to the baseline explanation of reposition-546

ing, participants achieve a higher reward with the com-547

posed explanation.548

• H3: Participants who are presented the composed expla-549

nation follow the advice to a higher degree, when com-550

pared to the baseline explanations.551

• H4: Participants require less time when taking actions552

with the composed explanation compared to the baseline553

alternative.554

7.2 Result Analysis555

To investigate H1, we select a Wilcoxon signed-rank test; for556

H2 to H4, we select a paired sample t-test. For all tests, we557

set the significance level α to 0.05.558

H1 – Satisfaction. As shown in Figure 2, the null hypoth-559

esis of the tests can be rejected for all dimensions of the560

used satisfaction scale – highest p-value for trust with 0.0029.561

Therefore, the data supports H1.562

H2 – Reward. While the participants achieved an M reward563

of around 90.18 with an SD of around 18.13 with the base-564

line explanation, they achieved an M reward of 98.18 (SD of565

13.18) – the difference was higher when the participants first566

played with the composed setting. However, the difference567

was not statistically significant (t = −1.8216, p = 0.0796).568

As M is higher with the composed explanation, the SD is569

lower, and the difference is not significant, we argue that the570

data partially supports H2.571

H3 – Degree of following. From the 28 participants, 13 fol-572

lowed more when presented with the baseline, 11 more with573

the composed explanation, and four participants followed to574

the same degree in both settings. As the mean of follow-575

ing between baseline and composed also only slightly differs576

– 45% following compared to 41% – the corresponding test577

could not underline the difference via statistical significance578

(t = 0.9168, p = 0.3673). Consequently, the data does not579

support H3.580

H4 – Less time. On average, participants took less time to581

take actions when the composed explanation was provided582

(M = 38.78, SD = 15.90) compared to the baseline expla-583

nation (M = 52.82, SD = 27.72). This difference is also584

statistically significant (t = 2.9182, p = 0.0070). Thus, the 585

data supports H4. 586

Usage of explanation of ψr. Overall, 71% of the partici- 587

pants used the explanation of the upstream DL model ψr. The 588

usage spans over 20% of all game steps taken in the study – 589

39% of the participants used the table more than once. One 590

person requested to see the table for more locations. 591

7.3 Discussion 592

Based on the satisfaction scale, people clearly favored our 593

composed explanation over the baseline alternative. An anal- 594

ysis of the strategy descriptions of the participants shows 595

that they mainly focus on the RT-index. Even though they 596

achieved on average a higher reward when using the com- 597

posed explanation, this result is not statistically significant. 598

However, the comparison is slightly unfair as for the baseline 599

the state is directly visible; this would be unrealistic as a taxi 600

service is unlikely to want to disclose this knowledge to its 601

taxi drivers. Most likely, not showing the state would change 602

the results in favor of H2. Further, the reward is heavily de- 603

pendent on a stochastic function. 604

The interpretation of the results regarding the degree to 605

which the advice was followed is not straightforward. On 606

the one hand, the results might be blurred by the stochastic 607

reward function leading to people following less/more based 608

on the achieved reward. On the other hand, people might 609

feel comfortable with the provided information and decide to 610

make decisions on their own. Viewed the other way around, 611

this could mean that people feeling overwhelmed by the base- 612

line follow the advice to reduce their mental load. This claim 613

is in line with the fact that the participants required more time 614

to select an action with the baseline explanation and multiple 615

strategies described by the participants. However, the afore- 616

mentioned argumentation is weakened, as the time required 617

to take an action is only a proxy for the mental load of the 618

participants. 619

The results regarding the usage of the explanation for the 620

upstream request estimation model ψr indicate to make such 621

explanations optionable; for instance, by selecting which ex- 622

planation aspect shall be shown, for each user. Another po- 623

tential reason why the table-based explanation was not used 624

more might be that the participants played so much less that 625

their mind was occupied by the other explanation aspects. 626

Consequently, the table-based explanation might be more rel- 627

evant once people are familiar with the game. 628

8 Conclusion 629

In this work, we proposed a composed approach that is gen- 630

eralizable and modular to offer advice for end users provided 631

by a multi-black box DRL-based system. We demonstrate 632

our approach by generating explanations for idle taxi drivers 633

that receive repositioning advice. Besides showing the scal- 634

ability of our approach via experiments, we evaluate the ef- 635

fectiveness in a game-based user study. Participants are more 636

satisfied, achieve a higher reward with our explanation com- 637

pared to a baseline, and show interest in the explanation of 638

the upstream DL model we propose. 639
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Our results are limited by the participant sample that is not640

representative of taxi drivers. Further, our explanation ap-641

proach differs to saliency map-based ones like the baseline.642

In the future, we aim to separate the effect of the computed643

explanation from its visual representation. Based on the pos-644

itive results with the index, we plan to use a state-dependent645

value function learned via DRL to generate an alternative in-646

dex.647
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[Text deleted] shape of 20 × 20. The kernel sizes are 3, 5, and 7; the number of channels is set to 32 and 64. With a learning rate of 0.01 and 30 epochs of training, the request estimation model achieves a MAE of 1.22 trips per cell on our test data. Modified. This request estimator consists of five fully-connected layers with 20, 128, 64, 32, and 16 neurons. With a learning rate of 0.001 and 15 epochs of training, we achieved a MAE of 1.26 trips per cell. As input features, we used: (1) x-index at v, (2) y-index at v, (3) #requests 30 minutes ago at v , (4) #requests 20 minutes ago at v , (5) #requests 10 minutes ago at v , (6) #requests now at v , (7) #points of interests at v, (8) hour, (9) minute, (10) weekday, (11) month, (12) temperature, (13) wind, (14) humidity, (15) air pressure, (16) view, (17) snow, (18) precipitation, (19) cloudy, and (20) holiday. A.3 Repositioning We train the repositioner in the taxi repositioning environment via reinforcement learning. Similar to [Haliem et al., 2021] and related work in taxi repositioning, we use model-free off-policy Q-learning to train the repositioner in our environment. In particular, we use dueling double deep Q-learning as proposed by [Wang et al., 2016] as it is closer to the state-of-the-art in RL than the double DQN approach used by [Haliem et al., 2021]. Both networks – the policy and target one – consist of three convolutional layers with corresponding kernel sizes of5, 5, and 3; the number of filters is set to 16, 32, and 64. The next layer is a fully connected one with 64 * 12 * 12 + 2 = 9218 input and 1024 output neurons. Both the value and advantage layers receive this as input. As we do not aim to outperform other repositioning approaches but to enable explaining them, we tune the hyperparameter manually, resulting in (1) a learning rate of 0.001, (2) a gamma of 0.99, (3) an episode decay of 675 to adjust the exploration–exploitation trade-off, (4) a target network update rate of 11, Category Content Overall (n = 27) n % Gender Female 11 41 Male 16 59 No gender - - No answer - - Age < 21 3 11 21 to 30 17 63 31 to 40 4 15 41 to 50 1 4 51 to 60 - - > 60 1 4 No answer 1 4 Education No training yet - - Secondary school 1 4 High school diploma 3 11 Vocational training 2 7 Bachelor degree 8 30 Master degree 10 37 Doctorates 3 11 Other - - No answer - - Country Germany 17 63 Israel 6 22 United States 3 11 Finland 1 4 No answer - - Table 4: Profile of respondents (5) and a replay memory size of 15K transitions. As shown in the first row of Table 1, the repositioner achieves an average reward of 6.85 per step. B Details of User Study B.1 Profile of Respondents See Table 4. B.2 Description of Game Given to Participants Before each participant starts to play the game, we describe that he/she is a taxi driver that aims to maximize his/her reward. Further, we describe the following aspects: (1) the current location – yellow square – the advice – blue square – and the last location – black square – (2) that at each step a movement of up to two cells or staying at the current location is possible via the action buttons, (3) the reward function, (4) the available information fields like the accumulated reward, (5) the usage of the webpage – minimizing/maximizing of graphics and description pane – and (6) the description of the explanation configuration. B.3 GUI of Game Ethical Statement This study described in Section 7 and Appendix B was approved by the internal review board of Bar-Ilan University prior to conducting our study.
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