1

125

	IUBH

	Industrial and Mobile Robotics

	DLMAIEAR01

Learning Objectives
Understanding industrial as well as mobile robotics requires many interdisciplinary skills, ranging from physics and mechanics to control engineering, automation, actuator and sensor technology, and embedded systems. In recent decades robotics has also been complemented by fields such as artificial intelligence and the industrial Internet of Things.

This course provides the basic notions to understand robotics. The starting point is kinematics, i.e., how a robot moves in the space and how the relative positions of its parts (joints and links) can be determined based on some information about the actuation variables. Kinematics neglects the presence of forces.

Kinematics is the basis to design motion of the robot, which is usually done within trajectory planning. Tasks are broken into basic actions which correspond to the execution of a trajectory in the space. Trajectory planning takes into account the space, the goal, and the presence of obstacles hindering execution.

Trajectory planning provides a trajectory, i.e., a sequence of values for the robot actuation (e.g. the joints), their velocities, and possibly their accelerations with respect to time. Such values become the reference values for a robot control system.

The basic approach for building a control architecture are discussed in the final chapter of the coursebook. The particular control architecture strictly depends on the application. However, general approaches have been developed during the years, and can serve as inspiration for own architectures. Several open-source tools have been recently proposed, which make the implementation of a robotic control architecture easier.
The desired trajectories provided by trajectory planning must be realized by the control architecture and, specifically, by the lowest layers of such an architecture, which deal with hardware control. There are many different control approaches, summarized in the last chapter of the coursebook. The approaches which proved to be the best in terms of quality of execution as well robustness are those which take the dynamics of the robot into account. Developing a dynamic model of a robot can be quite challenging. In this coursebook, the basic approaches are discussed and some examples are provided to illustrate the ideas.

Unit 1 – What is Robotics?

Study Goals

On completion of this unit, you will have learned …

… the fundamental definitions in the field of robotics.
… the historical and cultural background of robotics.
… which challenges and trends the field of robotics is facing.

1. What is Robotics?

Introduction

“Robots today are making a considerable impact on many aspects of modern life, from industrial manufacturing to healthcare, transportation, and exploration of the deep space and sea” (Siciliano & Khatib, 2008, p. 1).
Robotics is a rapidly changing field, and an increasing number of tasks are being automated as the field continues to evolve. New modeling, computation, and artificial intelligence capabilities have established opportunities for the industrial sector. Attributing to this technological progress, modern robots can undertake more tasks to support humans, for example, tasks that would be too dangerous for them. Potential applications range from industrial manufacturing processes to nursing activities, support of agricultural work, defusing of bombs, transportation of goods, and even social interaction with human beings. This unit will present the fundamental definitions in order to provide a background on the terms, the history of robotics, and the current trends in this rapidly changing field.

[bookmark: _Toc221687482]1.1 Basics and Definitions
Robotics is a multidisciplinary field that involves many different aspects, ranging from mechanical engineering and electrical engineering to computer science, ethics, and social sciences. The Oxford dictionary defines robotics as a “branch of technology that deals with the design, construction, operation, and application of robots” (Lexico, n.d., para. 1). This definition underlines the many aspects that must be considered in this field.
Firstly, it is important to understand the definition of a robot. The term “robot” can be traced back to its first usage in 1920, when the Czech author Karel Čapek formed a new noun from the Slavic word “robota,” which can be translated to “subordinate labor” (Siciliano & Khatib, 2008). This translation denotes a crucial characteristic of the field: Robots are frequently used to support humans in completing strenuous tasks or taking over these tasks entirely.
Industrial Robots and Mobile Robots
Generally, robots can be divided into two different categories: industrial robots and mobile robots. Their definitions also describe their characteristic features: Industrial robots are “multi-purpose manipulators” that feature at least three programmable axes and automatically fulfill an industrial task. This task is usually fulfilled by “end effectors” that represent tools or grippers (Hägele & Schäfer, 2006). Industrial robots are stationary, so the control unit can be located separately from the actual robot.Industrial robots These robots feature at least three programmable axes and are stationary when they operate.

For mobile robots, there is no unambiguous definition. The one obvious but relevant aspect that distinguishes mobile robots from industrial robots is their ability to adapt their actions to a changing environment. (Hertzberg et al., 2012). This change is due to their regular movement. Mobile robots can also use their sensors to monitor and navigate their environment in order to fulfill the described tasks in their changing environment (Hägele & Schäfer, 2006; Hertzberg et al., 2012). The figure below compares industrial and mobile robots.Mobile robots
These robots are not stationary and can fulfill transport orders.

 Industrial robot and mobile robot[image:]
Classification of Robots
There are many different other characterizations of robots in addition to industrial and mobile robots. Some robots are assigned to specific countries, and others do not have defined roles; this can lead to various interpretations (Jazar, 2010). The classification of the different robots usually depends on the perceived degree of intelligence. One common classification is that which was suggested by the Japanese Industrial Robot Association (JIRA), which identifies six different categories of robots (Jazar, 2010).Japanese Industrial Robot Association (JIRA)
They distinguish the degree of intelligence of a robot based on six categories.

The first class describes manually operated devices featuring multiple axes that can be used for handling tasks. A common example is a suspension crane that can be moved within a defined area in a production hall (Jazar, 2010). The second class of robots fulfills a defined task and does not allow for flexible automation. If it is possible to perform a predetermined “variable sequence” of process steps that enables flexible automation, the robot is assigned to class three. Class four describes “playback robots.” An operator performs the initial manual execution of process whereby the process steps are saved and subsequently repeated by the robot. Class five includes robots that are controlled numerically by a program (the input is available as a program code). The most intelligent robots are assigned to class six, which describes robots that determine and process so much information from their environments that they can also fulfill their tasks also under varying conditions (Jazar, 2010).
However, the JIRA classification is not mandatory as there are other approaches for distinguishing robots into different categories. Other characteristics that can be used to categorize robots are their application, control, or kinematic properties, such as their geometry. The geometrical differentiation is based on the kinematic components (joints and links of the robot), and their geometrical relation is described by the kinematics of the robot (Jazar 2010).Joints
The joints of robots enable rotations and translations.

Links are rigid bodies that can change their position relative to each other (Jazar, 2010). Joints couple two links with each other and provide a kinematic degree of freedom (DOF), which can either represent a rotation around an axis or a translation. Most industrial robots feature six degrees of freedom in order to reach every location in a three-dimensional space (Jazar, 2010). The figure below illustrates examples of joints that can provide a rotational or translational DOF. Each joint features an axis in which or around which the movement is conducted.
Joints for translation and rotation
[image: A drawing of a car

Description automatically generated with low confidence]
The geometric classification of robots can also be based on the arrangement of the joints and links. The arrangement of joints is characterized by the relation of two adjacent axes that can be described with the following operators (Jazar, 2010):
· ∥ represents a parallel arrangement of two axes.
· ∟ represents an orthogonal arrangement of two axes.
· ⊥ represents a perpendicular arrangement.
A perpendicular arrangement is two axes that “are in right angle with respect to their common normal” (Jazar, 2010, p.8). describes a rotational joint (revolute) and a translational joint (prismatic).
There are multiple opportunities to cover all six degrees of freedom in the three-dimensional space; however, the most typical alignments of the first three joints are the categories R ∥ R ∥ P, R ∟ R ⊥ R, R ∟ R ⊥ P, R ∥ P ∟ P, R ∟ R ⊥ P, R ∥ P ∟ P and P ∟ P ∟ P (Jazar, 2010). The figure below illustrates two of these setups. The left arrangement is the setup R ∥ R ∥ P featuring three parallel axes, the first two representing rotations, and the third representing a translation. Another typical setup of three axes is also given with the type R ∟ R ⊥ P. In this example, the first two rotational axes are orthogonal, and there is a perpendicular translation along the third axis (Jazar, 2010).

Example of the geometric differentiation of industrial robots
[image: A picture containing graphical user interface

Description automatically generated]
Coordinate Systems for Robots
The kinematic setup of a robot is critical for its definition and application. Thus, it was demonstrated that it is a common principle to categorize robots according to their kinematics. The kinematics describe the fundamental principles to plan, e.g., the path, the movement, and the control of a robot. The discipline of kinematics is a subfield of engineering mechanics that describes movements without considering any forces caused by them (Hägele & Schäfer, 2006). To what extent the separate axes can move is determined and described by their DOFs, which represent the possibilities of movements that are independent from each other (Hägele & Schäfer, 2006).Kinematics
The discipline of kinematics describes movements of robots and is essential to plan the path for a task fulfilled by a robot.

One needs to choose a suitable coordinate system as a common reference to describe the movements in the robot’s program code. This enables an unambiguous interpretation of program commands. It was demonstrated in the previous figure that each joint has coordinate axes that describe the reference related to each movement. These reference points for description must be chosen carefully, and the coordinate transformation between individual joints must be imaged in a certain manner. It was shown that, even for industrial robots, the axes for movement are one determining feature representing the “guided, independent from each other links” (Hägele & Schäfer, 2006, p. 740). This demonstrates the importance of kinematic considerations when designing robot systems.
Whether or not a robot has completed a task is determined by the positioning of its end effector, which can be described either in Cartesian coordinates that image the actual position of the end effector, or in joint coordinates that represent the position of each individual joint. When put together, the positions of all individual joints also determine the position of the end effector (Hägele & Schäfer, 2006). In order to describe the kinematics of a robot and calculate the trajectory of the movements of the individual joints that are used to plan the path of an end-effector, the position of different reference points must be described. This can be done by defining various types of coordinate systems that have their own individual reference points. Additional coordinate systems that can be transformed into each other are usually defined according to the tool and the object that is represented by the workpiece being handled (Hägele & Schäfer, 2006). The world coordinate system describes the coordinate system that refers to to the environment of the robot and is considered to be independent from the from the tool coordinate system and object coordinate system (Jazar, 2010; Hägele & Schäfer, 2006). When a coordinate system is defined at the position of the assembly area of the robot, it is referenced as the “base coordinate system” (Hägele & Schäfer, 2006). “Joint coordinate systems” describe the coordinate in relation to a previous joint (Hägele & Schäfer, 2006). When the tool or object coordinate system are defined, their position is assumed to be the origin of the coordinate system. The coordinate system of the mechanical interface refers to the flange that is used to mount the end-effector of the robot. If additional coordinate systems (which are references to workpieces that are currently not being handled but underlie, e.g., an interim storage) are defined, then these coordinate systems are described as “workpiece coordinate system” (Hägele & Schäfer, 2006). The figure below summarizes the different types of coordinate systems that are present when the paths of industrial or mobile robots are calculated.Coordinate system
For each joint, the tool and the object to be handled in an individual coordinate system can be defined.

Different types of coordinate systems exemplified for an industrial robot
[image:]
In addition to the different locations and reference points defined in the figure above, coordinate systems can also be distinguished by their mathematical description. Depending on the specific tasks, the point of origin and reference of the coordinate system need to be chosen, as well as the definition of the different coordinate axes. Generally, an arbitrary point of origin can be defined for each coordinate system. The most common type of coordinate system is the cartesian coordinate system, which defines a vector in the three-dimensional space based on the three axes x, y, and z:Cartesian coordinate system
These are the most common description and use three linear axes in the three-dimensional space.

(1.1)

The Cartesian coordinate system is well-suited to describe linear movements in the three-dimensional space. However, the description of rotational movements, there are other types of coordinate systems that are more suitable because they have been specifically designed for this kind of coordinate transformation. For rotations in a plane, the polar coordinate system is a suitable tool, whereas the cylindrical coordinate system is also capable of describing rotational transformations in the three-dimensional space. The polar coordinate system is defined in the plane (ℝ²) and specifies the position of a point as a function of its distance from the origin and a rotation angle ϕ:

(1.2)

With the cylindrical coordinate system on the other hand, a vector in three-dimensional space is specified as a function of a position z along an axis of rotation. The other two coordinates specify the radius of the rotation, or the distance to the rotation axis r, and the angle of rotation ϕ. Accordingly, a vector can be represented as follows:

(1.3)

The figure above summarizes the three described types of coordinate systems and illustrates the alignment of the individual coordinate axes. Based on mathematical transformations, it is possible to convert each coordinate systems into another type. In the field of robotics, the cartesian coordinate system is used for the description of translational joints, considering that the corresponding movements can be mathematically described as a vector addition. Generally, cartesian coordinate systems are the most typical kind of description and are well-suited for many applications. However, if, for example, the rotation around a defined axis is considered, the application of polar of cylinder coordinates can be useful.
Different types of coordinate systems
[image: Graphical user interface, application

Description automatically generated]
Aspects of Robotics
The field of robotics is a highly interdisciplinary field that includes mechanical engineering, electrical engineering, computer science, politics, and social sciences. It involves many different disciplines, such as engineering, mechanical engineering, and design, manufacturing technology, and electrical engineering. These disciplines are linked to the hardware of robots. Thus, robotics is a typical case of “systems engineering.” Measurement technology, sensor technology, control, and regulation are also very important aspects in engineering, as the movement of the robot must be planned according to the relevant information about the robot and its environment. Furthermore, the actual programming and software design for robots involves many aspects from computer science. Finally, the field of robotics must consider aspects of society, politics, and ethics. The capabilities of robots are rapidly increasing, leading to many ethical questions that must be addressed by politicians, who are responsible for creating a regulatory framework to determine what is acceptable. Safety regulations and workplace safety are also based on government regulations. Acceptance on behalf of the society plays an important role, since the user of certain products or services will ultimately decide which product and company they would like to support. The power of the buyer should not be underestimated.Systems engineering
This describes the design of complex systems with interdisciplinary approaches.

Self-Check Questions
1. Please mark the correct statements.
The name robot can be derived from a Slavic word for…
· …subordinate labor.
· …human.
· …strenuous task.
· …automation.

2. A robot is used to sort bottle caps according to their size. Depending on the task at hand, the bottle caps can be either plastic or metal. To which category, according to the JIRA, would the robot be assigned?
· class 3
· class 2
· class 4
· class 5

3. Please list three scientific disciplines that are involved in robotics.
mechanical engineering
electrical engineering
computer science
politics
social sciences

4. Which of the following arrangements of the first three joints of an industrial robot does not describe a typical case?
· P ∟ P ⊥ P
· P ∟ P ∟ P
· R ∥ R ∥ P
· R ∟ R ⊥ R
[bookmark: _Toc221687504]1.2 History and Cultural Influence
The public’s attention to the field of robotics has become increasingly focused throughout the past decade, although robots have been applied commercially for more than 50 years (Hägele & Schäfer, 2006); however, the history of robotics originates even further back: Siciliano and Khatib (2008) state that the idea of robotics is not only “to create machines that are skilled and intelligent” (p. 1), but also to “create artifacts” with human characteristics. Ancient historical examples include ancient Greek legends of artificial slaves carved out of bronze (3500 BC), Egyptian statues that could be used to shelter priests inside of them (2500 BC), automated water clocks (1400 BC), the hero of Alexandria (100 AD), and the mechanical apparatuses of Leonardo da Vinci (1500 AD) (Siciliano & Khatib, 2008). After the word “robot” gained popularity in 1920, the field of robots became more widely discusses, for example, the field of ethics in human-robot interaction was addressed in 1940s science fiction literature (Siciliano & Khatib, 2008).Artifacts
The first artifacts used to automate processes with imaging human characteristics can be seen as precursor of modern robots.
Water clocks
These were one of the first principles for an automated measurement of time.

History of Industrial Robots
The actual application of industrial robots as we know them today started in 1954, when George Devol filed the first patent (Hägele et al., 2008). It took another seven years until the technology could be successfully applied in a production line, after which industrial robots started to be useful for more and more applications in both the handling of workpieces and welding (Nof, 1985, as cited in Hägele et al., 2008). Still today, these two tasks remain highly typical applications of industrial robots. Another important step in the development of industrial robotics was taken in 1969, when the “Stanford Arm” was invented. This was a robot arm featuring six DOFs and a clever configuration that enabled a fast computation of movements with the present computational resources from more than 50 years ago (Hägele et al., 2008). Its inventor, Victor Scheinman, developed the concept further and created the “MIT arm,” which was a pioneering achievement for the nascent field of programmable universal manipulation arms (PUMA). The MIT arm, that was designed in 1972, is depicted below.
F The MIT arm designed in 1972 was a pioneer for the subsequently evolving field of PUMA (Programmable Universal Manipulation Arm) robots
[image: A picture containing sewing machine, appliance, indoor, floor

Description automatically generated]
The 1970s introduced further milestones in the development of industrial robots: “the first microcomputer-controlled all-electric industrial robot” (Hägele et al., 2008, p. 967) in 1973 and “the selective compliance assembly robot arm (SCARA)” in 1978 (Makino, 1980, as cited in Hägele et al., 2008, p. 967). The latter achievement refers to an easy and affordable design principle of robots that has enabled the mass production of many goods, for example, in the electronics sector (Boothroyd & Altling, 1992, as cited in Hägele et al., 2008).
In the past decades, further developments in the field have aimed to increase a robot’s speed and reduce their weight by optimizing their design and kinematics, among other characteristics, by adapting the design of robot arms to a human arm (Hägele et al., 2008). One concept that was pursued to reach this goal are parallel robots, which have been developed since the 1980s and enable a simultaneous handling of multiple workpieces (Hägele et al., 2008). In 2006, KUKA (n.d.) introduced a robot arm with 7 DOFs, whose weight equals that of a human arm (Hirzinger et al., 2002, as cited in Hägele et al., 2008).
The developments in the fields lead to significantly decreasing prices of robotic units, improved synchronization and communication between multiple robots, and better business models regarding training, services, and financing of robots (Hägele et al., 2008). The improvement of available computational power and sensor technology has accompanied this trend (Hägele et al., 2008).
History of Mobile Robots
Mobile robots are the second category of robots, whose evolvement and development coincided with industrial robots. The additional challenge is their non-stationary operation, which requires navigation abilities, more adaptability towards their environment, and a power supply independent from stationary facilities, e.g., through rechargeable batteries.
The first autonomous mobile robot (AMR) was developed around the same time when industrial robots started emerging in the 1940s and 1950s in England, in conjunction with the creation of the “Electro-light-sensitive Internal-External,” a device that could locate the position of a light source and interact with its environment using sensors and actors (Berns & von Puttkamer, 2009). By the end of the 1960s, more advanced systems were being developed; the robot “Shakey” already featured a TV camera, distance measurement based on a triangulation sensor, and software that could process data to perceive its environment and conduct motion planning (Berns & von Puttkamer, 2009). The figure below illustrates the corresponding hardware setup of the robot.
[bookmark: _Hlk47340559]The robot “Shakey,” designed at the Stanford Research Institute, already had many features that are typical for modern mobile robots

[image: A picture containing indoor, floor, wall, kitchen appliance

Description automatically generated]
One important achievement of Shakey was the introduction of the principle of “hierarchical control” that is present in most modern robots (Berns & von Puttkamer, 2009). In the first use case, the control was based on three different levels. The first level indicated low-level routines for certain tasks, e.g., for separate moving operations, which could then be combined to carry out more complex tasks (intermediate level) (Berns & von Puttkamer, 2009). The third hierarchy level has the characteristics of being the first “cognitive robot,” and robots in this level are able to “make and execute plans” (Berns & von Puttkamer, 2009, p. 9).Hierarchical control
This describes the arrangement of controllers in at least two levels.

 For autonomous mobile robots (AMRs), the fields of control, location, and navigation are essential tasks. In the 1970s, NASA founded a research program to enhance their control, an undertaking that eventually resulted in the Mars Rover, a robot that consisted of a modified Stanford arm and a broad range of sensors that enabled navigation based on a “world model” (Berns & von Puttkamer, 2009). In 1973, a programming language, WAVE, was specifically developed for the needs of robots (Haun, 2013). Additional research led to the Stanford Cart, an invention that, with the aid of stereo-cameras, enabled the generation and processing of 3D images for an improved environmental perception (Berns & von Puttkamer, 2009).
The 1980s introduced new approaches for motion planning, in addition to increased computational power. This resulted in applications, such as a Japanese robot that was able to navigate for blind persons, or German “micromouse” robots that featured tiny dimensions but were still able to navigate through a complex maze (Berns & von Puttkamer, 2009). When the nuclear disaster of Chernobyl occurred in 1986, AMRs were used to work in the areas where humans would have faced life-threatening conditions (Haun, 2013). With the German AMR Karlsruhe autonomous mobile robot (KAMRO), autonomous assembly tasks also became possible (Berns & von Puttkamer, 2009). Starting in the 1990s, numerous additional improvements and developments of AMRs have been conducted all over the world, enabling not only the exploration of Mars, but also services that are commonly performed by modern AMRs, such as an automated convenient vacuum cleaner or autonomous transport (Berns & von Puttkamer, 2009).

Self-Check Questions
1. Please describe additional challenges that AMRs are facing but industrial robots are not.
AMRs must fulfill the tasks of navigation planning and localizing themselves by constantly monitoring their environment. The environment is constantly changing, whereas industrial robots are stationary and have a constant environment.

2. Please provide the correct term that is represented by the abbreviation PUMA.
programmable universal manipulation arm
3. Which statement about the robot “Shakey” is not correct?
· Shakey was developed in the late 1960s.
· Shakey was able to acquire and process 3D images.
· Shakey featured a TV camera.
· Shakey introduced the principle of hierarchical control.

1.3 Challenges and Trends (From Robotics 1.0 to Robotics 3.0)
The field of Robotics is still not “a solved problem,” although this is a common misconception (Hägele et al., 2008, p. 983). There are still many challenges that modern robotics must overcome in the industrial branch. The following section presents an overview of current trends and developments in the field of robotics.
Production at Different Scales
Although robots have become increasingly established in the industrial production environment, there are still branches and types of companies where they have not yet found application. Firstly, the usage of robots is still limited to larger companies. When robots are implemented in smaller companies, their range of possible applications will be significantly higher (Hägele et al., 2008). Kopacek states that standardized production cells featuring industrial robots coupled with “a reasonable pricing” mechanism will be necessary in order to pique the interest of smaller or medium-sized companies (Kopacek, 2013).
Technological Thresholds
Hägele et al. (2008) state that there are numerous boundaries that should be addressed in the current research and development; many projects already try to overcome these shortcomings. These can be seen as a challenge that needs to be addressed, as well as a trend, since the current developments in the field of robotics are derived from these open questions. Some of these boundaries are as follows:
· “Human-friendly task specification” (Hägele et al., 2008). Modern robots require an efficient human-machine interaction in order to exchange information between the operator in the production environment and the robots.
· “Efficient mobile manipulation” (Hägele et al., 2008). Affordable and high-performing mobile robotic need to be developed which can handle products and fulfill their tasks independent from their location. The general trends are headed towards efficient mobile manipulation— although one issue of mobile manipulation - the power consumption – still remains challenging (Kopacek, 2013).
· “Low-cost components including low-cost actuation” (Hägele et al., 2008, p. 984). Actuators are responsible for a significant share of the total cost of industrial robots. Thus, to reach out to a wider range of customers, more affordable actuators and hardware are required.
· “Composition of subsystems” (Hägele et al., 2008). The connectivity of different modules of a robot needs to be ensured, considering that unencapsulated systems result in greater effort for development and production. Thus, standardized interfaces can help to cut costs.
· “Embodiment of engineering and research results” (Hägele et al., 2008, p. 984). As the field of robotics is highly interdisciplinary, the meaningful implementation of new knowledge must be ensured for the various aspects involved in robotics.
· “Open dependable systems” (Hägele et al., 2008). The contradiction of requiring open systems for interconnectivity between different manufacturers, on the one hand, and the closed systems that are essential to ensure to fulfill certain functions, on the other, has not yet been resolved.
· “Sustainable manufacturing” (Hägele et al., 2008). A scrupulous handling of scarce resources is becoming more and more essential. Thus, recycling efforts must be undertaken and considered in the field of robotics to contribute to sustainable manufacturing procedures.
In addition to the concise summary of current developments listed above, there are more trends that can be observed. Many of them also involve one or more of the previously named challenges. Firstly, a decrease in the price of robots is observable, leading to an increased spread and demand. When the current cost of one unit of industrial robots is compared to that of a few decades ago, it can be observed that this cost was more than $100,000 in the 1990s, but has decreased to approximately $27,000 in 2017 (Korus, 2020). It has been predicted that this trend will continue in the future; however, different predictions have been made concerning the extent to which this will occur. The prediction of the cost per unit in the 2020s range from approximately $11,000 to $24,000 (Korus, 2020).
Although the interaction between robots has been examined since the 1970s, the intelligent control that is required to allow a useful synchronization of multiple robot systems is still subject to research (Caccavale and Uchiyama, 2008). The networking between different robots regarding maintenance and control is an interesting discipline that can still enhance the use of robots in many different fields.
The field of robotics also hinges on the developments within other branches. It has already been stated that robotics is a highly interdisciplinary branch in engineering, one involving various aspects, such as computer science, electrical engineering, mechanical engineering, and social sciences. Trends and influences from neighboring disciplines are thus highly relevant for the development of robotics. In computer science, the components are constantly improving as the performance of microprocessors is doubling every 18 months—a relation commonly known as Moore’s law (Hamilton, 1999). This increasing computational power and decreasing computational cost enables many applications that were previously not possible. Additionally, sensor-technology is also emerging, allowing the creation of better vision systems that can enable a fast and highly precise exchange of information between robots and their environments (Inoue, 2008). Finally, the field of cyber security plays an increasingly important role in robotics. As robots are becoming more and more connected, it is important to ensure that outside companies are unable to gain access to the robot, as this may lead to production halt, damage, or even injury of the workers. The aspect of security and cyber security of robots must be considered, especially for mobile robots, which can be controlled remotely.
Different Generations of Robotics (From Robotics 1.0 to 3.0)
The history of robotics demonstrates a pattern of significant transformation. The technological thresholds also illustrate that the field of robotics is still rapidly developing. Generally, these developments accompany the generic trends that lead to the “third generation” of industrial robots. The first-generation robots were implemented from the 1960s onwards and used for a fast and robust automation of industrial processes (Kopacek, 2013). Back then, robots of generation 1.0 had properties that are nowadays summarized with the 4Ds: dull, dirty, dumb, and dangerous (Keay, 2019). Nevertheless, the first generation could complete newly automated tasks and therefore held significant economic value (Keay, 2019).
Improvements were made on the first generation, including technical advancements that allowed the new generation to complete more complex and versatile tasks. The robots belonging to the second generation emerged in the early 2000s and are referred to as “personal robots.” The title is a nod to their mobility and intelligence (Kopacek, 2013). The transition from the first to the second generation of robots is often described with the 4S’s: smarter, safer, sensors, and simple (Keay, 2019).
The current and third generation of robots, referred to as “ubiquitous robots,” is emerging as a vision of connectivity and context-awareness (Kopacek, 2013). This development can only be achieved when robots are capable of interacting with humans and autonomously executing even more complex tasks (Kopacek, 2013). The future of robotics is often described with the 4M’s of Robotics 3.0: multitasking, emotive, morphing, and multiagent systems (Keay, 2019). These developments have begun to push the boundaries of what was previously considered possible and will thus open doors to many new applications.
New Fields of Robotics
The emergence of Robotics 3.0 enables new applications and expands the application of robots to entirely new fields. Some of the emerging fields for specific robots are humanoid robots, social robots, wearables, soft robots, and bio-inspired robots.
The fields of “ubiquitous and networked robots” and “cloud robots” have emerged as new areas of research (Chibani et al., 2013, p. 1162) based on the previously described technological advancements. The term ubiquitous robotics describes the growing presence of robots and their ability to exchange information with each other and devices in their environment, as well as the possibility for robots to gain access to more manufacturing environments (Kopacek, 2013). With these aspects, robots can better cover the aspects of “semantic perception, reasoning and actuation” (Chibani et al., 2013, p. 1162). Chibani et al. (2013) define three challenges in the development of ubiquitous robots: the creation of more autonomous systems, the implementation of “social awareness and affective interaction” and “ubirobots’ engineering” (p. 1163). Cloud robotics can provide infrastructures to offload computations and datasets to a cloud to separate the computing facilities from the execution units, thereby enabling more complex computations (Chibani et al., 2013). Cloud robots can, for example, use large databases to exchange information or a “cloud-computing infrastructure” (Korpacek 2013, p. 46).Ubiquitous robotics
The term is derived from ubiquitous computing, which describes the omnipresence of computers.

Humanoid robots
This type of robot is based on the anatomy of a human.

The emergence of new technologies and fields has enabled the creation of new specific types of robots. One of these types are humanoid robots. Although humanoid robots do not have any application in the manufacturing environment and demand high development time and costs, they represent an important trend. In the future, they will play a vital role in our everyday lives by supporting humans with many different tasks (Kopacek, 2013). One example of a modern humanoid robot is the robot “ASIMO,” developed by the Japanese company Honda (Honda, n.d.). The robot is shown in the figure below.
Robot ASIMO by Honda - example for a humanoid robot
[image: A person in a white suit

Description automatically generated with low confidence]
Another emerging discipline is referred to as social robots. Their purpose is “to coexist with humans and engage in relationships that lead them to a better quality of life” (Salichs et al., 2019, p. v). In doing so, they need to have artificial intelligence and be perceived positively (Salichs et al., 2019). Still, many challenges must be overcome until robots canbe broadly used in healthcare or nursing care.
Another relatively young discipline whose future applications can be clearly outlined is “wearable robotics.” Currently, human and robot are understood as two individual entities that might collaborate in a manufacturing environment. The objective of wearable robots is to take this interaction to the next level, e.g., with exoskeletons and exosuits. This could lead to new applications that are expected to become a billion-dollar-market by the 2020s (Masia & Vitiello, 2020). Typical scenarios include wearable user interfaces for the operation of robotic systems (Trevelyan et al., 2008) and medical applications, such as rehabilitation (Masia & Vitiello, 2020). This could enhance human ability to perform certain tasks or enable humans to perform tasks that they otherwise would not be able to. One example for such an application, developed by Honda, is shown in the figure below. This walking assist system is intended to assist people who must learn how to walk again. Prostheses can also be designed as wearable robots. As the development of wearable robots is generally a challenging and interdisciplinary task, there are still many possible directions for “the next step to our evolutionary path” (Masia & Vitiello, 2020, p.9).Wearable robotics
These are robots that are worn on the human body.

Walking Assist Device by Honda
[image: A person wearing a garment

Description automatically generated with medium confidence]Soft robots
These robots are made out of soft materials.

Another new discipline is “soft robotics,” which has been referenced to as “bioinspired evolution in robotics” (Kim, 2013). In this field, materials that have soft mechanical properties allow a flexible use of their capabilities (Kim, 2013). Traditionally, the individual links of robots can be interpreted as rigid bodies. Soft robotics, in contrast, draws inspiration from biology; in order to have a high adaptability, natural systems are often deformable and can outperform robots. Thus, they introduced robots with links made from flexible materials that allow large deformations and require special features regarding sensors and actors, as well as computation, communication, and control (Rus & Tolley, 2015). For some applications, however, even the system complexity can be reduced with the application of soft materials (Kim, 2013). An example of a soft robot is shown in the figure below. This is a robot with flexible legs that allows a person to walk more like an animal. To maintain control, stiffening cables are used. Other methods for controlling soft robots include pneumatic or hydraulic control (Rus & Tolley, 2015).
Example for a soft robot
 [image: A picture containing text, different, various

Description automatically generated]
A design based on biological role models using rigid materials is also possible. This has led to the emerging discipline of bio-inspired robots. Generally, the term “bio-inspired” describes the process of adapting solutions from nature to meet a technological challenge (Kopacek, 2013). Thus, not only human-inspired robots (previously called humanoid robots), but also robots that are based on the anatomy of animals have been developed and applied (Meyer & Guillot, 2008). Their designs are highly physically adapted to their habitat and require sensors and actuators to embody capabilities like climbing, jumping, and swimming (Meyer & Guillot, 2008). It has been predicted that insect-sized robots will become available some time during the 2020s, even for affordable prices (Kopacek, 2013). An example of a bio-inspired robot is displayed in the figure below—a six-legged robot that Boston Dynamics created to be able to walk through uneven terrain.Bio-inspired robots
These are designed based on role models from nature.

Six-legged bio-inspired robot by Boston Dynamics
[image: A picture containing text, appliance, sewing machine, floor

Description automatically generated]

Self-Check Questions
1. Please select the correct statements.
· Nowadays, robots are mostly used in large companies, but it is expected that standardized production cells will make them more affordable for smaller companies.
· All problems within the field of robotics have been solved, and robots find applications in many kinds of companies.
· The human-friendly definition of tasks is one technological threshold in robotics.
· It is not expected that the price of robots will decrease further in the next decade.

2. Please list three technological thresholds of modern robotics.
human-friendly task specification
efficient mobile manipulation
low-cost components, including low-cost actuation
composition of subsystems
embodiment of engineering and research results
open dependable systems
sustainable manufacturing

3. What are the 4Ds, the 4Ss, and the 4Ms?
4D: dull, dirty, dumb, and dangerous
4S: smarter, safer, sensors, and simple
4M: multitasking, emotive, morphing, and multiagent systems

	Summary

	Robotics is an interdisciplinary field of engineering that necessitates the careful consideration of ethical and political frameworks. Although the history dates back much further, modern robots for the manufacturing environment and mobile robots have been commonly applied since the 1960s. As motion planning is an essential task to maintain control of robots, the definition of coordinate systems is required, which should be adapted to the task of the end effector.
Modern robots still face some technological thresholds that must be overcome in order to create new fields of applications. Parallel to these developments, entirely new disciplines, such as humanoid robots, social robots, wearable robots, soft robots, and bio-inspired robots are emerging.

[bookmark: _Toc348014754]

Unit 2 — Kinematics

Study Goals

On completion of this unit, you will have learned …

… how to mathematically express the position and orientation of a rigid body in space.
… what direct and inverse kinematics are.
… how to find the direct kinematics function of industrial manipulators.
… how to express differential kinematics of robots.

2. Kinematics

Introduction
Industrial robots are built as complex interconnections of joints and links. These provide a mechanical connection from the robot base to the end-effector, which is the part of the robot that performs tasks. In order to design tasks (and thus plan the movement of the robot), it is necessary to understand how the chain of joints and links—the kinematic chain—translates the movement from the geometrical space of the joints (the joint space) to the space in which the end-effector works (the workspace), and vice versa.
Kinematics helps us address two primary issues in robotics. First, it provides a mathematical relationship between robot parameters (for example, the joints and links of a robot manipulator) and the position and orientation of the end-effector. Inverse kinematics gives the relation between the position and orientation of the end-effector and the robot parameters. Based on direct and inverse kinematics, feasibility of motion can be checked, and motion can be designed. Second, differential kinematics provides a relation between the velocities in the joint space and the velocities in the workspace. It is very important to understand how fast the end-effector moves when specific velocities are imposed at the joints by the control system. Inverse differential kinematics provides the inverse relation, answering the question about how fast the joints should be operated in order to achieve a desired velocity of the end-effector.
Mobile robots are different from industrial robots in many aspects, primarily with respect to their mobility (even if nowadays industrial robots are more and more a combination of traditional manipulators and mobile platforms). They are actuated in order to move, and their motion in the workspace is described by the position and orientation of the chassis. The concepts of direct, inverse kinematics as well as direct and inverse differential kinematics can also be applied to mobile robots with slight differences.
This unit starts in section 2.1 with some background material on how the position and orientation of a rigid body can be described mathematically. The formalism is applied to the direct kinematics problem of industrial robots in section 2.2. Inverse kinematics is addressed in section 2.3. Section 2.4 introduces differential kinematics, which links velocities between the task space and the joint or actuation space. Finally, section 2.5 applies the concepts to a simple model of wheeled robots: the bicycle model.
2.1 Position and Orientation of a Rigid BodyPose

The pose of a rigid body includes position and orientation.

A rigid body in space is completely described by its pose, which includes information about its position and orientation with respect to a reference frame. Fig. 1 illustrates a rigid body in space with an attached right-handed reference frame {B}. The position of any point P of the rigid body can be described by its position vector pB ∈ ℝ3 with respect to the frame {B}, as well as by its position vector pA ∈ ℝ3 with respect to frame {A}. Let xA, yA, and zA be the unit vectors of reference frame {A} and xB, yB, and zB be the unit vectors of reference frame {B}. We can write

	, 	 (2.1)
as well as

	,	(2.2)
which describe the same point P in the two reference frames. In particular, if the position of P in frame {B} remains constant (rigid body assumption), the position of the overall rigid body can be uniquely identified by the position of the origin of frame {B} with respect to frame {A}, i.e., by pAAB.
	Fig. 1: Pose of a Rigid Body in Space

[image:]
The orientation of the rigid body is described by the orientation of the attached reference frame {B} with respect to the reference frame {A}—in other words, by the orientation of the unit vectors of {B} with respect to {A}. Let us express such unit vectors in the reference frame :
,	(2.3)Direction cosines

The direction cosines are the components of the unit vectors of a frame with respect to a reference frame.

where the components of each unit vector are the direction cosines of the axes of the frame {B} with respect to the reference frame {A}.
The components in (2.3) can be combined in the matrix R ∈ ℝ3x3
, (2.4)
which is called the rotation matrix.
The Rotation Matrix
The rotation matrix has some important properties. First, the column vectors of R are mutually orthogonal since they are the unit vectors of the orthonormal frame {B}, i.e.,
.
Second, the norm of each unit vector is equal to 1, i.e.,
.
The consequence is that the matrix R is orthogonal, i.e.,
	,	 (2.5)
Where I3 is the (3 X 3) identity matrix. From (2.5) it follows that
	, 	(2.6)
which means that the transpose of the rotation matrix is equal to its inverse. Moreover, det(R) = 1 if the frame is right-handed, while det(R) = −1 if the frame is left-handed. The matrix R belongs to the special orthogonal group of dimension 3 with neutral element I3, R ∈ SO(3) ⊂ ℝ3×3, which means that:
· The product of any two rotation matrices within the group also belongs to the group (and the product is thus another rotation matrix).
· The inverse of each rotation matrix also belongs to the group.
The matrix R has three equivalent meanings:
1. It represents the orientation of a rigid body with respect to a reference frame {A}, in terms of orientation of a body-attached frame {B} with regard to {A};
2. It represents the change of coordinates from frame {B} to frame {A} if both frames share a common origin, i.e., pA = RpB (if the frames do not share a common origin we need to account for a translation vector pAAB, as shown by fig. 1);
3. It represents the rotation operator, which rotates a vector pA giving a new vector p'A in the same reference frame, i.e., p'A = RpA rotates pA to p'A.
To illustrate the third meaning, let us consider a point pAT = (0.5, 0.5, 0.8) expressed in the reference frame {A}. Let us consider the rotation matrix representing a simple rotation around z of the angle θ = 45°,
.	 (2.7)
By multiplication of Rz(θ) with the original vector we obtain
,
which represents the original vector rotated by 45° around z (see fig. 2).
	[bookmark: _Hlk59279042]Fig. 2: The Rotation Matrix as a Rotation Operator in the Reference Frame

[image:]
To illustrate point 1 above, let us draw the unit vectors described by R with respect to the reference frame {A}. The result is shown by fig. 3. In other words, R describes the rotation which is needed to align the reference frame {A} to the frame {B}. In this particular case with R = Rz(θ), the frame {A} only needs to be rotated by 45° about z (see fig. 3).
	Fig. 3: Rotation Matrix as Orientation of a New Frame {B} with respect to Frame {A}

[image:]
Finally, to illustrate meaning 2, let us consider again the vector p'A in fig. 2. If we also consider a frame {B} as in fig. 3, rotated exactly in the same way as the vector pA has been rotated to obtain p'A, we can write that the coordinates of the rotated vector with respect to frame {B} are p'B = pA. That is, the coordinates of the rotated vector p'B in the reference frame {B} are equal to the coordinates of vector pA in the frame {A}. It can be concluded that
	,	(2.8)
which means that the vector p'B can be expressed with respect to the frame {A} by a multiplication with the rotation matrix R = Rz(θ).
A rotation matrix which transforms the coordinates of vectors from the frame {B} to the frame {A}, having the same origin, will be denoted by RAB. Recall that RAB is the coordinate transformation from reference frame {B} to reference frame {A}, and it describes the rotation that reference frame {A} must undertake to align to reference frame {B}. Note that due to (2.6) we have RBA = RATB and thus a vector pB in frame {B} can be expressed by pB = RBA pA = RATB pA.
Composition of Rotations
Rotations can be composed. For example, consider a starting frame {A}, which is rotated first by 90° about zA to give frame {B}. Frame {B} is than rotated by 90° about yB. The rotation which brings {A} to {B} can be described by
,
while the rotation from {B} to {C} is described by
,
where an elementary rotation about is expressed by the rotation matrix
	. 	(2.9)
The mentioned sequence of rotations is said to be done with respect to the “current axis,” because each next rotation is about axes of the current reference frame. For example, the rotation from {B} to {C} is defined with respect to the frame {B}. In this case, rotations can be composed by post-multiplication of rotation matrices in the order of the rotations, that is

	,	(2.10)
where in particular
, .
The result as well as the intermediate steps are shown by fig. 4, where it can be noted that zB = zA, yA = xB = zC, yB = yC. It should be noted that rotations do not commute, i.e., the order of rotations and consequently the matrix product in (2.10) cannot be changed arbitrarily.
	Fig. 4: Composition of Rotations About Current Axis

[image:]
The sequence of rotations could be also defined with respect to a “fixed frame,” for instance with respect to frame {A}. If all rotations are specified with respect to a fixed frame, the overall rotation is obtained by pre-multiplication of the single rotation matrices.
The elementary rotation matrix for a rotation about x is
	,	(2.11)
for a rotation about y is
	,	(2.12)
and for a rotation about z is
	.	(2.13)
The equations (2.11), (2.12), and (2.13) provide the elementary rotation matrices to describe any rotation.
Minimal and Nonminimal Representations of OrientationMinimal representation
A minimal representation of orientation only requires three angles.

Rotation matrices provide a non-minimal characterization of the orientation. They have nine parameters which are constrained by six orthogonality and unitary conditions (2.5), meaning that only three parameters are really required for specifying the orientation. Euler’s rotation theorem states that “any two independent orthonormal coordinate frames can be related by a sequence of rotations (not more than three) about coordinate axes, where no two successive rotations may be about the same axis.” (Kuipers, 1999, p. 83). This provides a way to find the three independent parameters. Minimal representations of orientations require only a set of three angles:
.
Euler angles are one such minimal representation, and are described by the sequence of axes of rotations, where no two successive rotations are made about parallel axes. For example, the Euler angles ZYZ mean that a rotation φ is made about z, then a rotation θ is made about the current axis y, then a rotation ψ is made about the current axis z. The rotations occur about the current frame. Using the composition rule of rotations about current axis (2.10), the resulting rotation matrix is

	,	(2.14)
where the single rotation matrices can be found in (2.7) and (2.9). The inverse computation, getting the ZYZ angles from R(ϕ), is not as simple. The solution is not unique depending on the range of θ. Furthermore, for θ = 0 or θ = π, it is possible to determine only the sum φ + ψ. This is called a singularity of the Euler ZYZ angles representation.
Another minimal representation is the Roll-Pitch-Yaw (RPY) angle, which describes the orientation as the sequence of a rotations about x (yaw), y (pitch), and z (roll), which (unlike ZYZ angles) are performed about a fixed frame. The resulting rotation matrix is:

	,	(2.15)
where the pre-multiplication rule has been applied because of the fixed frame. AS before, the inverse problem does not have a unique solution (depends on the range of θ), and for
 and
only the sum or difference of ψ and φ can be determined. This is a singularity of the RPY angles representation.
Any minimal representation of orientation has some singularities. It can be noted from the two examples of minimal representations that singularities occur when two rotations axes become parallel: in this case, in fact, the contribution of the other two angles cannot be separately determined.
Self-Check Questions

1. The reference frame {b} attached to rigid body coincides with a fixed frame {a}. The rigid body is then rotated first by 40° about x and then by 20° about y, always with respect to {b}. Write the overall rotation matrix describing the rotations with respect to {a}.
Answer:
2. The rotation matrix describes the coordinate transformation from one frame to another. Is this statement true or false?
Answer: false. The statement is true if and only if the two frames share the same origin.
3. Why are the components of a rotation matrix called “the direction cosines” of the obtained axes?
Answer: The components of a rotation matrix are the inner products between the unit vector of the original axes and the unit vector of the obtained axes. Since the unit vectors have magnitude equal to 1, the inner product
,
where α is the angle between the two vectors. Thus, the inner product is a cosine and the rotation matrix is made of such cosines.
2.2 Forward Kinematics
Definitions
A robot manipulator consists of a series of rigid bodies, also called links, connected by kinematic pairs called joints, which are able to move and generate a motion of the overall robotic structure. The robotic structure can be seen as a kinematic chain. On the one hand of this chain there is a fixed base, whose position does not change with respect to a fixed reference frame. On the other hand of the kinematic chain there is the end-effector, which is responsible for object manipulation in the space. The problem of the forward kinematics (or direct kinematics) is to compute the pose (i.e., position and orientation) of the end-effector as a function of the joint variables. The joints can be revolute joints or prismatic joints. The formers generate rotations, the latter translations. That is, the joint variables depend on the kind of joints constituting the robot.Forward/direct kinematics

The concept of forward kinematics allows computing the pose of the end-effector as a function of joint variables.

Direct Kinematics by Homogeneous Transformation Matrices
The pose of a rigid body in space is expressed in terms of the position of a point on the body, given by a translation vector with respect to a reference frame, and of the orientation of a frame attached to the body with respect to the reference frame, given by a rotation matrix (Siciliano et al., 2009).
Let us refer again to fig. 1. The coordinates of point P are expressed by pB in the reference frame {B} and by pA in the reference frame {A}. If the vector pB is known, the coordinates of the point in the {A} can be calculated as

,	(2.16)
where

is the translation vector and

is the contribution of the vector pB, defined with respect to {B}, but calculated with respect to {A}. The equation (2.16) represents the coordinate transformation from {B} to {A}. The inverse transformation is easily obtained due to (2.6), i.e.,
	.	(2.17)
A compact notation encapsulating both translation and rotation is achieved by adopting the homogeneous representation

of a vector
,
which is achieved by adding one unitary component:
	.	(2.18)
Therefore, both rotation and translation can be compacted in the homogeneous transformation matrix,
	. 	(2.19)
Now the transformation of a vector from frame {B} to frame {A} can be expressed by a single matrix multiplication
		(2.20)
where the homogenous vectors are adopted. The inverse transformation is given by the inverse homogeneous matrix
	,	(2.21)
where it can be noted that
,
meaning that homogeneous transformation matrices are not orthogonal.
As for simple rotations, a sequence of coordinate transformation from frame {0} to frame {n} can be expresses as the multiplication of the corresponding homogeneous transformation matrices
,
i.e.,
	.	(2.22)
The approach in (2.22) is used to describe the position of all links of a robot manipulator with respect to the reference inertial frame {0} as a function of the joint variables. In particular, the pose of the end-effector, identified by position and orientation of the last frame {n}, as a function of the joint variables can be easily expressed. The resulting matrix
,
which for robots will be a function of the joint variables, is the direct kinematics function.
Let us consider a simple robot manipulator as sketched by fig. 5. The kinematic chain consists of three links li and three joints ji, i = 1 … 3. All joints are revolute joints, so they can rotate of an angle θi about their rotation axis. All rotation axes are parallel to x0 of the fixed frame. Each joint ji connects the link i – 1 to the link i, where the link l0 can be interpreted as being the fixed base of the robot. The position and orientation of link li are described by the position of the origin of frame {i} and by the rotation matrix

from frame {0} to frame {i}, respectively.
	Fig. 5: Sketch of the Kinematic Chain of a Simple (Planar) Robot Manipulator

[image:]
The position of the end-effector is described by the point E. As mentioned before, we can consider equivalently the vector
,
describing E with respect to frame {3}, or the vector
,
describing the position of the end-effector with respect to frame {0}. The point E does not move with respect to frame {3}, so that

is constant in time. On the other hand, the point E does move with respect to {0} as the joints angles change in time, so that
,
where qi is the joint variable of joint i. In our example q1 = θ1, q2 = θ2, q3 = θ3 because all joints are revolute. Using the approach in (2.22), the direct kinematics of the simple robot in fig. 5 can be written as the homogeneous transformation matrix:
	, 	(2.23)
with q + (q1, q2, q3)T, such that
		(2.24)
holds. The frame {0} is called the base-frame, and the frame attached to the end-effector (in this example {3}, but it could be different) is called the end-effector frame, which is chosen based to the task geometry.Open kinematic chain

An open kinematic chain is a chain of rigid bodies which do not constitute a mechanical loop.

The Denavit-Hartenberg Convention
The approach to the direct kinematics by means of homogeneous transformation matrices requires the specification of the links-attached frames {i}. To help with this issue there exists a standard procedure to define such frames: the Denavit-Hartenberg (DH) convention (Denavit & Hartenberg, 1955). In the following, the case of open kinematic chain will be considered.
Let us consider an open-chain manipulator with n + 1 links connected by n joints, where link l0 is fixed to the ground. The idea is the same adopted for the manipulator of fig. 5, i.e., to consider the kinematic relationship between consecutive links and at the end obtain the overall description in a recursive fashion. The DH convention provides a mean to define the relative position and orientation of two consecutive links. Let us denote by the frame {i} the frame attached to the link i. The Denavit-Hartenberg convention defines the frame {i} as follows:
· Define zi along the axis of joint i + 1.
· Locate the origin 0i of the frame {i}, at the intersection of axis zi with the common normal to axes zi-1 and zi. Locate the point 0'i at the intersection of the common normal with axis zi-1.
· Choose axis xi along the common normal to axes zi-1 and zi with direction from joint i to joint i + 1.
· Choose axis yi to complete a right-handed frame.
The convention gives a non-unique definition in the following cases (Siciliano et al., 2009):
· for frame {0}, where only the direction of z0 is specified.
· for frame {n}, since there is no joint n + 1, zn is not defined and xn has to be normal to zi-1. If joint n is revolute (which is often the case), then zn must be aligned with the direction of zn-1.
· when two consecutive axes are parallel, the common normal is not uniquely defined.
· when two consecutives axes intersect, the direction of xi is arbitrary.
· when joint i is prismatic, the direction of zi-1 is arbitrary.
The main idea behind the convention is to be able to express the spatial relationship between two neighboring frames by means of 4 independent parameters instead of the usual 6 which would be required, meaning 3 for rotation and 3 for translation. This is because the convention sets two constraints on successive frames: the axis xi intersects the axis zi-1 and is perpendicular to zi-1. The four Denavit-Hartenberg parameters are listed below.
I. ai: distance between axis zi-1 and zi along the xi axis; for intersecting axes zi-1 and zi, xi is parallel to zi-1 × zi.
II. di: distance from the origin of frame i − 1 to xi along zi-1.
III. αi: angle from zi-1 to zi about xi (positive if counterclockwise).
IV. θi: angle between xi-1 and xi about zi-1 (positive if counterclockwise).
The parameters ai and αi are constant and depend on the geometry of the robot. The parameter θi is variable if joint i is revolute or constant if prismatic, while di is variable if joint i is prismatic or constant if the joint is revolute.
Once the parameters are identified, the homogeneous transformation matrix from frame i − 1 to frame i can be written as
	, 	(2.25)
where qi = θi for a revolute joint i, qi = di for a prismatic joint i, cu = cos (u) and su = sin (u) for brevity.
The Denavit-Hartenberg convention can be rewritten in a more operative form by following these steps:
1. Number the joint axes consecutively from 1 to n and assign the directions of zi, i = 0 … n – 1.
2. Choose frame {0} by locating the origin on z0. Place x0 and y0 so to have a right-handed frame. It is convenient, if possible, to let {0} coincide with the base frame {b}.
for i = 1 … n – 1 the following steps apply:
3. Locate the origin Oi of the frame {i} at the intersection of zi with the common normal to axes zi-1 and zi. If they are parallel and joint i is revolute, then locate Oi so that di = 0. if joint i is prismatic, then locate Oi at a reference position for the motion range, for instance at a mechanical limit.
4. Choose xi along the common normal to zi and zi-1 with direction going from joint i to joint i + 1.
5. Place yi to obtain a right-handed frame.
for i = n:
If joint n is revolute, then align zn with zn-1. If joint is prismatic, zn can be chosen arbitrarily. xn follows the rule at step (4).
The last part involves the computation of the kinematics.
For i = 1 … n retrieve the Denavit-Hartenberg parameters ai, di, αi, and θi.
Compute the homogeneous transformation matrices
, .
Compute the overall transformation matrix

of frame {n} with respect to frame {0}.
If necessary, add the required constant transformation matrices

and

from the base frame {b} to frame {0}, and from the frame {n} to the end-effector frame {e} (if frame {0} is not the base frame and/or frame {n} is not the end-effector frame).
As mentioned above, the base frame {b} can differ from the frame {0}, which is the frame attached to the fixed robot base. The base frame {b} depends on the application. In manufacturing, it usually is a frame attached to the environment of the robot, but can also be mounted on a mobile ground such as a mobile vehicle, a truck, an underwater robot, or a space shuttle.
Application to an Anthropomorphic Arm
Let us show the application of the convention to an anthropomorphic robot arm. This robot has 3 degrees of freedom for its end-effector position. A spherical wrist is usually attached at the end of the arm to determine the orientation of the end-effector. The two components can be analyzed separately (Siciliano et al., 2009). Fig. 6 shows the application of the convention only for the robot arm, thus ignoring the presence of a wrist carrying an end-effector. The origin of the frame {0} has been set coincident to the origin of frame {1} to obtain d1 = 0. The final Denavit-Hartenberg parameters are summarized in Table 1.
	Fig. 6: Denavit-Hartenberg Convention for an Anthropomorphic Robot Arm (without End-Effector)

[image:]
Let us discuss exemplarily the choice of the frames and the calculation of the parameters for the first frame, i.e., i = 1. Based on steps 1—2 of the convention, we know that z0 must lay in the plane of the page, going through the first joint. The origin of the frame {0} can be anywhere on z0 (for example, it can be located on the robot base). However, we can exploit this fact to minimize the value of the parameter d1.
Let us move to step 3. Since the common normal to z0 and z1 coincides to the crossing point of z0 and z1 on joint 2, the origin of frame {1} will be located exactly on joint 2. Based on step 4, the axis x1 is along this common normal pointing from joint 1 to joint 2 (i.e., the axis follows the link 2). The axis y1 is chosen to give a right-handed frame.
Let us now calculate the Denavit-Hartenberg parameters for frame {1}, as in step 7.
a1 is the distance between z0 and z1 along x1, but this means a1 = 0 because z0 and z1 intersect with each other on x1. d1 is the distance from the origin of {0} to the axis x1 along z0. Since the origin of {0} can be arbitrarily placed on z0, we can choose to put it on the origin of frame {1} on joint 2, to obtain d1 = 0. Alternatively, the origin could be put on the robot base, which would yield
.
α1 is the angle from z0 to z1 about x1, which is equal to 90°, that is
.
θ1 is the angle between x0 and x1 about z0. It is evident that this angle depends on the rotation of joint 1, which is a revolute joint. In fact, we know that for a revolute joint i the parameter θ1 is the joint variable, that is θ1 = q1. Thus in the table it is left as a variable.
	Table 1: Denavit-Hartenberg Parameters for the First Joints of an Anthropomorphic Robot Arm

	Frame i
	
	
	
	

	1
	
	
	
	

	2
	
	
	
	

	3
	
	
	
	

Once the parameters are calculated, the homogeneous transformation matrices can be written. For the first frame we obtain
,
with c1 = cos θ1 and s1 = sin θ1.
The direct kinematics of the anthropomorphic arm robot (without end-effector) is thus defined by
.
If it is necessary to consider a different base frame, the overall kinematics will be
.
A small remark on step 10 of the procedure—as mentioned there, sometimes the base frame {b} and the end-effector frame {e} do not coincide to frames {0} and {n}, respectively. This means that, depending on the problem, it can be convenient to define additional homogenous transformation matrices

and

from the base to the first frame and from the last frame to the end-effector frame. In this case, the overall direct kinematic function is described by the matrix
.
Joint, Configuration, and Operational SpaceJoint space
The joint space (sometimes called actuation space) is the space defined by the joint variables. For manipulators actuation space and joint space are in general coincident, because each joint is also an actuation point.

We have seen so far how the direct kinematics can be expressed in terms of a product of homogeneous transformation matrices as in (2.22), yielding the overall transformation matrix
.
This contains information about the position and orientation of the end-effector with respect to the base frame, and is a function of the joint variables qi, i = 1 … n.
We can identify two different spaces related by kinematic and dynamic maps. The space in which the n × 1 vector of joint variables q = (q1, …, qn)T is defined is the joint space or configuration space of the robot. This space is important for task execution because any desired motion of the robot must be translated to the configuration space for the joints to be actuated. The number of joints is equal to the degrees of freedom of the robot.Operational space

The operational space is the space defined by the task variables, the so-called generalized coordinates of the task space. In general, the operational space differs from the joint space.

The space in which the task is defined, and the task performance is evaluated, is the so-called operational space, which is a cartesian space parameterized by the vector

with m ≤ n, with n being the number of joint variables. The vector xe is a compact description of the pose of the end-effector (so frame {e}, which explains the subscript “e”) specific of the required task. For a task requiring position and orientation in space—for example m = 6—in general
		(2.26)
where pe is the position vector and φe is the orientation vector. Both describe the pose of the end-effector with respect to the base frame (the superscript indicating the base frame has been omitted for brevity).
Using (2.26), the direct kinematics can be written as

	,	(2.27)
where the nonlinear vector function k(∙) lets us compute the operational space variables from the joint variables. It is worth noting that the components of the orientation vector φe, i.e., the angles describing the orientation of the end-effector with respect to the base frame, must be calculated from the three orientation vectors obtained by means of the homogeneous transformation matrices.
Self-Check Questions
1. [bookmark: _Hlk45268901]Write the direct kinematics for the robot in fig. 6.
Answer: The robot is composed of three joints, thus n = 3. The direct kinematics can be described by the product of homogeneous transformation matrices, in this case 3 matrices:
.
Following the Denavit-Hartenberg convention, summarized in Table 1, one obtains
, ,

,

and finally
 ,

where we used

and

for a compact notation.
Another way to write the direct kinematic is to find the function
.
It can be noted that the manipulator of fig. 6 does not have an end-effector but only a tool-point P where an end-effector could be mounted. The position of the point P in space coincides to the position vector pe, which can be found in the last column
,
such that
	.
The orientation is expressed by the unit vectors of the first three columns of
,
which need to be converted into a triplet of angles

to fit into (2.27). This step requires converting the orientation from the non-minimal representation provided by a homogenous matrix to a minimal representation such as Euler angles. This issue has not been addressed yet.
However, note that in this specific case the orientation and the position cannot be set independently. In fact, the degrees of freedom of the robot arm, which are n = 3, are smaller than the degrees of freedom required to set orientation and position independently in space, that is 6. In other words, for the robot arm of fig. 6, we could set either the position or the orientation.
2. A spherical wrist is a particular structure which consists of three revolute joints whose rotation axes intersect at a single point (see figure). It is usually attached at the end of a robot arm to increase the degrees of freedom and allow for independent setting of position and orientation of the end-effector. Find the DH parameters and provide the direct kinematic function of the spherical wrist (use the numbering of joints provided in the figure, i = 4 … 6; this may seem odd at the moment, but it is very useful when combining the spherical wrist with, for example, an anthropomorphic robot arm having 3 joints).
[image:]
Answer: The direct kinematics can be described by the product of homogeneous transformation matrices. Let us first fix the frames following the DH convention.
Based on step 1 and 2, the rotation axes can be set. We place for example z3 along the rotation axes of joint j4. As done for the robot arm, we can freely choose the origin of frame 3 to minimize some DH variables. We choose the origin to be at the intersection between z3 and z4 (z4 being the rotation axis of joint j5).
Let us now consider all further joints i = 4 … 6. Step 3 let us place the origin of {4} at the intersection between z3 and z4 (for example, coincident to the origin of {3}). The axis x4 must be perpendicular to the plane determined by z3 and z4. Since z3 and z4 intersect, the direction of x4 is arbitrary (recall the cases in which a non-unique definition arises). The same happens for x5, since also z4 and z5 intersect, as required by the definition of a spherical wrist. Moreover, step 3 allows us to place the origin of {5} also on the origin of {4}.
The last frame {6} follows the rule: for a revolute joint j6, the axis z6 will be aligned to z5. Since z6 and z5 are parallel, the origin of {6} can be placed in any convenient location along z6. We choose to place it in the middle of the gripper. The axis x6 can be set arbitrarily, and thus also y6. The application of the convention results in the frames shown by the figure. The DH parameters are reported in the table.
[image:]
	Frame i
	
	
	
	

	4
	
	
	
	

	5
	
	
	
	

	6
	
	
	
	

We are now able to calculate the direct kinematics by means of and ,

, ,

,

and finally
.

3. Consider the anthropomorphic robot arm and the spherical wrist. Can the respective direct kinematic functions be combined without modifications?
Answer: No, there is the need of some modification because the connection puts some constraints, which change partially the application of the DH convention. In particular, rows 3 and 4 of the DH parameters will differ, and consequently also the corresponding homogeneous transformation matrices will differ. All other rows remain the same. Obtained parameters are in the table,
	Frame i
	
	
	
	

	1
	
	
	
	

	2
	
	
	
	

	3
	
	
	
	

	4
	
	
	
	

	5
	
	
	
	

	6
	
	
	
	

where d4 is the distance from the origin of frame {3} to x4 (aligned as in the self-control question 2) along z3 (which, differently from the self-question 2, is applied to the origin of frame {3} located on joint 3).
2.3 Inverse KinematicsReachable workspace

The reachable workspace of manipulators is the region that the origin of the end-effector frame can reach with at least one orientation.

The Inverse Kinematics Problem
The task of a robot is usually expressed in the operational space, that means with respect to the base frame {b} in terms of xe(t). The geometry of a robot defines a subset of the operational space called the workspace, which is the region described by the origin of the end-effector frame {e} when all the manipulator joints execute all possible motions. The reachable workspace is the region that the origin of the end-effector frame can reach with at least one orientation. The dexterous workspace is the region that the origin of the end-effector frame can reach with any orientation (among those feasible for the robot direct kinematics). The latter is a subspace of the former.Dexterous workspace

The dexterous workspace is the region that the origin can reach with any feasible orientation of the end-effector. The feasibility depends on the particular robot kinematics.

The workspace is determined by the mechanical joint limits. Let each joint variable qi, i = 1 … n be lower bounded by qim and upper bounded by qiM . The workspace is thus the locus of points of the operational space achieved by considering the direct kinematics equation for the sole position part, i.e.,
	.	(2.28)
The workspace is usually provided by robot suppliers as front- and side-view of the achievable region in space.Kinematic redundancy

This occurs when the numbers of the degrees of freedom (for a robot manipulator equal to number of joints) is bigger than the number of variables describing the task.

Another important concept to consider when defining and accomplishing a task is the kinematic redundancy. A manipulator is said to be kinematically redundant when it has a number of degrees of freedom greater than the number of variables that are necessary to describe a given task. A manipulator is intrinsically redundant when the dimension m of the operational space is smaller than the dimension of the joint space n. It is functionally redundant when only a number r < m of components of operational space are necessary to define a specific task. Note that the kinematic redundancy is a task-specific property. In other words, a manipulator can be redundant with respect to a task and non-redundant with respect to another in the same operational space. Redundancy provides additional degrees of freedom which can be used, for instance, to avoid obstacles or to have dexterity for some tasks.Inverse kinematics

The inverse kinematics allows calculating the values of the joint variables from the values of the task variables (i.e., pose of the end-effector).

Once the task has been defined in the operational space by xe, it is necessary to find the corresponding joint variables q which provide the required end-effector position and orientation. This is the inverse kinematics problem, whose solution yields one of the following possibilities (Siciliano et al., 2009):
· there may exist multiple solutions;
· there may exist infinite solutions (for instance, if the manipulator is kinematically redundant); or
· there might be no solution.
The existence of solutions is guaranteed only if the desired end-effector position and orientation belongs to the dexterous workspace. The number of possible solutions is related to the amount of DH parameters which have a value different from zero—the greater the number of non-null DH parameters, the greater the number of admissible solutions. This is the reason why designers try to place frames in such a way to minimize the number of non-null DH parameters.
For several manipulator kinematic structures there is no closed-form solution and the inverse kinematics problem is addressed by numerical solution algorithms. However, for kinematic structures having 6 joints (six-DOFs), the following alternative conditions yield a closed-form solution of the inverse kinematics problem:
· three consecutive revolute joint axes intersect at a common point, or
· three consecutive revolute joint axes are parallel.
If one of the above conditions is satisfied, the inverse kinematics problem can be decoupled into two subproblems, one yielding the solution for the position and another yielding the solution for the orientation.
The first condition is always satisfied by a spherical wrist. For example, an anthropomorphic arm with a spherical wrist satisfies the first condition and allows a closed-form solution of the inverse kinematics problem.
Application to an Anthropomorphic Arm with Spherical Wrist
To clarify this point further, let us consider an anthropomorphic arm with a spherical wrist as in fig. 7, whose task is to pick an object from a table. The object is defined in space by the point P, whose coordinates with respect to the table frame {t} are known. The homogeneous transformation matrices

from base frame to table frame and

from base frame to first robot frame are known.
	Fig. 7: Anthropomorphic Arm with Spherical Wrist

[image:]
The orientation of an end-effector such as a gripper is usually characterized by 3 unit vectors:
· the approach ae, which is aligned to the direction of the approach to objects of the specific tool;
· the sliding se, on the sliding plane of the gripping jaws;
· the normal ne, normal to the other two vectors.
In fig. 7, the end-effector frame {e} coincides to frame , such that no transformation matrix

between the two is necessary. The task requires the gripper to pick the object on the table. That means the gripper point E should be positioned on P, and the approach vector ae (the axis z6) should point towards the table. The task can be thus defined in the base frame by the vector
	,
where the subscript d stands for “desired” (to distinguish it from the actual pose xe(t) at time t),

is the position vector of point P with respect to frame {b}, and

is a minimal representation of the orientation. The minimal representation can be converted into a rotation matrix if we express the approach ae,d, the sliding se,d, and the normal ne,d in the frame {b}. This is very easy in the case, for example
	
since ae,d must point towards negative zb, se,d can be aligned to yb, and the normal ne,d can be aligned to xb. The exact orientation of ne,d, se,d is arbitrary as long as ae,d = −zb, which is required for the gripping.
We now have a complete task definition in terms of position pe,d and orientation re,d, which yields the desired homogenous transformation matrix of the kinematic chain
.
The inverse kinematics should provide us with the values of qd, the desired joint variables which allow for the pose

of the end-effector.
The particular manipulator structure allows us to decouple the inverse kinematics problem. It is clear from fig. 7 that the positioning can be handled by joints 1, 2, and 3 while orientation by the joints 4, 5, and 6 of the spherical wrist. There is a procedure which can be used to solve the inverse kinematics problem.
1. Compute the desired position of the wrist W,
	
2. solve the inverse (position) kinematics for
,
3. compute
,
4. compute
,
5. and finally solve the inverse (orientation) kinematics for
,
which are the angles of the joints of the spherical wrist.
It is worth mentioning that the inverse positioning problem has up to four regular solutions within the reachable workspace for an anthropomorphic arm. Depending on the problem, singular solutions can also be found, meaning that for a desired pose there is an infinity of solutions. The inverse orientation problem for a spherical wrist has up to two regular solutions. In general, for 6-DOFs anthropomorphic manipulators with spherical wrist there are 8 sets of joint coordinates that give the same end-effector pose, thus a choice has to be made to determine the proper solution. Closed-form solutions of inverse kinematics for several manipulator structures can be found on many standard textbooks (Siciliano et al., 2009).
Numerical Solution of Inverse Kinematics
For some manipulators, the inverse kinematics must be solved in a numerical manner. This is enabled if the inverse kinematics is described as an optimization problem: the minimization of the error between the forward kinematic solution xe = k(q) and the desired pose xe,d. Mathematically, the solution is achieved as
	,	(2.29)
with

being a vector norm. The numerical solution approach is usually slower than the closed-form solution but can be applied to a wide variety of kinematic structures.
Kinematic Singularities
One issue with the inverse kinematics is also the existence of kinematic singularities. These are configurations at which the mobility of the structure is reduced. Usually, at a singularity there may exist infinite solutions to the inverse kinematics problem; moreover, about a singularity, small velocities in the operational space may correspond to large velocities in the joint space. A singularity is generally caused by the alignment of two or more axes of motion, which reduces the degrees of freedom in that particular pose. The singularities are analyzed by means of differential kinematics.Kinematic singularities

These are configurations at which the mobility of the robot is reduced. They can be analyzed by means of the differential kinematics.

Self-Check Questions
1. Consider the task depicted in fig. 7, i.e., picking an object from the table. Is the considered manipulator redundant? If so, which kind of redundancy is there?
Answer: The task of picking an object from the table requires the end-effector, a gripper in this case, to move to the point P and have an approach vector perpendicular to the table. Three components are required for the positioning of the gripper, thus
.
The orientation of a frame, the end-effector frame in this case, with respect to a base frame, can be described by a sequence of not more than 3 rotations. Therefore, the orientation vector

generally has three components. One way to determine the components is determining the so-called roll-pitch-yaw angles (RPY), describing the orientation as the sequence of a rotations about xb (yaw), yb (pitch), and zb (roll). The rotations are performed with respect to a fixed frame, here the base frame.
The question is now: “How many angles / components do we need to describe the task?” Consider the base frame {b} as in fig. 7. To orient the gripper perpendicular to the table (such that sliding se and ne lay on the table plane), it is necessary to define only the yaw and pitch angles ϕx and ϕy. Once the gripper is perpendicular to the object, the roll angle ϕz is not relevant; the gripper will grip the object for all ϕz ∈[0,2π]. This means that the orientation vector describing the task only needs two components, thus
.
To conclude, we found that the task is defined by m = 5 parameters, while the degrees of freedom of the robot are n = 6. The manipulator is functionally redundant.

2.4 Differential KinematicsDifferential kinematics

The differential kinematics provides a link between velocities in the joint space (time-derivatives of the joint variables) and velocities in the task space (time-derivatives of the end-effector pose in the task space).

The kinematics gives the relationship between joint variables q (θi for a revolute joint, di for a prismatic one) and position pe and orientation (equivalently, as rotation matrix Re or angle vector ϕe) of the end-effector. The differential kinematics seeks the instantaneous relationship between joint velocities q ̇and corresponding linear velocity ṗe and angular velocity ωe at the end-effector with respect to the base frame. There are two main approaches to calculate the differential kinematics: the geometric approach, which yields the geometric Jacobian, and the analytic approach, which yields the analytic Jacobian.
Angular and Linear Velocities
Revolute joints produce angular velocities. Prismatic joints produce linear velocities. However, in general the end-effector experiences both angular and linear velocities. To illustrate the meaning of angular and linear velocities, let us consider the simple case of a base frame {b} and a rigid body with attached frame {1} which is moving in space (fig. 8a). The rigid body has a linear velocity ṗ1, that is the origin of the attached frame, the point P1, moves with this linear velocity. Furthermore, an angular velocity ω1 is applied to the body, aligned along the rotation axis z1. Note that ω1 is associated with the whole body and not to a point of the body, i.e., the whole body rotates with the same angular velocity about z1. Of course, all points of the body laying on the rotation axis experience no rotation. For instance, the reference point P1 does not rotate. Consider now a generic point Pe of the rigid body, located by the vector pbe with respect to the base frame. The linear velocity of point Pe with respect to the reference frame can be calculated by
	,	(2.30)
where p1e is the vector between the origin of the attached frame {1} and Pe, and × denotes the vector cross product. All quantities in (2.30) are expressed with respect to the base frame (in the following the superscript indicating the frame will be reported only if the reference frame in which the quantity is expressed differs from the base frame). Equation 2.30 tells us that the overall linear velocity of a point on a rigid body is the sum of the linear velocity of the origin of an attached frame and the linear velocity of the point produced by the rotation of the body.
The concept can be applied to robots. The example in fig. 8b depicts the situation in which the first joint of a two-link robot moves with an angular velocity ω1 about z0 = zb, letting the end-effector rotate along a direction perpendicular to the page. The joint j2 does not move, i.e., θ2 = 0, ω2 = 0. The base frame {b} is set in the robot base ({b} = {0}) for convenience but without loss of generality.
	Fig. 8: Linear and Angular Velocity of a Two-Link Robot

[image:]
The angular velocity of the end-effector {e} is ω1. The linear velocity is
	.
Note that ṗb1 = 0 because there are no joints between {b} and {1} which can produce linear velocities of the origin of {1}.
The linear velocity can be calculated also by means of the rotation matrix. Consider again the general case of rigid body in fig. 8a. The point Pe is kinematically described by
	,
where

Is p1e expressed in , and

is the rotation matrix from {b} to {1}. The expression can be differentiated with respect to time to obtain the velocity:

	,	(2.31)
where the fact that Pe is fixed within {1} and thus

has been used. Expressions (2.30) and (2.31) must be identical, yielding
	.	(2.32)
In fact, it can be shown that
	,	(2.33)
with S(ω) being a skew-symmetric matrix depending on the angular velocity vector
,
.	(2.34)
The substitution of (2.33) into (2.32) yields
	,	(2.35)
which states the mathematical equivalence between the vector product and the matrix product with a skew-symmetric matrix depending on the angular velocity vector ω.
The Geometric Jacobian
Fig. 8 has illustrated the meaning of linear and angular velocities for a very simple case. For a manipulator having n joints and n + 1 links, the contribution of each joint variable should be considered to calculate linear and angular velocity of the end-effector. In particular, for a specific posture q of the robot (we are freezing the configuration!), the linear and angular velocity are a linear combination of the joint velocities:
	, 	(2.36)
where
	, ,	(2.37)
is the geometric Jacobian of the manipulator. It can be partitioned in a block Geometric Jacobian

The geometric Jacobian provides the connection between joint velocities and end-effector velocities.

which captures the influences of the joint velocities on the linear velocity

of the end effector, and a block
 ,
capturing the influences on the angular velocity
.
Each block can be further partitioned to emphasize the contribution of each joint separately. The i-th column of the Jacobian is the contribution of joint i. Note that the Jacobian is, in general, a nonlinear function of the posture q. However, for a given posture, it provides a linear relationship. In fact,
,
.
The blocks

and

depend on the nature of the joint.
Consider a prismatic joint i. Such a joint can only produce a linear motion and thus a linear velocity

along the joint axis zi-1. Therefore,
	 	(2.38)
for a prismatic joint i. The vector zi-1 is a known quantity, corresponding to the third row of the transformation matrix
, i.e., .
Consider a revolute joint i, such as joint 1 in fig. 8b. Such a joint produces an angular velocity

about the zi-1 axis, and a linear velocity which depends on the vector pi-1,e. Therefore,
 ,		(2.39)
where pi-1,e is the vector going from the origin of {i – 1} to the end-effector (origin of the frame {e}). The vector

can be computed from the direct kinematics, being pe (position of the end-effector with regard to {b}) and pi-1 (position of origin of {i – 1} with regard to {b}) included in Ti-1 (q) and Te (q), respectively.
Note that, without loss of generality, it has been assumed that the base frame coincides with the zero frame, {b} = {0}, and that the last frame coincides with the end-effector frame, {n} = {e}. If the Jacobian must be expressed in a frame {b} ≠ {0},
	.	(2.40)
Kinematic Singularities and Redundancy
The geometric Jacobian represents the connection between velocities in the joint space and velocities ve (linear and angular) of the end-effector in the cartesian space. Given a set of joint velocities
,
the Jacobian allows calculating ve by means of (2.36), and vice versa if the Jacobian is invertible. The configurations for which J(q) is not full-rank are the kinematic singularities, and can be classified into boundary singularities, which occur when the manipulator is outstretched or retracted, or internal singularities, which occur inside the reachable workspace and are usually caused by the alignment of one or more motion axes.
Boundary singularities can be avoided by reinforcing the limits on some joint variables, so to avoid driving the manipulator at the boundaries of the workspace. Internal singularities are a major issue since they can occur while performing any task. A kinematic singularity which occurs for the posture q correspond to a loss of mobility of the end-effector in the configuration q. This means that the end-effector velocity cannot be set arbitrarily along an arbitrary direction of the task space. Furthermore, close to a singularity very large joint velocities q are needed for very small velocities of the end-effector. Singularities should be found and analyzed in advance to avoid them during trajectory planning and control. They can be found by solving

for a square Jacobian, or

for a non-square one.
Redundancy can be intrinsic (when the number of components of the operational space is smaller than the number of joints m < n) or functional (when the number of components required by a task is smaller than the number of joints r < n). In the case of a redundant manipulator, the differential kinematics

in (2.36) is the mapping between the vector

of end-effector velocities relevant for the specific task and the joint velocities
.
The Jacobian

can be extracted from the (6 × n) geometric Jacobian. If r < n there exists n – r redundant degrees of freedom.
The mapping is sketched in fig. 9. The range space of J, denoted by
,
is the subspace of ℝr×1of the end-effector velocities that can be realized by the joint velocities, in the given configuration q. The null space or kernel of J, denoted by
,
is the subspace of ℝn×1of the joint velocities that do not produce any velocity at the end-effector, in the given configuration q. Note that

always includes the null velocity vector
.
Such subspaces are very useful to perform analysis of mobility of the manipulator.
· If the Jacobian has full rank r in the configuration q, the end-effector can be moved in any direction of the task space ℝr.
· If rank (J(q)) < r, the end-effector cannot move in some directions in ℝr.
	Fig. 9: Mapping Between Joint Velocity Space and End-Effector Velocity Space

[image:]
Analytic JacobianAnalytic Jacobian

The analytic Jacobian provides the connection between joint velocities and end-effector velocities. Differently from the geometric Jacobian, it is obtained based on time-differentiation of the direct kinematics function.

Another way to gather a mapping between joint velocities and end-effector velocities is to differentiate the direct kinematics function (2.27) with respect to time:
	,	(2.41)
Where JA(q) is the analytic Jacobian. The matrix JA(q) can be split as follows
	,	(2.42)
so that

 and
.
The main difference between the geometric and analytical Jacobian is in the block Jϕ(q). In general,

because the time derivative

is not equal to the angular velocity . The latter represents orthogonal components of angular velocity with respect to the base frame. On the other hand,

is the time derivative of a sequence of angles providing a minimal representation of orientation (for instance, RPY angles). The components of

are not orthogonal to each other and are defined with respect to the axes of a frame that varies as the end-effector orientation varies. In other words, ωe is not the time derivative of a minimal representation of orientation. It can be found that
	,	(2.43)
where T(ϕe) is a transformation matrix which depends on the specific minimal representation of orientation which is considered. The matrix T(ϕe) accounts for the time-varying axes of rotations generated by the sequence ϕe. It follows that
	,	(2.44)
and thus
	,	(2.45)
which is the relationship between Jacobians.
Recall that any minimal representation of orientation has singularities. Consequently, the transformation matrix T(ϕe) may be singular for some ϕe, meaning that there may be angular velocities ωe which cannot be expressed by
.
Self-Check Questions
1. Consider the 2R (revolute) planar robot arm in the picture, where the base frame and the length of the two links are given. The two joints rotate on parallel axes perpendicular to the page. Determine the analytical Jacobian.
[image:]
Answer: In order to determine the differential kinematic relationship, we need to determine first the direct kinematic function. Let us apply the DH convention and place frames on the robot. The joint variables are q1 = θ1, q2 = θ2. The DH parameters are in the following table.
[image:]
	Frame i
	
	
	
	

	1
	
	
	
	

	2
	
	
	
	

The homogeneous transformation matrices can be calculated as
, ,
from which it is obtained the forward kinematics
.
The fourth column provides the position of the frame {e} = {2}. As expected, the end-effector cannot move along the z0 axis, and only the coordinates px = l1c1 + l2c12 and py = l1s1 + l2s12 can be changed. The third column of

confirms that the end-effector cannot change the orientation of its z2 axis, which remains aligned with z0.
The operational space of the planar arm is completely characterized by three parameters, m = 3, in particular
,
where ϕ provides a minimal representation of the orientation, in this case the angle between x2 and x2. In other words, ϕ = θ1 + θ2. Any task is also characterized by the same three parameters, i.e., r = m = 3.
The direct kinematic function k(q) is given by
.
The analytical Jacobian uses a differentiation of the direct kinematic function,
,
.
Note that in this case all rotations are about the same fixed axis x0, such that
.
The overall analytic Jacobian is
.
2. For the robot of question 1, determine the geometric Jacobian.
Answer: to compute the geometric Jacobian the contribution of each joint to linear and angular geometry should be calculated following a purely geometric procedure, i.e., without any differentiation. The joints are both revolute, which means that (2.39) should be used. This yields for the first joint
	,
where p02 can be computer from the direct kinematics. We recall the direct kinematics here:
, , and

,
from which we can extract

from the fourth columns of
,
and zo = (0,0,1)T from the third column of
.
It follows that
.
For the angular velocity contribution of the first joint we have
.
Let us consider the second joint. Analogously,
,
where p12 = p02 – p01 and p01 = (l1c1, l1s1, 0)T can be extracted from the fourth column of
,
and z1 = (0,0,1)T can be extracted from the third column of
.
In this case z0 = z1 = z2. It follows
,
.
We have all components to write the final geometric Jacobian,
,
which has maximum rank equal to 2, meaning that maximum 2 components of the velocities (linear and/or angular) of the end-effector can be assigned independently. For example, if we assign the linear velocities
 and ,
the angular velocity ωz will follow as a result.
3. Find the kinematic singularities of the planar robot arm of question 1.
Answer: The kinematic singularities can be found by analyzing the determinant of the geometric Jacobian and finding the configuration at which it is zero, that is
 	.
Since rank(J(q)) ≤ 2, we can focus our attention on the first two rows of the block describing the linear velocities,
,
which yields
.
The angle θ1 is not playing any role for the kinematic singularities, which occur either when the second link is completely stretched (θ2 = 0 and the end-effector is at the outer boundary of the reachable workspace), or when the second link is completely folded (θ2 = π and the end-effector is at the inner boundary of the reachable workspace).
Let us consider the case θ2 = 0. In this case,
,
and the columns are clearly the same, meaning the two vectors are now parallel to each other. As a consequence, the velocities
 and
of the end-effector cannot be independently set by commanding the joint velocities
 and .
It is evident geometrically that both joint velocities contribute to exactly in the same direction of linear velocity. The same happens for θ2 = π. As mentioned in this unit, kinematic singularities are also critical points for the inverse kinematics.
2.5 Kinematics of Mobile Robots
The kinematics of mobile robots is quite different from the kinematics of robot manipulators. Moreover, the kinematic expressions depend on the specific type of mobile robot which is being analyzed, for example wheeled or flying robots. This section gives a hint into the kinematic modeling of wheeled robots.
The Bicycle Model for Car-Like Mobile RobotsBicycle model

The bicycle model provides a good approximation of wheeled robots for low speeds.

Car-like robots with a steerable wheel represent a wide class of mobile ground robots. A common, standard kinematic model which his adopted here is the bicycle model in fig. 10. This model is a very good approximation at low speeds.
	Fig. 10: Bicycle Model of a Car-Like Robot

[image:]
The pose of the vehicle is characterized by the coordinate frame {B} attached to the rear wheel, i.e., the position (x,y) of the origin of {B} with respect to the world frame {0}, and the angle θ between xB and xo.
Using a similar notation as for robot manipulators, we define the vector q ∈ ℝn of generalized coordinates in the joint or actuation space, and the vector p ∈ ℝm of generalized coordinates in the task space. The configuration of the vehicle in the task space is represented by
	,	(2.46)
whereas one choice of coordinates for the actuation space can be such that the time derivative of the actuation variables is
	,	(2.47)
where v is the velocity of the drive wheel (in fig. 10 assumed to be the rear wheel), γ is the steering angle, and ẏ is the steering velocity.
The axis xB is the forward direction and the axis yB forms an angle of 90° with regard to xB about the zB axis, along the zero motion direction. In fact, it is assumed that the wheels cannot slip sideways but can only move forward. The intersection between the zero motion directions of rear and front wheel is the instantaneous center of rotation (ICR). For a fixed steering wheel angle γ, the car moves along a circular arc; however, the radius of the rear wheel is bigger smaller than the radius of the front wheel, i.e., RB < RF, which means that the front wheel follows a longer path and rotates faster that the rear wheel (Tzafestas, 2013). The distance between the centers of the wheels is denoted by L.
The following differential kinematic equations relating the configuration to its change in time will be derived; these will provide the kinematic model of the bicycle. In the case of rear drive, the rear wheel has a velocity vector v along the xB axis. The magnitude v of v is equal to the angular speed of the wheel times the wheel radius. In the frame {B} we have
	,	(2.48)
where the y component of vB is zero due to the no-slipping kinematic constraint.
The rotation matrix from {0} to {B} corresponds to a rotation on the plane, that is about z0 (which is directed upwards to form a right-handed frame). One obtains from adapting (2.7) to the two dimensional case
	,	(2.49)
which lets us express the velocity in the world frame as
	.	(2.50)	
Equation 2.50 provides the differential kinematic equations for the first two components of the configuration p. The last component, θ, can be seen exploiting the instantaneous center of rotation in fig. 10. The origin of {B} rotates with an angular velocity
.
Based on trigonometry
,
we get
	,	(2.51)
which is the last necessary kinematic equation. The equations of motion of the bicycle model are (2.50) and (2.51).	
The kinematic model (2.50) and (2.51) of the bicycle entails a constraint between the configuration variables p, which comes from the no-slipping condition. In the world frame {0} such a constraint can be written as
	,	(2.52)
 which sets some limits on the way the variables can evolve in time. One example of the real impact of constraint (2.52) is the impossibility for a vehicle to drive sideways. Common vehicles, in fact, cannot park directly but need some maneuvers. Or they cannot rotate by 180° on the spot. This is a consequence of kinematic constraints between the configuration variables.
Holonomic and Nonholonomic ConstraintsHolonomic

These constraints are between configuration variables and reduce the configuration space.

Consider a mechanical system with configuration given by generalized coordinates p∈ ℝm containing m generalized coordinates. The coordinates may be subject to constraints. Constraints of the form
		(2.53)
are called holonomic.
Holonomic constraints reduce the space of accessible configurations. A mechanical system for which all the constraints can be expressed in the form (2.53) is called holonomic. Holonomic constraints are the result of mechanical interconnection between the rigid bodies constituting a system, for example an industrial manipulator.Nonholonomic constraints

These are constraints between generalized velocities. They do not reduce the configuration space, but reduce the possible ways to reach a specified configuration.

Nonholonomic constraints, on the other hand, reduce the instantaneous velocity or acceleration in certain directions, but do not restrict the configuration space of the system. Nonholonomic constraints involve generalized coordinates and velocities, and appear in the form
	.	(2.54)
Nonholonomic constraints occur when there are velocity constraints, for instance due to under-actuation (fewer actuators than degrees of freedom). A mechanical system that is subject to at least one nonholonomic constraint is said to be nonholonomic.
Self-Check Questions
1. Is the bicycle a holonomic or nonholonomic system?
Answer: The bicycle model is subject to the constraint (2.52) which is of the type (2.54), because we have the generalized coordinate θ as well as the derivatives ẋ and ẏ of the generalized coordinates x and y. Thus the system (or, at least, its model) is nonholonomic.
2. Discuss whether the bicycle can achieve any configuration x, y, θ in the plane, or if some configurations are not accessible.
Answer: The bicycle can achieve any configuration. The only constraint (2.52) is a nonholonomic constraint, i.e., it restricts the possible velocities at any point but it does not reduce the configuration space. In other words, any configuration in the place can be achieved, although some maneuvers can be necessary.
3. The unicycle is another very popular model of motion, which applies to some mobile wheeled robots such as differential drive and synchro drive robots. The unicycle has one wheel which provides the forward velocity v and the steering angle θ as actuation inputs. Develop a kinematic model of the unicycle using the picture below and determine if the system is holonomic or nonholonomic.
[image:]
Answer: The configuration of the unicycle in the task space is completely described by the three generalized coordinates p = (x, y, θ). The drive wheel applies a velocity along the forward axis xw, which means vw = (v, 0)T. In the frame {0} we have
	 .
The system is subject to only one constraint, namely the no-slipping condition (velocity vw has zero component along yw, which can be written in the world frame {0} as
,
meaning that the system is nonholonomic.
4. For the bicycle and the unicycle, calculate the Jacobian of the differential kinematics.
Answer: the Jacobian J relates the velocities in the task space to the velocities in the actuation space by the equation
.
For the unicycle
,
and we have
,
which yields the Jacobian
.
For the bicycle
,
which yields
,
and thus
.
The Jacobian of the bicycle shows that the actuation input

does not contribute instantaneously to the velocities in the task space. In fact, its contribution can be seen only through its integral with respect to time, i.e., φ.

	 Summary

	To understand and plan the motion of robots, either industrial or mobile, the kinematics of their structures must be analyzed. Forward kinematics links the configuration in the joint or actuation space to the resulting configuration of the robot in the task space. For instance, the direct kinematics of a manipulator relates the values of the joint variables to the position and orientation of the end-effector. The direct kinematics of a robot manipulator can be fully characterized in terms of homogeneous transformation matrices.
The inverse kinematics problem, however, is much more complex because there could be no solutions or more than one. In particular, if the manipulator is redundant, there could be more than one posture (set of joint variables) providing the desired pose of the end-effector. The inverse kinematics can be solved analytically for some manipulator structures such as the anthropomorphic arm with a spherical wrist. Alternatively, it can be solved numerically by means of optimization.
The differential kinematics relates velocities in the joint space to velocities in the task space. The link is provided by the geometric Jacobian, calculated based on geometrical analysis of the manipulator, or equivalently by the analytic Jacobian, retrieved by time-differentiation of the direct kinematics function. The two approaches are equivalent although the two Jacobians are different. Both allows analysis of the mobility of the manipulator. For instance, the determinant of the Jacobians is zero in those configurations called kinematic singularities. In such a configuration, the mobility is reduced, and the solution to the inverse kinematics problem is not regular.
Mobile robots are somehow less complicated than robot manipulators. They usually have very few actuations, fewer than the number of variables which describe their configuration in the task space. Moreover, wheeled robots move on a plane and the geometry of positions and orientations is simplified by the 2D assumption. A wide class of mobile robots can be kinematically approximated by the so-called bicycle model, consisting of two wheels, of which one is steering and the other is providing motion. The model can be analyzed in terms of differential kinematics and its constraints, which can be holonomic or nonholonomic. Nonholonomic constraints do not reduce the configuration space, whereas holonomic do. The nature of the constraints is very important to plan and control the robot motion.

Unit 3 — Trajectory Planning

Study Goals

On completion of this unit, you will have learned …

… what a trajectory is.
… how to plan trajectories in the joint space.
… how to define trajectories in the operational space.
… the main issues in designing trajectories for mobile robots.

3. Trajectory planning

Introduction
Robots are used in many different applications because of their ability to move in some controlled fashion to accomplish a task. For robot manipulators, very common in the industry, a task needs to define a set of points in the space where the robot should arrive, together with the corresponding necessary orientations of the end-effector to possibly manipulate objects in a specified way. The set of points can be given either in the joint space or in the operational (Cartesian) space or in the task space. A typical example is a pick-and-place operation, where the robot picks an object at point A and brings and leaves it at point B. Both points are characterized, from a task point of view, in terms of position and orientation of the robot gripper.
For mobile robots, a task is also very similarly defined by a set of points in the configuration space accounting for position and orientation. The task definition for a bicycle robot requires points to be defined in terms of position (x,y) as well as orientation θ.
While the task planning works at a higher level and depends strictly on the underlying application, the role of trajectory planning is to transform the task-dependent points or information into a feasible motion law for the robot, i.e., a motion which takes kinematics and dynamics constraints into account.
This unit introduces some techniques for the generation of trajectories for robot manipulators in the special but common case where the initial and final point of motion are assigned (so-called point-to-point motion). At the end of the unit, some hints are given about the trajectory planning for mobile robots.

3.1 Basic ConceptsPath

A path in a topological space, for example , is a continuous function of a scalar value into the space.

The first step in planning the motion of a robot usually consists of a task definition followed by task planning. The output of a task planner is, in general, a set of points in the space with corresponding orientations which allow accomplishing the task. The set of points in space can also take possible obstacles into account thanks to the permanent communication with sensors of the environment and of the robot (e.g., a camera). Usually, a task planner defines only those points which are strictly necessary for the task completion (for example, a simple final point B in the case of pick-and-place). Task planning can be performed in real time or off-line, depending on the specific application.Timing law

A timing law provides the mathematical way in which time is considered to perform motion in a space.

The output of the task planner is the input to the trajectory planner, as depicted by fig. 11. The trajectory planner converts the set of task-points into a path, i.e., a denser sequence of points in the space which obey a precise analytical law, and also provides a timing law to the path, which considers the physical characteristics of the robot, such as maximum allowed velocities and accelerations (robot constraints).
	Fig. 11: The Role of Trajectory Planning

[image:]
The output is a trajectory for the motion control system. A trajectory is composed by a geometric path together with a timing law, and thus defines how the desired motion is executed in time. Briefly speaking, “there is a path from A to B, but there is a trajectory from A to B in 10s or at 2 meters per second“ (Corke, 2017, p. 70).
Trajectory planning can be performed in the joint space as well as in the operational or Cartesian space. Recall that a robot is usually actuated at the joints, meaning that each joint has a motion actuator, either prismatic or rotational. Thus, the planning in joint space has the huge advantage that the determined trajectory, i.e., the time sequences for the joint variables, can be directly assigned to the joint actuators and therefore tracked by the motion control system. The drawback is that the motion of the end-effector is not clearly predictable based on the motion of each joint, and depending on the application should be checked in advance by means of direct kinematics.Trajectory

A trajectory is a combination of a path and a timing law giving how the path will be traversed in time.

Trajectory planning in the operational space provides a more natural way to describe the motion of the end-effector and to account for path constraints such as obstacles, which are usually better described in terms of Cartesian position with respect to the reference frame. However, since actuation usually occurs at the joints, any trajectory planned in the operational space must be converted to a trajectory in the joint space by means of inverse kinematics algorithms. This step is computationally intensive and can be difficult in presence of singularities or multiple solutions.
The typical operative sequence of trajectory planning can be summarized as follows (De Luca, 2018, p. 9):
1. Task planning to provide a sequence of a few necessary pose points (called knots) in Cartesian space
2. Interpolation in Cartesian space to provide a cartesian geometric path (position + orientation)
3. Sampling of the generated Cartesian path (higher sampling with respect to 1)
4. Kinematic inversion of the samples to obtain a sequence of knots in the joint space (attention to singularities!)
5. The knots in the joint space are interpolated to obtain a path and motion law in the joint space.
6. The joint space path is given as input to the motion control system.
Let us discuss some of these steps in light of a practical application such as pick-and-place. Refer to fig. 12. A robot should pick an object in A and release it in B. Unfortunately, there is an obstacle in the space, which is sensed by the vision system. The information on the obstacle is given to the task planner, which than generates an intermediate point (a via point) C to avoid the obstacle. Note that C is not required by the application, it is introduced only because of the obstacle.
	Fig. 12: Paths in the Cartesian Space

[image:]
The points A, B, C in the operational space are given as input to the trajectory planner. The trajectory planner has various possibilities. The first and the simplest would be to invert A, B, C kinematically (skipping steps 2 and 3) to obtain the corresponding joints configurations qA, qB, qC. These configurations can then be interpolated (step 5) and the samples can be given to the motion control system. The drawback is that we do not have control over what happens to the end-effector between the points. It may happen that the end-effector or some link goes on the obstacle.
If more control over the movement is necessary, a better idea would be to decide how the robot must move in the Cartesian space by defining a Cartesian path between the points. Of course, there are many possibilities. For example, the curvilinear path Γ2 as well as the piecewise rectilinear path Γ1 are good choices. Once a decision about the kind of motion in the Cartesian space is made, the procedure continues from step 2 by generating more points along the chosen path Γ, inverting them kinematically, and providing the sequence of joint variable values to the motion control system.
A common industrial practice to design trajectories consists of defining some Cartesian points using the teach-box, i.e., a device which records mechanical motions. The teach-box is held by a human operator who “teaches” the robot the desired positions and orientations for the specific application. These memorized poses are kinematically inverted and saved for later use. The interpolation is performed in the joint space. As such, the common industrial practice resembles the first approach that has been discussed.

Self-Check Questions
1. What is the difference between a trajectory and a path?
Answer: a path is a purely geometric description of motion, while a trajectory consists of a path and a timing law for its execution.
2. What is the main advantage of planning trajectories in the joint space?
Answer: planning trajectories in the joint space requires no kinematic inversion since such trajectories can be directly given in input to the motion control system.

3.2 Trajectories in the Joint Space
Planning a trajectory in the joint space means determining the values of the joint variables q with respect to time. This is achieved by generation of an interpolating function q(t) of the joint values at each point in respect of the imposed constraints. The following feature is required:
· the joint positions and velocities should be continuous function of time, i.e.,
.
The problem of trajectory planning in the joint space can be addressed component-wise for each joint variable qj, j = 1 … n. In the following we will refer to the generic variable as q.
Let us consider without loss of generality a single joint variable q and the point-to-point motion for which an initial value qi at time t = 0 and a final value qf at time t = tf have been specified.
One possible solution is to use cubic polynomials of the form
	, 	(3.1)
which yield velocity
	, 	(3.2)
and acceleration
	,	(3.3)
and is completely parameterized by the four real coefficients a0, a1, a2, a3 ∈ ℝ.
The four parameters provide the possibility to impose four conditions,
.	(3.4)
The first two are given by the problem definition, i.e., the initial and final values. The last two are used to set initial and final velocities. A common choice for point-to-point motion is to set initial and final velocities to zero, that is a1 = 0 and
.
Solving (3.4) yields
	.	(3.5)Quintic polynomials
These are polynomials of the fifth order of a variable, in this case time.

Cubic polynomials allow ensuring the continuity of position and velocity but not of acceleration. To impose constraints on the initial and final acceleration, two more parameters are needed. This can be done by means of quintic (or fifth-order) polynomials of the form
	, 	(3.6)
with constraints
	,	(3.7)
whose solution gives
	.		(3.8)
A different approach for planning a trajectory is to split the motion into different intervals and use a different function for each interval. This is the idea behind the trapezoidal velocity profile approach. The resulting trajectory consist of a constant acceleration phase, a cruise-phase with constant velocity, and a constant deceleration phase, as shown in fig. 13. A huge advantage of the trapezoidal velocity profile approach is the possibility to consider explicitly physical constraints such as maximum velocity or maximum acceleration in the trajectory generation problem.
	Fig. 13: Trapezoidal Velocity Profile and Resulting Position and Acceleration

[image:]
In trapezoidal trajectories, the overall duration is divided into three parts.
· In the first part for 0 ≤ t ≤ tc, a constant acceleration q̈c is applied. This yields a linear velocity profile q̇(t) and a parabolic position profile q(t).
· In the second part for tc ≤ t ≤ tf −tc, the acceleration is zero, the velocity has its cruise-value q̇c, and the position is a linear function of time.
· In the third part tf – tc ≤ t ≤ tf, a constant negative acceleration q̈c is applied, and a linear decreasing velocity as well as a parabolic position are obtained.
The problem of designing a suitable trapezoidal trajectory can be tackled from different perspectives. For example, one possibility is to assign the duration time tf. Another one is to let the user assign the velocity as a percentage with respect to the maximum feasible velocity. Let us discuss the three parts of the motion profile separately.
In the acceleration phase (0 ≤ t ≤ tc) we have
	,	(3.9)
	,	(3.10)
	,	(3.11)
with trivial constraints (assuming q̇(0) = 0)
	.	(3.12)
The constant acceleration can be calculated from (3.11) as
.
In the constant velocity phase (tc ≤ t ≤ tf −tc) we have
	,	(3.13)
	,	(3.14)
	,	(3.15)
with the constraint that the constant velocity of this phase must be equal to the velocity q̇c reached during the acceleration (continuity of velocity), i.e.,
	,	(3.16)
and the further constraint on the continuity of q(t) in tc, i.e.,
	. 	(3.17)
In the deceleration phase (tf – tc ≤ t ≤ tf), we have
	,	(3.18)
	,	(3.19)
	,	(3.20)
with constraints coming from the final position qf, the velocity q̇f = 0, and the velocity q̇c at time t = tf − tc,
	.	(3.21)
The overall trapezoidal trajectory q(t) can be computed by
	.	(3.22)
It can be seen that (3.22) still depends on the parameters q̇c, q̈c, tf, tc which need to be fixed in order to solve the design problem but cannot be chosen arbitrarily. Due to the symmetry of the trajectory we have the first additional design constraint
	.	(3.23)
When

the trapezoidal profile becomes a triangular profile without constant velocity phase. The trajectory is symmetric with respect to the middle point

which is reached at time

(see fig. 13).
Due to the continuity of velocity we have
	,	(3.24)
and due to continuity of position we have (see first equation of (3.22))
	.	(3.25)	
Equations (3.24) and (3.25) can be combined to yield
	.	(3.26)
Equation (3.26) and inequality (3.23) set constraints between the design parameters. Any tc, q̈c which satisfy (3.26) and (3.23) can be considered as choices. If qi, qf, tf, and q̈c are given, a solution for

is obtained from (3.26)
	.	(3.27)	
Equation (3.27) provides a lower bound on the acceleration, i.e.,
	.	(3.28)
If the acceleration is equal to the lower bound, equation (3.27) yields

and the constant velocity phase vanishes.
Self-Check Questions
1. A point-to-point trajectory with qi = 0, qf = 10, tf = 1, q̇i = 0, q̇f = 0 has to be designed and continuity of velocity has to be ensured (physical units are not provided because strictly depends on the kind of robot). Find the interpolating polynomials for q, q̇, q̈ and plot the results.
Answer: Since only continuity of velocity is of interest, a third order polynomial can be a good choice. Application of (3.5) yields

The results are shown in the following picture.
[image:]

2. A point-to-point motion has to be designed with qi = 0, qf = π, tf = 1, ti = 0. The physical constraints of the robot actuators provide a maximum acceleration of q̈max = 6π (units are not used since they depend on the specific robot). Design a trapezoidal trajectory which fulfills the requirements and plot q, q̇, q̈.
Answer: The first step is to check whether the maximum available acceleration satisfies the constraints (3.28). In this case the constraint is satisfied, so we can move on calculating the time tc of the trapezoidal profile with (3.27), which yields tc = 0.2113. We have all parameters that we need to determine the trajectory (3.22), reminding that q̇c = q̈ctc. The results are shown in the picture.
[image:]
3.3 Trajectories in the Operational Space
A joint space trajectory allows moving between poses of the robot which are specified in the joint space. One drawback is that by planning trajectories in the joint space the motion of the end-effector in the operational space cannot be easily predicted, and this is due to the nonlinearities of the direct kinematics.
The solution is to plan trajectories directly in the operational space. There are two main approaches:
· Plan a trajectory by interpolating points in the operational space using an interpolation method such as trapezoidal profiles, cubic or quintic polynomial.Motion primitive

A motion primitive is a pre-computed motion that a robot or a moving object can undertake.

· Define an analytical function of motion (motion primitive) which generates a trajectory and the related points
The first approach can be easily applied by resorting to one of the presented interpolation algorithms and applying them to each of the components of the operational space variable
.
However, if the end-effector motion must follow a desired trajectory, the second approach should be preferred. Let p be a (3 x 1) vector and f(s) a continuous vector function defined in the interval [si, sf]. The sequence of values of p given by
	, 	(3.29)
is termed path in the space. The equation (3.29) gives a parametric representation of the path Γ with respect to the parameter s ∈ ℝ (Siciliano et al., 2009). As the parameter goes from si to sf, the point p moves on the path from one side to the other. The path is closed when Arc length

The arc length is the distance along the arc of a curve. It is generally defined by an integral along the curve or the path.

.
One way to define the scalar parameter s is to set it equal to the arc length of the generic point p on the path. The arc length is the length of the arc of Γ with extremes p and pi if p follows pi, or the opposite of this length if pi follows p. It follows that for
.
Fig. 14a shows a generic path in space between two points, while fig. 14b illustrates a rectilinear path in space. For both paths, a value of the arc length s corresponds to a precise point p along the path. The point p allows the definition of three unit vectors which characterize the path. One is the tangent unit vector t, which is oriented along the direction induced on the path by s. Fig. 14 shows the tangent vector for a generic as well as a rectilinear path.
	Fig. 14: (a) Generic Path in Space, (b) Rectilinear Path Between Two Points in Space

[image:]
Consider a rectilinear path connecting point pi to pf. The parametric representation based on the arc length is
	, 	(3.30)
where it can be noted that

is the unit vector of the line connecting pi to pf (in the case of rectilinear path it coincides with the tangent vector t).
Equation (3.30) describes a rectilinear path as a function of a scalar parameter . As mentioned in the introduction, a path is a purely geometric description of motion. In order to generate a trajectory, it is necessary to introduce a timing law to the geometric motion. This can be done by introducing a time dependence in s, i.e., s = s(t).
Let

 be the vector of operational space variables which express the pose of the end-effector. Let us consider position pe first. Based on the notation that we introduced above, we can write pe = f (s) with s being the arc length of point pe while pe is moving from pi to pf along Γ. In the (common) case of a rectilinear path, we have
	,	(3.31)
	,	(3.32)
and, since for a rectilinear path
,
	.	(3.33)
Equations (3.31)—(3.33) show the dependence of the trajectory on the choice of the timing law for s(t). Actually, a typical choice for s(t) is the trapezoidal profile, but in general it could be also a polynomial function of time. Of course, continuity for position and velocity should be guaranteed.
A similar discussion can be had about the orientation component ϕe. Let us consider a minimal representation of orientation such as Euler angles, ϕe = (φ, θ, ψ)T, and an initial point ϕi and a final point ϕf. Using a rectilinear path we have
	,	(3.34)
	,	(3.35)
	.	(3.36)
The problem reduces again to the definition of a suitable timing law for s(t), for instance a trapezoidal profile.
It is worth recalling that the orientation can be expressed alternatively as a rotation matrix. This means that, in principle, one could think about generating a trajectory for the orientation by interpolating between an initial rotation matrix Ri and a final rotation matrix Rf. The main issue with this is that a linear interpolation on the unit vectors ne, se, ae does not guarantee the vectors to be orthonormal at each time instant. Therefore, the interpolation on a minimal representation is preferred. Moreover, the rotation matrices that can be calculated from each φe(t) are guaranteed to be orthonormal.
Self-Check Questions
1. Find the timing law p(t) for a rectilinear path from pi = (0, 0.5, 0)T to pf = (0, −0.5, 0)T in the operational space with trapezoidal velocity profile (Siciliano et al., 2009, p. 189). Assume maximum acceleration equal to S̈c = 6 and tf = 1s. Plot the resulting trajectory together with velocity and acceleration.
Answer: The trapezoidal law for s(t) is summarized in (3.22), with
.
The application of (3.22) yields the profile for

which is shown by the picture.
[image:]
Now the timing law must be combined with the geometric path
.
Since a rectilinear path is desired, we have
,
,
 ,
where the tangent vector
.
The results are plotted in the figure below.
[image:]
For completeness, we also show the movement of the end-effector in the x − y plane.
[image:]

3.4 Considerations on Trajectories for Mobile Robots
Designing trajectories for mobile robots can be broken into the two subproblems of designing a path and a timing law, as for manipulators. The main difficulty occurs in the presence of nonholonomic constraints of the form
	,	(3.37)
which must be satisfied by a path at any time instant in order to be a feasible path.
Consider the case in which a trajectory from

to

has to be designed for a mobile robot, for instance the bicycle robot. The concept of a path
 for
can be applied. The velocity is
	,	(3.38)
where Pfaffian form

The Pfaffian form of nonholonomic constraints rearranges the constraints and expresses them linearly in the generalized velocities. However, this may not be possible for some nonholonomic constraints.

is the tangent vector to the path in the configuration space.
Let us consider the common case in which the nonholonomic constraints can be written in the so-called Pfaffian form, i.e., linear in the generalized velocities:
	.	(3.39)
Equation (3.39) can be expressed in matrix form,
	,	(3.40)
which, using (3.38), yields
	.	(3.41)
Since, in general, ṡ (t) > 0 for ti < t < tf, we have the following condition
	,	(3.42)
which must be satisfied by the tangent vector p' at all points along the path. This condition characterizes the geometric path admissibility (Tzafestas, 2013).
Any trajectory planning for mobile robots subject to nonholonomic constraints must meet boundary conditions such as interpolation of points and continuity up to velocity and acceleration, as well as geometric admissibility (3.42).
Self-Check Questions
1. Why are nonholonomic constraints an issue for the trajectory planning?
Answer: Nonholonomic constraints are an issue for the trajectory planning because they introduce further constraints about the geometric feasibility of the path to the designed.

	Summary

	Trajectory planning is aimed at generating suitable sequences of joint variables which provide the desired motion of the end-effector within the operational space. The trajectory planner is a very important component of any robotic system. The inputs coming from the task planner, usually few points defining position and orientation of the end-effector, are processed under consideration of some kinematic and dynamic constraints of the specific robot, and a trajectory is generated which is given in input to the motion control system.
Trajectories can be designed in the joint space or in the operational space. Designing in the joint space is easy: the result is the input to the control system. On the other hand, it is very difficult to figure out the motion in the joint space. A more natural description is done in the operational space. Trajectories designed in the operational space enable a better control over the final movement of the end-effector but need kinematic inversion (with issues about singularities) in order to be sent to the motion control system.
Both design approaches are based on the same basic elements, in particular interpolators such as cubic or quintic polynomials. A way to define motion, which is very widely used, is to define a trapezoidal velocity profile. The application for the design in the joint space is straightforward.
For operational space trajectories, it is useful to decouple position trajectories and orientation trajectories. For both subproblems, it is useful to first define a geometric path and then define a timing law on a scalar parameter. As result, the operational space variable will be moved following the desired path and timing in the operational space.
The design of trajectories for mobile robots is very similar to the design of operational space trajectories for robot manipulators. Unfortunately, mobile robots subject to nonholonomic constraints make the design problem more difficult. Nonholonomic constraints put additional constraints on the path to be designed. For constraints which can be written in Pfaffian form, it can be shown that the path constraints are linear in the components of the tangent vector.

Unit 4 — Sensing and Perception

Study Goals

On completion of this unit, you will have learned …

… what the role of sensors in a robotic system are.
… what encoders are and how they measure angular displacements.
… how velocity is measured.
… the main types of distance sensors.
… the low-level components of a vision system.

4. Sensing and Perception

Introduction
Sensors are a fundamental part of any robotic system. They enable one to retrieve important information about internal states of the robot, such as the values of the joint coordinates q, the joint velocities q̇, as well as joint accelerations q̈. Furthermore, sensors can be used to measure and sense the environment of the robot, such as its position within a given reference frame, or its distance with respect to some objects or obstacles. In other words, sensors are very important to enable task planning, trajectory planning and motion control.Proprioceptive sensors

These sensors measure the internal state of a robot, for example joint displacements and velocities.

There are two main kinds of sensors widely adopted for robotic applications: proprioceptive sensors and exteroceptive sensors. The former measure internal states of the robots, while the latter provide some knowledge about the surrounding environment. Fig. 15 summarizes the main sensors of the two categories used for industrial robots.Exteroceptive sensors

These sensors measure the environment.

	Fig. 15: Typical Proprioceptive and Exteroceptive Sensors Used in Robotics

[image:]
Further exteroceptive sensors can be used depending on the application. For instance, robotic systems working in some industrial environment also need information about humidity, pressure, and temperature. The goal of the sensors is to enhance “the degree of autonomy of the system” (Siciliano et al., 2009, p. 210).
Mobile robot applications are based on a very similar set of sensors. In this case the internal states are measured, for example, by the velocities of the wheels and the steering angle.
The data coming from different sensors can be processed by algorithms of sensor fusion which provide information for high-level task planning. This unit briefly introduces some common sensors for robots.
4.1 PositionTransducer

A transducer is an electronic device that converts energy from one domain to another, for instance mechanical energy into electrical one.

A position transducer or sensor provides an electric signal proportional to the linear or angular displacement of a mechanical apparatus, for instance a joint, with respect to a reference position. Typical position transducers for linear displacements are potentiometers and linear-variable-differential transformers (LVDT), while for angular displacement potentiometers, encoders and resolvers can be used (Regtien & Dertien, 2018).
Angular displacement sensors are widely used for industrial manipulators because the joints, either prismatic or revolute, are usually actuated by electric motors. For prismatic joints, the revolute displacement of the motor is transformed in a linear displacement by means of gears.Absolute encoder

An absolute encoder is able to measure the absolute value of an angular displacement, that is, the null position is well defined and reproducible.

The most common angular sensor is the encoder. Refer to fig. 16. An absolute encoder consists of an optical-glass disk with concentric circles (called tracks), where each track has an alternating sequence of transparent and matte sectors. A light beam is emitted in correspondence of each track. The disk rotates together with the joint. The absolute position is determined based on the quantity of light that is received on one side of the disk by photodiodes.
	Fig. 16: Absolute Encoder, (a) Working Principle, and (b) Front View of the Disk with Alternating Sequences of Transparant and Matte Sectors

[image:]
The sequence of transparent and matte sector is properly designed in order to extract the absolute position similar to binary coded numbers. The number of the tracks determines the resolution of the sensors. For example, fig. 16b shows an encoder with 4 tracks, meaning that only 24 position around the circle can be determined. Typical encoders in robotics have at least 12 tracks and have a resolution of 1/212. In prismatic joints, the encoder measures the rotation of the actuating motor. The linear displacement is obtained by considering the transmission. The calculations are done by the encoder electronics.Incremental encoders

These measure the variation of angular displacement and its sign. They do not provide an absolute value of it.

Incremental encoders consist of only two tracks with transparent and matte sectors arranged in quadrature. Counting the transitions between transparent and matte sectors during the rotation allows measuring the variation of angular displacement and the sign of the rotation. To estimate the absolute position based on this information, further processing is needed. Incremental encoders are much cheaper than absolute encoders because of the simple structure.
Self-Check Questions
1. Encoders measure angular displacement. Explain why they can be used to measure the linear displacement of prismatic joints.
Answer: Prismatic joints are also actuated by rotary motors whose angular position can be measured by encoders. The linear displacement can be estimated knowing the mechanical parameters and structure of the joint.
4.2 Velocity
In principle, velocity measures can be estimated by differentiating position measurement. Thus, angular velocity ωi of revolute joint i could be estimated as
.
However, differentiation introduces many practical problems. In addition, the velocity measure is very important for the motion control of a robot. Therefore, it is often preferred to measure velocity by means of ad hoc transducers.
Velocity transducers are called tachometers, and the most-used sensor is the direct-current (DC) tachometer. It is based on the Faraday’s law of induction, whose principle is illustrated in fig. 17.Tachometer

A tachometer measures the speed. The word comes from the Greek “tachos” which means “velocity”.

	Fig. 17: Working Principles of DC Tachometer, Based on the Induction Law

[image:]Faraday’s law of induction

This is a law of electromagnetism which describes how time-varying fields generate electrical fields, i.e., electro-magnetic induction.

Let us consider a moving part made of magnetically permeable material such as steel. A coil, sometimes called pick-up coil, is wounded about the piece of material. A magnetic field H is applied to the material and a magnetic flux linkage φ results. If the material is subject to motion, then an electrical voltage ui is induced at the coil tips,Magnetically permeable

A magnetically permeable material is a material with a good magnetic permeability, i.e., the ability to be traversed by magnetic flux when subject to a magnetic field.

	.	(4.1)
The induced voltage is caused by the derivative of the flux linkage with respect to time. A higher voltage will be generated when a faster movement occurs. A DC-tachometer can have many structures in order to measure linear as well as angular velocities. The necessary magnetic field H is usually provided by a permanent magnet.
Some issues of the DC-tachometer are the presence of residual ripples in the output voltage, which are very difficult to eliminate and influence negatively the accuracy of the measurement. These drawbacks are addressed by alternating-current tachometers (Regtien & Dertien, 2018).
Self-Check Questions
1. Refer to fig. 17. Discuss whether the principle of a DC-tachometer would work in the case of a rotation of the piece of magnetically permeable material.
Answer: The principle would work also in the case of a rotation. Any change of φ(t) induces a voltage in the pick-up coil.
4.3 Force
The measure of a force or a torque is usually performed by measuring the force- or torque-induced deformations on extensible elements. The idea is the same as a scale, where the weight-force is measured by looking at the deformation of a spring. That is, force is measured indirectly.
Strain gauges are widely used as extensible elements and central component for force sensing. A strain gauge consists of an electric wire glued on an extensible element subject which strains under the application of a force (see fig. 18). The electric wire is characterized by a strain dependent resistance (recall that resistance depends on resistivity, cross-section traversed by the current and length of the wire). When deformation occurs, the resistance value changes accordingly and thus the value of the deformation can be measured. Recall that resistance usually depends also on temperature, which can affect the measurements. It is important to choose an element with low sensitivity of resistance with respect to temperature. Measuring schemas implementing the differential principle can be considered to compensate for temperature-induced errors.Strain gauge

A strain gauge is an extensible element with an electric wire which deforms and changes resistance when subject to stress.

	Fig. 18: A Strain Gauge (left) and its Typical Electrical Arrangement within a Wheatstone Bridge Circuit

[image:]
The torques applied by the motors of the joint can be measured in two ways. An indirect measurement is based on measuring the current required by the motors, which can be physically related to the torque by means of a good physical model of the motor itself. Such an indirect measurement is very sensitive to the model parameters, which in general are time-varying with temperature and aging.
A direct measurement exploits the principle of strain gauges that can be mounted on an apparatus interposed between the motor and the joint. It is important for the apparatus to deliver a proportional relationship between the applied torque and the induced strain.
Force sensors based on strain gauges can be mounted on the wrist of a manipulator to measure the interaction with the working environment. The sensor illustrated in fig. 19 measures the three components of acting forces with respect to a defined reference frame. To express the force in the base frame the direct kinematics up to sensor frame can be used.
	Fig. 19: Force Sensor on the Wrist of a Manipulator

[image:]
Such a 3D force and moment sensor must be designed to
· guarantee an appreciable deformation for any orientation of forces and moments, and
· enable a decoupling of the force components, such as that of a force is applied along one axis, only a specific set of the extensible elements must provide a measurement signal.
Self-Check Questions
1. Explain how strain gauges can measure forces.
Answer: Strain gauges gives an electrical output proportional to the deformation because of the change in internal resistance. The calculated deformation can be related to the force by knowledge of the mechanical properties of the deforming material, such as stiffness.

4.4 DistanceSensitive range

The sensitive range of a range sensor is the distance range in which an object can be identified.

Range sensors measure the distance and the presence of objects in the workspace and enable the robot to execute actions under consideration of the environment. Range sensors are important for any kind of task. An example is the detection of pedestrians or other vehicles in robotic applications such as autonomous driving. The maximum distance in which objects can be detected is defined the sensitive range. Proximity sensors are a subset of range sensors which are able to provide distance data of objects in the proximity of the sensor (and the robot). In general, range sensors give in output the measured distance and direction of an object with respect to the sensor.
Sonars are range sensors whose measurement principle is based on emitting acoustic pulses and measuring the time necessary to receive the corresponding echoes. The sound speed is known, thus the range to an object is proportional to the time that the acoustic waves need to cover the distance to the object and back to the sensor, called time-of-flight. Fig. 20 shows an example. The acoustic wave from the sonar is sent to the object. A part of the wave is deflected, depending on the shape and the material of the object. An echo returns after the time of flight to the sonar, which can estimate the range to the object.Time-of-flight

The time-of-flight is the time that an acoustic wave needs to go from the source to the object and back.

	Fig. 20: Sonar Ranging Principle

[image:]
Sonars are cheap and have low power consumption. Moreover, in underwater or low visibility environments, sonars are the only viable sensing modality.
Some range sensors employ the laser technology instead of ultrasound waves like sonars. Laser beams can focus very well because of their narrow beams. Range sensors based on laser technology can measure the time-of-flight or perform triangulation.Laser beam

A laser beam is a very narrow beam of radiation, usually at invisible frequencies.

Time-of-flight laser sensors measure the time that a pulse of light takes to travel from the source to the object and back. Since the speed of light is known, the distance can be directly computed. Usually, only one beam per sensor is emitted. The possibility of building a matrix of sensors and thus scan a complete surface at once is implemented in light detection and ranging (LIDAR) sensors (Neff, 2018). Time-of-flight range sensors have ranges of about 5-100 m, and accuracies of 5-10 mm (Siciliano et al., 2009).
A triangulation laser sensor works by projecting a laser beam, collecting the reflected beam on a sensor, and measuring the distance by calculating the angle of the reflected beam. A laser beam is projected on the object whose distance is to be measured. The reflected beam returns to a receiving element, a CCD sensor, with a certain angle depending on the distance. From the “position of the light spot on the receiver element and the distance from the sender to the receiver element, the distance to the measurement object is calculated” (Micro-Epsilon Messtechnik, 2020). The principle is illustrated in fig. 21. The accuracy of measurement is influenced by the ability of measuring objects to reflect the laser beam. Triangulation laser sensors

A triangulation laser sensor takes its name from the measuring principle, based on trigonometric properties of triangles.

Sensors based on laser technology unfortunately do present several risks concerning eye safety. The beams are in invisible light frequencies—that is, the danger cannot be seen and perceived by people.
	Fig. 21: Working Principle of Laser Triangulation Sensors

[image:]
Self-Check Questions
1. What is the main difference between the sonar technology and the laser technology?
Answer: Sonar technology uses acoustic waves whereas laser technology uses light waves to perform measurements.
4.5 Vision Sensors
Vision sensors such as cameras are widely use in robotics. They can help a robot manipulator perform a task in a more precise, environmently-aware fashion. They are nowadays fundamental components for mobile robots such as autonomous vehicles and drones (we cannot actually think about a modern mobile robot which does not have a vision system).
To perform vision, elementary photosensitive elements called pixels or photosites are employed, which transform the light energy into electric energy. The input is the intensity of light reflected by an object. The output is an electric signal characterizing the light intensity. There are different types of sensors depending on the physical principle adopted to realize the energy transformation.Pixel

The word pixel refers to an elementary photosensitive element as well as to a physical point or grid component in an image, usually the smallest addressable element in a display.

A Charge Coupled Device (CCD) consists of a rectangular array of photosites which exploits the photoelectric effect to accumulate an electrical charge that is proportional to the light intensity exiting the element. When the accumulation is complete, usually after the exposure time, the charge is transferred to the output amplifier and digitalized. A Complementary Metal Oxide Semiconductor (CMOS) consist of a rectangular array of photodiodes which are discharged when hit by photons. An amplifier integrated in each pixel transforms the charge of that pixel into an electric signal. The main difference between the two sensing technologies is that in CCD the pixels are coupled, so they influence each other. This does not happen in CMOS sensors. However, there are many other issues to be considered when choosing one technologies which go beyond the scope of this brief overview.Photoelectric effect

The photoelectric effect described the emission of electrons from a material when excited by electromagnetic radiation containing photons such as light. Albert Einstein was awarded the Nobel prize in 1922 for the explanation of this effect.

CCD and CMOS are the basic components needed to build a camera system, which comprises a shutter, a lens, and analog preprocessing electronics. The lens focuses the light onto the plane where the CCD or CMOS sensor lies, called the image plane. To reconstruct the image and convert the information in a meaningful form, coordinate transformation is required. Fig. 22 shows the typical setting. The lens sends the light reflected from the object point pc to the image plane at an angle depending on the focal length f of the lens, which is the distance between the origin reference frame {c} of the camera and the reference frame of the image plane. The light ends in the point (Xf, Yf) of the image plane. A coordinate transformation can be defined between all reference frames and in particular to the base frame {b}.
	Fig. 22: Perspective Transformation

[image:]
It must be noted that image formation and image acquisition are only the low-level parts of a robotic vision system. The high-level part should extract the important information about, for instance, moving objects, from the sequence of images captured by vision sensors.
Self-Check Questions
1. What does a photosite do?
Answer: a photosite transforms the light intensity into an electrical signal.
	Summary

	Sensors enable a robot system to be self-aware as well as aware of the surrounding environment where the robot operates. Sensors can be proprioceptive, measuring the internal states of the robot, or exteroceptive, measuring the environment.
Among the proprioceptive sensors we have sensors for the angular displacement of the joints of a robot manipulator. The most common sensor technology adopted here is the absolute or incremental encoder. The former measures the absolute value of an angular displacement while the latter measure the variations of it during operation. The latter is cheaper, but more effort has to be put into the reconstruction of the absolute position value.
Velocity at which a joint is operated is another important internal state. This can be measured by tachometers, which are generally based on the Faraday’s law of induction and provide a voltage output proportional to the velocity. Angular displacement and velocity play an important role into direct and indirect kinematics and differential kinematics.
Another internal state is the acceleration of a joint, which relates to the applied torques. Force sensors provide information about the interaction of the robot with the environment. For instance, during dynamic manipulation of an object or while performing a task. Force and torque sensors can be built based on strain gauges.
Among the purely exteroceptive sensors, range or distance sensors aim to measure the distance from the robot to an object. Sonar technology, based on emitting acoustic waves, is a very well-known approach used to measure distance. Another possibility is to resort to laser technology, which is based on emitting light waves. In environments with poor visibility like underwater application sonar technology is preferred.
Vision sensors are the obvious example of exteroceptive sensors. The adoption in robotics has been growing fast as much as their adoption in consumer cameras. The main component of a vision sensor is the elementary photosensitive element, called pixel or photosite. This can be built based on different technologies. The main ones are Charge-Coupled Devices (CCD) and Complementary Metal Oxide Semiconductor (CMOS). For vision sensors to provide a useful information to a robot, the image hast to be post-processed and subject to a coordinate transformation.

Unit 5 — Fundamentals of Robot Dynamics

Study Goals

On completion of this unit, you will have learned …

… what direct and inverse dynamics of a robot are.
… how to derive a dynamic model based on the Euler-Lagrange approach.
… how to elaborate a dynamic model based on the Newton-Euler approach.
… how the Euler-Lagrange approach can be modified to model nonholonomic systems.

5. Fundamentals of Robot Dynamics

Introduction
Robot kinematics allows us to analyze a robotic structure as a kinematic chain going from the base link to the end-effector. The motion of each link is considered as independent from the motion of other links. This is in general a good approximation when the motion is very slow and some control system at the joint level exists. In reality, the motion of each link influences the motion of the others.
	Fig. 23: Example of Dynamic Task

[image:]
Consider the task depicted in fig. 23, where the robot should slide on a given surface with Cartesian velocity v and at the same time apply a force F to the surface normal. This problem cannot be addressed by using the kinematics, which does not take forces into account. On the other hand, the problem can be solved by the dynamics of the robot.Dynamics

The dynamics of a system describes the relation between forces or generalized forces and resulting motion.

Dynamics provides the relationship between the generalized forces τ (t) acting on the robot and the motion of the robot—that is, the value of the generalized coordinates q(t), as well as q̇(t) and q̈(t). The generalized forces comprehend forces and torques applied to the joints. The generalized coordinates q(t) are a set of variables which can effectively describe the configuration of the robot. For robot manipulators the set of joint variables (the variables of the Denavit-Hartenberg convention) is usually adopted as q(t), and q̇(t) and q̈(t) represent velocities and accelerations of the joint variables. Fig. 24 sketches the relationship provided by the dynamics. Generalized forces

The term generalized forces is used to indicate forces or torques acting on a generalized coordinate (which can be, for example, a displacement or an angle).

	Fig. 24: Dynamics of Robots

[image:]
The direct dynamics provides the connection between the applied generalized forces τ(t), t ∈ [0, T] and the resulting generalized coordinates q(t), t ∈ [0, T], given the initial state q(0), q̇(0). Inverse dynamics provides the relationship between desired motion qd(t), q̇d(t), q̈d(t) and the necessary generalized forces τd(t) to generate it.
Many methods can be applied to find the dynamics of a robot. In this chapter we will sketch the basics of two of them, namely the Euler-Lagrange and the Newton-Euler methods. The first is based on energy consideration on the rigid bodies of a robot manipulator. The second works recursively by determining the dynamic equations for each link.
5.1 Basic Concepts
To apply energy-based methods we first need to understand how the energies of a rigid body can be described. Refer to fig. 25, which shows a rigid body (such as the link of a robot) and a reference frame {0}. The center of mass {C} is also shown, assumed without loss of generality in the middle of the link. The position of the center of mass in the reference frame is given by the vector pc. The position of any other point of mass of the rigid body can be expressed in reference frame by p* or equivalently in the frame {C} attached to the center of mass by means of r*. The body is subject to an angular velocity ω, and a linear velocity vc = ṗc. Center of mass

The center of mass of a body is a hypothetical point where the mass of an object can be assumed to be concentrated.

	Fig. 25: Kinetic Energy of a Rigid Body

[image:]
The mass of a rigid body with density ρ and volume V can be calculated as
	,	(5.1)
and the position of the center of mass in the reference frame is
	.	(5.2)
The kinetic energy T of the rigid body is the sum of the kinetic energies of each elementary particle, that is:
	.	(5.3)
Recall equation 2.30. The linear velocity of a point of a rigid body can be written as the sum of the linear velocity of another point, in this case , plus the cross product of the angular velocity ω and the vector r*, i.e., v* = vc + ω × r*. The use of such relationship yields
,	(5.4)
where Ic is the body inertia matrix or inertia tensor relative to the center of mass C. The matrix Ic is symmetric and has the following structure:
,	 (5.5)
which can be written in compact form asKönig’s theorem

This theorem of kinetics proves that the total kinetic energy of a body is the sum of the translational part and the rotational part, without any coupling.

.	 (5.6)
Equation 5.4 describes the total kinetic energy of the body as the sum of the translational kinetic energy

plus the rotational kinetic energy
.
The result is referred to as König’s theorem of kinetics. Note that the translational part is invariant with respect to the frame in which we describe the velocity vc of the center of mass. The rotational part is also invariant with respect to the frame in which ω and Ic are expressed, as long as both are expressed in the same frame. In particular, 5.5 shows the calculation of Ic in the frame {C} and, therefore, ω in 5.4 should be also expressed in {C}.
Let us consider the simplified situation of a rigid body with mass m rotating about just one axis, shown in fig. 26. The body rotates about the yc axis of the reference frame placed in the center of mass. In this case, the only component of Ic which is of relevance is Ic,yy ≠ 0. Let us assume now that the rotation axis of the body moves to y1 of the frame {1}, with y1 being parallel to yc. This is the typical situation in robotics because the links rotate or are in general actuated at the joint level and not in the center of mass.
	Fig. 26: Rotation of a Rigid Body About the Y-Axis

[image:]
To characterize the rotation of the body with respect to the new frame, the parallel axis theorem can be used (Siciliano et al., 2009, p. 582), yielding
	,	(5.7)
where d is the distance between the new and old rotation axis.
In general, given a frame {F} which is translated by vector tCF with respect to the frame {C} in which the inertia matrix has been calculated, it holds that
	,	(5.8)
where I3x3 is the identity matrix with dimensions (3 × 3). Equation 5.8 is Steiner’s theorem (Siciliano et al., 2009, p. 582).
The other important form of energy for the analysis of robots is potential energy. Under the assumption of rigid body the potential energy is
	,	(5.9)
where g0 is the gravity acceleration vector in the reference frame (for instance, g0 = (0,0, −g0)T with

if z0 is the vertical axis as in fig. 25).
Self-Check Questions
1. Consider the system in figure composed of two masses m1 and m2 at distance a1 and a2 from the origin of the reference frame. Calculate the total mass of the system and the position of the center of mass with respect to the reference frame.
[image:]
Answer: Using the definition of total mass we have
	,
and applying the definition of the center of mass with respect to the reference frame
	.
By noting that

and

we have
	.
2. Consider the system in figure, composed of a link of length l which can be rotated by a joint about the y0 axis of a reference frame {0}. The rotation is produced by an electric motor mounted on the joint, and the rotation axis of the motor coincides to the rotation axis of the joint y0.
Between the rotation angle θm of the motor and the rotation angle θ of the link there is a gear reduction ratio kr caused by the transmission gears. In this way,

and
.
For the torques τm and τ it holds
.
Let Il represent the inertia of the link with respect to an axis parallel to y0 and passing through the center of mass. Furthermore, let Im denote the inertia of the rotor when rotating about y0.
Calculate the total kinetic and potential energy of the system.
[image:]

Answer: The total kinetic energy of the system is the sum of the kinetic energy of the link and the kinetic energy of the motor (we are neglecting the contribution of the mechanical transmissions). The kinetic energy of the link is given only by a rotational energy,
	,
where I1 is the inertia of the body for rotations about the joint axis y0. By virtue of the parallel axis theorem, we have
	
and thus
	.
The kinetic energy Tm of the motor is again only a rotational energy. In this case, moreover, the rotation axis coincides with the rotor axis. Thus:
	.
To calculate the potential energy we need the position of the center of mass pc in the reference frame, which is pc = (d sin θ, 0, −d cos θ)T. Moreover, the gravity vector is g0 = (0,0, −g0)T. The potential energy of the link is
	.
It can be noted that the minimum potential energy is U(θ = 0) = −mg0d and the maximum is U(θ = π) = −mg0d.
3. For the parallelepiped body in figure, calculate the inertia tensor matrix with respect to the given frame located in the center of mass. Consider that, because of the symmetry, only the diagonal elements of the matrix are nonzero.
[image:]
Answer: The overall inertia matrix tensor is
,
and thus only the three diagonal elements must be calculated.
	
where the propriety dm=ρdV has been used. We can express the elementary volume dV as

or, with respect to z,
,
which yields, for the first term,
,
where V is the total volume of the body. Similar manipulations on the second term yield
	
and thus, summing both terms and multiplying by the density ρ,

where m=ρV has been used.
A similar approach can be adopted to calculate the other terms on the diagonal, leading to
	.
5.2 Euler-Lagrange Formulation
The Euler-Lagrange formulation allows the derivation of the equations of motions in a systematic way independently of the reference coordinate frame. This is the huge advantage over methods based on energy considerations, since energies are invariant with respect to reference frames. In the following the approach is sketched.
The Lagrangian L of a mechanical system composed by n bodies is a function of the generalized coordinates qi, i = 1 … n,
	,	(5.10)
and is defined as the difference between the total kinetic energy T (q, q̇) and the total potential energy U(q) of the system. The equations of motions are obtained by the Euler-Lagrange equations Nonconservative forces

These are forces which change the energy of the system, either increasing it (e.g., input torques) or dissipating it (e.g., friction).

	,	(5.11)
or, in a more compact form,
	,	(5.12)
where ξi is the generalized force associated to the generalized coordinate qi. The generalized forces are all nonconservative forces (that is, external forces which change the energy of the system) such as joint actuator torques, friction, and contact forces with the environments.
For a manipulator with n links, the total kinetic energy is
	,	(5.13)
where

is the kinetic energy of the link i and

is the kinetic energy of the motor actuating joint i.
The kinetic energy of a link can be calculated as the kinetic energy of a rigid body, such that
	,	(5.14)
where

is the velocity of the center of mass of link i,

is the mass of link i, ωi is the angular velocity of link i expressed with respect to the base frame {0},

is the inertia tensor relative to the center of mass of link i expressed in the base frame {0}. Note that in this case

depends on the configuration and thus on q.
The angular velocity ωi can be expressed also with respect to a frame {i} attached to the link i. In this case
	,	(5.15)
with

being the rotation matrix from the link i to the base frame. The inertia matrix in frame {0} is related to the inertia matrix

in frame {i} by
	,	(5.16)
which substituted in (5.14) yields
		(5.17)
The expression in (5.17) is advantageous because the inertia tensor
,
calculated with respect to the frame {i} attached to link i, is constant.
The kinetic energy of the motor actuating the joint i is the sum of the translational energy of the motor and the rotational energy. Let
,
denote the position of the center of mass of the motor, the mass of the motor, the angular velocity of the rotor, and the inertia tensor of the rotor relative to its center of mass, respectively.
	Fig. 27: Kinematic Description of Motor I

[image:]
The kinetic energy is
	.	(5.18)
It is common practice to place the motors as close to the base of the robot as possible, to reduce the overall weight of the structure. If we consider that the motor of joint i is placed on the link i −1, we have
	,	(5.19)
where ωi−1 is the angular velocity of link i −1,

is the angular velocity of the rotor of motor i, and

is the axis of rotation of rotor i. Usually, the angular velocity

is related to the velocity of joint i by means of a reduction gear ratio Reduction gear ratio

Transmissions usually present a reduction gear ratio, which characterizes the relationship between input and output quantities. Usually, input displacements or angles are reduced while input torques are increased.

, so that ,	(5.20)
where
.
The total potential energy of a manipulator with n links is
	,	(5.21)
where

is the potential energy of link i and

is the potential energy of motor i. Assuming each link is a rigid body,
	,	(5.22)
and
	.	(5.23)
The Lagrangian of the robot can be written as the sum of all energy contributions, as in (5.10), and the Euler-Lagrangian equation (5.12) can be invoked to find the dynamics of the robots. The process is quite complex even for small n, but the general result can be written in a very elegant form:
	.	(5.24)
The matrix M is called the joint space inertia matrix, C is called the Coriolis and centripetal coupling matrix, g is the gravity loading and

holds. ξ is the vector of generalized forces associated to q, which contains the joint actuating torques as well as further contributions of nonconservative forces such as friction.
[bookmark: _Hlk59376726]The model (5.24) has some interesting properties. First of all, the matrix M(q) is symmetric and positive definite, meaning that M(q) is invertible for all q. Second, the matrix can be used to express the total kinetic energy as follows:
	.	(5.25)
The matrix

is non-symmetric in general, however the matrix

is skew-symmetric and thus
 for all .
Self-Check Questions
1. Explain the difference between the rotational kinetic energy calculated in in the base frame and the rotational kinetic energy calculated in the frame attached to the center of mass.
Answer: There is no difference, since the energy is invariant with respect to the specific coordinate frame, as long as all variables are consistently expressed in the same frame.

2. Consider the total energy E of a robot, which is the sum of the kinetic energy T and the potential energy U (note that the total energy is not equal to the Lagrangian!). Using the model in (5.24) and its properties, prove that the total energy is conserved (i.e., Ė = 0), under the assumption that the generalized forces are zero (ξ = 0).
Answer: using (5.25) the total energy is
,
and the time derivative of the energy is
.
Recall from (5.24) that
,
thus
,
which yields
.
We apply the condition of zero input forces ξ = 0, which gives

and thus Ė = 0 due to the skew-symmetry of
.
Since the derivative with respect to time is zero, the energy of the robot is constant. Note that, in the case of nonzero inputs,
,
i.e., the variation of the energy equals the work of the non-conservative forces.

3. Consider the system in figure, composed of a link of length l which can be rotated by a joint about the y0 axis of a reference frame {0}. The rotation is produced by an electric motor mounted on the joint, and the rotation axis of the motor coincides to the rotation axis of the joint y0.
Between the rotation angle θm of the motor and the rotation angle θ of the link there is a gear reduction ratio kr caused by the transmission gears. In this way, θm = krθ and
.
For the torques τm and τ it holds
.
Let Il represent the inertia of the link with respect to an axis parallel to y0 and passing through the center of mass. Furthermore, let Im denote the inertia of the rotor when rotating about y0.
The total kinetic energy is
,
and the total potential energy is

(this has been proved in the self-learning question n.2 of the previous section). Apply the Euler-Lagrange approach to find a dynamic model of the link – motor system.
[image:]

Answer. The Euler-Lagrange approach requires first the definition of the generalized coordinates which effectively describe the configuration of the system. In this case, we only need one coordinate since the configuration is uniquely given by the angle θ of the link, or, alternatively, by the angle θm of the rotor. In fact, θm = krθ. The degrees of freedom of the system is equal to one.
Let us choose the angle θ, i.e., q = θ. The second step of the Euler-Lagrange approach is to find expressions for the kinetic and potential energies of the system to write the Lagrangian. The expressions have been found in a previous self-learning question, so we have:
.
To go further, the Lagrangian needs to be expressed as a function of the generalized coordinate q. Recalling
,
it yields
.
Now that the Lagrangian is only a function of the generalized coordinates, we can apply
,
to find the equations of motions, with i = 1 in our case. In particular,
,
and
.
Substituting these expressions into the main dynamics’ equation yields
	
which gives
	,
that is the dynamic model of the link-motor system. The term ξ is the generalized force associated to q = θ, and includes the contribution of all nonconservative (generalized) forces to the system, which change the energy of the system.
One important contribution to ξ is the applied torque at the joint, τ = krτm, and thus

models the response of the system with respect to the input torque applied at the joint.
4. Refer to the previous self-learning question and system composed by a link and a motor. Assume there exist some viscous friction torque τv in the system at the joint level. Viscous friction opposes the movement and is proportional to the velocity, or to angular velocity if the motion is rotational. Assume that the viscous friction torque can be expressed as
.
Use the Euler-Lagrangian approach to derive a dynamic model of the system in the presence of such a viscous friction torque.
Answer: Friction is a nonconservative force. The presence of nonconservative forces, i.e., forces which dissipate energy, has to be considered as a further contribution to the generalized force ξ. In other words, nothing needs to be changed in the Lagrangian of the system, as well as in the application of the method. We only need to add to ξ an additional term taking viscous damping into account. The model now reads
,
or, equivalently,
.
5.3 The Newton-Euler Formulation
The Lagrangian approach is based on the expression of the energies of the robot system which are used within the Lagrangian for further derivation of the dynamic model. The Newton-Euler approach, on the other hand, is based on writing dynamic equations separately for each link. The dynamics equations are provided by the balance of all forces and moments acting on the generic link of the manipulator; however, internal forces between links, which do not produce work, are also taken into account, unlike in the Lagrangian approach. In the following the approach is sketched.
The main equations used for writing the force balance are the Newton and the Euler dynamic equations. Let us consider a single link as a generic rigid body with position of the center of mass pc with respect to a reference frame. The Newton dynamic equation tells that the sum of all k forces acting on the body (concentrated in the center of mass) is equal to the variation of the linear momentum,
	.	(5.26)
The Euler dynamic equation tells that the sum of all k torques acting on the body is equal to the variation of the angular momentum,
	,	(5.27)
where both the inertia I of the link/body and the angular velocity ω of the link/body are expressed in a reference frame. By properly using the properties of rotation matrices in (5.27) one obtains
	, 	(5.28)
which shows that sum of torques is not equal to the inertia I times the angular acceleration only, but also comprehends the so-called gyroscopic torque ω × Iω due to the dependence of I on the orientation of the body. It is worth noting that, in the case that I is constant and diagonal, the product ω × Iω = 0.
In general, a robot manipulator has n links and equations (5.26) and (5.27) must be applied for i = 1 … n. The situation is schematized in fig. 28, where only forces are considered for simplicity. Let us denote by fi the force applied from link i −1 on link i, and by fi+1 the force applied from link i on link i + 1. Using (5.26) we can write
	,	(5.29)
where the center of mass Ci also includes the possible mass of the motor of the joint i + 1 which is assumed to be placed on link i. The principle of action and reaction has been used, since −fi+1 is the force applied by link i + 1 on link i.Principle of action and reaction

The principle of action and reaction states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction.

	Fig. 28: Forces Acting on Link i

[image:]
To apply the Euler equation, we need to analyze the contribution of torques to the link. Refer to fig. 29, where the torque μi from link i −1 on link and the torque μi+1 from link i to link i + 1 have been considered. The link is subject to an angular velocity ωi placed on the center of mass for convenience (recall that ωi pertains the complete body, since it is not an applied vector). The vector

is the vector from the origin of { i −1 } to the center of mass, and

is the vector from the origin of frame { i } to the center of mass.
	Fig. 29: Forces and Torques Acting on Link i

[image:]
The application of the Euler equation (5.27) to the link i yields
	.		(5.30)
Equations (5.29) and (5.30) are valid in any reference frame as long as all components are written consistently in the same reference frame. In fact in practice, equations (5.29) and (5.30) are evaluated recursively for each link i in the local frame { i }, and results are propagated forwards and backwards (Siciliano et al., 2009, p. 287).
Depending on the robot, the motor of joint i + 1 could be placed next to the base to reduce the overall weight, or for example on link i. If the motor i + 1 is placed on link i, the total angular momentum should also comprehend the contribution of the motor (Siciliano et al., 2009, p. 284).
The application of the Newton-Euler method yields several equations for each link without providing a closed form solution like the Euler-Lagrange approach. In the Newton-Euler method, “…the motion of a single link is coupled to the motion of the other links through kinematic relationship for velocities and accelerations” (Siciliano et al., 2009, p. 286).
However, the equations of the Newton-Euler method can be applied recursively. Starting from the velocity and acceleration of the base frame, the velocities and accelerations of all links can be computed recursively. Starting from the forces and moments applied to the end-effector, force and moments acting on each link can be computed up to the base frame. A forward recursion can be implemented to propagate velocities and accelerations, while a backward recursion can be performed to propagate forces and moments.
In particular, the forward recursion starts with known variables

and calculates
 for .
The backward recursion starts with terminal conditions

and calculates
 for
which are used to calculate the generalized forces at the joints ξi.
Self-Check Questions
1. Consider the link with mass m in figure, which can rotate by θ about the y0 axis when actuated by a torque τ. The link is characterized by its center of mass, placed at distance d from the rotation axis. The inertia of the link about an axis parallel to y0 and passing through the center of mass is Il (note that, in general, the link has an inertia tensor which is a 3 × 3 matrix, but here only rotations about one axis are possible, and then only one term of the inertia tensor is of interest).
Use the Newton-Euler approach to describe the dynamics of the system.
[image:]

Answer. The Newton-Euler approach requires cutting all the bodies constituting a system and analyzing them separately by means of the Euler and Newton equations. Here there is only one body, so we need to apply the equations one time. Before doing that, let us provide a better picture of all acting forces and their projections to the reference axes.
Refer to the next figure. The Newton equation describes the linear motion of the center of mass under the influence of the forces. The forces acting on the center of mass are the force generated by the actuating torque, Fτ, and the gravity force mg0, which is always parallel to z0. We can decouple the equation for the two axes of interest, i.e., x0 and z0, because the acceleration a = (ax, 0, az)T of the center of mass must lay on xz plane.
	
and
	.
The Euler equation describes the revolute motion of the body under the effect of the applied momenta (or torques). Since rotation can occur only about y0 (i.e., ω = (0, ωy, 0)T),
		
where

is the moment of inertia of the link with respect to the rotation axis y0, and mgd sin θ is the torque produced by the gravity force.
[image:]
Using the parallel axis theorem,
	,
and thus
	.
It can be noted that the last result coincides with the results of a previous self-learning question in which the model was written using the Euler-Lagrange approach. However, it can also be noted that the Newton-Euler approach provides something more. It provides not only the equations of motions with respect to the generalized coordinates (in this case, q = θ), but also more details about the motion of the body, for instance the forces acting on the center of mass and the acceleration of the center of mass.
5.4 Direct and Inverse Dynamics
The Euler-Lagrange and Newton-Euler approach provide the dynamic equations describing the motion of the robot in terms of generalized coordinates q, their velocities q̇ and accelerations q̈. These equations can be used to calculate the direct as well as the inverse dynamics. Before going into details, let us briefly discuss the main characteristics of each approach.
The Euler-Lagrange formulation
· considers the robot as a whole system;
· provides the equations of motion in an analytical form, which depend on the inertia matrix M, the matrix in the centrifugal and Coriolis force C, and the vector of gravitational forces g;
· automatically eliminates the internal reaction forces between the links, which do not perform work;
· has an analytical form which is advantageous for the study of the dynamic properties of a robot and the analysis of control schemes;
· provides a robust framework to further consider non-rigid links and joints.
On the other hand, the Newton-Euler formulation
· consists of many separate equations written for each link;
· has internal reaction forces between the links that are explicitly taken into account and not eliminated;
· it is an inherently recursive method which is computationally more efficient than the calculation based on the Lagrange-Euler approach;
· is preferred for real-time implementation because of the recursive nature and the computational efficiency.
By eliminating the reaction forces within the Newton-Euler formulation, a closed-form dynamic model of the robot can be obtained. And, of course, providing the same assumptions about the system hold, this closed-form must be identical to the solution achieved with the Euler-Lagrange approach.
Both modeling approaches yield the following closed-form solution,
	,	(5.31)
which relates the generalized forces to the generalized coordinates, i.e., the motion of the robot. The generalized forces can include multiple contributions. A typical choice is the following
	,	(5.32)
where

is the vector of joint torques (produced by joint actuators, such as electric motors), Wrench

The wrench is a vector collecting the forces and moments acting on the end effector.

describes the presence of viscous as well as static friction. The vector
,
with r being the dimension of the operational space, denotes the vector of forces and moments exerted by the end-effector on the environment and is often called the wrench. In particular,
,
where fe is the vector of forces and μe is the vector of moments applied by the end-effector (Siciliano et al., 2009, p. 148). Such forces and moments, conveniently expressed in the operational (Cartesian) space, need to be expressed as generalized forces induced at the joints of the robot. To achieve this, it suffices to pre-multiply the wrench he by the transposed Jacobian
.
By choosing (5.32), we have
,	(5.33)
which provides a very elegant, compact, and general dynamic description of a wide class of robot manipulators. The matrix

is the positive definite, symmetric inertia matrix. The elements on the diagonal describe the inertia experienced by joint i. The other terms, mij = mji for i ≠ j, represent the coupling between joints. In particular, the coupling of accelerations from joint j to the generalized force on joint i.
The matrix

is a nonsymmetric matrix which is called the Coriolis matrix. “The centripetal torques are proportional to
,
while the Coriolis torques are proportional to
.
The off-diagonal terms cij for i ≠ j represent the coupling of joint j to the generalized force acting on joint i” (Corke, 2017, p. 268).
The gravity term

collects the gravity torques acting on the joints. This is usually the dominant term in (5.33) and is equally present also when the robot moves slowly or stays in a defined position. Some joint actuators provide a gravity balancing system, for instance using passive springs, to reduce the impact of gravity in the motion.
The model (5.33) can be rewritten emphasizing the joint torques which are necessary for a given motion and interaction with the environment,
,	(5.34)
which is the inverse dynamics of the robot. The inverse dynamics enables to find the joint torques τ which are necessary to generate the motion specified by

when the end-effector forces he are known. The inverse dynamics would solve the task represented in fig. 23, since the desired motion and the desired interaction are given in the task definition. Solving inverse dynamics is useful for trajectory planning because it allows understanding if a desired motion is dynamically feasible. It is also useful for control design. In fact, the necessary torques τ can be used within the joint actuator control system to realize the motion. Note that, once q, q̇, q̈, and he are specified, the model (5.34) reduces to a set of algebraic equations where there is no integration or differentiation. The Newton-Euler approach provides a computationally efficient method to compute the inverse dynamics, whose computational complexity is O(n) (Siciliano et al., 2009, p. 294).
The model (5.33) can also be rewritten isolating the joint accelerations which are caused by given torques, friction and environment interaction,
,	(5.35)
which is the direct or forward dynamics of the robot. Recall that M(q) is always invertible. The direct dynamics is very useful to simulate the robot and analyze the performance of the robot design as well as possible motion control systems. However, once q̈ is calculated, a double integration must be done to calculated q̇ and q. The Newton-Euler approach provides a more efficient computation scheme for the forward dynamics, whose computational complexity is O(n2) (Siciliano et al., 2009, p. 294).
Self-Check Questions
1. Consider the link with mass m in figure. The link is actuated by a torque τ, which enables a rotation of θ about the y0 axis. The link is characterized by its center of mass, placed at distance d from the rotation axis, and its total length l. The inertia of the link about an axis parallel to y0 and passing through the center of mass is Il. A force Fx always directed along positive x0 is applied at the end-effector, i.e., the tip of the link.
Determine the dynamic model of the system using the Euler-Lagrange approach.
[image:]
Answer. The first step is to build the kinetic and potential energies and the Lagrangian of the system,
.
The Lagrangian should be written as a function of the generalize coordinates. In this case we set q = θ since the system has only one degree of freedom. The Lagrangian is already expressed in a useful form.
The third step is to use the Euler-Lagrange equations
,
 to find out the dynamics, i.e.,
.
The model is in the form (5.31), with
 and .
We need to specify the external forces ξ. Assuming no friction (nothing is specified in the question about friction), and since we have external contributions coming from the interaction with the environment, we can set
,
where

is the wrench, that is the vector of forces and moments exerted by the end-effector (the tip of the link) on the environment. The are two possible ways to calculate
.
Let us start with a more formal way. First, we need to define the dimension of the operational space. One possible choice is r = 3, where the motion of the link is described by the position (px, pz)T of the tip in the xz plane and the orientation θ, such that

is considered. The direct kinematics is
.
By taking the time-derivative of the direct kinematics one obtains

where the Jacobian is clearly
.
We now have calculated the Jacobian, but still need to define the wrench. The external force exerted by the environment on the end-effector is F = (Fx, Fz = 0)T, and thus (note the reversed signum!)
.
The first two components are force components, while the last one is a torque component applied at the tip from the environment. We know that this torque is equal to zero.
Substituting the transposed Jacobian and the expression of the wrench into the equation for ξ, one obtains

which completes the dynamic model as follows:
.
Another way to calculate JT(q)he faster is based on pure trigonometric reasoning. The force Fx, in fact, will contribute to θ in terms of a torque generated by its projection along the normal to the link,
,
which is exactly he same result as with the other method. This way is much faster for simple problems, while the approach with the Jacobian is very general for any kind of robotic structure.
2. Consider the previous question. Is the system holonomic or nonholonomic?
Answer. The operational space variables, px, pz and θ are not free, in fact

which means that we have two constraints and thus only one free variable, θ. Since in the constraints there appear no derivatives of the variables, the system is holonomic.
3. Refer to the first self-learning question of this section. Derive the dynamics of the link using the Newton-Euler approach.
Answer: the same model is expected!
4. Refer to the first self-learning question of this section. Both the input torque at the joint τ and the external force Fx exerted on the tip of the link can be seen as manipulable inputs. Given a desired motion
,
discuss the feasibility of the desired motion by means of τ only (i.e., assume Fx = 0), Fx only (i.e., assume τ = 0), and τ and Fx.
In the case Fx = 0 the (inverse) dynamic model of the link reads
,
and we obtain
.
The motion appears in principle feasible from a mathematical viewpoint. There could be a practical problem in the case when the required torque τd(t) is higher than the physically feasible torque of the motor actuating the joint.
In the case τ = 0, the inverse dynamics reads
,
which has a singularity when
.
In fact, when the link is parallel to x0, no torque can be applied by any force parallel to x0. This is a dynamic singularity. Using the vocabulary of control systems engineering, we would say that the system is uncontrollable in
.
In the case in which we have both Fx and τ, the inverse dynamics reads
.
By denoting K = (1 l cosθ), we can find the two inputs by means of pseudoinversion,
,
where K+ denotes the pseudoinverse matrix of K. Note that in this case there is no singularity problem.
5.5 Dynamics of Mobile RobotsPfaffian form

A nonholonomic constraint is said to be in Pfaffian form if it consists of a linear combination of the generalized velocities. Many nonholonomic constraints can be expressed in Pfaffian form, but not all.

In this section some hints are given on the dynamic modeling of mobile robots. In principle, both the Euler-Lagrange as well as the Newton-Euler method can be used to obtain a dynamic model. The main difficulty lays in the presence on nonholonomic constraints, which must be considered in the dynamic model.
A very straightforward way to incorporate the nonholonomic constraints is the adoption of a modified Euler-Lagrange approach. Let us consider a n dimensional system with k < n kinematic nonholonomic constraints in the Pfaffian form
	,	(5.36)
where
.
The corresponding Euler-Lagrange equations can be written as
	,	(5.37)
where L = T − U is the usual Lagrangian,

is a nonsingular matrix mapping the m = n − k inputs to the n generalized forces performing work on
,
is the vector of Lagrange multipliers (Siciliano et al., 2009, p. 485).
As shown in previous sections, the application of (5.37) yields a dynamic model in the form
	,	(5.38)
subject to the constraint (5.36). To eliminate the constraint term A(q)λ, we can find a matrix

whose columns are a basis for the null space of AT(q),
	,	(5.39)
and find a vector v ∈ ℝm such that
	,	(5.40)
where v is the vector of pseudo-velocities, to remark the difference to the real generalized velocities q̇ (Siciliano et al., 2009, p. 486). A typical choice for the matrix G(q) ∈ ℝn×m is the Jacobian, G(q) = J(q).
Equation (5.38) can be pre-multiplied by GT(q), yielding
	.	 (5.41)
Using (5.40) and its consequence
,
one obtains
	,	(5.42)
where
.
The model (5.41) is a system of m differential equations and is called the reduced dynamic model of the mobile robot. The reduced model is unconstrained and describes the dynamic evolution of the kinematically constrained vector q ∈ ℝn in terms of the dynamic evolution of the unconstrained vector v ∈ ℝm.Reduced dynamic model

The reduced dynamic model for a nonholonomic system describes the motion of the system in function of a different, reduced set of variables which are unconstrained.

The direct dynamics can be written based on (5.42) in form of a state-space model with state v,
	,	(5.43)
with the additional output equation to retrieve the state q, which actually characterizes the configuration of the mobile robot.
Self-Check Questions
1. What is the main difference for the Euler-Lagrange modeling approach for nonholonomic robots?
Answer: The main difference resides in the consideration of the nonholonomic constraints as further terms in the Euler-Lagrange equations.
2. The unicycle is a very popular model of motion, which applies to some mobile wheeled robots such as differential drive and synchro drive robots. The unicycle has one wheel which provides the forward velocity and the steering angle θ as actuation inputs.
[image:]
The configuration of the unicycle in the task space is completely described by the three generalized coordinates q = (x, y, θ), where x and y are the coordinates of the center of mass of the wheel in the base frame {0}. The wheel applies a velocity along the forward axis xw, which means vw = (v, 0)T. The wheel is actuated by a motor which applies a torque τm. Another actuator provides the steering torque τs about zw. The system is subject to one nonholonomic constraint,
	,
and the Jacobian, relating the velocities in the task space q̇ to the velocities

in the actuation space, is
	,
where q̇ = Jṗ holds. The unicycle has overall mass m, moment of inertia

about the steering axis zw, and a neglectable moment of inertia

about the rotation axis yw of the wheel.
Develop a dynamic model with the Euler-Lagrange approach. Other external forces such as friction and road interaction can be neglected. Moreover, the unicycle is assumed to move on a plane.
Answer. The first step is to set the generalized coordinates and express the Lagrangian as function of such coordinates and their velocities. Let q be the generalized coordinates.
The kinetic energy of the system is the sum of the translational energy and the rotational energy,
	,
where

is the velocity of the center of mass in the base frame {0}. It can be noted that the kinetic energy is already expressed as function of the generalized coordinates q = (x, y, θ). The potential energy is equal to zero under the assumption that the robot moves in a plane.
Using the Euler-Lagrange equations, and since
,
we obtain
,
,
,
where this time the right side must also contain the constraint terms due to the nonholonomic constraint, here temporarily denoted by (…). In compact form we have
,
where some terms still need to be specified.
We first need to find out which generalized forces act on the generalized coordinates. The acceleration in the reference frame,

depends on the torque applied by the motor actuating the wheel. The situation is represented in the following figure, where the force Fm driving the unicycle, always along the wheel axis xw, is emphasized.
[image:]
The force Fm can be expressed in the wheel frame as
	
and acts on the accelerations ẍ and ÿ with its components
 and ,
respectively.
The first component acts on the acceleration ẍ, the second on ÿ, thus
	 .
We still to find out the generalized force acting on the third generalized coordinate, i.e., q3 = θ. Referring to the first picture of this question, we have the steering torque τs acting on θ, and thus
	.
Now we need to characterize the constraint matrix A(q), which satisfies
	,
which, in turn, expresses the holonomic constraint. In our case, since the nonholonomic constraint is
,
,
which yields the following dynamic model for the unicycle.
,
with λ ∈ ℝ (we have only one Lagrange multiplier because k = 1).
The model emphasizes the inputs τ, which are controllable variables, and the outputs
,
which are the response of the robot to the input variables. The model is very simple and of course does not incorporate friction and external forces coming from the environment.
3. For the unicycle model of the previous question, find a vector v ∈ ℝm of pseudo-velocities.
Answer. Pseudo-velocities are related to the generalized coordinates by
	,
where the matrix G(q) ∈ ℝn×m is a basis for the null space of AT(q). We have found that
	.
A typical (although not unique) choice is the Jacobian, i.e., G(q)= J(q), and in fact
	,
which means that the pseudo-velocities are
	.
In this case the pseudo-velocities have a clear physical meaning, but this is not a requirement.

	Summary

	The motion of a robot depends on forces and torques applied on the joints or on the links or, in general, on its parts. For an industrial manipulator, for example, the motion depends on the torques applied by the driving motors of the revolute joints or on the linear force of the linear actuators of a prismatic joint.
The dynamics of a robot analyses the response of the complete robotic structure to the application of internal as well as external forces, coming from the interaction with the environment during the execution of a task. To derive a dynamic model of a robot, several approaches are possible. The main two are the Euler-Lagrange and the Newton-Euler approaches.
The Euler-Lagrange approach offers a very systematic way to obtain a dynamic model. It is based on the expression of the Lagrangian, which is the difference between the kinetic and potential energies of the system under observation. Once the Lagrangian has been built, differentiation with respect to the generalized coordinates and their velocities provides the dynamic equations of motion.
The Newton-Euler approach offers a very robust iterative procedure to express all forces and torques applied on the robot joints, and calculate the resulting accelerations. The iterative structure of the method enables very efficient computation, which is preferred for real-time implementation of the model.
Both modeling approaches yield, however, the same kind of model. They are able to describe the direct dynamics, relating the input torques to the resulting accelerations, velocities, and positions, but also the inverse dynamics, relating the desired accelerations, velocities, and positions to the required torques to be applied. The inverse dynamics is particularly important for control aspects, since the required torques to be applied are the input to the control system of the joint actuators.
The Euler-Lagrangian approach provides a simple way to consider systems which are subject to nonholonomic constraints, such as mobile robots. With respect to the standard approach, a further term containing the nonholonomic constraint must be considered in the formulation of the model.
Dynamic models are useful for the design of a robot, since they enable evaluating the performance before the robot is built. Furthermore, they can be used for control purposes, for example to predict the necessary torques for a given trajectory.
Any dynamic model, however, relies on the knowledge of many dynamic parameters, such as inertia tensors, stiffness, damping, friction. Many can be estimated while designing a robot by means of computer-aided-design software. Some others, like friction, are very difficult to estimate.

Unit 6 — Control of Robots

Study Goals

On completion of this unit, you will have learned …

… what the general control architecture of a robotic system looks like.
… what centralized control is.
… how decentralized control works.
… how force control can be realized.

6. Control of Robots
Introduction
Control of robots, to perform some task or conclude a mission, requires several functionalities to be considered and implemented on a real robotic system. The control system of a robot “should be endowed with a number of tools providing the following functions: manipulation ability, sensory ability, intelligence ability, and data processing ability” (Siciliano et al., 2009, p. 233).
Manipulation ability refers to the ability of moving and manipulating objects in the working environment. Sensory ability deals with the ability to gather information on the robot itself as well as on the environment, which in general is not static but dynamic. Intelligence ability refers to adapting the robot’s behavior to the changing environment in a programmed way. Finally, data processing ability is a very basic aspect which works to store and elaborate data (for instance, data coming from sensors).
The mentioned functions can be implemented effectively within a robotic architecture, which consists of an architectural structure as well as of an architectural style. The architectural structure refers to how the overall robotic system is divided into subsystems and how these subsystems interact with each other from a functional viewpoint, while architectural style refers to the effective way in which the subsystems interact (Kortenkamp & Simmons, 2016). There exist many structures and styles, and one robot can use many such styles at the same time. However, the adoption of a precise architecture is beneficial, since architectures provide “beneficial constraints on the design and implementation of robotic systems, without being overly restrictive” (Kortenkamp & Simmons, 2016, p. 284).Robotic architecture

A robotic architecture consists of structure and style and describes how the robotic system is divided into subsystems and how these subsystems interact with each other.

This chapter introduces some relevant robotic architectures, illustrating the main ideas behind them. In the second part, the issue of the practical implementation of an architecture is addressed, discussing various tools which are available from the open source community.
The motion task of a robot can be of two types. The first concerns the motion of the manipulator between points in the free space, which usually goes under the name of motion control in free space. The second deals with the motion under the presence of force and torque constraints on the end-effector. Such constraints occur when an interaction with the environment is required. In this case, one speaks about interaction control. The last part of this unit deals with the lower layers of robot control architectures, which are ultimately responsible for the motion of the robot. The problem of motion control in free space is addressed, while for the interaction control the reader is referred to the technical literature (Siciliano et al., 2009). Interaction control

This is a control approach which explicitly takes exchanges of forces and momenta between robot and environment into account.

6.1 Robotic Architectures
The main features of robotic architectures are the possibilities of enabling real-time operation when dealing with an uncertain, unpredictable time-varying environment, and modularity. The first feature is reached by soft and hard real-time concepts at the level of embedded systems, control of actuators and reading of sensors, support for concurrency, and the ability to detect and react to unknown situations. The second feature is very important for the reliability of the architecture. By decomposing the robotic system into simpler and independent modules, the interfaces and the interaction can be precisely designed. The core of many architectures relies in fact on looking at the robot system as a set of communicating processes (Kortenkamp & Simmons, 2016).
The usual way to decompose an architecture is hierarchical, “reducing system complexity through abstraction” (Kortenkamp & Simmons, 2016, p. 284). However, the concrete choice about how to decompose depends on the application. Examples are decomposition along a temporal dimension, meaning that each level of the hierarchy operates with different time constraints, and decomposition based on task abstraction, meaning that each level subdivides one task into subtasks to be performed by lower levels.
The first architecture to be proposed was divided into three functional elements, namely a sensing module, a planning module, and an execution module (Nilsson, 1969). The sensing module reads the sensory information and elaborates them to extract relevant information. The perception is used within existing knowledge models to carry out decisions, and thus to plan. The plans are converted into actions by the execution module, which forwards the commands to the actuators. The main characteristic of this sense-plan-act paradigm is that the activities are performed in a serial fashion, as emphasized by fig. 30. In the Sense-Plan-Act paradigm, the sensors are not directly connected to the actuators. At any new sensory information, a new plan has to be carried out and executed. This is not optimal to drive a robot in an unknown, unpredictable environment, both from the computational as well as the safety sides.Sense-plan-act paradigm

The sense-plan-act paradigm prescribes a rigid sequence of the three phases “sense,” “plan,” and “act,” such that an action only succeeds after planning is finished.

	Fig. 30: The Sense-Plan-Act Paradigm

[image:]
A profoundly different paradigm, called subsumption, was proposed in the early 1980s. The main idea is to allow some parallelism within the hierarchical levels of the architecture. As shown by fig. 31, the output of the sensors is directly connected to the actuators through each level, where each level refers to an atomic behavior of the robot. Let us consider for example a mobile robot. One possibility for behavior 1 could be the “driving around” while behavior 2 could handle the “obstacle avoidance.” All behaviors are always active and working in parallel on the sensors’ inputs. An arbitration mechanism exists, which decides which behavior is actually predominant based on the hierarchy. Referring to the example, as soon as an obstacle is detected, the “obstacle avoidance” behavior takes over to the “driving around” becoming the dominant behavior. Only once the obstacle has been avoided does the higher behavior let the lower one re-take control of the actions and actuators.
	Fig. 31: The Subsumption Architecture

[image:]
The subsumption paradigm led to behavior-based robotics. Robots built based on the subsumption paradigm are fast and reactive, but unable to optimize their behavior with respect to a complex goal (Kortenkamp & Simmons, 2016).
	Fig. 32: Three Tiers Architecture

[image:]Three tiers architecture

The three tiers architecture consists of the three layers planning, executive and behavioral.

The need to put together high-level intelligence, typical of deliberative architectures such as sense-act-plan, and low-level, reflexive intelligence, typical of the reactive architectures like subsumption, led to hybrid deliberative/reactive architectures such as the three tiers architecture sketched in fig. 32. The first tier is the behavioral control, which is the lowest level with direct access to the hardware. It usually consists of low-level functions implementing the important behaviors. The layer is composed of a set of behaviors connecting perception to actions. The executive tier translates the high-level symbolic planning into elementary behaviors, calls behaviors, monitors their execution, and possibly handles exceptions. The planning tier handles high-level, global goals.
There exists further multitiered architectures with more layers. A very famous one is the NASREM reference architecture, which consists of four layers having the same general structures (Albus, 1995). The NASREM architecture, sketched in fig. 33, has been the reference model for telerobotics and industrial manipulators.
The NASREM reference model can be read horizontally as a sequence of operations from sensing to decision, as well as vertically as a hierarchy of levels starting with the task level and ending with the servo level. All levels share some global memory and provide in principle an interface to the operator.
Let us focus on the horizontal sequence. Each level is characterized by three main modules, i.e., sensing (and perception), knowledge models, and decision strategies. The sensory modules are responsible for the acquisition, processing, and integration of sensory data (e.g., sensor fusion) in order to extract relevant information and allow not just measurement but perception of the robot.
The knowledge models contain some a priori knowledge about the environment and the robot. The models can be static but are in general dynamic because they are updated from the sensory information.
	Fig. 33: Generic Functional Architecture of a Robotic System

[image:]
The decision modules decompose the tasks into elementary actions for the next lower level, and determine the strategies of the robot, i.e., how to react to some sensory information given some knowledge model.
The global memory contains the state of the whole robotic system and could be a shared physical memory or not. For instance, it can be for based on communication between modules, as it happens for the Robot Operating System (ROS) framework (Quigley, Gerkey, & Smart, 2015).
The operator interface allows the operator to enter at a certain level of the control architecture. Usually, the operator enters at higher levels, such as the task or action level.
Let us focus on the hierarchical levels. Going from the bottom to the top, the complexity increases, meaning that more intelligence is required at higher levels. Going from the top to the bottom, the frequency of the control level increases and thus the time constraints. The lowest level needs to be very fast and very accurate. For example, while the task level is activated in the second or even minute range, the servo level requires hard real time in the milliseconds range.
The task level takes as input the task specification from the operator and decomposes it into elementary actions. The decomposition is performed based on some knowledge on the environment and on the specific task, which includes for instance the geometry of the tools and workpieces that the robot must move. At the task level, reasoning and learning about the environment and the overall task to accomplish take place.
The action level converts the generic, robot-independent description of the actions from the task level into elementary configurations of the specific robot, both in space and time. For instance, the action level generates the reference frames for the accomplishment of the action belonging to the task.
The primitive level takes the reference frames from the action level and generates the reference trajectories for the servo level. The desired accelerations, velocities, and joint displacements (angular or prismatic)

are generated and provided to the servo level. The particular control strategy of the servo level is also chosen, such as decentralized or centralized control.
The NASRAM is just a reference model, not an implementation. Historically it has been implemented as a sense-plan-act architecture but, in principle, it could also be implemented as a three tiers architecture. In general, all reference architectures are to be understood as references for the implementation and by no means as rigid prescriptions.
Self-Check Questions
1. Function architectures for the control of robots consists of 4 hierarchical levels. True or false?
Answer: False. Robotic architectures can have as many hierarchical levels as needed, although the most important are presented in the reference model.
6.2 Implementing Robotic Architectures
Any robotic architecture tries to decompose the overall functionality horizontally and vertically in functional blocks with some hierarchy. The architectural components need to communicate with each other and exchange data about status, execution, tasks. The choice of the communication pattern is determinant for the performance and the constraints which follow.
There are two main ways in which components can communicate: client-server and publish-subscribe.
The client-server pattern enables components to talk directly. The big advantage is the decentralization—not requiring any central coordination for the exchange. The main disadvantage is the generated overhead. In fact, if many different components require the same information, a client-server connection must be established multiple times before the exchange is complete (Kortenkamp & Simmons, 2016). An example of implementation of the client-server pattern is the common object request broker architecture (CORBA), which is widely adopted in robotics.Client-server pattern

The client-server pattern connects two components directly in a synchronous way.

 The publish-subscribe pattern enables components to talk indirectly and asynchronously. The component which generates data publishes them. A centralized process, the broker, takes the published data and distributes them to any other component which subscribed to that data. In this way, passing the same data to many distributed processes is easily achieved. The advantage of the publish-subscribe is the little overhead in the communication. The main disadvantage is the clarity in performing some operations, such as passing a command to another component, which is usually passed as string instead of directly calling a method (Kortenkamp & Simmons, 2016). An example of implementation of the publish-subscribe pattern is the inter-process communication (IPC) developed by Carnegie Mellon University. The published data are commonly XML data, such that metadata can be easily included and interaction with web applications is easily achieved.Publish-subscribe pattern

The publish-subscribe pattern connects many components together asynchronously. It is based on the idea of broadcast.

The communication patterns are one major part of modern robotic frameworks, which additionally provide means for real-time execution and control management.
The Agile Robot Development Network (aRDnet) is a framework developed for distributed mechatronic systems requiring hard-time hardware and software capability. The framework is based on the definition of functional blocks, which are software modules with input and output ports that implement a communication protocol. An execution logic can be assigned to single blocks or groups of blocks, allowing to perform the calculation synchronously or asynchronously (Bäuml & Hirzinger, 2008; Kortenkamp & Simmons, 2016).
Yet Another Robotic Platform (YARP) is an open source framework developed for distributed control systems for robots. Similar to aRDnet, YARP is based on modules exchanging data. However, YARP supports several connections with different data rates (Kortenkamp & Simmons, 2016; Metta, Fitzpatrick, & Natale, 2006).
The Open Robot Control Software (OROCOS) is another framework capable of hard real-time. The basis of the framework is the Real-Time Toolkit, which enables the deployment of the components. All components share a common model, the Orocos Component, which establishes standard behaviors for concurrent activities. Orocos components are able to exchange data in several ways, for instance using CORBA. Thanks to CORBA, Orocos supports distributed computation. The project contains many software libraries for kinematics, dynamics, signal processing, and finite state machines.
The Robot Operating Systems (ROS) is an open-source communication platform aimed at “the integration between independently developed software components, called ROS nodes” (Kortenkamp & Simmons, 2016, p. 301). Each node is implemented as a class and provides the connection to the ROS infrastructure. The communication occurs by means of the publish-subscribe pattern, meaning the nodes are completely independent. The messages, which are exchanged among nodes, are typed data with metadata, and can be nested. All messages are organized by topics. The nodes can subscribe to one topic to receive all messages related to that topic. Characteristic features of ROS are the presence of standardized message formats for robotics, a geometry library to easily track the relative poses between frames of a robot, a standardized way to describe a robot in a machine-readable way, specific services to monitor and handle the progress of a goal, a diagnostic service, and interfaces for some software development kits such as Qt. Another distinguishing feature is the freedom in configuring the nodes, which enables ROS to integrate with other frameworks. A specific effort is done at the moment to allow OROCOS and ROS work together. There exist two versions of ROS. The first, ROS1, is not oriented to hard-real time operation, whereas the second, ROS2, is designed with real-time in mind.
There are many other open-source projects concerning the creation of a solid framework for the development of modular, reusable, robust robotic systems. The interested reader is referred to the literature for more information. The main point is the following: any framework sets some constraints on the architectural style and on the structure, which must fit the application at hand.
Self-Check Questions
1. What is the main disadvantage of the client-server communication pattern with respect to the publish-subscribe one?
The client-server requires a client to issue a request and wait for an answer from the server. The communication is synchronous, but deadlocks can occur if the waiting time is too long or the server does not respond.
6.3 Motion ControlTransient

The transient of a dynamic system is characterized by an evolution of its states towards an equilibrium, if existing.

In this section we focus on the implementation of the lowest layers of the control architecture, namely the primitive and servo layers. These are responsible for the motion control of the robot and provide the interface to the hardware which physically realizes the motion.
Let us recall the dynamic model of a robot (neglecting friction for simplicity),
	,	(6.1)
where τ is the vector of torques (generalized forces) acting on the joints. The problem of motion control can be formulated “as that to determine the time history of the generalized forces to be developed by joint actuators, so as to guarantee execution of the commanded task while satisfying given transient and steady state requirements” (Siciliano et al., 2009, p. 303). Steady-state

The steady-state of a dynamic system is characterized by an equilibrium of its states.

The commanded task must be executed while satisfying requirements in the transient as well as in the steady-state phase. To illustrate the ideas, consider without loss of generality the problem of bringing a single joint variable from the initial value q(0) = 0 to the desired value qd. Some typical dynamic profiles are shown in fig. 34. The profile q(1) has big overshoot before going towards the desired value of the joint variable. After the settling time ts1, the joint has reached a steady state with a value slightly different from the desired one. In this case the steady-state performance, or static accuracy, is not good. The profile q(2), on the other hand, has a much higher static accuracy, because the value after the settling time ts2 coincides with the desired value. The profile q(3) does not reach a steady state in the shown time interval, but it continues vibrating. Overshoot and settling time are metrics for the transient performance, while steady-state error is a measure for the steady-state performance. Transient and steady-state performances under nominal conditions characterize the quality of execution.The settling time of a system dictates the time which the states of the system employ to leave the transient phase and reach the equilibrium, i.e., the steady state.

	Fig. 34: Typical Dynamic Profiles for Reaching a Commanded Reference Value

[image:]
However, it is important to also quantify the robustness of the execution, that is, the quality under perturbed conditions. Let us consider fig. 34. It could happen that the control for the joint works following profile q(2) under nominal conditions but follows q(1) or q(2) as soon as a disturbance acts on the joint, for instance an external force. Disturbances are always there in the real world. One example are friction forces that are not considered in the model (6.1). Another one is the presence of elasticity of backlash phenomena in the joints and in the transmissions.Robustness

The robustness of a system defines the capability of guaranteeing some desired performance also under the presence of unknown disturbances.

The above discussion is quite general and embraces many scenarios. In practice, the static and dynamic performance indices are defined with reference to standard elementary dynamic system (Nise, 2019). Typical elementary systems are first order (linear) systems, characterized by a first-order differential equation of the form
	, 	(6.2)
and second order (linear) systems, characterized by
	,	(6.3)
where x(t) is the input to the system and y(t) is the output. Step-response

The step-response of a dynamic system is the response (i.e., the output) in the case in which the input is a unitary step function, i.e., a constant function with amplitude equal to one.

The performance indices of first order and second order systems can be assessed by analyzing the step response, which is the response of the system when the input is a unitary step function u(t), where
	.	(6.4)
The step response of a first order system, shown by fig. 35, is completely characterized by the settling time ts,
	 ,	(6.5)
and the final value y∞
	 . 	(6.6)
	Fig. 35: Step Response of First Order System with a1 = 1, a0 =1, b0 = 1

[image:]
For a second order system, two parameters having a very nice physical meaning can be introduced, namely the natural frequency ωn,
	,	(6.7)
and the damping ratio δ,
	.	(6.8)
For 0 < δ < 1 the second order system shows oscillations, while for δ ≥ 1 the system does not oscillate and is said to be overdamped (the output resembles the one of a first order system, see fig. 35). Fig. 36 shows a typical second order system response, which is characterized by the percent overshoot M%, the peak time tp, the settling time ts, and the final value y∞.
	Fig. 36: Step Response of a Second Order System with a2 = 1, a1 =1, b0 = 1

[image:]
The performance indices depend indeed on the natural frequency and damping ratio. In particular
	, for ,	(6.9)
while the final value is

as for the first order case. Note that oscillations are a specific behavior of higher order systems. The concepts introduced above play a huge role in robotics and control of robots. For instance, motors actuating joints can be modeled as first order systems when the input is the voltage, and the output is the velocity. The desired dynamic behavior of a robot or of each link-joint subsystem is often expressed in terms of desired natural frequency and damping or, equivalently, desired overshoot and settling time. The interested reader is referred to the literature for more information.Feedback control

This is a control approach in which the desired variables are permanently compared to the measured variables. This approach requires sensors to measure the actual variables.

The desired performance can thus be described in terms of desired requirements (desired settling time, desired percent overshoot…). To guarantee both performance requirements and robustness, the basic control schema that is used is the feedback control in fig. 37.
	Fig. 37: Feedback Control Schema

[image:]
The schema of fig. 37 is very generic. The working principle is as follows: the control takes in input as a reference, for instance end-effector position and orientation. The desired value is compared to the measured value, coming from sensors mounted on the robots. The difference, which is called the tracking error, is used by the control algorithm to determine a control action such as the torques τ, which is in turn the input to the robot. The real robot moves according to the inputs as well as to the possible influences from the environment (world). The robot acts on the environment, and the environment acts on the robot. Possibly, some measurements of the environment could also be fed back to the control algorithm. This is a typical case, for example, when the control elaborates both signals from the robot, such as positions and joint velocities, and signals from the environment, such as a moving person in the vicinity of the workspace.Joint space control

This control is based on the measured joint variables, compared to the desired values determined by the inverse kinematics.

The generic schema in fig. 37 takes different forms with respect to the kind of control approach that is used on the robot. The task is usually specified in the operational space. However, based on the specification the joints must be actuated, that is, the actuation is performed in the joint space. It follows that two control approaches are possible: a joint space control schema (fig. 38), and an operational space control (fig. 39).Operational space control

An operational space control performs a control based on the measured operational variables, compared to the desired operational variables. However, the inverse kinematics is here implicitly contained in the controller, since the control actions are always provided to the joints (thus, in the joint space).

	[bookmark: _Hlk59405740]Fig. 38: Joint Space Control Schema

[image:]
The joint space control in fig. 38 consists of two phases. First, the desired end-effector position and orientation xd are inverted kinematically to obtain the joint variables’ values qd. Then these variables are compared to the measured joint variables q and, based on the tracking error, the controller reacts with a control action supplied to the actuators and to the drives. In this way the actual motion q tracks qd. Depending on the quality of the feedback loop (i.e., sensors, models, controller), the transient and steady state performance can be acceptable or not. The main issue with the joint space control is that it relies on the inverse kinematics, and thus on the direct kinematics. Any tolerance, joint imperfection, geometry imperfection, strongly affects the result.
	Fig. 39: Operational Space Control

[image:]
The operational space control in fig. 39, on the other hand, potentially solves the issue. The main idea is here to directly measure the operational space and task variables, building an error based on the real performance variables. The operational space tracking error is the input to the controller which decides how to actuate each drive to compensate for the error and improve the tracking performance. The advantage is only potential because measurement of the operational variables (i.e., position and orientation of the end-effector) is not easy and sometimes not done directly. Another characteristic of the operational space control is that the inverse kinematics is embedded in the feedback look.
The operational and the joint space control approaches can be implemented in two main ways. One is decentralized control, where each actuator is considered as a single system to be controlled under the action of disturbances. In other words, to perform motion, a control action for each actuator is built considering the coupling effects between robot joints and actuators as disturbances. The approach is sketched by fig. 40.
	Fig. 40: Decentralized Robot Control

[image:]
The other possibility is to adopt centralized control, where the robot is seen as a whole, and a control action is calculated by considering all coupling effects between joints. This approach usually makes the best out of a good dynamic model in the form , whereas for decentralized control the detailed mathematical model is not useful. The approach is sketched in fig. 41.Centralized control

This considers the robot as a global system, and designs a global controller taking into account all the knowledge about the robot.

	Fig. 41: Centralized Robot Control

[image:]
The decentralized control approach is a simpler approach which suffers from limitations due to the approximation. In fact, the approach yields a good result if the torques required for the desired motion are not too large and if the gear ratios of actuators are very high (typically the case for big industrial manipulators, but not the case for small cooperative and lightweight robots).
In general, the centralized control approach yields better dynamic and static performance under different conditions. It requires, however, a complicated modeling and more knowledge about the robot as a whole dynamic system.
Self-Check Questions
1. Which control approach is mostly used for robots?
Answer. There is no single control approach. It depends on the application, its requirements, and the constraints.
2. Simulate the step response of a second order linear system with b0 = 10, a0 = 10, a1 = 1, a2 = 1. Calculate the performance indices and compare the calculation to the simulation.
Answer. The performance indices of the step response of a second order system are settling time, final value, percent overshoot. They depend on the natural frequency and damping ratio,
	,
where 0 < δ < 1 . It follows,
	,
	,
	,
which mean the following:
· [bookmark: _Hlk59406090]the system exhibits an overshoot of 60.47% of the final value y∞, i.e., the overshoot will reach the peak value of ypeak = y∞ + M%y∞ = 1.647.
· The transient of the system has a duration of ts = 8s, after that the steady steady is reached and the output of the system stays at the final value.
· The damping is closer to 0 (which equals no damping), i.e., the system will exhibit many oscillations before the steady state.
The simulation is in the picture, and the calculations can be easily verified.
[image:]

	Summary

	To perform tasks (or accomplish missions), a robot must be equipped with a robotic architecture, consisting of a structure and a style. The structure defines the functional components, while the style defines the way in which the components actually interact with each other. Over the years many architectural structures have been proposed, yielding the three-layers architecture which is widely applied nowadays. The main layers are planning, executive and behavioral. This mix between declarative and reactive goals is unleashing the real potential of modern robots in various applications. Another very famous architecture is the NASRAM reference model, which adds one layer.
There exists a number of robotic frameworks which help the designer implement an architecture, and thus influence the architectural style. Some examples are OROCOS, YARP, and ROS, all open-source and with communication as well as real-time capabilities. Each system has its own advantages and disadvantages. For instance, ROS is gaining popularity because of the great support by the community and the adoption of an asynchronous communication pattern which easily scales up for many components.
The lower layers of a robotic architecture deal with the motion control of the robot. The implementation of such layers can be done in many different way and forms. The main approaches are joint space control and operational space control. Joint space control compares joint variables with desired joint variables, whereas operational space control compares operational variables (relevant for the task) with desired operational variables. Joint and operational space control can be implemented as decentralized as well as centralized control. The former requires minimal knowledge of the robot. However, it can be applied only if the gear ratios of the robot are high and the required torques are small. Centralized control requires much knowledge of the robot, for instance in the form of a detailed dynamic model. However, it yields better dynamic and static performances.

Appendix 1 — Literature
Alami, R., Chatila, R., Fleury, S., Ghallab, M., & Ingrand, F. (1998). Architecture for autonomy. International Journal of Robotics Research, 17(4), 315—337. https://doi.org/10.1177/027836499801700402
Albus, J. S. (1995). RCS: A reference model architecture for intelligent systems (AAAI Technical Report SS-95-02). Association for the Advancement of Artificial Intelligence. https://www.aaai.org/Papers/Symposia/Spring/1995/SS-95-02/SS95-02-001.pdf
Albus, J. S., & Barbera, A. J. (2004). RCS: A cognitive architecture for intelligent multi-agent systems. IFAC Proceedings Volumes, 37(8), 1-11. https://doi.org/10.1016/s1474-6670(17)31942-0
Bäuml, B., & Hirzinger, G. (2008). When hard realtime matters: Software for complex mechatronic systems. Robotics and Autonomous Systems, 56(1), 5-13. https://doi.org/10.1016/j.robot.2007.09.017
Biagiotti, L., & Melchiorri, C. (2009). Trajectory planning for automatic machines and robots. Springer. https://doi.org/10.1007/978-3-540-85629-0
Borghesan, G. (2020). Introduction to Orocos. Atlas. https://atlas-itn.eu/wp-content/uploads/Presentations/NTA3/s4-orocos.pdf
Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal on Robotics and Automation, 2(1), 14–23. https://doi.org/10.1109/JRA.1986.1087032
Corke, P. (2017). Robotics, vision and control: Fundamental algorithms in MATLAB® (2nd ed.). Springer. https://doi.org/https://doi.org/10.1007/978-3-319-54413-7
De Luca, A. (2018). Trajectory planning [PDF]. Sapienza University of Rome. https://www.dis.uniroma1.it/~deluca/rob1_en/13_TrajectoryPlanningJoints.pdf
Green, B. (n.d.). Sensor artifacts and CMOS rolling shutter. DVXuser.com. https://dvxuser.com/jason/CMOS-CCD/
How to start a robot revolution: Part 1. (n.d.). Red Hat . https://www.redhat.com/en/open-source-stories/robots/breaking-the-wheel
J. Denavit and R. S. Hartenberg. (1955). A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME Journal of Applied Mechanics, 23, 215–221.
Kortenkamp, D., & Simmons, R. (2016). Robotic systems architectures and programming. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (2nd ed., pp. 187—206). Springer. https://doi.org/10.1007/978-3-540-30301-5_9
Kuipers, J. B. (1999). Quaternions and rotation sequences: A primer with applications to orbits, eerospace and virtual reality. Princeton University Press.
Lynch, K. M., & Park, F. C. (2017). Modern robotics : mechanics, planning, and control. Cambridge University Press.
Metta, G., Fitzpatrick, P., & Natale, L. (2006). YARP: Yet another robot platform. International Journal of Advanced Robotic Systems, 3(1), 8. https://doi.org/10.5772/5761
Micro-Epsilon Messtechnik. (2020, June 9). Laser triangulation. https://www.micro-epsilon.com/service/glossar/Laser-Triangulation.html
Mitchell, H. B. (2007). Multi-sensor data fusion: An introduction. Springer. https://doi.org/10.1007/978-3-540-71559-7
Neff, T. (2018). The laser that’s changing the world: The amazing stories behind Lidar, from 3D mapping to self-driving cars. Prometheus Books.
Nilsson, N. J. (1969, May). A mobile automation: An application of artificial intelligence techniques [Paper presentation]. International Joint Conference on Artificial Intelligence, Washington, D.C.
Nise, N. S. (2019). Control systems engineering (8th ed.). Wiley.
Quigley, M., Gerkey, B., & Smart, W. D. (2015). Programming robots with ROS. O’Reilly.
Reddy, J. N. (2017). Energy principles and variational methods in applied mechanics (3rd ed.). Wiley.
Regtien, P., & Dertien, E. (2018). Sensors for mechatronics (2nd ed.). Elsevier.
Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics. Springer. https://doi.org/10.1007/978-1-84628-642-1
Tzafestas, S. G. (2013). Introduction to mobile robot control. Elsevier. https://doi.org/10.1016/C2013-0-01365-5
Appendix 2 — List of Tables and Figures
Pose of a Rigid Body in Space
Source: Leonardo Riccardi, based on Corke, 2017 and Siciliano et al., 2009.
-- 
The Rotation Matrix as a Rotation Operator in the Reference Frame
Source: Leonardo Riccardi, 2020.
-- 
Rotation Matrix as Orientation of a New Frame {B} with respect to Frame {A}
Source: Leonardo Riccardi, 2020.
-- 
Composition of Rotations About Current Axis
Source: Leonardo Riccardi, 2020.
-- 
Sketch of the Kinematic Chain of a Simple (Planar) Robot Manipulator
Source: Leonardo Riccardi, 2020.
-- 
Denavit-Hartenberg Convention for an Anthropomorphic Robot Arm (without End-Effector)
Source: Leonardo Riccardi, 2020.
-- 
Denavit-Hartenberg Parameters for the First Joints of an Anthropomorphic Robot Arm
Source: Leonardo Riccardi, 2020.
-- 
Anthropomorphic Arm with Spherical Wrist
Source: Leonardo Riccardi, 2020.
-- 
Linear and Angular Velocity of a Two-Link Robot
Source: Leonardo Riccardi, 2020.
-- 
Mapping Between Joint Velocity Space and End-Effector Velocity Space
Source: Leonardo Riccardi, based on Siciliano et al., 2009.
-- 
Bicycle Model of a Car-Like Robot
Source: Leonardo Riccardi, based on Corke, 2017.
-- 
The Role of Trajectory Planning
Source: Leonardo Riccardi, based on De Luca, 2018.
-- 
Paths in the Cartesian Space
Source: Leonardo Riccardi, 2020.
-- 
Trapezoidal Velocity Profile and Resulting Position and Acceleration
Source: Leonardo Riccardi, based on Siciliano et al., 2009.
-- 
(a) Generic Path in Space, (b) Rectilinear Path Between Two Points in Space
Source: Leonardo Riccardi, 2020.
-- 
Typical Proprioceptive and Exteroceptive Sensors Used in Robotics
Source: Leonardo Riccardi, 2020.
-- 
Absolute Encoder, (a) Working Principle, and (b) Front View of the Disk with Alternating Sequences of Transparent and Matte Sectors 
Source: Leonardo Riccardi, based on Siciliano et al., 2009.
-- 
Working Principles of DC Tachometer, Based on the Induction Law
Source: Leonardo Riccardi, 2020.
-- 
A Strain Gauge (left) and its Typical Electrical Arrangement within a Wheatstone Bridge Circuit
Source: Siciliano et al., 2009, p. 215.
-- 
Force Sensor on the Wrist of a Manipulator
Source: Siciliano et al., 2009, p. 217.
-- 
Sonar Ranging Principle
Source: Siciliano et al., 2009, p. 220.
-- 
Working Principle of Laser Triangulation Sensors
Source: Siciliano et al., 2009, p. 224.
-- 
Perspective Transformation
Source: Siciliano et al., 2009, p. 226.
-- 
Example of a Dynamic Task
Source: Leonardo Riccardi, 2020.
-- 
Dynamics of Robots
Source: Leonardo Riccardi, 2020.
-- 
Kinetic Energy of a Rigid Body
Source: Leonardo Riccardi, 2020.
-- 
Rotation of a Rigid Body About the y-Axis 
Source: Leonardo Riccardi, 2020.
-- 
Kinematic Description of a Motor
Source: Siciliano et al., 2009, p. 253.
-- 
Forces Acting on Link i 
Source: Leonardo Riccardi, based on Siciliano et al., 2009, p. 283.
-- 
Forces and Torques Acting on Link i
Source: Leonardo Riccardi, based on Siciliano et al., 2009, p. 283.
-- 
The Sense-Plan-Act Paradigm
Source: Leonardo Riccardi, based on Brooks, 1986, p. 14.
-- 
The Subsumption Architecture
Source: Leonardo Riccardi, based on Brooks, 1986, p. 14.
-- 
Three Tiers Architecture
Source: Leonardo Riccardi, based on Kortenkamp & Simmons, 2016, p. 287.
-- 
Generic Functional Architecture of a Robotic System
Source: Leonardo Riccardi, based on Siciliano et al., 2009, p. 235.
-- 

Typical Dynamic Profiles for Reaching a Commanded Reference Value
Source: Leonardo Riccardi, 2020.
-- 
Feedback Control Schema
Source: Leonardo Riccardi, 2020.
-- 
Joint Space Control Schema
Source: Siciliano et al., 2009, p. 304.
-- 

Operational Space Control
Source: Siciliano et al., 2009, p. 305.
-- 
Decentralized Robot Control
Source: Leonardo Riccardi, 2020.
-- 
Centralized Robot Control
Source: Leonardo Riccardi, 2020.
-- 

	
	
	

image1.png

image2.png

image3.png

image4.png

image5.png

image6.jpg

image7.jpg

image8.jpg

image9.jpg

image10.jpg

image11.jpg

image12.wmf
A

x

AAA

AA

AAA

A

xyzy

A

z

p

pppp

p

æö

ç÷

=++=

ç÷

èø

Þ

ç÷

pxyzp

oleObject1.bin

image13.wmf
B

x

BBB

B

B

B

xBy

B

B

Bzy

z

p

pppp

p

æö

ç÷

=++=

ç÷

èø

Þ

ç÷

pxyzp

oleObject2.bin

image14.png

image15.png

image16.png

image17.wmf
AAB

CBC

=

RRR

oleObject3.bin

image18.png

image19.wmf
(

)()))

((

zyz

fjqy

=

RRR

R

oleObject4.bin

image20.wmf
(

)()))

((

zy

x

fjqy

=

RRR

R

oleObject5.bin

image21.wmf
B

AA

ABB

A

=+

ppRp

oleObject6.bin

image22.png

image23.png

image24.wmf
()

e

=

xkq

oleObject7.bin

image25.png

image26.png

image27.png

image28.png

image29.wmf
1

11

1

b

e

beb

=+

ppRp

&

&&

oleObject8.bin

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.emf
00.20.40.60.81

0

5

10

q

00.20.40.60.81

0

5

10

15

00.20.40.60.81

Time

-50

0

50

image39.emf
00.20.40.60.81

0

2

q

00.20.40.60.81

0

2

4

00.20.40.60.81

Time

-20

0

20

image40.png

image41.emf
00.20.40.60.81

0

0.5

1

s

00.20.40.60.81

0

1

2

00.20.40.60.81

Time

-5

0

5

image42.emf
00.51

0

0.5

1

p

x

00.51

-0.5

0

0.5

p

y

00.51

0

1

2

00.51

-2

-1

0

00.51

Time

-5

0

5

00.51

Time

-5

0

5

image43.emf
00.51

p

x

-0.5

0

0.5

p

y

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.emf
0123456789

0

0.2

0.4

0.6

0.8

1

1.2

Time (seconds)

O

u

t

p

u

t

t

s

 = 4a

1

/a

0

y = b

0

/a

0

image73.emf
024681012

0

0.2

0.4

0.6

0.8

1

1.2

Time (seconds)

O

u

t

p

u

t

t

s

 = 4/(

n

)

y = b

0

/a

0

M

%

 = M

%

()

t

p

image74.png

image75.png

image76.png

image77.png

image78.png

image79.emf
024681012

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (seconds)

O

u

t

p

u

t

