
RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

Learning and Exploiting Decompositions in Automated Reasoning

1 Introduction

In this proposal, we outline our strategy to push the boundaries of planning and verification by pioneering inno-

vative decomposition and compositional analysis techniques and algorithms. Our primary objective is to elevate

the performance of decomposition methods and substantially enhance reasoning capabilities in these domains.

Traditional planning and verification techniques treat all system states uniformly, disregarding the internal

structures and nuances of these states. While this approach offers flexibility in planning and enhances verification

accuracy, it comes at the cost of potentially dealing with vast state spaces and extensive exploration paths. A

burgeoning research direction in recent years is the exploration of internal symmetries, structures, and recurring

patterns within systems, which can be harnessed to circumvent the exhaustive examination of all possible paths

and states.

In particular, our focus is investigating how systems can be systematically decomposed to enable compo-

sitional analysis. This entails the ability to analyze a composed system while simultaneously establishing the

properties of its components. We will develop and employ advanced inference rules that consider the semantics

of the composition, allowing for a more efficient and effective approach to planning, verification, and analysis.

The core concept underlying our approach is the shift from solving a single, large, and intricate problem to

addressing numerous smaller and more manageable problems. Each of these smaller problems is comparatively

simpler to solve when contrasted with the larger overarching challenge. We will employ advanced learning tech-

niques to break down complex systems into their constituent parts, considering various composition semantics,

as illustrated in the two following examples. Additionally, we will employ advanced inference tools to reason

about the properties of the composed system based on the insights gleaned from analyzing its components. Our

primary goal is to develop robust and efficient methods for learning and effectively utilizing decomposition within

the context of planning, synthesis, and model-checking challenges. In pursuit of these objectives, we will har-

ness the power of Description Logic, Temporal Logic, and Formal Methods, which are mathematical and logical

techniques for specifying and tackling the complexities of planning, synthesis, and model-checking tasks.

Through this research initiative, we intend to contribute to the broader field of artificial intelligence and com-

putational problem-solving, ultimately leading to more effective and practical solutions for real-world challenges.

Our dedication to developing these advanced methods signifies our commitment to pushing the boundaries of

what is currently achievable in AI and search algorithms, with the ultimate goal of driving technological progress

and innovation. Our study will focus on four main objectives:

1. Compositional Analysis: To enhance our ability to reason about the composed system, we will create

heuristics and techniques that consider the interaction and dependencies among its components. These

heuristics will facilitate more nuanced and insightful compositional analyses.

2. Automatic Decomposition: We aim to develop automated methods for effectively decomposing complex

systems into their constituent elements. By automating this process, we seek to reduce the manual effort

required and enable more efficient analysis and reasoning.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

3. Learning Domain-Specific Patterns: Recognizing that different domains exhibit unique characteristics,

our research will delve into the development of algorithms and tools that can identify and learn domain-

specific patterns. These patterns may include symmetries, structures, or recurring behaviors, which can be

leveraged to optimize planning and verification processes.

4. Techniques for Exploiting Learned Patterns: Once we’ve identified and learned these domain-specific

patterns, we will explore innovative techniques for exploiting these patterns to our advantage. This could

involve creating specialized algorithms, inference rules, or strategies that use the learned insights to stream-

line planning, verification, and synthesis challenges in a domain-specific context.

2 Two Motivating Examples

To demonstrate our research techniques, we present two representative research activities in detail. We chose to

present one example in planning and one example in model-checking to demonstrate the breadth of our approach.

Example: Subtask decomposition by learning description logic formula

The greedy best-first search (GBFS) algorithm is a classic search algorithm that uses a heuristic function to

determine the most promising path. Although simple, fast, and efficient, this algorithm is not always accurate and

sometimes converges to local maxima. The paper [21] showed that the search space of GBFS with a given heuristic

h induces a bench transition system (BTS) in which benches are connected via progress stats and bench entry

states, which are all components of the search space that one may carefully use to improve planning techniques.

Figures 1 and 2 illustrate the idea with an example from Heusner et al. on a toy domain. In Figure 1, a search

space is presented with the heuristic values needed to determine which of the states are considered to be progress

states (progress in the sense that, if such a state is encountered during the search, it might be best to continue from

that point and not skip to another state). In Figure 2, a search space is presented with the heuristic values needed

to split it into benches according to the progress states such that for each bench, we move forward to another

bench via an “exit” progress state. Before our work [10], other methods could identify progress states only for

a single task, and only after a solution for the task has been found. We surpassed this limitation and are able to

learn progress states and use this knowledge during the search. Learning the entire BTS is a huge step toward

decomposing planning tasks into subtasks. In this study, we plan to achieve the following two goals:

1. Learn a generalized representation of the BTS for a given domain and heuristic based on data from small

instances;

2. Exploit the learned BST by performing a sequence of searches from a bench entry state to a progress state.

In Heusner et al. [21] and other studies, the BTS is not learned but deduced afterwards when the solution (the

plan) has already been found. Our main goal is to use those benches, break down the search into intermediate

subsearches, and ultimately achieve subplans such that, if combined sequentially, produce one plan. In [9], there

is a similar approach; however, it uses a different technique that is limited to some specific domains.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

To decompose planning problems into subtasks, the suggested research will use a technique based on decision

trees to learn the BTS and represent them using description logic formulas. The learning process is performed for

each domain from small examples (small instances), and then the learned BTS is used to solve large instances of

the same domain.

A high-level overview of our approach is as follows: First, all benches for each task are generated, and then

the description logic features are generated. For each bench, a formula is learned that describes its exit states, and

bench A is merged into bench B if the goal formula of B is also suitable for A. Lastly, for each bench, a formula

is learned that describes a state in the bench. To use this framework, bench walking, i.e., an intermediate search

between the learned benches, is performed.

This line of research is an extension of our successful study presented at IJCAI 2022 [10], in which the

main goal was to introduce a novel approach that learns a description logic formula characterizing all progress

states in a classical planning domain. Using the learned formulas in a GBFS to break ties in favor of progress

states often significantly reduces the search effort. Our previous work showed that learning progress states is

feasible and efficient. The next step is to not only resolve cases of tie-breaking but to take the power of learning

progress states to learn the complete BTS and improve the search itself. The immediate implication of the results

attained and knowledge gained is the ability to decompose a planning problem into subproblems and solve it

sequentially. Other work that is based on Sketches [9] showed that the decomposition technique is efficient and

revolutionary. An additional secondary implication is related to the implementation; we aim to represent PDDL

goals as description logic and vice versa, and this itself is a contribution.

Fields likely to benefit from our results are learning and automated planning, including but not limited to

applications such as path and motion planning for autonomous robots, unmanned aerial vehicles, and autonomous

driving. As to our latest publication [10], we guarantee that progress states can be learned and improve the

expansion rate during search. In this proposal, we move to our next questions: Can a complete BTS be learned?

Would it improve search? Would it be possible to perform a sequence of searches from a bench entry state to a

progress state? Positive answers to these questions would mean a more efficient search, smaller expansion rate,

and shorter run time. Of course, trade-offs should be considered and presented as part of the empirical analysis.

Example: Behavioral programming decomposition for efficient model checking

The behavioral programming (BP) paradigm is an approach for modeling and developing complex reactive sys-

tems, such as interactive games, robotic systems, or traffic control systems. BP allows the programmer to specify

the system behavior as a collection of independent modules, called b-threads, that communicate and coordinate

via events. Each model component, called a b-thread, can request, wait for, or block events, thus influencing

the global event selection mechanism that determines the next system state. BP enables modular, incremental,

and scenario-based development of reactive systems and easy debugging and testing. See [19] and the references

therein for an overview of the approach.

To give another concrete example of the main methods we will use in the proposed research, we describe how

BP decomposition and automated deduction techniques can enhance the efficiency of model checking of reactive

systems. We illustrate this approach using an example scenario where multiple behavioral threads interact within

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

Figure 1: Search space topology from [21] for a toy
domain, where the goal states are indicated by
double lines.

Figure 2: Search space topology from [21] for a toy do-
main, divided into benches connected via progress states. The
progress states are indicated by double lines. Note that the
progress states are actually the goal states for each bench.

a system. We aim to show how this method allows for significant computational savings, reducing the complexity

from o(p · q) to O(p+ q) through BP and automatic logical reasoning.

Consider a reactive system composed of three key b-threads, each contributing to the system’s overall behav-

ior. First, b-thread A continuously requests an event, indicating a persistent need for a specific action. In addition,

b-thread B blocks the event at times not divisible by the integer p, introducing a periodic and conditional interrup-

tion to the event’s availability. Similarly, b-thread C plays its role by blocking the event at times not divisible by

the integer q. These three b-threads function concurrently, intertwining their actions through BP interleaving. This

concurrent operation forms the joint run of the b-threads, governing how they interact within the system. Scruti-

nizing the behaviors of these individual b-threads and their interactions enables advanced analysis techniques to

verify the correctness and desired properties of the system efficiently.

Traditional model checking necessitates exploring the entire product space of these b-threads, which results

in a time complexity of o(p · q). The key innovation in our approach is the application of behavioral decomposi-

tion and automatic mathematical deduction to mitigate this complexity. By examining each behavioral b-thread

individually, we can significantly alleviate the computational load. An automatic analyzer can independently

scrutinize the states of b-thread B and mechanically deduce that the event cannot be triggered at times that are not

divisible by p. Similarly, it can separately analyze the state space of b-thread C and infer that the event cannot be

triggered at times that are not divisible by q. Utilizing straightforward automatic reasoning with tools such as the

Z3 theorem prover [5], it can be determined that the event can only occur at times divisible by p × q (assuming

that both are prime numbers).

By leveraging behavioral decomposition and number theory, we reduce the overall complexity of model

checking from p(p · q) to O(p + q). This approach efficiently verifies reactive systems without exploring the

entire product space. In previous work [17], we studied the possibility of achieving a succinct decomposition

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

of systems. This research proved to be a significant step forward in understanding how to efficiently manage

and manipulate complex reactive systems using BP. In the proposed research we will research how to combine it

with other approaches to lighten verification such as GR1 [32], Spectra [1, 27] and approaches for hierarchical

analysis [7].

Building on this successful work, our proposed research aims to develop compositional analysis techniques

and automatic decomposition approaches. The goal is to leverage the succinctness of BP into the efficiency of

different analysis tasks. By doing so, we hope to enhance the capabilities of BP, making it an even more powerful

tool for managing the complexity inherent in reactive systems.

This research will not only build upon our previous work but also open new avenues for exploration in the

field of BP. We believe our approach will contribute significantly to the ongoing efforts to improve reactive system

development and analysis efficiency and effectiveness. This illustrative example demonstrates the potential of BP

and decomposition techniques in the context of model checking. By focusing on individual behavioral threads

and using number theory, we can achieve substantial computational savings, ultimately leading to more efficient

and effective solutions for real-world challenges in automated reasoning and verification.

In the proposed research, as elaborated in subsequent sections of this proposal, we will explore applying

various theories for compositional deduction, develop idioms for BP, and demonstrate real systems that benefit

from this approach.

3 Background

3.1 Classical Planning

Throughout this proposal, we work with planning domains and tasks defined in the Planning Domain Description

Language (PDDL) [29]. A domain is a tuple D = ⟨P,A, C⟩, where P is a set of predicate symbols (along with

an arity); A is a set of action schemata and C are constants.

A task Π of domain D is a tuple ⟨O,P, A, sI, δ⟩, where O is a set of objects and P is a set of first-order

predicates. A fact refers to a predicate p ∈ P with arity k grounded to p(o1, o2, . . . , ok) with oi ∈ O. Let

F be the set of all facts. Then, any s ⊆ F is called a state, and the set of all states S(Π) is called a state

space. Moreover, sI ∈ S(Π) is the initial state and δ is the goal condition, a first-order logical formula over

P , C and O. All states s ⊇ δ are goal states, and the set of all goal states is denoted SG(Π). A is a set of

action schemas that can be grounded using O. We call grounded action schemas actions. An action a is a tuple

⟨pre, add , del⟩ with pre, add , del ⊆ F and is associated with a cost cost(a) ∈ R+
0 . Action a is applicable in state

s if pre ⊆ s. Applying a in s, written as sJaK, leads to the successor state (s \ del) ∪ add . An action sequence

π = ⟨a1, a2, . . . , an⟩ is applicable in state s if every action ai is applicable in the state sJa1KJa2KJ. . .KJai−1K.

The cost of an action sequence is the summed-up cost of its actions. A state s′ is reachable from s if there is an

applicable action sequence starting in s and ending in s′. The reachable state space SR ⊆ S is the set of all states

reachable from sI. An applicable action sequence starting in state s and ending in a goal state is called an s-plan.

The objective in classical planning is to find an sI-plan, i.e., a plan for the given task.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

3.2 Behavioral Programming

Behavioral programming (BP) is a paradigm that facilitates the modeling and development of complex reactive

systems, such as interactive games, robotic systems, or traffic control systems. BP enables the programmer to

define the system behavior as a collection of independent modules, known as b-threads, which communicate and

coordinate via events. Each b-thread can perform three basic operations on events: request, watch, and block.

These operations allow b-threads to express their preferences and constraints on the system behavior, and to

cooperate or compete with each other to achieve the desired system goals.

The core concepts of BP are formally defined as follows:

• b-thread: A b-thread is a Labeled Transition System (LTS) with three state labeling functions. An LTS is

a triple TS = (Q,Lab,→), where Q is the finite set of states, Lab is the finite set of labels (events), and

→⊆ Q×Lab×Q is the transition relation. In the context of a b-thread, each state in Q is labeled with three

functions: R (requested events), W (waited-for events), and B (blocked events). The transition relation →
defines how the b-thread transitions from one state to another in response to events.

• b-program: A b-program is a collection of b-threads. If we denote the ith b-thread as BTi = (Qi, Labi,→i

, Ri,Wi, Bi), then a b-program BP can be represented as a set of b-threads, i.e., BP = {BT1, BT2, ..., BTn}.

• Composition semantics: The composition semantics of a b-program are defined by the set of all possible

interleavings of the events triggered by its b-threads. Each run is a sequence of events resulting from the

state evolution as defined by the transition relations of the b-threads. The composition semantics thus

define the behavior of the b-program as a whole. The event triggered in each step must be requested and

not blocked, and each b-thread that waited for the selected event advances accordingly while the other

b-threads remain in their states without moving. Formally, the semantics are defined by the sequences

of events consistent with the following composed LTS: (s1, . . . , sn)
e−→ (s′1, . . . , s

′
n) if and only if e ∈

R1(s1) ∪ · · · ∪ Rn(sn) and e /∈ B1(s1) ∪ · · · ∪ Bn(sn) and s′i = si if e /∈ Wi(si) and si
e−→i s′i if

e ∈ Wi(si).

To put it simply, a b-thread can be thought of as a single player in a team, each following its own set of instruc-

tions or rules. A b-program is the entire team, where each player (b-thread) collaborates to achieve a common

goal. The composition semantics serve as the rulebook that guides how the team plays together. It determines

when each player can move and how their actions influence the game. This analogy can aid in understanding the

intricate concepts of BP.

3.3 Description Logic

Description logic (DL) is a family of knowledge representation formalisms [2] that use the notions of concepts,

which are classes of objects that share some property, and roles, which are the relations between these objects.

Interpreting the concepts and roles for a planning state yields a denotation, i.e., a set of objects O ⊆ O for a

concept, and a set of object pairs {⟨o1, o2⟩, ⟨o3, o4⟩, . . .} ⊆ O ×O for a role.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

Concepts and roles are recursively defined and interpreted for a state s ∈ S. At its base are the universal

concept ⊤ and the bottom concept ⊥ with semantics ⊤(s) = O and ⊥(s) = ∅, as well as atomic concepts and

roles. A atomic concept Cp,i for a k-ary predicate p ∈ P and its i-th argument is interpreted in s as Cp,i(s) =

{oi | ∃o1, . . . , ok s.t. p(o1, . . . , ok) ∈ s}.
Accordingly, an atomic role Rp,i,j for a k-ary predicate p ∈ P and its i-th and j-th arguments is interpreted

as Rp,i,j(s) = {⟨oi, oj⟩ | ∃o1, . . . , ok s.t. p(o1, . . . , ok) ∈ s} in s. Let X and X ′ be two concepts (respectively,

two roles). They can be combined to form new concepts and roles via grammar rules. Examples are negation,

union, and intersection, which are interpreted in a state s as (¬X)(s) = O \X(s) resp. (¬X)(s) = O ×O \
X(s), (X ⊔X ′)(s) = X(s) ∪X ′(s), and(X ⊓X ′)(s) = X(s) ∩X ′(s), respectively.

We use the same grammar as [13]. For details, we refer to their extended paper [14].

3.4 Decision Trees

A binary decision tree is a machine learning model with a binary tree structure [3]. Let C be a set of classes and

let F be a list of features. A decision tree assigns a class c ∈ C to a vector v ∈ RF . Each internal tree node nI

is associated with a feature f(nI) ∈ {1, . . . , F} and threshold τ(nI) ∈ R. Each leaf node nL is associated with

a class c(nL) ∈ C. To assign a class to an input vector v, the decision tree is traversed from the root node to a

leaf node. At every internal node nI , if v[f(nI)] ≤ τ(nI), then the traversal continues to the first child node,

otherwise it continues to the second one. When a leaf node nL is reached, the input is labeled as c(nL).

Decision trees are greedily constructed given some training data ⟨D,L⟩ with feature matrix D ∈ RM×F and

the label vector L ∈ CM , where M is the number of training samples. Each node n is associated with a non-

exclusive submatrix Dn ∈ RM ′×F and Ln ∈ RM ′
. The root node is associated with the whole training data

D and L, and is initially a leaf node. Leaf node nL is associated with the most frequent class in LnL . During

training, the algorithm chooses a leaf node nL and searches through combinations of features f ′ and thresholds τ ′,

which are used to group data points ⟨DnL [i], LnL [i]⟩ for i ∈ {1, ...,M ′} into two sets using test DnL [i][f
′] ≤ τ ′.

The quality of the groups is evaluated using a metric (e.g., the Gini impurity [3]). The leaf is associated with a

combination of the best split (f(nL) = f ′ and τ(nL) = τ ′), and two child leaves are added to it, one per data set

split. This transforms nL into an internal node.

The algorithm continues until all leaves contain only labels from the same class or a maximum tree depth is

reached.

4 Related Work

4.1 State Space Topology/Progress States

Based on Heusner et al.’s paper [22], let Π be a planning problem with a state s. A heuristic h : S → R+
0 ∪ {∞}

estimates the cost of an optimal s-plan. Let P be the set of all acyclic s-plans. The high-water mark of s is the

largest heuristic value that needs to be considered to reach a goal state from s. In [22], Heusner et al. defined a

state s as progress state iff its high-water mark is higher than the high-water mark of at least one of its successor

states. Counterintuitively, this definition excludes goal states for goal-aware heuristics.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

Let X () denote a state space. A bench b is a set of states s ∈ X (). Let B denote the set of all benches of X ().

Intuitively, we would expect B to be a partitioning of X (,) but this is not the case. By the original definition, states

can be in multiple benches. For a bench b ∈ B, states(b) denotes the states of b; entry(b) denotes the entry states of

b; and exit(b) denotes the exit states of b. The level of a bench is denoted by level(b). In [22] the authors manually

identify progress states and benches, in this proposal, our goal is to use the topology from [22] to decompose the

state space and learn the different benches before execution.

4.2 Learning and Exploiting Progress States in GBFS

Theoretical properties of optimal state-space search algorithms like A* or IDA* have been extensively studied

and are comparatively well understood [28, 31, 6, 25, 20, 24]. A corresponding theory for suboptimal search

algorithms such as GBFS [8] has received growing attention only in the last few years [35, 36, 37, 21, 22].

The main insight of [21] is that every run of a GBFS can be partitioned into different episodes defined by

so-called high-water mark benches, and the state-space topology can be partitioned in the same way. All states

s on a bench share the same high-water mark value, progress states are states that must be expanded to reach

the next high-water mark bench. Exploiting knowledge of high-water mark benches or progress states during

search gives rise to many applications. The only known algorithm that computes high-water mark benches does

so a posteriori, i.e., it computes the benches of a problem after a plan has been found [22]. At this point, the

high-water mark information is not needed.

In [10], the authors proposed the following pipeline: For a given domain and heuristic, fully expand the

reachable state spaces of several small tasks and annotate all states with their heuristic value. Using the heuristic

values, determine whether each state is a progress state. Next, compute a set of description logic features and

evaluate each on a subset of states. Then, adopt a decision tree [3] learning algorithm to learn simple formulas

over the description logic features in disjunctive normal form (DNF), which predicts whether a state is a progress

state. Finally, use the formulas to break ties in a greedy best-first search, demonstrating a use case for the trained

progress state classifier.

Their method is evaluated using the h+ and hFF heuristics [23], and they showed that the approach successfully

learns useful formulas for identifying progress states. There is some trade-off between the quality of the formulas

and the time required to evaluate them. However, they showed that exploiting progress states is beneficial: it

significantly reduces the number of expansions required to find a plan.

4.3 Succinctness of Behavioral Programs

In our recent paper, “On the Succinctness of Idioms for Concurrent Programming” [17], we conducted an in-depth

analysis of the efficiency of various concurrent programming idioms, particularly emphasizing their descriptive

succinctness. Our study centered on three fundamental concurrent programming idioms: event requesting, block-

ing, and waiting. We found that a programming model that integrates all three idioms is exponentially more

succinct than non-parallel automata. Furthermore, its succinctness complements classical nondeterministic and

“and” automata.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

This paper is relevant to this research proposal, which aims to use succinct decomposition methods to enhance

analysis techniques such as model-checking and planning. Our findings offer a rigorous framework for evaluating

the complexity of specifying, developing, and maintaining intricate concurrent software, aligning seamlessly with

the proposal’s objectives.

Our paper’s exploration of the descriptive succinctness of automata and its implications for software reliability,

maintainability, reusability, simplicity, and software analysis and verification could offer valuable insights for this

research. Each idiom’s unique succinctness advantages, which are not overshadowed by their counterparts, could

be potentially harnessed in your proposed decomposition methods to boost the efficiency of model-checking and

planning.

Our paper lays a solid foundation and offers valuable insights into the role of descriptive succinctness in

concurrent programming. These insights could prove instrumental in our research on enhancing analysis through

succinct decomposition methods.

5 Road map

We have structured our research into four distinct work packages, each with a specific focus. Work Package 1

is dedicated to breaking down reasoning problems into their fundamental components, leveraging generalized

subtask systems. Simultaneously, Work Package 2 will operate in parallel, applying the insights gleaned from

the first package to enhance heuristic search through the mastery of subtask systems by learning how to perform

the decomposition automatically. In the realm of Work Package 3, our objective is to devise methodologies

that autonomously construct models from data, employing process mining and automata learning techniques.

Lastly, Work Package 4 is dedicated to the development of algorithms and tools for the compositional analysis

of complex reactive systems. This involves scrutinizing individual components and deducing properties of the

composed system. To execute these tasks, we will engage two or three Ph.D. and M.Sc. students for each task

who will be recruited and mentored by us. The allocation of tasks will be tailored to the individual preferences of

the students, ensuring an effective and collaborative approach to our research endeavors. The details of the work

packages follow.

Work Package 1: Subtask Systems Decomposition in Planning Problems for a Specific Domain

This proposal’s main idea is to decompose reasoning problems into its components. To do so, we need to formally

define subtasks, generalized subtasks, and a system of subtasks. In the described case, instantiating a generalized
subtask with a given state of a given instance yields a subtask, which is a PDDL task. In this work pack, we need

to implement and formally define the following abstractions towards the learning phase together with heuristic

and search analysis.

Generalized Subtask. For a planning domain D = ⟨P,A, C⟩, a generalized subtask encapsulates specific

logical formulas ϕmembership, ϕgoal, for membership and goals within the planning domain. We denote it as G.

Subtask. This describes a specific subtask for a state s within a planning task using a pre-defined generalized

subtask for a given domain. We denote it as ΠG(s).

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

Generalized Subtask System. A set of generalized subtasks S for domain D is a subtask system for a set of

tasks T = {Π1, . . . ,Πn} of D if for each Π ∈ T specific conditions holds.

The first step of our “bench walker” is to identify the initial state and bench to use for the next subsearch. In

the simplest case, we have the current initial state s′I and identify exactly one bench b that has s′I as an inner state,

and that we have not traversed in a circle. Then, we execute a subsearch for the pair ⟨s′I, b⟩.
In the second step, we set up and execute the subsearch. We first update the initial state of the task Π to s′I.

Then, we construct the next subgoal from the outer goal formula of the bench.

For each bench b, we calculate a formula ϕb, which identifies all the states of the bench. We exclude the exit

states here, because they are also part of another bench as entry state and the correct subgoal is determined by the

other bench. ϕb evaluates to true on a state s ∈ X () iff s ∈ states(b) \ exit(b). To learn ϕb, we take all states

s ∈ X () and label them as true iff s ∈ b. Now, we can use any approach – e.g., our description logic and decision

tree technique – to learn the formula. Unfortunately, the learned formula can contain errors.

In addition, we associate each bench b with a formula δb that evaluates to true on all states s ∈ exit(b) and to

false on all states s ∈ states(b) \ exit(b). To learn δb we use only the states s ∈ states(b) and label the results as

true iff s ∈ exit(b).

Work Package 2: Learning Subtask Systems

This work pack is also related to the first example and illuminates its learning aspects. Heusner et al. [21] intro-

duced high-water mark benches, which enable a run of GBFSs to be decomposed into several subsearches. So far,

this decomposition has not been applied in practical tasks, as high-water mark benches can only be generated a

posteriori, i.e., after a planning task has been solved. Here, we exploit the idea by learning a generalized subtask

from benches that are generated on a set of tasks {Π1, . . . ,Πn} from domain D = ⟨P,A, C⟩ that can be solved.

We hope to show experimentally that the learned subtask systems generalize to large instances of the same domain

in the empirical evaluation of the research. For now, we formally define such systems. Figure 3 is an example of

a generalization over small instances; we plan to add more details as the research progresses. In the following, we

describe the learning steps in detail.

Our approach consists of the following steps:

1. Generate Benches: generate all benches for each task;

2. Generate Features: generate the description logic features; that allow to (perfectly) describe all states on

all benches and all exit states of all benches.

3. Learn Goals: for each bench, learn a formula that describes its exit states; separate exit states from all

other states reachable from that bench

4. Merge Benches: merge bench A into bench B if the goal formula of B is also perfect for A;

5. Learn Memberships: for each bench, learn a formula that describes the states in the bench; separate

member states from all other states

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

Inner: robby at B ∧ ¬carry ∧ ball at A

Inner Goal: robby at A

Outer Goal: ¬carry ∧ robby at A ∧ ball at A

Membership: ¬carry ∧ ball at A

1
Inner: robby at A ∧ ¬carry ∧ ball at A

Inner Goal: carry

Outer Goal: carry ∧ robby at A

Membership: robby at A ∧ ¬carry ∧ ball at A∨
robby at A ∧ carry

2

Inner: robby at A ∧ carry

Inner Goal: robby at B

Outer Goal: robby at B ∧ carry

Membership: carry

3
Inner: robby at B ∧ carry

Inner Goal: ¬carry
Outer Goal: robby at B ∧ ¬carry
Membership: robby at B

4

Inner: ⊥
Inner Goal: ⊤
Outer Goal: ¬ball at A ∧ ¬carry
Membership: ¬ball at A ∧ ¬carry

5

Figure 3: GBTS for a toy domain, a gripper with one arm that needs to move balls between rooms using the h∗ heuristic. In
each box, a formula representing the relevant states is presented.

6. Iterate: if any learned formula is imperfect, return to description logic feature generation (step 2) with a

higher complexity limit and repeat.

Generating Benches: For each input task Πi, we label the states of a planning instance with respect to a heuristic

h as progress or non-progress states. To do this, we first expand the reachable state space. For each state s, we

track its predecessors pred(s), successors succ(s), and heuristic estimate h(s). Note that this is done on small

examples, where expending the search space is feasible.

In a second iteration, we compute the high-water marks (hwm). Initially, we set hwm(g) = h(g) for all goal

states g and regard hwm(s) as undefined for all other states s. We maintain an open list of states ordered by

high-water mark values that initially contain all goal states. Upon retrieving a state s from the open list, we insert

all its predecessors p ∈ pred(s) with undefined high-water marks into the open list with a high-water mark value

of hwm(p) = max(h(p), hwm(s)). The algorithm guarantees that a state is only inserted once into the open list,

namely after its successor with the lowest high-water mark value has been retrieved from the open list. When this

process terminates, only unsolvable states have an undefined high-water mark, which we treat as ∞ from here on.

Generating Features: In the second step, we generate the features used in our formulas to describe the mem-

bership and goals of the subtasks. The feature generation is an iterative process and is parameterized with a

complexity limit ℓ. In iteration j, only features of complexity j are generated. In the first iteration, we only con-

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

sider atomic concepts and roles over the predicates P . In every succeeding iteration j, we additionally consider

all features obtained by combining features from iteration j − 1 with a rule from Section 3.3 if their combined

complexity is equal to j. We prune any new feature f if its denotation is the same on all states s ∈ S as the

denotation of a previously considered feature. We stop the feature generation once we reach the complexity limit.

Let Fℓ denote the set of considered features.

Learning Goals: For each bench v ∈ V , we compute a formula ϕgoal that describes all exit states of the

bench. Those exit states become subgoals of subtask. We generate the training samples by enumerating all

pairs of states ⟨s, r⟩ such that s ∈ v and r is reachable from s without traversing over an exit state. We label

a pair ⟨s, r⟩ positively if r is an exit state and negatively otherwise. Furthermore, for each feature f ∈ Fℓ we

compute whether its denotations on s and r as well as the set differences between those denotations are empty,

i.e., |f(s)| > 0, |f(r)| > 0, |f(s) \ f(r)| > 0, |f(r) \ f(s)| > 0. As [10], we train a decision tree on those

samples, extract a formula in disjunctive normal form from the tree, and simplify it using SymPy [30].

There is no guarantee that the generated features are sufficient to perfectly separate exit states from non-exit

states because we might need a feature with a complexity higher than the complexity limit ℓ. In this case, we have

to increase ℓ and start again.

Merging Benches: Let v, v′ ∈ V be two benches with goal formulas ϕgoal(v) and ϕgoal(v
′), respectively.

If these two benches represent the same subtask, then we replace ϕgoal(v) with ϕgoal(v
′) iff ϕgoal(v

′) is more

general than ϕgoal(v) (same for ϕavoid(v)).

Learning Membership: In this step, we learn formulas for ϕmembership(v) for each v ∈ V ′.

Theorem 1. What we learn (under some assumptions) is a subtask system.

Note that if the input is such that all domain features are included, we learn a generalized subtask system. (In

our experiments, it generalizes to all instances of a domain.)

Iteration: This process is planned to be executed iteratively as long as there are still benches that can be merged.

Regarding Work Packages 1 and 2, we already have some preliminary code and successful preliminary results

for some domains. However, learning the right formula for all domains could be challenging. Because the research

is carefully structured, we will gain a deeper understanding of the problem, even if the results are not as hoped.

Work Package 3: Analyzing Behaviours through Abstraction and Decomposition

Inspired by [33], the goal of this work package is to automatically decompose systems into models that repre-

sent facets of their behavior in a way that allows one to comprehend and analyze the system. Guided by the

BP principles of decomposition, we will systematically dismantle the overall behavior of systems into smaller,

more manageable components. This strategic breakdown will enhance each system element’s conceptualization,

understanding, and maintenance and set the stage for a more detailed analysis.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

Complementing the decomposition process is the application of abstraction, a carefully designed mapping of

system behavior to a less detailed version that empowers each model component to focus on specific system pat-

terns in isolation. In more formal terms, the type of abstraction we seek can be achieved through a transformation

that maps one regular language to another, potentially with a different alphabet but with reduced state complexity.

Imagine, for instance, the task of analyzing game logs when the rules are unfamiliar, and our objective is to

learn and understand them autonomously. If we were to map all the letters representing Player 1 to “A” and all the

letters representing Player 2 to “B” in the log, we would end up with a log from the language of an automaton with

only two states. This language represents the alternating play pattern between the two players. The simplified

automaton can be easily learned from the log, providing a component for the model we aim to construct for the

game. This model, in turn, offers valuable insights into the game’s structure and dynamics.

We are poised to explore and compare various techniques for identifying transformations that enable extracting

valuable information from complex logs, facilitating the creation of composite models wherein each component

signifies a distinct aspect of the logged behavior. Our strategies encompass:

• Generative Layers in Neural Networks: We plan to enhance neural networks, such as LogBERT [15],

with generative layers capable of generating components for a model of the system. This augmented net-

work aims to generate models directly from logs. To train this generative network, we will curate a dataset

comprising composite models paired with logs generated from them. The training process will unfold in

reverse, moving from logs to composite models.

• Evolutionary Algorithms for Transformations: We will generate a set of transformations and employ

evolutionary algorithms [11] to construct trees that amalgamate these transformations. The fitness function

driving the evolution will be the state complexity of the automaton learned through the candidate transfor-

mation.

• Advancing Automata-Learning Techniques for Comprehending Composite Systems: We will, for ex-

ample, enhance the L∗ algorithms for active learning to provide explanatory insights into bugs. Beginning

with a concise log of both failed and successful tests and armed with a model of the testing framework, we

will employ a modified version of the L∗ algorithm. We will derive a 3-way automaton that categorizes tests

into “passed,” “failed,” and “unknown” outcomes. Then, we will define a quantitative metric for automaton

complexity and leverage solvers to identify the “simplest” explanations for a bug in the form of a regular

2-way automaton that aligns with the 3-way automaton obtained earlier.

• Advancing Process Mining Techniques for Understanding Composite Systems: We will, for example,

introduce a new node type called “conjunction” to process trees. Each branch of these nodes represents a

distinct regular language, and the subtree rooted at the conjunction node represents the intersection of these

languages. We will demonstrate that process trees with this node type enable exponential size reduction

while maintaining high precision and accuracy compared to process trees without this node. We will also

design miners capable of learning such trees directly from logs.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

Our commitment extends to the development of algorithms and proof-of-concept tools for each approach men-

tioned above, as well as for any additional ideas that emerge during the course of our research. By evaluating and

comparing their performance, we aim to provide a diverse toolset. Recognizing the heuristic nature of this field,

we acknowledge that a single method may not universally suit all purposes. Hence, our approach involves the

development of multiple methods to offer users a comprehensive and adaptable toolkit. Our research trajectory

pivots towards advancing the understanding and application of composite systems. We aspire to pioneer tech-

niques for learning decomposed models, leveraging networks to decipher composed systems, and conducting a

user study to assess various decomposition formalisms.

Work Package 4: Inferring Properties of Behavioral Programs from b-threads

This work package is dedicated to advancing robust methodologies and tools for the compositional analysis of

reactive systems. Our primary goal is to elevate development and documentation through a comprehensive cor-

rectness proof. Harnessing the principles of BP, our approach involves analyzing individual b-threads to deduce

the properties of the combined system, eliminating the need to scrutinize the extensive product space that en-

compasses the overall state space. This initiative embodies our overarching vision, signifying a paradigm shift in

program verification methodologies.

In a previous study [16], we delved into the feasibility of expressing thread properties as logical formulas

processed by an SMT solver for global property verification. From this exploration, we gained valuable insights

into the simplicity and strictness of the computational model within BP, enabling reasoning about modules without

the necessity for complex assume-guarantee proofs (e.g., [4, 12]) or the circular reasoning often found in less

constrained paradigms. Based on this experience, as elaborated in our position paper [18], we set the following

objectives for our research:

• Demonstrate the decomposability of models into modules, making the verification of module properties

significantly more efficient than verifying the composite program;

• Ensure that the inherent nature of the modules allows for the formulation of meaningful properties straight-

forwardly, potentially implying the desired global property.

To address the first objective, we will explore methods to formulate module properties conducive to automatic

reasoning systems, such as SMT solvers, which can effectively deduce the properties of the entire system. Build-

ing on existing isolated examples, including the one presented in the introduction of this proposal and an analysis

demonstrating that a player in the game of Tic-Tac-Toe, employing a strategy composed of b-threads with specific

properties, never loses, we aim to extend this feasibility beyond mere illustrative cases.

In the progression of this work package, our key advancement will be demonstrating the practicality of this

approach in real-world scenarios, moving beyond toy examples. We will undertake controller synthesis tasks

across diverse domains, encompassing robotics, traffic management, automotive systems, and cyber-physical sys-

tems. Examples include designing controllers for robot arms, traffic light control, adaptive cruise control, HVAC

systems, network congestion control, drug infusion control, UAV flight, and renewable energy grid control. Each

of these instances requires the creation of controllers that meet specific performance and safety specifications.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

Through our investigation, we intend to showcase how BP facilitates decomposing complex systems into

components that guarantee properties. We will show that these properties, in turn, enable logical solvers, such as

SMT solvers, to deduce the correctness of the controller automatically. We will extend existing research such as

the work on verifying response specifications in hierarchical event-based systems [7]. We will also follow current

work on the verification of systems controlled by deep neural networks [34, 26].

For the second objective, our exploration will delve into methods to affirm that a given b-thread satisfies speci-

fied properties and investigate machine learning techniques to generate candidate properties with a high likelihood

of both satisfaction by the b-thread and utility in the verification process. Our primary tool for confirming that a

given b-thread adheres to a specified property will be model checking, encompassing both symbolic and concrete

methods, leveraging the advantage that b-threads typically exhibit compact sizes.

To infer potentially beneficial properties for b-threads, we will employ generative AI models trained on a

dataset we will create. This dataset will comprise b-threads accompanied by their respective properties. Ac-

knowledging that manually generating properties for b-threads can be labor-intensive, we will employ a reverse

approach: utilizing large language models such as GitHub Copilot to generate b-threads from given specifica-

tions, embedding the specification itself as the property of the b-thread. A preliminary experiment conducted in

preparation for this proposal has demonstrated the feasibility of this approach.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

References

[1] G. Amram, S. Maoz, and O. Pistiner. Gr(1)*: GR(1) specifications extended with existential guarantees.

Formal Aspects Comput., 33(4-5):729–761, 2021.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The Description

Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2003.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth,

1984.

[4] K. Chatterjee and T. A. Henzinger. Assume-guarantee synthesis. In O. Grumberg and M. Huth, editors,

Tools and Algorithms for the Construction and Analysis of Systems, pages 261–275, Berlin, Heidelberg,

2007. Springer Berlin Heidelberg.

[5] L. D. Moura and N. Bjørner. Z3: An efficient smt solver. In Proceedings of the Theory and Practice

of Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, TACAS’08/ETAPS’08, page 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[6] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of A∗. JACM, 32(3):505–

536, 1985.

[7] C. Disenfeld and S. Katz. Developing and verifying response specifications in hierarchical event-based

systems. LNCS Trans. Modul. Compos., 1:41–79, 2016.

[8] J. E. Doran and D. Michie. Experiments with the graph traverser program. Proceedings of the Royal Society

A, 294:235–259, 1966.

[9] D. Drexler, J. Seipp, and H. Geffner. Learning sketches for decomposing planning problems into subprob-

lems of bounded width. In Proc. ICAPS 2022, pages 62–70, 2022.

[10] P. Ferber, L. Cohen, J. Seipp, and T. Keller. Learning and exploiting progress states in greedy best-first

search. In Proc. IJCAI 2022, pages 4740–4746, 2022.

[11] C. Ferreira. Gene Expression Programming in Problem Solving, pages 635–653. Springer London, London,

2002.

[12] C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular verification for shared-memory programs. In

Daniel Le Métayer, editor, Programming Languages and Systems, pages 262–277, Berlin, Heidelberg, 2002.

Springer Berlin Heidelberg.

[13] G. Francès, B. Bonet, and H. Geffner. Learning general planning policies from small examples without

supervision. In Proc. AAAI 2021, pages 11801–11808, 2021.

[14] G. Francès, B. Bonet, and H. Geffner. Learning general policies from small examples without supervision.

arXiv:2101.00692 [cs.AI], 2021.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

[15] H. Guo, S. Yuan, and X. Wu. Logbert: Log anomaly detection via bert, 2021.

[16] D. Harel, A. Kantor, G. Katz, A. Marron, L. Mizrahi, and G. Weiss. On composing and proving the cor-

rectness of reactive behavior. In 2013 Proceedings of the International Conference on Embedded Software,

EMSOFT 2013, 2013 Proceedings of the International Conference on Embedded Software, EMSOFT 2013.

Institute of Electrical and Electronics Engineers, 2013.

[17] D. Harel, G. Katz, R. Lampert, A. Marron, and G. Weiss. On the succinctness of idioms for concurrent pro-

gramming. In Luca Aceto and D. de Frutos-Escrig, editors, 26th International Conference on Concurrency

Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 85–99. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[18] D. Harel, G. Katz, A. Marron, and G. Weiss. The effect of concurrent programming idioms on verifica-

tion: A position paper. In 2015 3rd International Conference on Model-Driven Engineering and Software

Development (MODELSWARD), pages 363–369, 2015.

[19] D. Harel, A. Marron, and G. Weiss. Behavioral programming. Commun. ACM, 55(7):90–100, jul 2012.

[20] M. Helmert and G. Röger. How good is almost perfect? In Proc. AAAI 2008, pages 944–949, 2008.

[21] M. Heusner, T. Keller, and M. Helmert. Understanding the search behaviour of greedy best-first search. In

Proc. SoCS 2017, pages 47–55, 2017.

[22] M. Heusner, T. Keller, and M. Helmert. Best-case and worst-case behavior of greedy best-first search. In

Proc. IJCAI 2018, pages 1463–1470, 2018.

[23] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic search. JAIR,

14:253–302, 2001.

[24] R. C. Holte. Common misconceptions concerning heuristic search. In Proc. SoCS 2010, pages 46–51, 2010.

[25] R. E. Korf, M. Reid, and S. Edelkamp. Time complexity of iterative-deepening A∗. AIJ, 129:199–218, 2001.

[26] H. Kugler. Formal verification for natural and engineered biological systems. In 2020 Formal Methods in

Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020, page 1. IEEE, 2020.

[27] S. Maoz and J. O. Ringert. Spectra: a specification language for reactive systems. Softw. Syst. Model.,

20(5):1553–1586, 2021.

[28] A. Martelli. On the complexity of admissible search algorithms. AIJ, 8:1–13, 1977.

[29] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and D. Wilkins. PDDL –

The Planning Domain Definition Language – Version 1.2. Technical Report CVC TR-98-003/DCS TR-1165,

Yale Center for Computational Vision and Control, Yale University, 1998.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen

[30] A. Meurer, C. Smith, M. Paprocki, O. Čertı́k, S. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. Moore,

S. Singh, T. Rathnayake, S. Vig, B. Granger, R. M., F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa,

M. Curry, A. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz. SymPy:

symbolic computing in Python. PeerJ Computer Science, 3:e103, 2017.

[31] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, 1984.

[32] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In E. Allen Emerson and Kedar S.

Namjoshi, editors, Verification, Model Checking, and Abstract Interpretation, pages 364–380, Berlin, Hei-

delberg, 2006. Springer Berlin Heidelberg.

[33] J. Sifakis and D. Harel. Trustworthy autonomous system development. ACM Trans. Embed. Comput. Syst.,

22(3):40:1–40:24, 2023.

[34] J. Tian, D. Zhi, S. Liu, P. Wang, G. Katz, and M. Zhang. Taming reachability analysis of dnn-controlled

systems via abstraction-based training, 2023.

[35] C. Wilt and W. Ruml. Speedy versus greedy search. In Proc. SoCS 2014, pages 184–192, 2014.

[36] C. Wilt and W. Ruml. Building a heuristic for greedy search. In Proc. SoCS 2015, pages 131–139, 2015.

[37] C. Wilt and W. Ruml. Effective heuristics for suboptimal best-first search. JAIR, 57:273–306, 2016.

	Introduction
	Two Motivating Examples
	Background
	Classical Planning
	Behavioral Programming
	Description Logic
	Decision Trees

	Related Work
	State Space Topology/Progress States
	Learning and Exploiting Progress States in GBFS
	Succinctness of Behavioral Programs

	Road map

