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Abstract

From the early stages of human development, we integrate information from multiple senses to

learn and perform tasks. This type of intersensory redundancy enhances our learning capabil-

ities. Similarly, multimodal machine learning seeks to fuse insights from diverse measurement

devices or modalities to make accurate and reliable predictions. Over the past decade, many

algorithms have been proposed for multimodal learning, including linear, kernel-based, and

deep learning models. The recent advancements in multimodal deep learning, exemplified by

models like ChatGPT, have enabled machines to “see, hear, and speak.” However, multimodal

biomedical data still pose significant challenges to these types of machine learning models.

In biomedicine, rapid technological progress enables researchers to collect large, high-throughput

biological data across multiple modalities. Techniques such as scRNA-seq, ATAC-Seq, and

CITE-seq measure high-resolution proteomic and genomic information at the single-cell level.

Such datasets hold immense potential for analyzing intricate biological processes. However,

they also present significant challenges to machine learning models due to the limited amount

of labelled data, unpaired structure, inherent noise, and high dimensionality.

This research is dedicated to developing a comprehensive deep-learning framework for pro-

cessing and analyzing multimodal biomedical data. The primary objective is to surmount core

challenges associated with biomedical measurements by presenting solutions for the following

multimodal learning tasks: (i) alignment of unpaired measurements to enable the identification

of relationships and patterns across modalities and enhance predictive capabilities; (ii) late

fusion of unlabeled data for reliable clustering to address the challenges of heterogeneity and

enhance the ability to uncover biologically meaningful patterns within complex cellular systems;

and (iii) representation learning with partially overlapped observations to extract meaningful

latent biological information while attenuating modality-specific noise components.

Our framework will be implemented entirely using deep learning machinery, which consists

of powerful function estimators that provide flexibility, scalability, and iterative training ca-

pabilities, and can be easily adapted to new domains. To mitigate the black-box nature of

neural networks and enhance their intepretability, we will develop an unsupervised feature se-

lection scheme to sparsify the input layer and highlight subsets of driving biological variables.

Furthermore, we will accompany our algorithmic framework with theoretical guarantees that

will serve as guidelines for effectively utilizing multimodal neural networks in the context of

biomedical data. Our new algorithms aim to push the boundaries of biomedicine applications.

These applications include cell classification, risk gene identification, and differential expression

analysis. Enhancing the capabilities in these tasks holds the promise of creating more accurate

models for automated diagnosis, prognosis, and drug discovery.
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Part 3: Research plan

1 Scientific Background

Humans leverage complementary senses to acquire knowledge and interact with their surroundings.

An illustrative example is the utilization of lip movements to aid in the discrimination of similar-

sounding syllables [44]. Inspired by the advantages of integrating sensory information, researchers have

developed multimodal learning techniques that leverage data acquired from diverse modalities. Each

modality, denoted as X l, l “ 1, ..., L, represents data obtained from a distinct measurement device,

where X l is defined as X l “ hlpθ,ψlq. Here, hl may deform θ, the latent common variable of interest,

and ψl encapsulates modality-specific information or measurement noise. By fusing complementary

information from all measurement devices tX luLl“1, multimodal learning can substantially enhance

predictive accuracy and reliability across a wide range of applications [7, 12, 51]. For simplicity of

exposition in the remainder of this section, we focus on the case of L “ 2.

In recent years, multimodal machine learning has witnessed remarkable breakthroughs driven by

deep neural network (DNN) architectures such as [16, 42]. These architectures have pushed the

performance boundaries in image, text, audio analysis, and synthesis and may pave the road to arti-

ficial general intelligence (AGI) [14]. Unfortunately, existing schemes of multimodal vision–language

learning are unsuitable for biomedical data. This is because many biomedical high-throughput mea-

surements exhibit characteristics that render conventional approaches inapplicable [53]. Specifically,

datasets like those seen in [37, 48] are unlabeled, unaligned, noisy, heterogeneous, imbalanced, high

dimensional, or have low sample sizes. These challenges motivate the development of a comprehensive

algorithmic framework capable of performing the core tasks in multimodal learning, namely, repre-

sentation learning, fusion, and alignment. The primary goal of this proposal is to overcome these

limitations by developing a coherent algorithmic framework for multimodal learning with biomedical

data. In the following paragraphs, we provide a concise overview of the core tasks in multimodal

learning and outline our primary goals and objectives.

Representation learning involves learning embedding functions f1pX 1q and f2pX 2q, designed to

extract meaningful structures of interest, for example, the latent common (θ) or modality-specific

(ψ1,ψ2) components. This task is unsupervised but requires access to a bijective correspondence

between the realizations. In the discrete setting, the matrices X1 P RD1ˆN and X2 P RD2ˆN each

contain N (corresponding) samples with D1 and D2 features from X 1 and X 2 respectively. Canonical

Correlation Analysis (CCA) [19], along with its nonlinear extensions such as Kernel CCA [2] or Deep

CCA [1], tackle the problem by embedding datasets X1 and X2 into a new coordinate system in

which the observations are maximally correlated. A similar intuition is used in Contrastive Language-

Image Pre-training (CLIP) [42], which extracts remarkable image–text embeddings by training a

model to classify image-caption correspondences. By contrast, multimodal biomedical data are often

only partially overlapped or completely lack bijective correspondence. These properties render the

majority of existing representation learning schemes inapplicable. This motivates our work to develop

a representation learning scheme for biomedical data.
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Fusion endeavors to integrate information from all measurement devices to enable accurate and reli-

able predictions of a target variable y (e.g., class label or regression value). Given paired observations

(with bijective correspondence), represented as tx1
nuNn“1 and tx2

nuNn“1, the goal of modality fusion,

denoted as rpx1
n,x

2
nq, is to improve predictive capabilities or lead to a smaller empirical risk

Rpf , rq “
1

N

ÿ

n“1

Lpf ˝ rpx1
n,x

2
nq, ynq.

Here, f is a prediction function, and L denotes the desired loss, such as cross-entropy or mean squared

error. In the supervised setting, late fusion techniques such as [22, 34, 38, 49] integrate information at

the prediction level. Since reliable labeled data is scarce in biomedical data, there is a growing need

for unsupervised fusion schemes. Existing techniques, such as [8, 58], typically require domain-specific

augmentations and are less suited for biomedical data.

Alignment seeks to identify a representation that aligns samples across modalities with the same

semantic meaning. Unlike the previously discussed tasks, here, no prior knowledge of sample cor-

respondence is assumed. In other words, x1
i and x2

j are not necessarily measurements of the same

value of θ, even when i “ j. The multimodal alignment objective is to learn to mapping functions

γ1pq and γ2pq such for each x1
i , i “ 1, ..., N we can find an index j such that γ1px1

i q „ γ2px2
j q. This

similarity signifies that the latent representations of x1
i and x2

j correspond to the same (or nearly the

same) latent value θ. The quality of this alignment can also assessed by applying a distance metric

to γ1px1
i q and γ2px2

j q. Existing multimodal alignment frameworks employ techniques such as cross

attention [36] or contrastive learning [11, 24] to encode the data into a shared space. Multimodal

alignment of biomedical data is challenging due to the heterogeneity of the data, noise level, and data

dimensionality.

The goal of this research is to tackle the main challenges in multimodal learning with biomedical data

by developing a coherent deep-learning methodology accompanied by

theoretical guarantees, publicly available software, and verifications on real-world applications.

Below is a short summary of our aims.

(A1) Simultaneous Alignment and Representation Learning: To address the absence of bijec-

tive correspondence in biomedical data, we will develop a method to embed and permute observations

simultaneously. This approach will yield aligned multimodal data representations, enhancing our abil-

ity to work with unpaired observations.

(A2) Self-supervised Multimodal Fusion: We aim to develop a late fusion scheme to enhance

the accuracy and reliability of cluster assignments derived from multi-omics data. In the absence of

labels, we will exploit self-supervision to fuse information and find a more comprehensive and nuanced

understanding of complex biological systems.

(A3) Representation Learning with Partially Overlapped observations. We will derive

a DNN-based manifold learning framework to obtain canonical representations from partially over-

lapped multimodal measurements. This will enhance our ability to extract meaningful information

from complex data with partial overlap.

(A4) Interpretability by Identification of Driving Biological Variable. This objective en-
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hances model interpretability by identifying subsets of informative features from high-dimensional

multimodal data. To achieve this goal, we will develop a multilevel, unsupervised feature selection

scheme that operates at the global, local, and group levels, enabling a more flexible approach to re-

covering driving biological factors.

(A5) Theoretical Properties for Multimodal Learning. To offer practical guidelines for practi-

tioners, we will establish theoretical guarantees and limitations of our proposed multimodal learning

framework. Specifically, we will analyze our proposed methodology’s sample complexity, convergence

guarantees, and different optimization aspects.

Methodology and Datasets The objectives above are interconnected and focused on advancing

our ability to integrate multimodal biomedical data. Specifically, we will focus our empirical evalu-

ations on single-cell multi-omics data, such as RNA sequencing (scRNA-seq), assay for transposase-

accessible chromatin sequencing (scATAC-seq), and cellular indexing of transcriptomes and epitopes

(scCITE-seq). These technologies measure biological properties at single-cell resolution and have

been valuable in advancing our capabilities in several high-impact applications, including automated

diagnosis, prognosis, and personalized treatment. The proposed solutions will be based on neural

network machinery, which offers several benefits, including scalability, flexibility, transferability, and

adaptability to new domains.

2 Research Objectives and Expected Significance

The overarching objective of this proposal is to formulate and implement a comprehensive deep-

learning framework tailored for biomedical data, leveraging the power of deep multimodal learning.

This framework will enhance data processing and analysis and enable more accurate and reliable

predictions. Our research objectives have been crafted in response to the critical challenges posed

by biomedical measurements, including the scarcity of labeled data, the absence of bijective corre-

spondence, the presence of nuisance variables, and the disparity between the number of features and

available samples.

Our research objectives, each of which has the potential to advance the field significantly, are

presented below. The successful completion of „ 80% of these objectives would be considered a

significant achievement, likely resulting in 4–6 publications.

2.1 Objective 1: Simultaneous Alignment and Representation Learning

As discussed in the scientific background, most multimodal representation learning schemes require

paired datasets. Namely, there must be a bijective correspondence between samples in all modalities,

e.g., sample x1
i and x

2
i must correspond to the same observation. However, this assumption is not valid

for most sequencing technologies, which cannot simultaneously profile a cell with independent modal-

ities. The topic of multimodal representation learning for unpaired measurements is an understudied

area, with only a limited number of studies such as [18] exploring this more general setting.

Under this objective, we will develop a method to simultaneously align multimodal datasets and

learn representations capturing shared latent information (θq. For simplicity, we assume access to
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N samples from each modality, namely X1 P RD1ˆN and X2 P RD2ˆN . We will focus on scRNA-

seq and scATAC-seq, which are typically unpaired; therefore, classic representation learning methods

such as CCA or its extensions cannot be directly applied. Several recent methods offer solutions

[10, 17, 60], but they are either linear or require some supervision. Instead, we propose an unsupervised

approach that involves learning to embed the data into a shared space while simultaneously learning

a permutation matrix Π that maximizes correlation in this shared space. The optimization problem

can be formulated as follows:

max
ΠPPN

corrpf1pX1Π; θ1q, f2pX2;θ2qq “
f1pX1Π;θ1qfT

2 pX2;θ2q

}f1pX1;θ1q}2}fT
2 pX2;θ2q}2

, (1)

where f1 and f2 represent neural networks with parameters θ1 and θ2, respectively, and PN is the

set of all permutation matrices of size N ˆ N . Because of the discrete nature of Π, traditional

gradient-based optimization methods cannot be directly employed to maximize Eq. 1. To address this

challenge, we propose a probabilistic relaxation for Eq. 1 (as outlined in Section 3.3) and demonstrate

its applicability using synthetic data. Additionally, we will assess a more relaxed alignment objective,

which involves aligning the data distributions in the latent spaces by leveraging techniques such as

[5, 6, 9].

2.2 Objective 2: Late Fusion of Unlabeled Data

Obtaining reliable sample (cell) annotation of multi-omics data is an ongoing challenge. Practitioners

often resort to manual cell annotation via dimensionality reduction and clustering, which induces many

false annotations. These can later propagate and induce errors in downstream tasks, such as drug

discovery or personalized treatment. Data fusion could mitigate these errors; however, most existing

schemes rely on labeled data to perform fusion [15, 59]. Recently, there has been a growing interest in

unsupervised fusion, but most solutions are dedicated to image data and require domain-specific data

augmentations.

Here, we propose an innovative approach to perform representation learning and fusion without

needing labeled data. Specifically, we treat the fusion problem as a self-supervised co-clustering

task. We formulate an objective for learning the reduced representation via a deep CCA objective

while simultaneously learning multi-modal cluster assignments using a trained prediction head. The

predictions are fused using a self-supervised contrastive loss.

Our focus is on clustering multimodal data points, denoted asXℓ, ℓ “ 1, ..., L, whereXℓ “ txℓ
iu

N
i“1,

into matching clusters, denoted as Y “ tyiu
N
i“1. Here, xℓ

i P RDℓ
represents Dℓ-dimensional vector-

valued observations of general type, i.e., tabular data that do not adhere to any specific feature

structure. We aim to establish an end-to-end deep learning model that seamlessly combines embedding

and clustering. We will learn encoders hℓpxℓ
iq “ ψℓ

i and clustering heads f ℓpψℓ
iq “ ŷi, where ŷi P

1, 2, ...,K, represent an accurate clustering assignment. Our conceptual innovation is to learn the

parameters of hℓ and f ℓ by employing a representation learning objective on ψℓ
i , while leveraging

self-supervised techniques for late fusion. This will allow us to reliably predict cluster assignments

based on embedded information from all modalities.
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2.3 Objective 3: Multimodal Representation Learning with Partial Overlap

In multi-omics data, each modality may have a good resolution of a different subset of the biologi-

cal system. In such cases, integrating all modalities can yield a more comprehensive understanding

of biological properties. To accomplish this, we aim to develop a method for integrating partially

overlapping modalities while learning a representation that aligns with the geometry of the latent

factors of interest. In this context, we make certain assumptions: (i) The latent domain of interest is

a d-dimensional path-connected manifold M. (ii) The data is obtained with K different measurement

devices that capture specific regions of M, denoted by M1, . . . ,MK Ă M, and the union of these

regions is path connected. (iii) Each measurement device is characterized by a smooth and injective

function that maps the respective region Mi to its observation space. These functions are denoted as

f1, . . . ,fK , and the observation spaces are X 1 Ă RD1 , . . . ,XK Ă RDK , with D1, . . . , Dk ě d.

We present an illustration of the problem in Fig. 1. The brown area represents the latent manifold,

which is observed through multiple measurement devices or “modalities.” These devices capture the

system’s states using a perturbed sampling mechanism, where multiple observations are captured for

each state, referred to as a “burst” (depicted as points within black circles). These bursts represent sets

of samples within the neighborhood of the captured state in the latent space. This strategy was used

in prior work on manifold learning [41, 46]. Our primary objective is to integrate information from

all modalities, represented as the projected oval shapes, and discover a representation that faithfully

represents the underlying latent manifold.

Figure 1: The latent representation of the data (center, three-dimensional) is observed by three
different modalities/measurement devices (on the coordinate planes, two-dimensional). As depicted
in the figure, each modality is capable of capturing only a specific subset of the latent domain and
introduces its own unique deformation to the data. Local neighborhoods of points in the latent space
are transformed into elliptical shapes when observed in the modalities. Within the intersection regions,
some points are observed by more than one modality.
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2.4 Objective 4: Global, Local, and Group Unsupervised Feature Selection

In high-throughput biological observations, many observed variables are nuisance variables and do

not carry information about the phenomenon of interest. In such cases, it is vital to remove nuisance

variables to prevent overfitting of commonly used multimodal learning schemes [1, 19]. Furthermore,

identifying subsets of “driving variables” is important for enhancing model interpretability and analyz-

ing biological effects. To address these challenges, several authors have proposed using unsupervised

feature selection to attenuate the influence of nuisance features and improve model interpretability.

Under this objective, we aim to develop a deep learning framework for unsupervised feature se-

lection (FS) in the context of multimodal observations. Our primary objective is to provide a feature

selection mechanism that operates at three distinct levels of granularity:

1. Global FS: This represents the classic setting in which the selected features are shared across

all samples, providing a global sparsification of the feature space.

2. Local FS: This level of granularity is designed to handle the inherent heterogeneity often ob-

served in biomedical data. By enabling sample-specific feature selection, the FS model can learn

the unique characteristics of different subsets in the population.

3. Group FS: In this approach, we aim to identify correlated feature groups and perform feature

selection at the group level. This approach is particularly useful for identifying clusters of related

variables and selecting the clusters of the most informative features.

By providing these three levels of granularity for the feature selection mechanism, we aim to

enhance the flexibility and adaptability of the framework, making it well-suited for various scenarios

and datasets in the realm of high-throughput biological observations. To address these challenges,

we intend to extend our recently proposed stochastic gates (STGs) [55]. The STGs are continuously

relaxed Bernoulli variables that have been demonstrated effective for nonlinear supervised [55, 56]

and unsupervised feature selection [30]. Under this proposal, we aim to generalize the STGs to the

multimodal setting and enable operation in the three levels of granularity described above.

2.5 Objective 5: Theoretical Foundation of Deep Multimodal Learning

In recent years, researchers have significantly advanced our understanding of deep learning, yielding

several theoretical explanations for its success. These explanations encompass vital concepts such as

the double descent phenomenon [3], neural collapse [40], and various optimization aspects associated

with stochastic gradient descent (SGD) [52, 62]. However, most of these works primarily concentrate

on supervised learning settings, with only a limited number of studies delving into the theoretical

aspects of multimodal deep learning.

In the context of multimodal high-throughput biomedical observations, a common challenge arises

from the fact that the number of variables often exceeds the number of actual measurements. In

such a scenario, most conventional multimodal learning schemes face difficulties and may overfit. In

this context, our goal is to gain a deeper understanding of the capabilities and limitations of deep

multimodal learning when applied to high-dimensional biomedical data. We focus on sparse extensions
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of the powerful DCCA model [1]. Specifically, we will address the following two fundamental questions

regarding sample complexity and batch size:

(Q1) What is the sample complexity of sparse-DCCA?

The sample complexity is the number of training-samples needed by a deep-learning model to

successfully learn a task. We start by presenting the sparse CCA objective under a linear data

model assumption. Using modalities X1 P RD1ˆN and X2 P RD2ˆN , which are centered and have

N samples with D1 and D2 features, respectively, the goal of CCA is to find canonical vectors a P

RD1
, and b P RD2

, such that ,u “ aTX1, and v “ bTX2, will maximize the sample correlations

between the canonical variates, i.e.

max
a, b‰0

corrpaTX, bTX2q “
aTX1pX2qT b

}aTX}2}bTY }2
. (2)

To study the sample complexity of the solution we follow [50] using the data generated from the

following distribution

˜

X1

X2

¸

„ Np

˜

0

0

¸

,

˜

Σ1 Σ12

Σ21 Σ2

¸

q, where Σ12 “ ρ0Σ1pϕηT qΣ2.

Based on this data model, the canonical vectors a and b maximizing the correlation objective in Eq.

2 are ϕ P RD and η P RD, respectively (see Proposition 1 in [50]).

In many biological datasets, only a small subset of variables capture the common latent variables.

Therefore, we consider vectors ϕ,η that are sparse with only k nonzero elements. The indices of the

active elements are chosen randomly with values equal to 1{
?
n, and ρ0 controls the total correlation

between modalities. In this setting, we will study the consistency of the sparse ℓ0-CCA estimator [29].

Namely, for a sparse estimate of the canonical vector ϕ̂ (and similarly for η̂) we will study how N

affects the probability P
”

E
”

}ϕ̂´ ϕ̂}22

ı

ą δ
ı

for some δ ą 0 (and similarly for η).

To answer this question, we will use similar techniques as in [47]. If successful, we will attempt

to extend the sample complexity analysis to a more general setting of a nonlinear data model with a

DCCA objective.

(Q2) Should small batches be used for multimodal learning? The choice of batch size

in neural network training, specifically its effects on the training dynamics, is a crucial aspect. Our

research will explore how small batch training, which relies on Stochastic Gradient Descent (SGD),

influences multimodal deep learning. This fundamental question is rooted in the understanding that

small batches impact the training dynamics and shape the stochastic gradient noise. Multiple studies

have analyzed theoretical and empirical properties involved in small-batch training for supervised

learning [31, 32]. Here, we intend to investigate how small-batch training can affect multimodal deep

learning.

Addressing (Q1) and (Q2) will provide valuable guidelines for practitioners, offering insights into

effectively employing DCCA models for multimodal learning in the challenging landscape of high-

dimensional biomedical data.
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2.6 Impact and Significance:

This research is driven by the emergence of many high-throughput technologies enabling the col-

lection of multimodal information about complex biological systems. Examples of such multimodal

measurements include SHARE-seq [37], DBiT-seq [35], and CITE-seq [48], which have provided bi-

ological insights and advancements in applications such as transcription factor characterization [21],

cell type identification in the human hippocampus [54], and immune cell profiling [23]. These types of

modalities, commonly formed as tables, still pose a significant challenge to standard multimodal tech-

niques. This proposal is geared towards offering a complete deep-learning framework for multimodal

biomedical data. We expect our contributions to impact the following aspects:

Algorithmic framework: The methodology developed under this research will serve as a reliable

neural-network framework for analyzing multimodal biomedical data. This framework will offer sev-

eral advantages over existing linear models or kernel methods. Neural networks are known for their

flexibility, scalability to large datasets, iterative training capabilities, adaptability to new domains,

and extensibility for incorporating additional modalities. One significant implication of this work

is the potential to establish a foundation multimodal model for biomedical data. Foundation models

have recently revolutionized various fields, including natural language processing (NLP) and computer

vision. Applying similar principles to biomedical data can lead to groundbreaking advancements in

the understanding and application of complex biological systems.

Theory: One hurdle in advancing deep learning stems from a lack of a complete theoretical un-

derstanding of frequently used modules. A crucial component of this research is the accompanying

theoretical analysis. By delving into the theoretical underpinnings of multimodal deep learning, we

aim to contribute to a better understanding of the critical modules commonly used in this field. This

understanding can help break current barriers and provide valuable insights into the interplay between

sample size, feature count, and model performance. The resulting theoretical guarantees will serve

as guidelines for effectively utilizing multimodal neural networks in the context of biomedical data.

Furthermore, such theoretical insights can enhance trust in neural network-based predictions, a critical

quality in biomedicine.

Application: The impact of this proposal extends to the practical application of multimodal learn-

ing in the analysis of high-throughput biological data. Even partial success has the potential to

revolutionize the way researchers approach the analysis of such data. The ability to reliably integrate

diverse data types, including genomics, proteomics, and imaging, will enable a more comprehensive

understanding of complex biological systems. In genomics, the framework can contribute to predict-

ing risk genes, identifying regulatory elements, and uncovering gene-to-gene interactions, paving the

way for significant advancements in genetics research. Applications in proteomics could include auto-

mated diagnosis [43], prognosis, and personalized treatment [4], which have substantial implications

for improving human healthcare and personalized medicine [39].

Impact: advancing the state of the art in multimodal biomedical data analysis and providing powerful

tools and insights that will benefit a wide range of scientific and medical applications.
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3 Detailed Description of the Proposed Research

3.1 Working Hypothesis

Multimodal biomedical data integrates information from diverse sources, providing a complementary

view of biological processes. Such measurements typically consist of nonlinear interconnections be-

tween the observed variables; therefore, linear models can fail to capture these complex interactions.

Deep learning is a powerful machinery that is an exceptional non-linear function estimator. Our main

working hypothesis is that a multimodal deep-learning framework will enhance the analysis

and interpretation of complex biomedical data by integrating information from multiple

sources, improving disease diagnosis, treatment planning, and patient outcomes. This hypothesis

induces the goal of our research, which is to develop a complete DNN methodology for the representa-

tion, fusion, and alignment of multimodal biomedical observations. Our methods will be accompanied

by a theoretical analysis and application to real-world use cases.

In the following subsections, we provide a mathematical description of our methodological strategy

for solving each posed objective. Some of these subsections include empirical results supporting the

presented solutions. We note that most of the results are based on synthetic or simplified settings;

therefore, there is still much work to be done in the development, evaluation, and analysis of all

methods.

3.2 Research Design and Methodologies

We now provide more technical details about our strategy for achieving our goals. Throughout the

following section, we focus for simplicity on the coupled setting of two modalities (L “ 2). We

are given realizations (observations) from two modalities tx1
nuNn“1 and tx2

nuNn“1 either paired (with

bijective correspondence) or unpaired.

3.3 Preliminary Results

4 Infrastructure and Human Resources

The research will be carried out at Bar Ilan University. Dr. Ofir Lindenbaum is a senior lecturer

in the Faculty of Engineering. He has had very productive collaborations with biologists, physicians,

applied mathematicians, data scientists, and engineers. Driven by real-world problems, his research

primarily focuses on developing supervised and unsupervised machine learning methods for identi-

fying meaningful parameters from raw empirical measurements. In the past decade, he extensively

studied the problems of multimodal learning, sparse recovery, and feature selection. He is an expert

in multimodal learning and has published several articles on the problem [25, 27, 28, 29, 33, 45, 57].

He has also worked extensively on the feature selection problem [30, 31, 32, 55]. Furthermore, he has

an ongoing collaboration in several biomedical studies [13, 20, 26, 61].
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