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1. Scientific Background	Comment by Author: “Research Background” might be a more appropriate title for this section…
As healthcare facilities become ever -more complex, expensive, and mission-critical, it is imperative crucial that their functioning be made more efficient and adaptive to rapidly changing spatial, operational, and staffing needs [1]–[3]. In this way, they can deliver better care to patients while ensuring staff satisfaction and saving reducing capital and operational costs. The need for such adaptive systems has been brought into sharp focus during the coronavirus pandemic as hospitals scramble to meet growing hospitalization needs due toand manage staff, space, and equipment shortages. Yet, these problems are not new, nor are they limited to healthcare facilities. 
The design and operation of all buildings are characterized by the interweaving of three dominant factors: spaces that are designed to host people who are engaged in a variety of operations depending on the organization  that occupyingies the building. When operational challenges arise, the environment must be able to dynamically adapt and accommodate the newly emerging needs. Since Because the space is often the least adaptive of the three components, it is frequently occupancy and operational protocols that must be dynamically adaptadjusted instead, while taking into accounting for the existing fabric of the built environment, ongoing operations, and the abilities/limitations of the people involved.
Built environments, however,  have been traditionally traditionally been considered as passive receptacles in which occupants’ activities take place. As such, they are, to a large degree, unaware of the people who inhabit the buildingsm, and the operations in which they are involved in. Conversely, pPeople also have limited awareness of building operations, as well as the impact that their activities may produce on the overall operational performance of a building. For hospitals, sSuch limited reciprocal awareness between spaces, people, and operations hampers hospitals’ their ability to wisely intelligently allocate resources (i.e., people, spaces, and equipment) in response to – and  in anticipation of – future changing needs. 	Comment by Author: Who is they, in this case? The built environment doesn't really have awareness... perhaps you could clarify and say 'designers'?
The progressive introduction of iInformation tTechnology (IT) into built environments is expected to provide buildings and people with increased awareness ofabout building operations, potentially bringing about a massive shift in the way buildings are conceived and dynamically managed. This research explores the role of simulation in enabling dynamic and intelligent spatial, occupancy-related, and operational adaptability in complex IT-enhanced buildings, like such as healthcare facilities.

1.1 IT-Enhanced Buildings
UBuildings, unlike most other designed artifacts, buildings are not merely physical objects: they are environments that host a variety of activities. This connection between spaces and people has been broadly described under the notion of ‘pPlace’ [4]–[7]. Canter [5] defined pPlace as the confluence of a space, a set of activities carried out in that setting, and the people who perform them. Scholars in a variety of disciplines (including anthropology, environmental psychology, and architectural design) have investigated how places actively affect and regulate people’s interactions both among with one another themselves and with the built environment [8]–[13]. However, tThese approaches, however, have generally considered spaces as to be ‘passive’ containers in whichere behaviors take placeoccur. 
Recent developments in IT systems and ubiquitous computing and IT systemshave fostered enabled the introduction of sensing technologies into the very fabric of the built environments [14], [15], potentially transforming spaces from passive containers into active actors in the life of a place. For example, rReal-time location systems (RTLSs) use radio- frequency identification (RFID) technologies to track the positions of people and assets over time, under day-to-day or emergency conditions [16]–[18]. Other sensors (e.g., for temperature, humidity, illuminance, CO2, occupancy, and noise, and as well as power-plug meters) have been coupled with bBuilding management systems (BMSs) for to implement demand-based control strategies of for mechanical and electrical services, therebyo improvinge occupant comfort and energy efficiency  [19–21][19], [20][21]. Wearable devices have been deployed to monitor people’s physiological conditions and provide feedback to care providers [22], or to inform environmental adaptations to improve people’s well-being [23]. Ambient sensing technologies (e.g., cameras, depth, thermal, radio, and acoustic sensors) have been used in healthcare facilities for to monitor patients’ movements management, and to detect falls among the elderlies’ fall detectiony, analyze gait analysiss, and or screen symptoms associated with mental well-being symptoms screening  [24].	Comment by Author: It’s not clear what ‘depth’ means in this context; please review and amend as appropriate…
To date, these developments hese methods, however, providehave enabled local awareness of people’s' presence and activities to inform reactive responses to a detected phenomenon. To provide proactive recommendations towards of optimal resource allocation in anticipation of emerging needs, a moren intelligent system should be capable of predicting and evaluating the implications of alternative building management strategies on the behavior and well-being of building occupants.

1.2 Human Behavior Prediction and Analytics 
Simulation methods have been developed to predict and analyze the mutual interactions between buildings and their occupants [[25]–30].[29 ] [30]. Simulation is considered the most appropriate prediction method for testing and analyzing the behavior of a system when many variables interact in complex ways (and/or when no mathematical solution is available) [31]. Here, I categorize existing simulation methods based on the basis of their underlying modeling approaches to modeling. 
Space-Centric methods provide aggregated and static representations of space utilization in the form of space usage profiles, which predict how occupants’ presence [32], [33] or actions [34] that have anwill impact on energy consumption. However, they do not consider the different roles of occupants’ roles and or their dynamic movements and activities.
Activity-Centric methods use probabilistic and queuing models to simulate the dynamic flow of resources (i.e., people and equipment) within a network where in which nodes represent spaces (e.g., rooms), and edges represent the connections between spaces, with an associated traversal times  [35–37]., [36] [37]. People and spaces, however, are often modeled as homogeneous entities, abstracting away key differences between occupant roles and space functions, which can vary at different times of the day depending on evolving operational needs. BesidesFurthermore, they mostly ignore the impact produced by unplanned activities (e.g., an emergency Code Blue), which may require the dynamic reallocation of resources (e.g., spaces, people, and equipment) to address emergent needs.
People-Centric methods model the behavior of autonomous agents that interact among themselves and with the surrounding spatial context. Agent-based models (ABM) s) represent the movement of homogeneous crowds [38], [39], as well as the context-specific behavior of individual agents, in response to social and environmental conditions [40]–[42] [41]. However, ABMs shows limitations in when it comes to modeling complex behaviors in goal-oriented settings such as healthcare facilities, since because vast amounts of context-specific knowledge must be stored in each agent before representative collaborative behaviors cognizant of cultural norms as well as spatial and social circumstances can emerge.
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	Figure 1.: The nNarrative-based model enables to prediction and analyze analysis of interactions between sSpaces, pPeople, and aActivities interactions [43]. 


 Narrative-Centric modeling is a recent approach developed by the PI that uniquely combines space- , activity- , and people-centric approaches into a coherent model centered on the concept of nNarratives: self-contained computational entities that direct the individual or collaborative behavior of multiple agents in complex environments (Figure 1) [43]. Narratives encapsulate a set of procedures for directing the behavior of people, performing activities, in specific spaces. For example, a narrative representing a ‘patient examination’ in a hospital ward might consists of three people (doctor, nurse, and patient) who meet in the patient’s room (the space) to perform the collaborative activity of examining the patient. Unlike ABMs, where decision-making capabilities are stored within the agents themselves, in the a nNarrative-based model the decision-making authority capacity is stored in the nNarrative entity, which in turn directs the collaborative behavior of a group of actors to perform the givenan activity in a given space. As such, the nNarrative script affords top-down agents’ coordination of agents while also handling bottom-up exceptions and contingencies (for example, when one of the resources needed to complete the task is unavailable).
 Narratives are modular, so they can be reused across scenarios. They are also hierarchical, allowing behaviors to be to described behaviors at increasing levels of detail. A Narrative Modeling Language has been developed by the PI to efficiently model new narratives more efficiently by reusing components of existing ones [44].  A Narrative Manager determines which narrative to execute at any given time frame based on a dynamic priority factor calculated for each narrative. It uses a centralized scheduling strategy to dynamically allocate resources (e.g., actors, spaces, and equipment) to the most urgent narrative at any given time frame, thereby resolving conflicts among between narratives competing for the same resources.
The capabilities of narrative-based modeling have been demonstrated to in the prediction and analyze analysis of the impact of alternative hospital design strategies on operational efficiency before prior to a building’s construction and occupancy [45], [46]. 
The model, Hhowever, the associated model is not currently suitable to for representing dynamic hospital operations for the following reasons: (a) it is informed by data collected in the facility’s design stage, where little information is available on future building operations; (b) it is applied to test the impact of a singleonly one variable (the space layout) on the overall building performance; and (c) it cannot systematically test different scenarios to provide recommendations on how to improve building operations. These features are Addressing these constraints is critical  toif the approach is to successfully  simulate the future implications of holistic resource allocation strategies and enable spatial, occupancy-related, and operational adaptability of hospital operations. 
         
1.3 Total -Environmental Adaptability of Building Operations
Adaptability is a critical component ofFor a built environment to dynamically cater to the changing needs of an organization and its individuals, adaptability is a critical component. I distinguish between three levels of buildings’ ‘adaptability’ in buildings, defined as in terms of the degrees of awareness and responsiveness of a building to the presence and activities of its occupants [47]. 
Feedback-Rregulated adaptability is the simplest way level at whichfor an environment to can sense and respond to human presence and activities. It is based directly on the feedback loop, where in which an action  occurstakes place in response to an external stimulus. This type of automation is commonly implemented in BMSs for the electrical, mechanical, and climatic control of buildings. For example, thermostats can direct heating, ventilation, and air conditioning (HVAC)  operations depending according to the on the perceived temperature sensed in a room, which is will be impacted by the number of inhabitants its occupants [48]. 
Model-Bbased adaptability requires adding the introduction of a functional model to a building management systemBMS to regulate the environment in expectation of events, rather than in response to them. In a this functional model, occupants’ behavior patterns are either programmed in advance or deduced/learned from previously collected data, so that a building system can pre-position itself to support recurring event types.  For example, elevator cars in high-rise buildings can be stationed automatically stationed on specific floors at specific times to meet address peak demand in the most efficient way [49]. Predictive models have also likewise been applied for to real-time energy management in buildings [50], [51]. 
Total -Eenvironmental adaptability is the highest level and is reached when the building not only responds to its inhabitants’ behaviors but will proactively engage with and even manage them. To achieve this ultimate level of adaptability, a building management systemBMS must consider: (a) space information, such as the configuration of the building, the function of each room (e.g., a hospital patient room, a nursinge station, etc.), the equipment contained in each space, and the prevailing usage of the space, which depends on the people inside the space and their current activities. ; (b) people information, such as the organizational role of each occupant (e.g., doctor, nurse, patient, or visitor, etc.), their capabilities, and their dynamic status (e.g., how long a patient has been waiting times of patients;, or working hours of staff members); and and (c) activities information, including each inhabitant’s current, past, and future/planned activity, as well as the customary procedures to by which to deal withhandle unplanned activities (e.g., a ‘Code Blue’ in a hospital). An active building management systemBMS that has access to all of this information could potentially createform an ‘image’ or ‘snapshot’ of the current state of the a building and its inhabitants. It can then, predict and analyze alternative operational workflows, and provide dynamic recommendations to the building inhabitants on as to which strategy is likely to leads to the best outcome from a holistic perspective, which (a) accounts for both spatial, occupancy-related, and operational criteria, and (b) considers the often -competing needs of different stakeholders (e.g., in the case of a hospital: doctors, patients, visitors, and hospital managers). 

2. Research Objectives and Expected Significance
The overarching goal of this proposal is to explore how simulation-powered driven computational methods can transform IT-enhanced buildings from passive containers into ‘smart’ environments that provide intelligent and proactive recommendations for enhanced building operations. This research leverages recent developments in IT systems that augment buildings’ capabilities to sense data about usage patterns and inform building operations. However, tThe proposed approach, however, aims at aims to being independent of specific IT systems and sensor technologies embedded in the built environment;. Insteadrather, it focuses on the developing development of fundamental modeling and simulation principles for generating context-aware operational insights in for IT-enhanced environments. The principal research objectives are toinclude: 
(1) Creating Create a Multi-Modal Knowledge Base of Human Behavior Patterns based on data collected using a combination of ethnographic and IT-driven approaches, which have traditionally have been considered independentlyseparately. The combination bringing together of these methods is expected to generate a newn improved understanding of the dynamic unfolding of building operations in the built environments (WP1). 
(2) Defining Define a Narrative-based Based Model of Building Operations that leverages the knowledge base developed in WP1 to support the joint and interdependent modeling of spaces, people, and activities. This approach builds upon and significantly extends concepts of nNarrative-based modeling to generate context-aware recommendations for intelligent spatial, occupancy-related, and operational adaptations adaptations (WP2). 
(3) Developing a Simulation-Powered Recommendation Engine for Total -Environmental Adaptability that leverages the computational model developed in WP2 to explore and analyze the implications of alternative resource allocation strategies and identify the one that best balances multiple evaluation criteria, defined in conjunction with hospital stakeholders (WP3). 
(4) Experimentally Vverifying, validatingValidate, and evaluating Evaluate the Pproposed Aapproach in collaboration with hospital stakeholders. The aim is to explore the potential benefits of simulation-powered building operations management over relative to more traditional methods that rely substantially rely on human intuition. (WP4). 
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Figure 2. Proposed fFramework for simulation-powered building operations management in Smart Hospitals to proactively inform spatial, occupancy-related, and operational adaptations in response to – or in anticipation of – emerging needs. 

3. Working Hypotheses
The main research hypothesis is that computational simulation can sufficiently enable the efficient allocation of resources in IT-enhanced environments to enable provide spatial, occupancy-related, and operational adaptability in response to – and in anticipation of – the dynamic needs of building occupants. To tackle address this main hypothesis, four secondary hypotheses ones are have been generated, each of which underlies underpins a different work package (WP) that also aligns to the principal objectives described above. These hypotheses are: :
· (WP1) Aa combination of multi-modal data collection strategies can inform the generation of a knowledge base that formalizes the unfolding of human behavior patterns (WP1);
·   (WP2) Tthe narrative-based model could can be extended to represent salient features of building operations and enable predictive analytics analysis of alternative management strategies (WP2);
· A (WP3) a simulation-powered recommendation engine can explore the implications of alternative resource allocation strategies over time from a spatial, occupancy-related, and operational perspectives (WP3);
·  and (WP4) Tthe proposed framework (see Figure 2) can usefully extend traditional decision-support methods that currently rely heavily rely on human intuition (WP4). 

4. Research Approach and Work Packages
Case Study: The proposed research will be developed in collaboration with the Rambam Healthcare Campus in Israel, the largest tertiary medical center (1,000 beds) in Northern Israel. A hHospitals have  has been chosen as the test -case for the following reasons: (a) they hospitals are designed and operated by a formalized and agreed-upon set of procedures defined by the a healthcare organization, making the development of predictive models more tractable here than in less process-driven settings (e.g., museums and , other public spaces); (b) established performance criteria can be identified and measured to evaluate building operations, which are impacted by spatial, occupancy-related, and operational conditions [52], [53]; (c) failures to manage building operations effectively can have particularly serious consequences, and may lead to inefficient patient throughput, prolonged lengths of stay, communication breakdowns between departments, misplaced equipment, space under-/over- utilization, staff fatigue, patient dissatisfaction, and  staff distractions, all any one of which can severely affect degrade patient care [54]–[56]; (d) the rate of progress development of medical procedures and technologies and the rapidly growing demand for specialized care far outpaces that the development of the buildings themselves, making leaving hospitals in need of continuous adaptation; and (e) hospital efficiency is a multifaceted issue that must consider the often -conflicting needs of different stakeholders, such as patients, care staff members, and managementrs. 
A specific case study has been selectedin which to execute the proposed research tasks has been selected on the basis of using the following criteria: (a) a medium-sized ward with multiple types of users and activity flows;, (b) constrained availability of space and staff resources that may cause operational bottlenecks;, (c) access to data collected through IT systems;, and (d) adaptive spaces that can serve multiple functions. 
The chosen case study is is the Rambam Institute for Pain Medicine, – the largest pain unit in the North of Israel and the only interdisciplinary one (see collaboration letter). It employs 45 staff, including physicians, nurses, physical therapists, psychologists, complementary and alternative medicine practitioners, and administrative staff. Besides a patient reception and waiting area, tThe unit includes 15 treatment rooms on two floors in addition to a patient reception and waiting area. Some rooms are used for multiple purposes, including admittance, invasive procedures, intravenous infusions, admittance, acupuncture, group psychological therapy, invasive procedures, and observation of patients prior before and after such to - and following - invasive procedures. 

WP1: Multi-Modal Knowledge Base of Human Behavior Patterns 
Existing approaches for collecting data about human behavior patterns usually either provide a detailed account of a specific human activity using IT systems (as discussed in Section 1.1), or focus on a broader understanding of human behavior using ethnographic studies such as post-occupancy evaluations  [57,58][57], [57], [58]. To provide a detailed yet holistic understanding of human behavior patterns, I propose to integrate multi-modal data using a combination of ethnographic methods (including experts’ interviews and field observations) and continuous data logs from hospital IT systems. I hypothesize that both each approaches can usefully inform the one another: overview information collected using ethnographic methods can inform the interpretation of fine-grained data collected through IT systems; i. In turn, continuous data streams collected through IT systems can enrich ethnographic accounts through via data sets of actual utilization patterns. Thus, the main research challenge thus concernsinvolves the creation of a novel framework to integrate different types of data collected at on different time intervalstimescales and generate knowledge amenable for to computational modeling of human behavior patterns.  I detail describe below each one of these data collection methods below: 
(a) Experts’ interviews. Physicians, nurses, therapists, and psychologists (between 3 to and 5 people per user type) will each be interviewed for an1 hour each (in total) to extrapolate generate a generaln overview of the activities performed oin the ward. An initial interview (30 mins) will be conducted before the field observation study (detailed below) to provide a general account of the hospital operations, including the different functions of each space, the roles of the main actors, and an overall description of patients’ flow. A second interview (30 mins) will be conducted after the field observations to help verify, interpret, and generalize the context-dependent data collected and extrapolate the descriptions of human behavior patterns. In addition, tThe institute director and deputy director will also be interviewed to establish thedefine key performance indicators (KPI) of the spatial, social, and operational performance (i.e., KPIs) of the ward, that which will be used as target metrics for the proposed simulation system. 
(b) Field oObservations. Between 3 and -5 trained observers acting as ‘recognized outsiders’ (Zeisel, 1984) will record the locations of people and the activities they perform during a typical hospital shift (approximately 7 a.m. to 3 p.m.) through unobtrusive, direct observations for over a period of 4 to -6 days.  through a typical hospital shift (approximately 7:00 am – 3:00 pm). Data will be collected using two methods: (1) Shadowing:  – the observers will follow a selected staff member through their shift to gather information about tasks performed tasks, duration, and potential operational bottlenecks that arise due to the a lack of space or staff unavailability; and (2) Behavior Mapping: – bBetween 3 and -5 observers will be stationary stationed in selected areas of the ward to record people’s presence and activities at discrete intervals of 15 mins. Both The two methods are complementary: the first provides specific people-centered information that is continuous over time, while the second provides space-centered information at discrete time stepsintervals. CWhen combined, they can produce a detailed account of space utilization patterns,. pPrior studies having demonstrated the benefits of behavior mapping to in analysis ofze spatiotemporal behavior patterns [59,60].[59][60]
(c) IT systems. The following data will be obtained from the hospital’s administrative data servers: 
(1) sPatient scheduled patient visits, including visit type (first medical evaluation, follow- up medical visit, nursing procedure, medical procedure, psychological treatment, physical treatment, etc.), and ; (2) pPatient arrival and queue management data from the QFlow system, including date and hour of arrival, destination room, start and end times of clinical visit start and endconsultation, and calculated delays and waiting times per room. The use of aAdditional sources of data collection will also be considered, including (3) occupancy sensors, to analyze waiting patterns in at the front desk and waiting area, and (4) RFID-based tracking for of selected staff members, including nurses and physicians. 
The data collection methods will comply with the ethics and privacy regulations defined by the Rambam Healthcare Campus, Technion Research Authority, and the Institutional Review Board (IRB). The data will be anonymized to prevent the identification of patients and or staff members, encrypted, and stored in a secured cloud platform accessible only by to authorized personnel. 
The different types of data collected will be compared and integrated to identify spatiotemporal behavior patterns that consist of a structured sequence of activities performed in one or more spaces by a single single participant or group of participantsthereof. Specifically, interviews will provide an overview of activity flows, field observations will situate the activities in a spatiotemporal context to identify potential dependencies between different activities occurring in the same space, and IT systems data will inform the actual durations of treatments and patient s’ stays in the institute, as well as providing daily/weekly/annual data-driven insights on into operational performance. 
Professor. Efrat Eizenberg, as an expert in environmental psychology, will assist the processes of data collection and analysis using interviews and field observations. Professor. Avigdor Gal, as an expert in data science, will assist the process of data collection and analysis using IT systems (see collaboration letters). Prior work of the PI involved the creation of a preliminary knowledge base of human behavior patterns, based on experts’ interviews and field observations (Figure 3). The expected contributions of this WP first work package include: (a) a new framework for encoding knowledge about human behavior patterns that in support of the modeling and simulation of holistic building operations, and; (b) a scientific paper in a peer-reviewed journal (Q1 ranked) in the fields of social sciences and/or environmental psychology, such as Environment and Behavior or Building and Environment.
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	Figure 3. Preliminary experiment to create a human behavior knowledge base from interviews and field observations.



WP2: Narrative-Bbased Modeling of Building Operations 
Data collected in WP1 will inform the development of a computational model that supports a holistic representation of hospital operations from a spatial, social, and operational perspective. The main research challenge will involve the exploration and modeling of spatial, occupancy-related, and operational adaptabilities in anticipation of emergent needs. In fact, the model should be capable of proactively anticipating and resolving the inefficient utilization of hospital resources (i.e., spaces, people, and equipment). To overcome this challenge, I proposed to extend the previously developed narrative-based modeling framework. Different Distinct from traditional aAgent-based models (ABM) that focus on the independent behaviors of individual agents/occupants, the proposed approach aims at to representing the interdependent interactions of multiple occupants as they use a variety of hospital resources over time (as discussed in Section 1.2). The proposed model will includes the following components: 
(a) Space entities Entities to represent the environment where in which behaviors take place. They These will comprise of (a) static information about physical (walls, floors, doors, furniture, equipment, etc.) and non-physical or spatial components (rooms, corridors, and open areas) components, and (b) dynamic information that describes how spaces are dynamically used by virtual their transitory occupants (e.g., whato are thetype of users typically located in the space, which what activities do they are performing, etc.). This approach augments the traditional space models of computer-aided design (CAD) or building information modeling (BIM) space models with: (a) semantic information, that which determines a prevailing space utilization pattern at a given time, which and is determined by who the occupants are, what they do, when, and with whom  [61];, and (b) spatial affordances [62]–[64], that which indicate which activities are supported by the space at any given time. Thus, for example, the semantics of aA ‘clinic room’ semantics, for instance,might indicates that the space is used for clinical activities, such as treating a patient, and cannot support other activities, such as a patient’s visit from a patient’s family members. These semantics and sSpatial affordances and semantics will enable the simulation of dynamic space adaptations that in respond response to dynamic operational needs.
(b) People Eentities to represent the building occupants. They These are modeled as computational agents comprised consisting of (a) static information about an occupant’s organizational role (e.g., patient, nurse, doctor, visitor) and individual capabilities (e.g., treating patients, performing medical procedures), and (b) dynamic information about, for example, their current location, current activity currently performing, perceived spaces and people, proximity with to equipment or other staff members, time spent with patients, walked distance walkeds during their shift, and number of interactions with other staff members, etc. The behavior of these aAgents’ behavior will be mostly driven largely by operational workflows (encoded in WP1),. Nevertheless, agents’but the models will be enriched with insights from established psychological, sociological, and economic theories related associated withto building–-human interactions [65], such as privacy, territoriality, and sense of control, which that have been proven relevant in healthcare settings [66]. Much like spaces, the proposed system considers people as critical resources that need to be dynamically allocated to achieve operational goals. 	Comment by Author: It’s not clear what the phrase “perceived spaces and people” means in this context; is it their perception of the space and people immediately around them (and, if so, how could this actually be measured)? Please review and amend as appropriate…
(c) Activity Eentities to represent the interactions between people and the built environment. This research e modeling here is concerned with abstracted activity descriptions, their spatial locations, their durations, the identities of the participating actors, and their duration equipment involved. In this way, tThe number of activities modeled can be limited and focused on according to their spatial/social implications in real-world situations. Activity models will be modular and hierarchical, to describinge individual or collaborative behaviors at an increasing level of complexity using a minimal set of generic and reusable activity building blocks that describe people’s movements and interactions [44]. Activity information will include their expected duration, involved participants and equipment, and spatial location. 
(d) Narrative Eentities to represent goal-oriented and context-dependent behavior patterns [43]. Thesey entities associate people with specific activities to be performed in a specific space at a given time. Narratives can be scheduled, such as the a patient examination round, where in which doctors systematically visit each patient in theon a ward, and or unscheduled , such as a Code Blue, where patients in a life-threatening situation must might require be resuscitatationed. Each narrative will contain information about workflow protocols, collected during WP1. For example, the ‘patient treatment’ narrative will store information about the activities required to treat a patient, the staff members who can perform the procedure, the equipment required, and the type of spaces in which the activity can be performed.where the patient can be treated. 
 (de) A Narrative MManagement System. It isthat will be the ‘brains’ of the proposed model: it is responsible for coordinating the unfolding of multiple narratives, detecting potential conflicts between narratives, and exploring the implications of alternative conflict resolution strategies through simulation. A Conflict Detection mechanism compares the possible unfolding of multiple narratives to detect operational bottlenecks that may arise within a set time horizon. For example, if two different patients are expected to require simultaneous access to a holding area but there is only a single bed available, a ‘space’ conflict is flagged. InsteadAlternatively, if two beds are available but there is a single nurse in charge who can transport oversee only one patient, a ‘people’ conflict is flagged. A Conflict Resolution mechanism identifies seeks possible alternative narrative solutions to that would resolve the conflict. In this instance, sSolutions may span range from directing aa patient to a different treatment area, to reallocating staff members to different activities, delaying treatment procedures, or temporarilly placing patients in waiting holding areas. The secondary and tertiary effects of each conflict resolution strategy need to be simulated and evaluated before the solution can be recommended (as detailed in WP3).
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	Figure 4. Preliminary working model of a narrative management system that operates on a graph-based space representation and predicts potential resource allocation conflicts.


 In pPrior work of by the PI, applied narrative-based modeling was applied tofor long-term environmental adaptability through design changes  [46][45,46][45]. In this new work, I the focus will be on extending the narrative-based model to enable short-term operational adaptability in a spatial context. Figure 4 outlines depicts a preliminary system architecture that extends the narrative-based model to explore strategies for conflict detection. The eExpected outcomes of this WP2 include: (a) a computational model for simulating holistic building operations;, (b) an open-source release of the associated software package, and; (c) a scientific paper in a peer-reviewed journal (Q1 ranked) in the field of computer-aided design and computer science, such as Automation in Construction or Architectural Science Review. 

WP3: Simulation-Powered Recommendation Engine for Total -Environmental Adaptability.
The proposed recommendation engine leverages the computational model developed in WP2 to simulate the implications of alternative building operation strategies and proactively recommend the one that prevents minimizes operational inefficiencies and generates the most favorable outcomes over time. Existing approaches only consider limited implications of building management systems, most commonly for in terms of energy savings (as discussed in Section 1.3) or for staff allocation to work shifts [67]. InsteadHowever, thise approach here aims at to exploringexplore, filtering, evaluating, e and selecting holistic strategies that couldmay involve adaptations in occupancy, space utilization, and/or operational workflows, or combinations of all three.e above. I consider Tthis to can be seen as a demonstration of the power of total -environmental adaptability since because it does not consider only only a singleone performance criterion, but rather many criteria, including the side- and after-effects of enacting one or multiple actions. Thus, in this WP, tThe main research challenge in this WP will thus involves the exploration and categorization of possible adaptation strategies to identify the most appropriate one that considerstaking into account the needs of different stakeholders. 
To address this challenge, the proposed engine will simulate the implications effects of alternative resource allocation strategies (as discussed in WP2) and generate a data log that comprises spatiotemporal information about the people, the activity each person is involved in, and the space in which they are located. This data log will be represented in numerical form or as spatiotemporal data -maps [68], illustrating the relationship between different spatial, social or environmental phenomena over time. Multiple maps can be superimposed to consider aggregated aggregations of these spatial, social, and environmental phenomena over time [69]. Such data maps have The PI previously been used by the PI used data-maps to describe people density, congestion, and noise propagation [45], as well as contact-related infection risks [70]. 
The numerical data log and data maps will be analyzed based on the basis of Key Performance Indicators of space utilization, operational efficiency, and people experience, developed in collaboration with hospital stakeholders in WP1. These KPIsy may include hard and soft criteria. Hard criteria are quantitative and, measurable performances, such as patients and staffthe walking paths and distances walked by staff and patients, patients’ lengths of stay, overall throughput, congestion, and the utilization of space, equipment, and human resources. Soft criteria are typically qualitative, based on subjective perceptions, such as social and psychological elements, including the perceptions of patients with regard to’  perceived density, privacy levels, and sense of control. Hard and soft criteria will be evaluated using a combination of numerical approaches and human-in-the-loop analyses that rely onincorporate human experience to extrapolate key insights from data visualizations generated via simulation [71]. The KPIs associated with For each simulation scenario, the measured KPIs will be compared to predefined threshold measures values and/or relative towith those of other scenarios one another. A preliminary list of KPIs considered critical in evaluating the performance of healthcare environments in this project includes (a) the percentage of time a space is being used or left unused, (b) staff walking distances, (cd) spatial congestion, and (de) patients’ waiting and turnaround and waiting times [52,53,55]. These KPIs have been identified as critical to evaluating the performance of healthcare environments [52], [53], [55]. 	Comment by Author: It’s not clear what you mean by ‘density’ in this context. Are we talking about how crowded a space feels to a patient? If so, ‘crowdedness’ (or ‘congestion’) might be a better term…
A trade-off mechanism will balance competing KPIs, which may be valued differently by different stakeholders. In fact, to create a building-wide management system it is necessary to consider the relative merits of each KPI and combine them into an aggregated overall objective [72]. The trade-off mechanism can choose to optimize one performance characteristic over above others, or strike a balance in the degree to which any one performance criterion is achieved, assuring in an attempt to maximize that overall performance is maximized. Several scenarios that testing alternative workflows and resource allocation strategies will be compared to identify the one that best achieves the best performance goals. 
A ‘horizon effect’ parameter will control the number of time steps into the future that the model will consider. This will prevent the system from recommending strategies that provide optimal outcomes in the short term, but detrimental outcomes in the long term. While, ideally, the system should consider the maximum- possible horizon effect, this comes at the cost of computational efficiency. . During this research, I will exploreThe trade-offs between the the two inhorizon effect and the computational efforts to running simulations will be explored in the course of the research. The far-reaching implications of chosen operationals strategies at a broader spatial scale (i.e., at the hospital level) instead  rather thanof at the unit level), which could be far-reaching, will be considered in future work.
Note that the pPreliminary work of the PI has involved simulating simulation of the implications of selected various alternative solutions to a spatial conflict involving two patients competing for a single bed in a holding area within a catheterization lab (Figure 5).
  Expected outcomes of this WP include (a) a recommendation engine to explore intelligent building adaptation strategies, (b) an open-source release of the developed software, and (c) a scientific paper in a peer-reviewed journal (Q1 ranked) in the field of building operations management, such as Facilities or Intelligent Buildings. 
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Figure 5. Preliminary experiment to simulate the implication of a specific conflict resolution strategy in a catheterization lab 
The anticipated outcomes of WP3 include (a) a recommendation engine to explore intelligent building adaptation strategies, (b) an open-source release of the developed software, and (c) a scientific paper in a peer-reviewed journal (Q1 ranked) in the field of building operations management, such as Facilities or Intelligent Buildings. 

WP4: Iterative Model Verification, Validation, and Evaluation
This WP will aim at to calibrating calibrate the proposed developed framework against real-world data and exploring explore its capabilities capacity to provide valuable insights for to hospital stakeholders. 
Verification & Validation. Algorithmic approaches will be used to verify the correct implementation of the simulation model by automatically identifying anomalies in the generated data. For example, tests will be run to confirm that people are always engaged in a ‘nNarrative’, that the e profiles of people and spaces are correctly updated over time, and that data logs that record the locations and activities of people over time are correctly generated. A combination of three  complementary strategies will be used to validate the accuracy of the model in a selected number of mockup scenarios [74]: (a) Face Validity: – experts from the partner hospital will be asked via a survey to assess whether the model output is reasonable through a survey; (b) Historical Data: – part a proportion of the data collected in the hospital will be used to develop the proposed simulation model and represent the current state of the hospital environment, while the remainder of the data will be used to validate the predictions of future states of the hospital;. (c) Parameter Vvariability and Sensitivity Analysis: – values of the model, including the space layout, number of patients or staff members, and operational workflows, will be systematically changed to determine if whether the output of the model is reasonable. Prior work of the PI has involved using face validity and sensitivity analysis to validate human behavior simulation models [45]. 
Evaluation.  A series of experiments will be conducted in collaboration with staff members of the Rambam Institute for Pain Medicine to compare the proposed recommendation system of WP3 against with more traditional decision-making processes based on human experience and intuition. Five to eight participants, including the deputy director of the institute, will be asked to predict and evaluate the implications of alternative resource allocation strategies in a series of selected mockup situations. In some situationsof these, the participants will be required to use their own experience and intuition, while in others they will test the proposed recommendation framework. The decision outputs will be compared, and a survey will be distributed conducted, to investigate establish the potential benefits and limitations of simulation-powered decision-making processes. 
The expected deliverables of this WP4 include (a) insights on theinto model validity and the role of simulation to in augmenting the decision-making processes of hospital stakeholders, and (b) at least one scientific scientific paper in a peer-reviewed journal (Q1 ranked) in the fields of simulation and/or building operations management, such as Facilities or , Intelligent Buildings or Automation in Construction.

6. Research Personnel and Supporting Infrastructure
	The project will be managed by the PI, assisted and supported by a Ph.D student. and MSc students trained with backgrounds in Computer-Aided-Design (CAD), Building Information Modeling (BIM), simulation, and spatial analytics. Dr. Amir Minerbi, the Deputy Director of the Rambam Institute for Pain Medicine, will provide access to his medical unit. Field observations will be performed with by five (5) undergraduate students who will be trained for this the task by the PI, who has previously managed field studies in hospitals. Prof. Efrat Eizenberg will help collect data using through interviews and field observations. Prof. Avigdor Gal will help analyze the collected data and mine it to inform the simulation model development. The Ph.D. and MSc students will be responsible for analyzing the collected data and developing the components of the proposed approach under the supervision of the PI, who has prior experience in modeling and simulating behavior patterns in healthcare environments. Prof. Avigdor Gal will help analyze the collected data and mine it to inform development of the simulation model. The PI has established a new lab at the Technion and secured funding to recruit personnel, including students, a technician, and a postdoctoral researcher, who may be selected to contribute to this project. In aAdditionally, the PI has secured funding to buyfor equipment that will support this research, including (a) a laptop computer for the PI, (b) tablet computers that will befor used by the the undergraduate students for in data collection in the hospital setting, and (c) occupancy sensors and wearable devices which couldthat can be deployed as additional sources of data collection if approved by the hospital management. 	Comment by Author: It may be worth a few words on what this laptop is for (e.g. research management, model development, survey design)…

7. Expected Results and Potential Pitfalls 
The eExpected results include a new framework for dynamic building management seated at the intersection of architectural design, social science, computer science, and operations research, that which will integrate theoretical models of the relationship between human behavior and built environments, such as the theory of pPlace, with concepts and methods from Building Information Modeling (BIM), the Internet of Things (IoT), and human behavior analytics. This approach holds offers the promise to of sparking exciting new research opportunities in real-time space and people management, and the development of next-generation smart and networked environments. I expect to explore tThe capabilities of the proposed management system will be explored in collaboration with one or moreat least one uUnits at the Rambam Healthcare Ccampus and, potentialssibly, other hospital partners too.
A One potential pitfall may could be the quality of the data collected collectible using the hospital’s IT systems, which may require additional processing to befor incorporated incorporation into the simulation model. To mitigate this, I the budget makes provision fored the work of an undergraduate student from of computer science or industrial engineering who will be able to process thise data and prepare it for the simulation. Besides, to overcomeAnother issue concerns the risk of relying on a single hospital partner for collecting data collection and the gathering of experts’ insights, and I will, therefore, explore potential collaborations with additional hospitals to test and calibrate the model in different settings and thus thereby prevent mitigate the risk of overfitting the predictive models to a specific context. 

8. Impact 
Exploring a novel approach for to transforming buildings from static containers into active participants in the life of a built environment could bring exert a transformational impact on the way buildings are conceived. While building the design and operations management of buildings have typically been typically considered as two independently developed areas, the proposed framework considers treats them as fundamentally intertwined and mutually responsible to for enablinge efficient building utilization patterns that satisfy the dynamic needs of the building occupants. As IT-enhanced buildings become more pervasive, more and more building utilization data will be collected, providing a solid basise from which to integrate more information into the proposed framework and thereby power the model with smarter decisions. 

The design of dynamic and responsive environments will is likely to require stakeholders with highly diversified diverse expertise (e.g., in operations research, artificial intelligence, social sciences, environmental psychology, healthcare, and electrical engineering) to collaborate and coordinate the responses of what amounts to a ‘living’ machine [75]. In this wayThus, they might may be able to design integrated human experiences in which the digital and the physical are interwoven to achieve the best possible match between operational efficiency and people’s experience. At the same time, responsive environments equipped with autonomous decision-support capabilities may could spark new research in the field of human–-machine interaction, to aimed at exploringe the ethical implications of technological failures, trust issues towards in relation to automated systems, and the implications of lack of compliance with system recommendations. 
From a practical perspective, advancements in simulation-powered operations management in smart hospitals could mark a departure from existing approaches that are heavily based on human intuition. It They could potentially provide a more detailed account more closely ing for of the implications that operational decisions may can have foron space utilization patterns, and clearer evaluations of thee trade-offs between alternative strategies to when it comes to identifying the solution that best balances the outcomes for the involved stakeholders involved, including patients, staff, and visitors, and staff members. Intelligent and adaptive environments capable of continuous operational awareness and data-driven actionable recommendations hold the promise ofto helping the overall healthcare delivery system to adapt faster and better to rapidly changing spatial, operational, and staffing needs. More broadly, the proposed approach could provide a framework for reducing the gap between the expected and actual performance of a facility, and its actual use using quick rapid decision-making cycles that do not require demand long, expensive, and environmentally damaging architectural design renovations. 
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