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	1. Abstract 

	The integration of large language models (LLMs) into unmanned platforms, such as drones and autonomous underwater vehicles, represents a pivotal advancement in artificial intelligence (AI) for high-stakes environments.  Unmanned platforms, such as drones and autonomous vehicles, rely on advanced AI capabilities to make real-time decisions in dynamic environments. Integrating large language models (LLMs) into these platforms enhances their ability to interpret complex commands, analyze diverse data inputs, and execute precise actions autonomously, enabling more sophisticated and adaptable operations. However, the inherent opacity of LLM decision-making processes presents challenges to transparency and trust, particularly in critical applications requiring reliable and interpretable AI-driven decisions. To address these issues, this research proposes an innovative framework using representation engineering to dissect and actively modify internal model representations. Our approach combines advanced probing and visualization techniques to reveal decision pathways within LLMs, enabling users to interact with model outputs in real time and ensuring that decisions align with human reasoning. Additionally, embedded ethical audits will be performed and bias mitigation strategies developed to set new standards for trustworthy and ethically aligned AI in autonomous platforms. By developing open-source tools and standardized protocols, this research seeks to broaden the impact of explainable AI, providing scalable methods and fostering community engagement in advancing LLM interpretability.
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Figure 1: Command-to-Action Flow in Unmanned Drone Decision-Making Using LLM Explainability	Comment by Moravec: The figure looks very good! The text need a bit of cleanup.
Danguage should be Language
San left I think should be Scan left
Mave should be Move
Acstacles I think should be Obstacles 

This The illustration in Figure 1, depicts a simple scenario where an unmanned drone uses a large language model (LLM) for decision-making. An operator sends a command, like such as "scan the area for obstacles," which is processed through the LLM. The LLM then outputs a clear action, such as "move left" or "rise up," and the drone adjusts its path to avoid any obstacles, slike uch as a tree. Arrows and labels, including "Command," "LLM Processing," and "Action," clarify the flow, illustrating the straightforward command-to-action interpretation provided by the LLM.

	2. Scientific background and state of the art 

	Recent advancements in large language models (LLMs) have shown impressive performance in processing and generating human-like text, enabling sophisticated decision-making capabilities in unmanned systems [1–3]. However, the "black box" nature of these models poses significant risks, including the potential for unexpected behaviors and decisions that are difficult to predict or explain. The challenge is compounded in dynamic environments, where decisions must be made rapidly and with high stakes involved. The ability to explain the decision-making process of artificial intelligence (AI) in human terms is crucial for several reasons: it facilitates debugging and improvement of the system, ensures compliance with regulatory standards, enhances user trust, and enables more effective human-machine collaboration. Importantly, explainability in AI is increasingly seen not only as a technical requirement but also as an ethical imperative.
Explainable AI (XAI) aims to make the behavior of AI systems more understandable to humans. Recent advancements have introduced various theoretical frameworks and practical tools to dissect and explain the decision-making processes of AI systems. Techniques such as feature attribution, model visualization, and probing are employed to interpret AI actions [4–6,26]. However, the unique nature of LLM decisions, particularly in text processing and generation, demands more specialized approaches for effective explainability.
Over the last years, several explainability techniques for large language models (LLMs) have been proposed, focusing on methods for generating local and global explanations based on the following main training paradigms: attention mechanism analysis, integrated gradients, natural language explanations, and explanation regularization [1, 4-7]. 
The first approach is attention mechanism analysis, in which the attention mechanisms within LLMs are analyzed to understand which parts of the input sequence the model focuses on during prediction. This provides insights into the model's decision-making process by highlighting important tokens in the input sequence and helps identify biases or heuristics used by the model in making predictions [2]. However, when using this method, we are limited to understanding local interactions within the model and we may not capture the overall reasoning process of the model.

Following that, the integrated gradients method was developed, which attributes the model's prediction to each input token by integrating the gradients along the path from a baseline input to the actual input. This approach offers a systematic way to interpret the model's predictions by assigning importance to each input token and helps in identifying shortcut cues or biases in the model's decision-making process. The main concern is that it is computationally intensive, especially for large models, which can limit real-time applications. It is also sensitive to noise in the input data, which may lead to misleading interpretations.

Over the years, natural language explanation capability has been presented. Using this approach, we generate natural language explanations for the model's decision-making by training a language model on the original textual data and human-annotated explanations. This provides human-understandable explanations for model predictions, and it can improve downstream prediction accuracy and serve as a data augmentation technique. On the other hand, the reliability of generated explanations may require further investigation and a separate model for generating explanations may introduce additional complexity.

In the last few years, explanation regularization was developed. Explanation regularization methods are used to align the model's machine rationales with human rationales to improve generalization and performance. In this approach, we improve model generalization by aligning machine rationales with human rationales and enhance model accuracy for various tasks, even in the absence of human rationales. However, the evaluation of explanation regularization models for out-of-distribution generalization can be complex and requires post-hoc explanation methods, adding a layer of complexity.

Each of these methods offers unique insights into the explainability of LLMs, with advantages such as interpretability and improved model performance. However, they also come with limitations such as computational intensity, sensitivity to noise, and potential reliability issues. In the following, we present our concept for handling these challenges, which is based on representation engineering [2,3,8–14], and offer a methodology that will address them for unmanned platforms.

The integration of LLMs into unmanned systems such as drones and autonomous underwater vehicles (AUVs) represents a transformative leap in the capabilities of autonomous platforms. These systems rely on sophisticated AI to navigate, make decisions, and perform tasks autonomously. However, the internal mechanisms of LLMs are largely opaque, presenting significant challenges for transparency and reliability in high-stakes environments. 

A sSimple example of LLM explainability for unmanned platforms can be seen in Figure 2. In this toy scenario, an unmanned drone receives an "Input" (like a command or visual scene), processes it through an LLM (represented as a "Decision Box"), and generates an "Output" decision, such as "turn left" or "avoid obstacle”." The "Explainability Layer" between the Decision Box and Output provides a basic interpretation of the decision, using icons like arrows or question marks to show how the model's processing leads to the final action. This setup helps visualize how explainability tools clarify AI decisions in autonomous systems.
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Figure 2: Simplified Framework of LLM Explainability for Decision-Making in Unmanned Platforms
	Comment by Moravec: In this figure,
Explan Langulage mayel should be Explain Language Model
Avoid obsacle should be Avoid obstacle
a prooessing I think should be processing
plaformes should be Platforms
Explainabillity should be Explainability (twice in the figure)
While LLMs can process and generate human-like text, enabling complex decision-making capabilities, their decision processes are not inherently transparent. This opacity can lead to issues of trust, especially in critical applications where understanding AI decisions is crucial for safety and compliance [20-–25].


This research leverages representation engineering to enhance LLM explainability in unmanned platforms. Representation engineering involves two key phases: understanding (representation reading) and actively modifying (representation control) the internal representations of neural networks. This approach not only aims to make the AI's decision-making process transparent but also enhances the AI'’s performance by aligning its decision-making with ethical and practical standards.
Representation Engineering:

Representation engineering is a method used in the field of machine learning that focuses on designing and selecting features in data that are most beneficial for training models. The primary goal of this approach is to enhance the interpretability and performance of machine learning algorithms by optimizing the input data representation. This process involves transforming raw data into a format that better exposes the underlying patterns and correlations relevant to the prediction task. Representation engineering can include techniques such as feature extraction, where new features are derived from the raw data, and feature selection, where redundant or irrelevant features are removed. This method is crucial because the quality and appropriateness of features can significantly impact the learning process and the model's eventual accuracy. By carefully engineering features, researchers can improve model robustness, reduce computational costs, and increase the generalizability of the model to new data sets. The effectiveness of representation engineering has been demonstrated in various applications, from image and speech recognition to predictive analytics in finance and healthcare [15,16].

The mathematical methodology behind representation engineering in machine learning typically revolves around optimizing the input features to improve the efficacy of learning algorithms. This involves several key techniques and concepts: feature extraction and selection, dimensionality reduction, and information theory.
By integrating these mathematical tools and concepts, representation engineering systematically enhances the features used in machine learning models, aiming to provide cleaner, more informative, and less redundant data which in turn helps to build more accurate and efficient predictive models.
Focus of our research:

This research will focus on developing novel, scalable, and precise representation engineering techniques suitable in for both simulated and real-world settings, which will represent a new approach in this field. The research will include the following:
- Developing sophisticated probing methods to analyze deep feature representations within LLMs.
- Enhancing algorithms for feature visualization and manipulation.
- Conducting rigorous experimental validation in controlled and real environments.
- Collaborating with end-users and involved parties to ensure practical applicability and operational trust.

Representation engineering offers distinct benefits over other XAI techniques by providing a deeper, active understanding of model operations. This method allows both local adjustments to specific representations and global assessments of model behavior, which are essential for aligning LLM outputs with human-understandable logic.
Advantages of Representation Engineering for Explainability in Unmanned Platforms:
Representation engineering offers several distinct advantages over traditional methods for enhancing the explainability of LLMs.
1. Deeper Insight into Model Representations – Representation engineering provides a more granular understanding of how AI models process and represent information internally. Unlike surface-level techniques that may only offer insights into input–output relationships, this approach examines the model's internal representation layers. It explores how different types of information are encoded at various stages of the processing pipeline, providing a deeper understanding of the model's cognitive processes and decision-making pathways.
2. Active Manipulation of Representations - – A unique feature of representation engineering is its ability to not just interpret, but actively manipulate model representations. This means that researchers and developers can experimentally modify the internal states of a model to see how these changes affect outputs. Such manipulations can be used to directly enhance model transparency, test hypotheses about the model's functioning, and potentially correct or improve model behaviors based on desired outcomes.
3. Alignment with Human-Understandable Concepts - – Representation engineering focuses on aligning machine representations with human-understandable concepts. This is particularly valuable in applications where AI decisions need to be interpretable by non-expert users or where decisions must be justified in comprehensible terms. By mapping complex model representations to simpler, conceptually intuitive forms, it bridges the gap between high-level human cognitive processes and low-level machine operations.
4. Improved Model Trustworthiness and Reliability - – Enhancing explainability through representation engineering can lead to greater trust and reliability in AI systems. By providing clearer insights into how models make decisions, users can better assess the fairness, bias, and potential risks associated with AI outputs. This is crucial for deploying AI in sensitive and critical domains such as healthcare, finance, and autonomous vehicles, where understanding AI decisions can impact safety and regulatory compliance. 
5. Facilitation of Debugging and Model Improvement -  – With its ability to dissect and modify internal representations, representation engineering is an excellent tool for debugging and refining AI models. Developers can identify and isolate problematic behaviors, understand their root causes, and implement targeted modifications to improve performance. This proactive approach to model tuning can lead to more robust, accurate, and fair AI systems.
6. Scalability and Applicability Across Different Models - Representation engineering is designed to be scalable and applicable across different types of neural networks and machine learning models. This universality makes it a versatile tool in the AI developer’s toolkit, capable of being adapted for use with emerging models and architectures. As AI technology evolves, the principles of representation engineering can be applied to new generations of models, ensuring ongoing relevance.

	3. Research objectives 

	The primary objective of this research is to advance the interpretability and transparency of LLMs in autonomous platforms through innovative representation engineering. This study aims to establish a framework that will enable the detailed examination, control, and visualization of LLM decision-making processes, making these models more accessible and understandable to both technical and non-technical users. By embedding ethical considerations and bias mitigation strategies, this research strives to develop tools and protocols that enhance trust in autonomous systems operating in critical, high-stakes environments.
The specific aims of the research include the following:
1. Development of Probing and Visualization Techniques:
 Advanced probing methods and dynamic visualization tools will be designed and implemented to reveal internal LLM representations across layers and decision stages. These tools will facilitate real-time, user-friendly insights into LLM decision pathways, enabling users to assess and interact with model outputs effectively.
2. Establishment of Representation Control Mechanisms:
 Algorithms will be developed that actively manipulate LLM representations, aligning model decision-making processes with human-understandable concepts and ethical standards. Using reinforcement learning and meta-learning techniques, the research will iteratively refine these mechanisms to balance interpretability with operational performance.
3. Validation of Interpretability and Bias Resilience:
 Comprehensive simulations and real-world testing will be conducted to assess the scalability, robustness, and ethical alignment of the representation engineering techniques. This validation will involve diverse environmental settings and tasks, ensuring that the methods maintain reliability and transparency across various autonomous applications.
4. Standardization and Open-Source Contribution:
 Reproducible, standardized protocols will be created and open-source resources, including code, datasets, and documentation, will be prepared to support broader research impact and external validation. The project’s open-source contribution will enable future researchers and developers to build on these tools, fostering innovation in XAI and advancing the field of LLM interpretability for autonomous systems.
This research is designed to produce not only technical advancements but also an ethical framework and reproducible resources that set new standards in the application of LLMs for autonomous, high-stakes operations.
4. Methodology
4.1 Data Acquisition and Preprocessing
To ensure robust training and evaluation of our explainability techniques, data acquisition and preprocessing will follow a structured approach that aligns with real-world applications of autonomous systems. The datasets will be carefully selected to encompass diverse scenarios, simulating conditions encountered by unmanned platforms. These datasets will include:
1. Publicly Available Datasets: Where applicable, open-source datasets reflecting real-world conditions, such as those from environmental monitoring, infrastructure inspection, and emergency response scenarios, will be utilized. These will provide standardized, validated data that supports generalizable results. The following datasets can be used:
·        Environmental Monitoring:
· MODIS (Moderate Resolution Imaging Spectroradiometer) Data: Provides satellite imagery and environmental data such as land surface temperature, vegetation indices, and atmospheric conditions. This dataset is useful for scenarios where drones or autonomous vehicles operate in varied environmental conditions.
· NOAA Weather Data: Includes real-time and historical weather data, essential for simulating different environmental conditions that impact platform operations, especially in outdoor settings.
· OpenStreetMap (OSM): Contains geospatial data of natural and built environments, including terrain features, vegetation, and water bodies, which can be critical for simulating navigation and mapping scenarios.
·       Infrastructure Inspection:
· COCO (Common Objects in Context): This dataset includes labeled images of common objects, useful for testing object detection in infrastructure inspection scenarios, such as identifying structural elements or detecting damages on bridges, buildings, and roads.
· xView Dataset: A large-scale collection of satellite and aerial imagery, xView provides annotations for objects like vehicles, buildings, and other infrastructure. It’s particularly useful for simulating high-altitude inspection by unmanned aerial vehicles (UAVs).
· CATS (Computer Vision Annotated Testing Suite): Focused on autonomous vehicle perception, CATS offers data from urban environments, which can aid in testing for infrastructure monitoring, such as road and traffic signal conditions.
·      Emergency Response Scenarios:
· DISASTER Dataset: Developed by the United Nations Satellite Centre (UNOSAT), this dataset includes satellite images of areas affected by natural disasters (e.g., floods, hurricanes). It supports applications requiring rapid assessment and navigation in challenging conditions.
· CrisisMMD (Crisis Multimedia Dataset): Provides multimedia data (images and text) from social media during crisis events, useful for building real-time response models that incorporate multi-source data inputs.
· ImageNet for Emergency Applications: Contains labeled images across various categories, including scenes from fire, flooding, and debris, enabling models to detect emergency scenarios and prioritize objects in need of attention.
2. Proprietary and Simulated Data: we will generate simulated datasets tailored to critical decision-making tasks, enabling controlled variations and ensuring coverage of complex scenarios that may not be fully represented in existing datasets.
Data Preprocessing and Augmentation:
 Preprocessing steps will include data normalization, de-noising, and standardization to align input data formats with LLM requirements. Augmentation techniques, such as synthetic data generation and context variability, will be applied to bolster model resilience and mitigate overfitting to specific data distributions. These preprocessing steps are critical for ensuring the robustness of the proposed techniques across diverse conditions.
Control and Randomization Techniques:
 To minimize bias, we will employ stratified sampling and randomized splitting. Controlled trials across varied environmental conditions will further enhance robustness and generalizability. For example, data will be partitioned based on factors like geographic diversity and environmental complexity, ensuring balanced representation across training, validation, and test sets. These controls allow for consistent, unbiased assessment of model interpretability across operational scenarios.
4.2 Statistical Analysis and Evaluation Framework
A rigorous statistical framework will evaluate the alignment between LLM representations and human interpretability criteria, addressing the core research question on enhancing LLM explainability for autonomous systems.
Quantitative Metrics
: The mMetrics will include explainability scores, consistency indices, and alignment ratios to measure the degree to which LLM decision pathways align with human-understandable reasoning patterns. Explainability scores will quantify the transparency of LLM processes, while consistency indices assess stability in model interpretation across varying conditions. Confidence intervals will be used to estimate the reliability of interpretability enhancements, particularly in dynamic, real-time applications.
Statistical Testing and Significance Evaluation
: We will apply statistical tests such as Analysis of Variance (ANOVA), t-tests, and Chi-square tests to evaluate the statistical significance of enhancements in model interpretability. These tests will ascertain whether observed improvements are consistent and significant across multiple conditions, strengthening the validity of our findings. Significance testing will be supplemented by effect size calculations to measure the practical impact of representation engineering techniques.
Qualitative Assessment
: To complement quantitative metrics, human evaluators will assess the model’s interpretability based on predefined criteria for human-like reasoning. Evaluators will review anonymized outputs and assign interpretability scores. Inter-rater reliability, measured using Cohen’s kappa, will ensure consistency in qualitative assessments. This mixed-methods approach combines quantitative rigor with qualitative insights, providing a comprehensive evaluation of technique effectiveness.
4.3 Advanced Probing and Visualization Techniques
Advanced probing and visualization will be central to exploring and illustrating the LLM’s internal representations, offering insight into the model’s decision-making process and enabling real-time interpretability adjustments.
Probing Mechanisms
: Advanced probes will be deployed to examine LLMs’ internal representations across multiple layers, with a focus on detecting patterns in neural activations related to decision points. Probes will interact with individual layers to capture activation patterns, allowing us to map the influence of specific data inputs on model outputs. Probes will be validated through simulation studies to ensure robustness across different model architectures.
Basic Probing Method -– A probing method analyzes internal representations by measuring how specific data features influence a model's activations. For instance, let hi represent the hidden state of a neural network layer for input xi . A simple probing classifier can be defined as:

,

where W and b are parameters of a linear classifier trained to predict a particular property (e.g., a part of speech or syntactic structure) from hi. By evaluating the classifier's accuracy, we assess how much the representation hi encodes the targeted information.
Dynamic Visualization Tools: 
We will develop a suite of dynamic visualization tools designed to represent LLM decision-making pathways visually. These tools will enable interactive examination of LLM processes, displaying activation patterns, decision branches, and potential outcome variations. A graphical user interface will allow users to adjust inputs in real time, observing changes in model output dynamically. This feature will support exploratory analysis by users and facilitate engagement with the model’s cognitive processes.
Basic Visualization Method - – For visualizing model representations, a basic method uses dimensionality reduction, such as Principal Component Analysis (PCA), to project high-dimensional hidden states into a two-dimensional space. Let H be a matrix where each row represents a hidden state vector hi. The process is as follows:

1. Compute the covariance matrix 
2. Calculate eigenvectors  and  corresponding to the two largest eigenvalues.
3. Project each hi onto the 2D plane: as


.

This projection allows us to plot and interpret clustering or separation patterns, providing insights into the structure of representations related to different input features.

4.4 Representation Control and Manipulation
Representation control is pivotal for aligning LLM decision-making with human interpretability standards. Through active manipulation, we aim to enhance the transparency of LLMs in autonomous systems by developing algorithms that adjust the model’s internal representations in response to external feedback.
Optimization through Reinforcement Learning (RL): To align LLM representations with human interpretability standards, we will incorporate a reinforcement learning framework where the reward function prioritizes interpretability alongside task accuracy. We dDefine the reward as a weighted combination:
R=α×Interpretability Score+β×Task Performance,
where  and β are tunable parameters balancing transparency and performance. This approach allows the model to iteratively optimize for interpretability by rewarding configurations that enhance human-understandable representations without compromising accuracy.
Representation Manipulation with Meta-Learning: Use meta-learning to generalize adjustments across diverse tasks. For a given task , the meta-learner predicts an initial transformation matrix ​ to align hidden states  with interpretability goals. This yields a mapping that is customized for the specific task while maintaining general interpretative properties.
 
Algorithm Development for Representation Control
: Algorithms will be developed to refine LLM representations based on human-reasoning frameworks. These algorithms will incorporate reinforcement learning and meta-learning approaches [17,18,19], enabling dynamic adaptation of internal representations to align with established interpretative standards. Reinforcement learning will iteratively optimize interpretability by rewarding alignment with human reasoning patterns, while meta-learning will facilitate generalization across diverse tasks and environments.
Iterative Testing and Refinement
: The control algorithms will undergo iterative testing in simulated environments and real-world applications. Each iteration will be evaluated for interpretability enhancement and decision accuracy, particularly in time-sensitive scenarios. Feedback loops will allow for continuous refinement, ensuring that representation adjustments maintain the model’s operational reliability without sacrificing interpretability.
4.5 Simulation and Real-World Validation
To evaluate robustness, scalability, and practical utility, the proposed techniques will be validated across controlled simulation environments and real-world unmanned platforms.
Simulation Environments
: Simulated environments will replicate real-world conditions with controlled complexity, allowing us to evaluate technique performance across varied conditions. High-performance computing resources will support these simulations, facilitating rapid testing iterations. Simulation parameters will include environmental diversity, temporal dynamics, and the operational demands typical of unmanned systems.
Real-World Testing on Unmanned Platforms
: Upon successful simulation validation, we will deploy the refined techniques on unmanned platforms (e.g., drones and, AUVs) in controlled real-world environments. Real-world validation will focus on essential tasks such as navigation, object recognition, and obstacle avoidance. These experiments will provide critical insights into scalability and adaptability, demonstrating the methods’ practical utility for enhancing the explainability of LLMs in autonomous applications.
4.6 Ethical Considerations and Bias Mitigation
This research is grounded in ethical responsibility, recognizing the critical need for transparency and trust in AI-driven autonomous systems. Ethical audits and bias mitigation strategies will be implemented to safeguard data integrity and model reliability.
Ethical Audits
: Regular ethical audits will evaluate data privacy, security, and bias considerations. An interdisciplinary ethics committee will provide oversight, ensuring compliance with industry standards and regulatory requirements. Audits will focus on data handling, storage, and access, particularly regarding sensitive data used in simulations and real-world validations.
Bias Mitigation Strategies
: Bias mitigation will be integral to the representation engineering process. Techniques such as data diversification, randomization, and balanced feature selection will reduce potential biases in LLM interpretation. Post-hoc evaluations will assess biases that may arise from representation manipulation, and corrective adjustments will be made as necessary.
4.7 Reproducibility Strategy
To enhance reproducibility, the research will adhere to open-source standards, allowing others to replicate and extend our findings. Comprehensive documentation, model versioning, and standardized testing protocols will be incorporated to facilitate external validation.
Open-Source Code and Data Repositories:
 We will release code, data, and experimental protocols in public repositories, accompanied by detailed documentation. Version control will be maintained to track model adjustments and updates, providing a transparent record of iterative refinements.
Standardized Protocols for Testing and Validation:
 All research phases will be governed by standardized testing protocols, including data splits, hyperparameter settings, and model configurations. These protocols will enable consistent benchmarking and support reproducibility efforts by the broader AI research community.

5. Preliminary Results
This section presents initial simulations demonstrating a simplified approach to explainability in decision-making for unmanned platforms, specifically using a basic model to control obstacle avoidance in a drone environment. This preliminary example establishes foundational insights into the explainability mechanisms required for complex Large Language Model (LLM) implementations in autonomous systems. Through a visualization of model decisions and corresponding explanations, we demonstrate how transparency in decision-making can be achieved, setting the stage for more advanced applications in the larger research proposal.
Simulation Design
The primary goal of this simulation is to showcase a simple example of explainability within an obstacle-avoidance task for an unmanned drone. Using a model as a proxy for an LLM, we aim to clarify the decision process with explanations for each action taken by the drone.
Environment Setup: The simulation occurs on a 10×x10 grid environment with the following elements:
· Starting Point: The initial position of the drone at the bottom-left corner (0, 0).
· Target Destination: A designated endpoint at the top-right corner (9, 9).
· Obstacles: Randomly positioned obstacles are scattered on the grid, simulating a real-world scenario where the drone must navigate around them to reach its destination.
Model Decision Logic: At each step, the model evaluates its surroundings to decide on one of four possible actions: “Move Left,” “Move Right,” “Move Up,” or “Move Down.” The model’s objective is twofold:
1. Obstacle Avoidance: Avoid obstacles by choosing directions that prevent collisions.
2. Target Proximity: Optimize each move to reduce the distance to the target, favoring directions that bring the drone closer.
Each decision is accompanied by an "explainability layer" that generates a reason for the choice, simulating the transparency expected in more complex LLM-guided autonomous systems.
Explainability Layer in Action
After each move, the explainability layer outputs an interpretation of the decision. This includes:
· Obstacle Avoidance: If an obstacle is directly in the path, the model provides an explanation such as “Moved Right to avoid an obstacle on the left.”
· Proximity to Target: If no immediate obstacle is present, the model chooses a move that brings the drone closer to the target and generates a reason like “Moved Up to approach the target.”
These explanations help interpret the underlying logic in each decision, allowing users to follow the model’s thought process transparently.
Simulation
1. Starting Position: The drone begins at the bottom-left corner and must reach the top-right target.
2. Decision Process: At each step, the drone evaluates the distance to the target for all possible moves and selects the one that minimizes the distance while avoiding obstacles.
3. Explainability Layer: Each move includes a brief explanation, helping us understand the rationale behind each action. This explanation shows whether the drone moved towards the target or chose a path to avoid obstacles.
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Figure 3: Step-by-Step Path of Drone Navigation with Explainability Layer

Figure 3 displays the drone's path with explanations positioned to avoid overlapping text. Each move is annotated with a corresponding explanation, offering a clear view of the drone’s decision-making process (steps 1, 3, 5, 7, 8, 11, 13, 16, 17 - – moved right towards target;
 steps 2, 4, 6, 9, 10, 12, 14, 15, 18 -– moved down towards target). This visualization effectively conveys the rationale behind each action while maintaining readability, enhancing the interpretability of the simulation. 
This simple simulation demonstrates the basic principles of explainability for decision-making in autonomous systems. By scaling up this framework, we can apply similar techniques to more complex LLM-driven tasks, where detailed explanations of actions improve transparency and trustworthiness in high-stakes environments.
Preliminary Insights and Potential for Expansion
This simplified simulation reveals key principles for achieving transparency in LLM-driven decisions:
1. Decision Transparency: Each move’s explanation demonstrates how an LLM’s opaque processing can be converted into comprehensible reasoning, essential for trust in high-stakes applications.
2. Interpretability and Debugging: By following the explanations, users can identify any unexpected behaviors or limitations in the model’s logic, aiding in effective debugging.
3. Scalability to Complex Scenarios: While this example is basic, it illustrates how more advanced LLMs could provide real-time explanations in intricate settings, such as dynamic obstacle navigation or multi-objective tasks.
This preliminary simulation validates the feasibility of explainable AI in unmanned platforms, providing a foundation to scale explainability techniques across diverse and high-stakes applications. Through iterative development and continuous validation, we aim to establish a robust explainability framework that aligns LLM-driven decisions with human reasoning, trust, and operational safety.


	6. Research Phases

	
The following sections outline the phases of this four-year research project, structured to achieve rigorous development, validation, and reproducibility of explainability techniques for LLMs in autonomous systems. Each phase builds upon the previous, ensuring a comprehensive approach to enhance interpretability and transparency within high-stakes autonomous platforms.

Phase 1: Data Acquisition and Preprocessing (Months 1-–12)
Objective: Establish a robust and unbiased data foundation for training and evaluating representation engineering techniques.
1. Data Selection and Acquisition
2. Data Preprocessing and Augmentation
3. Control and Randomization Techniques
Phase 2: Statistical Analysis and Evaluation Framework (Months 6-–18)
Objective: Develop and implement a comprehensive evaluation framework to assess model interpretability and alignment with human-understandable reasoning.
1. Metric and Evaluation Framework Design
2. Statistical Testing and Qualitative Assessment Setup
Phase 3: Probing and Visualization Development (Months 12-–30)
Objective: Create probing mechanisms and dynamic visualization tools to explore and illustrate LLM decision-making processes.
1. Development of Probing Mechanisms
2. Dynamic Visualization Tools Development
3. Pilot Testing and Validation in Simulated Environments
Phase 4: Representation Control and Manipulation (Months 18-–36)
Objective: Develop algorithms for active representation control, enabling the alignment of LLM internal representations with human reasoning frameworks.
1. Development of Representation Control Algorithms
2. Iterative Testing and Refinement
Phase 5: Simulation and Real-World Validation (Months 24-–48)
Objective: Validate the interpretability techniques under controlled and real-world conditions to ensure scalability and applicability to autonomous platforms.
1. Extensive Simulation Testing
2. Real-World Validation on Unmanned Platforms
Phase 6: Ethical Audits and Bias Mitigation (Months 18-–42)
Objective: Ensure ethical transparency and mitigate bias in data handling and model outputs throughout the research process.
1. Ethical Audits
2. Bias Mitigation Strategies Implementation
Phase 7: Reproducibility and Open-Source Release (Months 30-–48)
Objective: Ensure reproducibility and facilitate broader research impact through open-source code, data, and documentation.
1. Preparation of Open-Source Code and Documentation
2. Establishment of Public Repositories

	7. Significance, innovation, and potential benefits of the proposed research 

	This research addresses a critical gap in the transparency and interpretability of LLMs when used in autonomous platforms, such as drones and AUVs. By developing advanced representation engineering techniques, the project aims to provide deep insights into the decision-making processes of LLMs, making them accessible and understandable for autonomous platform users. This is particularly important in high-stakes environments where trust, reliability, and accountability are paramount.
The project’s focus on LLMs in autonomous systems responds to the urgent need for XAI in domains where safety, compliance, and ethical considerations are crucial. The proposed framework will allow users to visualize and interact with model decisions, setting a standard for transparent AI operations in unmanned platforms.
The project introduces a novel combination of probing, real-time visualization, and active representation control. This approach goes beyond traditional XAI by enabling both local and global interpretability while allowing modifications that align AI behavior with human reasoning patterns. By embedding bias mitigation and ethical audits, the research promotes ethically aligned and reliable AI.
The research is expected to yield operational tools for real-time decision monitoring, leading to better-informed and safer AI deployment in critical sectors like environmental monitoring, search and rescue, and infrastructure inspection. Open-source contributions will foster broader adoption, providing the AI research community with scalable, reproducible methods that can be built upon in future explainability research.


	8. Expected Results and Pitfalls


	This research aims to establish a comprehensive framework for enhancing the explainability of LLMs in unmanned platforms through representation engineering. By enabling the precise mapping, analysis, and control of internal LLM representations, we seek to develop scalable techniques that will significantly improve transparency in AI-driven decision-making for high-stakes applications. Below, the expected results and potential pitfalls are outlined, along with proposed mitigation strategies..

Expected Results
1. Enhanced Interpretability of LLM Decision-Making:
 Through advanced probing and visualization techniques, the project aims to provide insights into the internal decision-making pathways of LLMs. These tools will allow users to observe how LLMs process inputs at various stages, making complex decision processes more accessible and understandable. This transparency will be particularly beneficial for high-stakes applications, where the reliability and clarity of AI decisions are paramount.
2. Operational Tools for Real-Time Analysis:
 The development of dynamic visualization tools and interactive interfaces is expected to yield a set of operational tools that allow real-time monitoring of LLM decision-making pathways. These tools will be user-friendly, enabling both technical and non-technical users to engage with and evaluate AI behavior. This may also lead to an open-access platform or database for broader community engagement and educational purposes.
3. Framework for Ethical and Bias-Resilient Autonomous Systems:
 By embedding ethical audits and bias mitigation strategies into every research phase, this project aims to set a standard framework for LLM applications in autonomous platforms. This framework will ensure that AI decisions are not only transparent but also ethically sound and resilient against biases, aligning with the regulatory requirements and ethical standards for autonomous systems.
4. Standardized Protocols and Open-Source Contribution:
 The final stages of the project will focus on establishing standardized, reproducible protocols and preparing open-source code, data, and documentation. This transparency in development will support external validation and collaboration, enabling future researchers and industry users to build on and refine the project’s findings. The open-source release is expected to catalyze advancements in XAI by providing accessible tools and frameworks for the community.
5. 
Potential Pitfalls and Mitigation Strategies

The pitfalls are as follows:
1. Complexity of LLMs:
Pitfall: The inherent complexity of LLMs, with billions of parameters and intricate processing pathways, may impede the ability to consistently map and interpret internal representations. Extracting clear, human-interpretable patterns could be challenging, especially when trying to align these with simplified reasoning processes.
Mitigation Strategy: To address this, we will use iterative probing techniques to gradually refine the interpretability of complex patterns within LLMs. Advanced data visualization techniques will be employed to represent high-dimensional data in more accessible forms, breaking down complex processes into smaller, interpretable steps. Additionally, controlled testing will focus on isolating specific aspects of LLMs to reduce complexity and improve interpretability.
2. Trade-off between Interpretability and Performance:
Pitfall: Enhancing interpretability by adjusting LLM representations may risk reducing the accuracy or efficiency of the models, particularly in real-time applications. This trade-off between transparency and operational performance could impact the model’s effectiveness in high-stakes scenarios.
Mitigation Strategy: A balanced approach will be employed, where interpretability improvements are incrementally introduced while rigorously monitoring model performance. Each change in model representation will undergo performance testing to ensure that interpretability gains do not compromise task accuracy. Techniques such as meta-learning and reinforcement learning will enable adaptive adjustments, allowing the model to maintain optimal performance even with interpretability constraints.
3. Scalability of Representation Engineering Techniques:
Pitfall: Representation engineering is computationally intensive, which may present scalability issues, especially when applied to larger LLMs or in real-time applications with limited resources.
Mitigation Strategy: Initial studies will focus on optimizing the techniques in high-performance computing environments, followed by incremental scalability assessments in simulated settings. Hybrid approaches that combine representation engineering with established XAI techniques will be explored to balance computational demands, making the framework adaptable to various operational constraints.
4. Inconsistency in Interpretability across Diverse Environments:
Pitfall: The interpretability techniques developed may show varying performance across different environments, especially in real-time applications where conditions are dynamic and unpredictable.
Mitigation Strategy: Validation studies will be conducted across diverse simulated and real-world environments to iteratively refine the techniques and improve generalizability. Feedback loops from real-world testing will guide adjustments, allowing us to identify and address environment-specific limitations.
5. Potential for Unintended Bias in Representation Adjustments:
Pitfall: Actively modifying LLM representations to enhance interpretability might introduce unintended biases, which could impact decision-making reliability and ethical alignment.
Mitigation Strategy: Bias assessment protocols will be embedded into each phase, with regular evaluations using diverse datasets to detect and address emerging biases. Ethical audits will ensure compliance with best practices, while adjustments will be made to maintain alignment with ethical standards. Post-hoc bias analyses will be conducted, and corrective strategies will be implemented if any biases are identified.
6. Reproducibility and Open-Source Limitations:
Pitfall: Given the complexity of representation engineering, ensuring reproducibility and effectively transferring knowledge to an open-source format may be challenging.
Mitigation Strategy: Detailed documentation and standardized testing protocols will support transparency and reproducibility. Each development phase will include version control and detailed change logs to provide a clear record of model updates. The open-source release will include tutorials, examples, and technical support to facilitate understanding and usability by external researchers and practitioners.


	9. Work plan and Gantt

	
	Phase
	Task
	1-6 Months
	6-12 Months
	12-18 Months
	18-24 Months
	24-30 Months
	30-36 Months
	36-42 Months
	42-48 Months

	Phase 1: Data Acquisition and Preprocessing
	1.1 Data selection and acquisition
	X
	
	
	
	
	
	
	

	
	1.2 Data preprocessing and augmentation
	X
	X
	
	
	
	
	
	

	
	1.3 Control and randomization implementation
	X
	X
	
	
	
	
	
	

	Phase 2: Statistical Analysis and Evaluation Framework
	2.1 Metric and evaluation framework design
	
	X
	X
	
	
	
	
	

	
	2.2 Statistical testing and qualitative assessment setup
	
	X
	X
	
	
	
	
	

	Phase 3: Probing and Visualization Development
	3.1 Development of probing mechanisms
	
	
	X
	X
	
	
	
	

	
	3.2 Dynamic visualization tools development
	
	
	X
	X
	X
	
	
	

	
	3.3 Pilot testing in simulated environments
	
	
	
	X
	X
	
	
	

	Phase 4: Representation Control and Manipulation
	4.1 Development of representation control algorithms
	
	
	
	X
	X
	
	
	

	
	4.2 Iterative testing and refinement
	
	
	
	X
	X
	X
	
	

	Phase 5: Simulation and Real-World Validation
	5.1 Extensive simulation testing
	
	
	
	
	X
	X
	
	

	
	5.2 Real-world validation on unmanned platforms
	
	
	
	
	X
	X
	X
	X

	Phase 6: Ethical Audits and Bias Mitigation
	6.1 Ethical audits and review
	
	
	
	X
	X
	X
	X
	

	
	6.2 Bias mitigation strategies implementation
	
	
	
	X
	X
	X
	X
	X

	Phase 7: Reproducibility and Open-Source Release
	7.1 Preparation of open-source code and documentation
	
	
	
	
	
	X
	X
	

	
	7.2 Establishment of public repositories
	
	
	
	
	
	X
	X
	X
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23) Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 21(1): 5485–5551, 2020. 
24) Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Explain yYourself! Lever- aging lLanguage mModels for cCommonsense rReasoning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4932–4942, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1487. URL https://aclanthology.org/P19-1487. 
25) Abhilasha Ravichander, Eduard Hovy, Kaheer Suleman, Adam Trischler, and Jackie Chi Kit Cheung. On the sSystematicity of pProbing cContextualized wWord rRepresentations: The cCase of hHypernymy in BERT. In Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics, pp. 88–102, Barcelona, Spain (Online), December 2020. Association for Computational Linguistics. URL https://aclanthology. org/2020.starsem-1.10.
26) **Lior Wolf, Tomer Galanti, and Tamir Hazan. “A fFormal aApproach to eExplainability,” . In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (AIES '19). Association for Computing Machinery, pp. 255–261, New York, NY, USA, 2019, ACM, 255–261. https://doi.org/10.1145/3306618.3314260doi: 10.1145/3306618.3314260.
27) ** Leena Heistrene, L., , Ram Machlev, Michael Perl, Juri Belikov, Dmitry Baimel, Kfir Levy, Shie Mannor, and Yoash LevronMachlev, R., Perl, M., Belikov, J., Baimel, D., Levy, K., Mannor, S., & Levron, Y. (2023). Explainability-based tTrust aAlgorithm for electricity price forecasting models. Energy and AI, 14, Article: 100259, 2023. https://doi.org/10.1016/j.egyai.2023.100259doi: 10.1016/j.egyai.2023.100259.
28) ** Aviad Raz,  Bert Heinrichs, Netta Avnoon, Gil Eyal, and Yael InbarA., Heinrichs, B., Avnoon, N., Eyal, G., & Inbar, Y. (2024). Prediction and explainability in AI: Striking a new balance? Big Data and Society, 11(1): 2024. https://doi.org/10.1177/20539517241235871doi: 10.1177/20539517241235871.
29) ** Hofit Wasserman-Rozen, Hofit Ran ; Gilad-Bachrach, Niva Ran ; Elkin-Koren, Niva.  “Lost in Translation : The Limits of Explainability in AI.” In: Cardozo Arts & Entertainment Law Journal 42:. 2024 ; Vol. 42, No. 2. pp. 391-–438, 2024.
30) ** Daniel Deutch, Amir Gilad, Tova Milo, Amit Mualem, and Amit Somech., D., Gilad, A., Milo, T., Mualem, A., & Somech, A. (2022). FEDEX: An eExplainability fFramework for dData eExploration sSteps. Proceedings of the VLDB Endowment, 15(13),: 3854-–3868, 2022. https://doi.org/: 10.14778/3565838.3565841.
31) ** RoniR. Paiss, HilaH. Chefer, and Lior L. Wolf. No tToken lLeft bBehind: Explainability-aAided iImage-tText mMatching for iImage cClassification and gGeneration. In European Conference on Computer Vision (ECCV), 2022. Preliminary arXiv version 
32) **Ameen. Ali, T. al Shaharabany, and L. ior Wolf. Explainability gGuided iImage cClassification. Medical Imaging with Deep Learning (MIDL), 2022. 
33) **E. yal Shulman,  and L. ior Wolf. Meta dDecision tTrees for eExplainable rRecommendation sSystems. In Artificial Intelligence, Ethics, and Society (AIES), pp. 365–371, 2020. 
34) **Hila. Chefer, S. hir Gur, and L. ior Wolf. Generic aAttention-model eExplainability for iInterpreting bBi-mModal and eEncoder-–dDecoder tTransformers. In IEEE International Conference on Computer Vision (ICCV), pp. 397–406, 2021. 




Basic Science Declaration
The primary aim of this research is to advance the theoretical framework for explainability in large language models (LLMs) used in unmanned platforms, such as drones and autonomous underwater vehicles. Our objectives focus on developing scalable methods for understanding and modifying internal model representations, which allow for a deeper, theory-driven comprehension of LLM decision-making. By dissecting these internal structures, the research will shed light on the core cognitive processes that underlie LLM functionality, enhancing their interpretability without prioritizing immediate application.
This research will contribute significantly to scientific knowledge by proposing and validating methodologies for representation engineering—approaches that expose, analyze, and potentially manipulate the inner workings of LLMs to align with human-understandable logic. The project is anchored in the fundamental exploration of AI cognition and seeks to address the gap in how complex machine learning models process and prioritize information, providing new insights into the principles governing autonomous decision-making.
Given these objectives and the emphasis on foundational theory, this proposal constitutes basic science, driven by the goal of expanding theoretical knowledge and understanding within the field of AI explainability, rather than focusing on direct applications.
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