
Decomposition of planning problems into subtasks by
learning description logic formulas

Draft

September 22, 2023

Abstract

1 Introduction
The greedy best-first search (GBFS) algorithm is a classic search algorithm that uses a heuristic function
to determine the most promising path. Although simple, fast, and efficient, this algorithm is not always
accurate and sometimes converges to local maxima. The paper by Heusner et al. [2017] showed that
the search space of GBFS with a given heuristic h induces a bench transition system (BTS) in which
benches are connected via progress stats and bench entry states, which are all components of the search
space that one may carefully use to improve planning techniques. Figures 1 and 2 illustrate the idea
with an example from Heusner et al. on a toy domain. In Figure 1, a search space is presented with the
heuristic values needed to determine which of the states are considered to be progress states (progress in
the sense that, if such a state is encountered during the search, it might be best to continue from that point
and not skip to another state). In Figure 2, a search space is presented with the heuristic values needed
to split it into benches according to the progress states such that for each bench, we move forward to
another bench via an “exit” progress state. Before our work [Ferber et al., 2022], other methods could
identify progress states only for a single task, and only after a solution for the task has been found. We
surpassed this limitation and are able to learn progress states and use this knowledge during the search.
Learning the entire BTS is a huge step toward decomposing planning tasks into subtasks. In this study,
we plan to achieve the following two goals:

1. learn a generalized representation of the BTS for a given domain and heuristic based on data from
small instances;

2. exploit the learned BST by performing a sequence of searches from a bench entry state to a
progress state.

In Heusner et al. [2017] and other studies, the BTS is not learned but deduced afterwards when the
solution (the plan) has already been found. Our main goal is to use those benches, break down the
search into intermediate subsearches, and ultimately achieve subplans such that, if combined sequen-
tially, produce one plan. In Drexler et al. [2022], there is a similar approach; however, it uses a different
technique that is limited to some specific domains.

1

To decompose planning problems into subtasks, the suggested research will use a technique based
on decision trees to learn the BTS and represent them using description logic formulas. The learning
process is performed for each domain from small examples (small instances), and then the learned BTS
is used to solve large instances of the same domain.

A high-level overview of our approach is as follows: First, all benches for each task are generated,
and then the description logic features are generated. For each bench, a formula is learned that describes
its exit states, and bench A is merged into bench B if the goal formula of B is also suitable for A. Lastly,
for each bench, a formula is learned that describes a state in the bench. To use this framework, bench
walking, i.e., an intermediate search between the learned benches, is performed.

This line of research is an extension of our successful study presented at IJCAI 2022 [Ferber et
al., 2022], in which the main goal was to introduce a novel approach that learns a description logic
formula characterizing all progress states in a classical planning domain. Using the learned formulas
in a GBFS to break ties in favor of progress states often significantly reduces the search effort. Our
previous work showed that learning progress states is feasible and efficient. The next step is to not only
resolve cases of tie-breaking but to take the power of learning progress states to learn the complete BTS
and improve the search itself. The immediate implication of the results attained and knowledge gained
is the ability to decompose a planning problem into subproblems and solved it sequentially. Other work
that is based on Sketches showed that the decomposition technique is efficient and revolutionary. An
additional secondary implication is related to the implementation; we aim to represent PDDL goals as
description logic and vice versa, and this itself is a contribution.

Fields likely to benefit from our results are learning and automated planning, including but not lim-
ited to applications such as path and motion planning for autonomous robots, unmanned aerial vehicles,
and autonomous driving. As to our latest publication [Ferber et al., 2022], we guarantee that progress
states can be learned and improve the expansion rate during search. In this proposal, we move to our
next questions: Can a complete BTS be learned? Would it improve search? Would it be possible to
perform a sequence of searches from a bench entry state to a progress state? Positive answers to these
questions would mean a more efficient search, smaller expansion rate, and shorter run time. Of course,
trade-offs should be considered and presented as part of the empirical analysis.

2 Background
In this section, we first present four subareas that are relevant to the suggested research and then describe
our last paper, “Learning and Exploiting Progress States in Greedy Best-First Search” [Ferber et al.,
2022], presented at IJCAI 2022. This paper proposed a fundamental building block needed for the
current research and serves as an indication of its feasibility. We start by reminding the reader of basic
planning concepts and notations. Moving to description logic, we describe a state or set of states using a
learned formula. Next, we review again the concept of progress states and bench transition system, and
finally, we describe decision trees, which are the learning technique used in this research for identifying
bench states

2.1 Classical Planning
Throughout this proposal, we work with planning domains and tasks defined in the Planning Domain
Description Language (PDDL) [McDermott et al., 1998]. A domain is a tuple D = ⟨P ,A, C⟩, where P

2

Figure 1: Search space topology from Heusner et al. [2017] for a toy domain, where the goal states are indicated
by double lines.

Figure 2: Search space topology from Heusner et al. [2017] for a toy domain, divided into benches connected via
progress states. The progress states are indicated by double lines. Note that the progress states are actually the
goal states for each bench.

3

is a set of predicate symbols (along with an arity); A is a set of action schemata...
A task Π of domain D is a tuple ⟨O,P , A, sI, δ⟩, where O is a set of objects and P is a set of

first-order predicates. A fact refers to a predicate p ∈ P with arity k grounded to p(o1, o2, . . . , ok) with
oi ∈ O. Let F be the set of all facts. Then, any s ⊆ F is called a state, and the set of all states S(Π)
is called a state space. Moreover, sI ∈ S(Π) is the initial state and δ is the goal condition, a first-order
logical formula over P , C andO. All states s ⊇ δ are goal states, and the set of all goal states is denoted
SG(Π). A is a set of action schemas that can be grounded using O. We call grounded action schemas
actions. An action a is a tuple ⟨pre, add , del⟩ with pre, add , del ⊆ F and is associated with a cost
cost(a) ∈ R+

0 . Action a is applicable in state s if pre ⊆ s. Applying a in s, written as sJaK, leads to
the successor state (s \ del) ∪ add . An action sequence π = ⟨a1, a2, . . . , an⟩ is applicable in state s
if every action ai is applicable in the state sJa1KJa2KJ. . .KJai−1K. The cost of an action sequence is the
summed-up cost of its actions. A state s′ is reachable from s if there is an applicable action sequence
starting in s and ending in s′. The reachable state space SR ⊆ S is the set of all states reachable from
sI. An applicable action sequence starting in state s and ending in a goal state is called an s-plan. The
objective in classical planning is to find an sI-plan, i.e., a plan for the given task.

2.2 Description Logic
Description logic (DL) is a family of knowledge representation formalisms [Baader et al., 2003] that
use the notions of concepts, which are classes of objects that share some property, and roles, which
are the relations between these objects. Interpreting the concepts and roles for a planning state yields a
denotation, i.e., a set of objects O ⊆ O for a concept, and a set of object pairs {⟨o1, o2⟩, ⟨o3, o4⟩, . . .} ⊆
O ×O for a role.

Concepts and roles are recursively defined and interpreted for a state s ∈ S. At its base are the
universal concept ⊤ and the bottom concept ⊥ with semantics

⊤(s) = O and ⊥(s) = ∅,

as well as atomic concepts and roles. A atomic concept Cp,i for a k-ary predicate p ∈ P and its i-th
argument is interpreted in s as

Cp,i(s) = {oi | ∃o1, . . . , ok s.t. p(o1, . . . , ok) ∈ s}.

Accordingly, an atomic role Rp,i,j for a k-ary predicate p ∈ P and its i-th and j-th arguments is inter-
preted as

Rp,i,j(s) = {⟨oi, oj⟩ | ∃o1, . . . , ok s.t. p(o1, . . . , ok) ∈ s}

in s. Let X and X ′ be two concepts (respectively, two roles). They can be combined to form new con-
cepts and roles via grammar rules. Examples are negation, union, and intersection, which are interpreted
in a state s as

(¬X)(s) = O \X(s) resp. (¬X)(s) = O ×O \X(s),

(X ⊔X ′)(s) = X(s) ∪X ′(s), and
(X ⊓X ′)(s) = X(s) ∩X ′(s).

4

We use the same grammar as Francès et al. [2021a]. For details, we refer to their extended paper
[Francès et al., 2021b].

We use two functions to convert denotations to integers. For a concept or role X , |X(s)| is the size
of the set X(s). The concept distance conceptdistance between concepts C1 and C2 over role R is the
smallest n ∈ N0 with x0 ∈ C1(s), xn ∈ C2(s), and all (xi, xi+1) ∈ R(s).

The complexity K(X) of the universal concept, the bottom concept, any atomic concept, and any
atomic role is 1. The complexity of composed concepts and roles is defined as

K(¬X) := 1 +K(X)

K(X ⊔X ′) = K(X ⊓X ′) := 1 +K(X) +K(X ′)

K(|X|) := 1 +K(X)

K(conceptdistance(C1, R, C2)) := 1 +K(C1) +K(R) +K(C2).

2.3 State Space Topology/Progress States
Let Π be a planning problem with a state s. A heuristic h : S → R+

0 ∪ {∞} estimates the cost of an
optimal s-plan. Let P be the set of all acyclic s-plans. The high-water mark of s is

hwm(s) = min
π∈P

max
ai∈π

h(sa1J. . .KaiJ)K.

Heusner et al. [2018] defined a state s as progress state iff its high-water mark is higher than the
high-water mark of at least one of its successor states. Counterintuitively, this definition excludes goal
states for goal-aware heuristics. We therefore adapt the definition as follows: a state s is a progress state
iff δ ⊆ s or h(s) > mins′∈succ(()s) hwm(s′), where succ(()s) is the set of all successor states of s and δ
is the goal condition.

Let X () denote a state space. A bench b is a set of states s ∈ X (). Let B denote the set of all
benches of X (). Intuitively, we would expect B to be a partitioning of X (,) but this is not the case. By
the original definition, states can be in multiple benches.

For a bench b ∈ B, states(b) denotes the states of b; entry(b) denotes the entry states of b; and exit(b)
denotes the exit states of b. The level of a bench is denoted by level(b).

For each bench b, we calculate a formula ϕb, which identifies all the states of the bench. We exclude
the exit states here, because they are also part of another bench as entry state and the correct subgoal is
determined by the other bench. ϕb evaluates to true on a state s ∈ X () iff s ∈ states(b) \ exit(b). To
learn ϕb, we take all states s ∈ X () and label them as true iff s ∈ b. Now, we can use any approach –
e.g., our description logic and decision tree technique – to learn the formula. Unfortunately, the learned
formula can contain errors.

In addition, we associate each bench b with a formula δb that evaluates to true on all states s ∈ exit(b)
and to false on all states s ∈ states(b) \ exit(b). To learn δb we use only the states s ∈ states(b) and label
the results as true iff s ∈ exit(b).

2.4 Decision Trees
A binary decision tree is a machine learning model with a binary tree structure [Breiman et al., 1984].
Let C be a set of classes and let F be a list of features. A decision tree assigns a class c ∈ C to a vector
v ∈ RF . Each internal tree node nI is associated with a feature f(nI) ∈ {1, . . . , F} and threshold

5

τ(nI) ∈ R. Each leaf node nL is associated with a class c(nL) ∈ C. To assign a class to an input
vector v, the decision tree is traversed from the root node to a leaf node. At every internal node nI ,
if v[f(nI)] ≤ τ(nI), then the traversal continues to the first child node, otherwise it continues to the
second one. When a leaf node nL is reached, the input is labeled as c(nL).

Decision trees are greedily constructed given some training data ⟨D,L⟩ with feature matrix D ∈
RM×F and the label vector L ∈ CM , where M is the number of training samples. Each node n is
associated with a non-exclusive submatrix Dn ∈ RM ′×F and Ln ∈ RM ′ . The root node is associated
with the whole training data D and L, and is initially a leaf node. Leaf node nL is associated with the
most frequent class in LnL

. During training, the algorithm chooses a leaf node nL and searches through
combinations of features f ′ and thresholds τ ′, which are used to group data points ⟨DnL

[i], LnL
[i]⟩ for

i ∈ {1, ...,M ′} into two sets using test DnL
[i][f ′] ≤ τ ′. The quality of the groups is evaluated using a

metric (e.g., the Gini impurity Breiman et al. [1984]). The leaf is associated with a combination of the
best split (f(nL) = f ′ and τ(nL) = τ ′), and two child leaves are added to it, one per data set split. This
transforms nL into an internal node.

The algorithm continues until all leaves contain only labels from the same class or a maximum tree
depth is reached.

2.5 Learning and Exploiting Progress States in GBFS
Theoretical properties of optimal state-space search algorithms like A* or IDA* have been extensively
studied and are comparatively well understood [Martelli, 1977; Pearl, 1984; Dechter and Pearl, 1985;
Korf et al., 2001; Helmert and Röger, 2008; Holte, 2010]. A corresponding theory for suboptimal search
algorithms such as GBFS [Doran and Michie, 1966] has received growing attention only in the last few
years [Wilt and Ruml, 2014, 2015, 2016; Heusner et al., 2017, 2018].

The main insight of Heusner et al. [2017] is that every run of a GBFS can be partitioned into different
episodes defined by so-called high-water mark benches, and the state-space topology can be partitioned
in the same way. All states s on a bench share the same high-water mark value, which is the largest
heuristic value that needs to be considered to reach a goal state from s. Progress states are states that
must be expanded to reach the next high-water mark bench. Exploiting knowledge of high-water mark
benches or progress states during search gives rise to many applications. The only known algorithm
that computes high-water mark benches does so a posteriori, i.e., it computes the benches of a problem
after a plan has been found [Heusner et al., 2018]. At this point, the high-water mark information is not
needed.

Inspired by Ståhlberg et al. [2021], who successfully learned to characterize unsolvable states using
description logic Baader et al. [2003], we presented an approach that learns to characterize progress
states. First, we considered the GRIPPER and MICONIC planning domains and verified that that the set
of progress states for the h+ search algorithm [Hoffmann and Nebel, 2001; Imai and Fukunaga, 2015]
can be compactly represented with a description logic formula. Then, we presented a method to learn
such formulas automatically for any path-independent heuristic.

In Heusner et al. [2017] we proposed the following pipeline: For a given domain and heuristic, we
fully expand the reachable state spaces of several small tasks and annotate all states with their heuristic
value. Using the heuristic values, we determine whether each state is a progress state. Next, we compute
a set of description logic features and evaluate each on a subset of states. Then, we adopt a decision tree
Breiman et al. [1984] learning algorithm to learn simple formulas over the description logic features in
disjunctive normal form (DNF), which predicts whether a state is a progress state. Finally, we use our

6

formulas to break ties in a greedy best-first search, demonstrating a use case for the trained progress
state classifier.

We evaluated our method using the h+ and hFF heuristics Hoffmann and Nebel [2001] and showed
that our approach successfully learns useful formulas for identifing progress states. We observed a trade-
off between the quality of the formulas and the time required to evaluate them. Most importantly, we
showed that exploiting progress states is beneficial: it significantly reduces the number of expansions
required to find a plan.

3 Road map
In this section, we present the planned road map of this research, including formal definitions, technical
algorithmic steps, and learning steps. We start by formally defining generalized subtask systems and
then describing our current relevant model of the generalized BTS. Next, we present the learning model
and all necessary components needed for implementation as formula to PDDL translation. Finally, we
present the search itself and how it works in practice after all steps have been properly implemented
and joined together. Practically, our research plan must achieve each and every one of the following
intermediate steps:

1. Learning Subtask Systems

(a) Generate all benches for each task.

(b) Generate description logic features that are able to (perfectly) describe all states on all
benches and all exit states of all benches.

(c) For each bench, learn a formula that describes its exit states and separate the exit states from
all other states reachable from that bench.

(d) Merge bench A into bench B if the goal formula of B is also perfect for A.

(e) For each bench, learn a formula that describes a state in the bench to separate the member
states from all other states.

2. Bench Walking: Perform an intermediate search between the learned benches.

3.1 Generalized Subtask Systems
This proposal’s main idea is to decompose planning problems into subtasks. To do so, we need to
formally define subtasks, generalized subtasks, and a system of subtasks. In the described case, instan-
tiating a generalized subtask with a given state of a given instance yields a subtask, which is a proper
PDDL task.

Definition 1 (Generalized Subtask). Let D = ⟨P ,A, C⟩ be a planning domain and let PG = {pG | p ∈
P} and PI = {pI | p ∈ P}. A generalized subtask G for D is a tuple G = ⟨ϕmembership, ϕgoal⟩, where

• ϕmembership is a first-order logic formula over P ,PG, C;

• ϕgoal is a first-order logic formula over P ,PI ,PG, C.

7

Definition 2 (Subtask). Let s be a state of planning task ⟨O,P ,A, sI, δ⟩ of domain D, where δ is a
conjunction over F , and let G = ⟨ϕmembership, ϕgoal⟩ be a generalized subtask for D. The (instantiated)
subtask of s is the planning task ΠG(s) = ⟨O,P ∪ PI ∪ PG,A, s′I, ϕgoal⟩, where

s′I = s ∪ {fI | f ∈ s} ∪ {fG | f ∈ δ}.

Definition 3 (GeneralizedSubtask System). A set of generalized subtasks S for domain D is a subtask
system for a set of tasks T = {Π1, . . . ,Πn} of D if for each Π ∈ T , the following hold:

• For a state s ∈ S(Π)\SG(Π), there is exactly one generalized subtask G = ⟨ϕmembership, ϕgoal⟩ ∈
S such that s |= ϕmembership, which we denote S(s).

• Let s ∈ S(Π) \ SG(Π) be a state and π = π0 ◦ · · · ◦ πn (◦ is the concatentation of plans) be any
sequence of operators such that π0 is a plan for ΠS(s)(s) and πi is a plan for ΠS(sJπ0◦···◦πi−1K)(sJπ0◦
· · · ◦ πi−1K). Then, π is a (global) s-plan.

If these properties hold for each task of D, we say that S is a generalized subtask system.

3.2 Generalized BTS
Definition 4 (Generalized High-Water Mark Bench). Let D = ⟨P ,A, C⟩ be a planning domain. A
generalized high-water mark bench G for D is a tuple G = ⟨ϕmembership, ϕgoal, ϕavoid⟩, where

• ϕmembership is a first-order logic formula over the set of predicate schemata and the set of constants
of D;

• ϕgoal and ϕavoid are first-order logic formulas over P ,PI , C, where PI = {pI | p ∈ P}.

Let f = p(o1, ..., on) be a fact. We then define f ′ as p′(o1, ..., on) (necessary for init below)

Definition 5 (Bench Task). Let s be a state of planning task ⟨O,P ,A, sI, δ⟩ and G = ⟨ϕmembership, ϕgoal, ϕavoid⟩
be a generalized bench. The bench task of s is the planning task Π(s) = ⟨O,P ′,A′, s′I, δ

′⟩, where

P ′ = P ∪ {pI | p ∈ P}
A′ = {a′ | a ∈ A}
s′I = s ∪ {fI | f ∈ s}

pre(a′) = ¬ϕavoid ∧ pre(a)

δ′ = ϕgoal ∧ ¬ϕavoid

Definition 6 (Generalized BTS). A graph G = ⟨V,E⟩ with a set of generalized benches V and a set
of edges between those benches E is a generalized bench transition system for a set of tasks T =
{Π1, . . . ,Πn} if for each Π ∈ T , it holds that

8

• for all s ∈ S \ SG, there is exactly one generalized bench G = ⟨ϕmembership, ϕgoal, ϕavoid⟩ such
that s |= ϕmembership; let G(s) be that unique bench;

• for all s ∈ S \ SG, all sequences of operators π = π0 ◦ · · · ◦ πn (◦ is the concatentation of plans)
are (global) s-plans, where π0 is a plan for Π(s) and πi is a plan for Π(sJπ0 ◦ · · · ◦ πi−1K).

If these properties hold for each task of D, we say that G is a generalized BTS.

A generalized BTS can be used to decompose a planning task by identifying the bench for the current
state s (starting with sI), constructing and solving the corresponding bench task, and continuing with
the resulting goal state until a (global) goal is reached.

Theorem 1. A generalized bench transition (plus some restrictions, e.g., perfect classification of data)
is a subtask system.

Note that if the input is such that all domain features are included (make more formal and correct!),
a generalized BTS is a generalized subtask system. (in our experiments, it generalized to all instances
of a domain)

3.3 Learning Subtask Systems
Heusner et al. [2017] introduced high-water mark benches, which enable a run of GBFSs to be decom-
posed into several subsearches. So far, this decomposition has not been applied in practical tasks, as
high-water mark benches can only be generated a posteriori, i.e., after a planning task has been solved.
Here, we exploit the idea by learning a generalized subtask from benches that are generated on a set
of tasks {Π1, . . . ,Πn} from domain D = ⟨P ,A, C⟩ that can be solved. We hope to show experimen-
tally that the learned subtask systems generalize to large instances of the same domain in the empirical
evaluation of the research. For now, we formally define such systems. Figure 3 is an example of a
generalization over small instances; we plan to add more details as the research progresses.

Our approach consists of the following steps:

1. Generate Benches: generate all benches for each task;

2. Generate Features: generate the description logic features;

3. Learn Goals: for each bench, learn a formula that describes its exit states;

4. Merge Benches: merge bench A into bench B if the goal formula of B is also perfect for A;

5. Learn Memberships: for each bench, learn a formula that describes the states in the bench;

6. Iterate: if any learned formula is imperfect, return to description logic feature generation (step 2)
with a higher complexity limit and repeat.

In the following, we describe these steps in more detail.

9

Inner: robby at B ∧ ¬carry ∧ ball at A

Inner Goal: robby at A

Outer Goal: ¬carry ∧ robby at A ∧ ball at A

Membership: ¬carry ∧ ball at A

1
Inner: robby at A ∧ ¬carry ∧ ball at A

Inner Goal: carry

Outer Goal: carry ∧ robby at A

Membership: robby at A ∧ ¬carry ∧ ball at A∨
robby at A ∧ carry

2

Inner: robby at A ∧ carry

Inner Goal: robby at B

Outer Goal: robby at B ∧ carry

Membership: carry

3
Inner: robby at B ∧ carry

Inner Goal: ¬carry
Outer Goal: robby at B ∧ ¬carry
Membership: robby at B

4

Inner: ⊥
Inner Goal: ⊤
Outer Goal: ¬ball at A ∧ ¬carry
Membership: ¬ball at A ∧ ¬carry

5

Figure 3: GBTS for a toy domain, a gripper with one arm that needs to move balls between rooms using the h∗

heuristic. In each box, a formula representing the relevant states is presented.

10

Generating Benches: For each input task Πi, we label the states of a planning instance with respect
to a heuristic h as progress or non-progress states. To do this, we first expand the reachable state
space. This includes states reachable only on paths through goal states. For each state s, we track its
predecessors pred(s), successors succ(s), and heuristic estimate h(s).

In a second iteration, we compute the high-water marks (hwm). Initially, we set hwm(g) = h(g)
for all goal states g and regard hwm(s) as undefined for all other states s. We maintain an open list of
states ordered by high-water mark values that initially contain all goal states. Upon retrieving a state s
from the open list, we insert all its predecessors p ∈ pred(s) with undefined high-water marks into the
open list with a high-water mark value of hwm(p) = max(h(p), hwm(s)). The algorithm guarantees
that a state is only inserted once into the open list, namely after its successor with the lowest high-water
mark value has been retrieved from the open list. When this process terminates, only unsolvable states
have an undefined high-water mark, which we treat as∞ from here on.

As a result, for each input task Πi, we have constructed a BTS Bi = ⟨Vi, Ei⟩, where Vi is a partition
over Si\SG and Ei are the edges between the benches. Let B = ⟨V,E⟩ such that V =

⋃
i Vi, E =

⋃
i Ei,

and S =
⋃

i Si are all goal state S. See Algorithm ?? for more details.

Generating Features: In the second step, we generate the features used in our formulas to describe
the membership and goals of the subtasks. The feature generation is an iterative process and is param-
eterized with a complexity limit ℓ. In iteration j, only features of complexity j are generated. In the
first iteration, we only consider atomic concepts and roles over the predicates P . In every succeeding
iteration j, we additionally consider all features obtained by combining features from iteration j − 1
with a rule from Section 2.2 if their combined complexity is equal to j. We prune any new feature f
if its denotation is the same on all states s ∈ S as the denotation of a previously considered feature.
We stop the feature generation once we reach the complexity limit. Let Fℓ denote the set of considered
features.

Learning Goals: For each bench v ∈ V , we compute a formula ϕgoal that describes all exit states
of the bench. Those exit states become subgoals of subtask. We generate the training samples by
enumerating all pairs of states ⟨s, r⟩ such that s ∈ v and r is reachable from s without traversing over
an exit state. We label a pair ⟨s, r⟩ positively if r is an exit state and negatively otherwise. Furthermore,
for each feature f ∈ Fℓ we compute whether its denotations on s and r as well as the set differences
between those denotations are empty, i.e., |f(s)| > 0, |f(r)| > 0, |f(s)\f(r)| > 0, |f(r)\f(s)| > 0. As
Ferber et al. [2022], we train a decision tree on those samples, extract a formula in disjunctive normal
form from the tree, and simplify it using SymPy citation.

There is no guarantee that the generated features are sufficient to perfectly separate exit states from
non-exit states because we might need a feature with a complexity higher than the complexity limit ℓ.
In this case, we have to increase ℓ and start again from step 2.

Merging Benches: Let v, v′ ∈ V be two benches with goal formulas ϕgoal(v) and ϕgoal(v
′), respec-

tively.
If these two benches represent the same subtask, then we replace ϕgoal(v) with ϕgoal(v

′) iff ϕgoal(v
′)

is more general than ϕgoal(v) (same for ϕavoid(v)).
Let B′ = ⟨V ′, E ′⟩ such that

11

• V ′ is the minimal set for which for all v′ ∈ V ′ and v1, v2 ∈ V : v1 ⊆ v′ and v2 ⊆ v′ iff ϕgoal(v1) =
ϕgoal(v2) and ϕavoid(v2) = ϕavoid(v2);

• (v, v′) ∈ E ′ iff exists v1 ⊆ v, v2 ⊆ v′ such that (v1, v2) ∈ E (and E ′ is the minimal set).

Learning Membership: In this step, we learn formulas for ϕmembership(v) for each v ∈ V ′.

Theorem 2. What we learn (under some assumptions) is a subtask system.

Note that if the input is such that all domain features are included (make more formal and correct!),
we learn a generalized subtask system. (in our experiments, it generalizes to all instances of a domain)

Iteration:

3.4 Bench Walking
Baader et al. [2003] show any description logic (DL) concept/role can be converted to first order logic
(FOL). Any FOL is easily written in PDDL. To support this end, one of the side-effects of this research
is to support the translation from DL to PDDL. This is especially necessary to switch from the learned
“exit” progress states represented as DL formulas into subgoals represented as PDDL, which provide
the syntax and semantics needed in Fast Downward planning systems Helmert [2006].

In Algorithm 1, we modify the given task Π for the subsearches. Thus, we store the original goal of
task Π (line 2). Furthermore, we have a stack that keeps track of the plans of the previous subsearches;
we also have a stack that keeps track of the alternative bench options for each subsearch so far; lastly,
we have a stack for the initial state of the subsearches (lines 3–5). To detect whether we are traversing
in a circle, for all subsearches, we remember their initial state and bench (line 6).

The first step of our bench walker is to identify the initial state and bench to use for the next sub-
search. In the simplest case, we have the current initial state s′I and identify exactly one bench b that has
s′I as an inner state (lines 14 & 22), and that we have not traversed in a circle (line 27). Then, we execute
a subsearch for the pair ⟨s′I, b⟩ (line 28).

In the second step, we set up and execute the subsearch (lines 30–34). We first update the initial
state of the task Π to s′I (line 31). Then, we construct the next subgoal from the outer goal formula of
the bench (line 32). The inner goal formula incorrectly assumes that the subsearch visits only member
states of the current bench. Thus, it learns a simpler formula, which falsely identifies non-member states
as the goal. Furthermore, the additional information in the outer goal formula improves the guidance of
the heuristic.

Example 1 (Superiority of the Outer Goal Formula over the Inner Goal Formula). Figure 3 shows the
GBTS for GripperOne under the h+ heuristic. Let s be a state where there are balls in room A, the robot
is in room B, and the robot carries a ball. This state belongs to bench A. The intention of this bench is
to drop the ball first in room B and then to move to room A. The inner goal formula only requires that
the robot be in room A. A GBFS on this goal ends in a state where the robot is in room A and is still
carrying a ball. This plan produces the opposite of progress. The outer goal formula also says that the
robot is not carrying a ball. As a consequence, the robot drops its ball either in the current room B and
then moves to room A or it moves to room A and drops the ball there. Both resulting states are members
of bench A. The first state is actual progress. The second state is again a step backwards.

12

This example shows that even with the better guidance of the outer goal formula, a subsearch can
reverse progress. This is because multiple concrete benches b̂1, . . . , b̂n are merged into the current
generalized bench b. As long as the subsearch is allowed to visit any state, we could start in a state of
the concrete bench b̂n and end in a goal state of another concrete bench b̂1. To prevent this, we should
use an avoid condition Steinmetz et al. [2022] using the negated membership formula of b (line 33).
During the search, we prune all states that satisfy the avoid condition. In other words, the search cannot
leave the member states of the current bench. This issue still persists if a GBTS has generalized benches
with self-loops.

4 Experiments
As part of this research, we aim to evaluate the technique empirically. For that, we will generate several
experiments to compare our technique to the state-of-the-art using several metrics such as expansion
rate, run time, path size, and correctness. The main challenge is to learn the first order formulas for the
benches, and hence we will develop a procedure for the learning phase similar to the one from Drexler
et al. [2022]. We will add additional small instances to the training set to enable the construction of
a comprehensive formula. Therefore, the first experiment will be to investigate the learning rate. Our
theory allows arbitrary first-order logic formulas, and the set of DL rules used to generate features
determines which fraction of the FOL our learned formulas can come from. It is also possible that we
cannot learn a perfect formula if our DL is not sufficiently expressive.

Take the Gripper domain with four balls as an example. If the robot is in the origin room with a
single ball left, then the goal formula could be empty origin room. If there are more balls left, the learned
formula could be one less ball in the origin room. This happens because the decision tree greedily learns
a formula. If two features split the data equally well, then less complex features are preferred. For some
benches, a non-generalizing formula could be learned because that formula is cheaper. On a theoretical
basis, this is no problem. If the number of balls increases, there is one point at which the overspecific
formulas become more expensive than the generalized ones, and the system will learn the generalized
one. Thus, for any domain, there will only be a finite number of overspecific benches, and afterward,
the generalization will works. in practice, we do not want to work with such a large state space. Thus,
we postprocess the formulas: after relearning the formulas, all formulas are evaluated on all benches.
Whenever a perfect formula f1 also fits another bench b perfectly, then f1 becomes the formula for
b. Therefore, after making sure we can really learn the formulas, the next experiment is to ensure the
intermediate plans merge together into a correct plan.

Finally, after passing those two sanity tests, we would like to compare them to the state-of-the-art
methods from Drexler et al. [2022] and test our framework on the domains presented in that paper.
The performance metrics of interest are obviously related to the efficiency of the search, e.g., a smaller
expansion rate and shorter run time. However, trade-offs should be considered and discussed as part
of the analysis. In our previous work, we noted that the expansion rate decreased but the run time did
not change. This phenomenon is due to the intensive computation power needed for evaluating large
formulas, which in the end affected the run time and reduced the efficiency of the method for some
domains. Addressing this issue will be a task for the proposed research.

We already have some preliminary code and successful preliminary results for some domains. How-
ever, learning the right formula for all domains could be challenging. Because the research is carefully
structured, we will gain a deeper understanding of the problem, even if the results are not as hoped.

13

Algorithm 1: Bench Walker(Π, sI, δ,G, h). For a given planning task Π with an initial state sI

and a goal δ, a generalized bench transition system G, and a heuristic h returns a plan.
1 δglobal ← Π.δ;
2 πglobal ← Stack();
3 choices ← Stack();
4 inits ← Stack();
5 closed ← ∅;
6 inits .push(Π.sI);
7 identify ← True;
8 while inits .top() ⊉ δglobal do
9 s′I ← inits .top();

10 // Find bench for next subsearch;
11 if identify then
12 B ←identify benches(s′I, G);
13 choices .push(B);

14 while choices .top().empty() do
15 choices .pop();
16 if choices .empty() then
17 return unsolvable;

18 πglobal .pop();
19 inits .pop();
20 s′I ← inits .top();

21 b← choices .top().pop();
22 if ⟨s′I, b⟩ ∈ closed then
23 identify ← False;
24 Continue;

25 else
26 closed ← closed ∪ {⟨s′I, b⟩};
27 // Setup and execute subsearch;
28 Π.sI ← s′I;
29 Π.δ ← to pddl(b.outer goal);
30 avoid ← to pddl(¬b.membership);
31 π ← GBFS(Π, avoid);
32 if π then
33 πglobal .push(π);
34 inits .push(s′IJπK);
35 identify ← True;

36 else
37 identify ← False;

38 return concatenate(πglobal);

14

References
Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider,

editors. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2003.

Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Wadsworth, 1984.

Rina Dechter and Judea Pearl. Generalized best-first search strategies and the optimality of A∗. JACM,
32(3):505–536, 1985.

James E. Doran and Donald Michie. Experiments with the graph traverser program. Proceedings of the
Royal Society A, 294:235–259, 1966.

*Dominik Drexler, Jendrik Seipp, and Hector Geffner. Learning sketches for decomposing planning
problems into subproblems of bounded width. In Proc. ICAPS 2022, pages 62–70, 2022.

Patrick Ferber, Liat Cohen, Jendrik Seipp, and Thomas Keller. Learning and exploiting progress states
in greedy best-first search. In Proc. IJCAI 2022, pages 4740–4746, 2022.

Guillem Francès, Blai Bonet, and Hector Geffner. Learning general planning policies from small exam-
ples without supervision. In Proc. AAAI 2021, pages 11801–11808, 2021.

Guillem Francès, Blai Bonet, and Hector Geffner. Learning general policies from small examples
without supervision. arXiv:2101.00692 [cs.AI], 2021.

Malte Helmert and Gabriele Röger. How good is almost perfect? In Proc. AAAI 2008, pages 944–949,
2008.

Malte Helmert. The Fast Downward planning system. JAIR, 26:191–246, 2006.

*Manuel Heusner, Thomas Keller, and Malte Helmert. Understanding the search behaviour of greedy
best-first search. In Proc. SoCS 2017, pages 47–55, 2017.

Manuel Heusner, Thomas Keller, and Malte Helmert. Best-case and worst-case behavior of greedy
best-first search. In Proc. IJCAI 2018, pages 1463–1470, 2018.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuristic
search. JAIR, 14:253–302, 2001.

Robert C. Holte. Common misconceptions concerning heuristic search. In Proc. SoCS 2010, pages
46–51, 2010.

Tatsuya Imai and Alex Fukunaga. On a practical, integer-linear programming model for delete-free
tasks and its use as a heuristic for cost-optimal planning. JAIR, 54:631–677, 2015.

Richard E. Korf, Michael Reid, and Stefan Edelkamp. Time complexity of iterative-deepening A∗. AIJ,
129:199–218, 2001.

15

Alberto Martelli. On the complexity of admissible search algorithms. AIJ, 8:1–13, 1977.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel
Weld, and David Wilkins. PDDL – The Planning Domain Definition Language – Version 1.2. Techni-
cal Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, Yale
University, 1998.

Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley,
1984.

Simon Ståhlberg, Guillem Francès, and Jendrik Seipp. Learning generalized unsolvability heuristics for
classical planning. In Proc. IJCAI 2021, pages 4175–4181, 2021.

Marcel Steinmetz, Jörg Hoffmann, Alisa Kovtunova, and Stefan Borgwardt. Classical planning with
avoid conditions. In Proc. AAAI 2022, pages 9944–9952, 2022.

Christopher Wilt and Wheeler Ruml. Speedy versus greedy search. In Proc. SoCS 2014, pages 184–192,
2014.

Christopher Wilt and Wheeler Ruml. Building a heuristic for greedy search. In Proc. SoCS 2015, pages
131–139, 2015.

Christopher Wilt and Wheeler Ruml. Effective heuristics for suboptimal best-first search. JAIR, 57:273–
306, 2016.

16

A Formula to PDDL
We use some formulas during a search. Thus, we must convert them to PDDL. Here, we show how to
convert a description logic feature to a first-order logic (FOL). Rephrasing them from FOL to PDDL
is then trivial. Let Cp,i be an atomic concept for the predicate symbol p with arity(p) = k. Feature
|Cs

p,i| > 0 expresses that the denotation of Cp,i for state s contains at least one element.

|Cs
p,i| > 0 = |{x |∃v1, . . . , vi−1, vi+1, . . . , vk :

p(v1, . . . , vi−1, x, vi+1, . . . , vk) ∈ s}| > 0

→ ∃x∃v1, . . . , vi−1, vi+1, . . . , vk :

p(v1, . . . , vi−1, x, vi+1, . . . , vk)

The condition to have at least one x is translated into the first existential quantifier. The quantifiers
introduced by the atomic concept follow afterwards, and the actual condition comes last. For an atomic
role, the schema is the same. Let Rp,i,j be an atomic role with i < j.

|Rs
p,i,j| > 0 = |{⟨x, y⟩ |
∃v1, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vk :

p(v1, . . . , vi−1, x, vi+1, . . . , vj−1, y, vj+1, vk) ∈ s}| > 0

→∃x, y∃v1, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vk :

p(v1, . . . , vi−1, x, vi+1, . . . , vj−1, y, vj+1, vk)

The adaption for an atomic role with i > j is trivial. For the translation in the general case, we
introduce three recursive functions: f translates a feature, fC translates a concept and receives as an
additional input the name of the variable bound on the outside (the red part in the atomic concept
example above). fR translates a role and receives as additional input the names of the two variables
bound on the outside (red part in the atomic role example above). For every rule that constructs a
complex concept, fC requires an overload. For every rule that constructs a complex role, fR requires an
overload. Let X be either a concept or a role, D,E be concepts, and S, T be roles. Let Cp,i be an atomic
concept, Rp,i,j be an atomic role, and n be the number of objects in the universe. Then, we recursively
define f, fC , fR as follows:

17

f(¬|Xs| > 0) = ¬f(|Xs| > 0)

f(|Cs| > 0) = (∃x : fC(C
s, x))

f(|Rs| > 0) = (∃x, y : fR(R
s, x, y))

fC(C
s
p,i, x) = (∃v1, . . . , vi−1, vi+1, . . . , vk :

p(v1, . . . , vi−1, x, vi+1, . . . , vk))

fC(¬D, x) = ¬(fC(D, x))

fC(D
s ⊓ Es, x) = (fC(D, x) ∧ fC(E, x))

fC(D
s ⊔ Es, x) = (fC(D, x) ∨ fC(E, x))

fC((∃S.D)s, x) = (∃v : fR(S
s, x, v) ∧ fC(D

s, v))

fC((∀S.D)s, x) = (∀v : fR(S
s, x, v) =⇒ fC(D

s, v))

fR(R
s
p,i,j, x, y) = (∃v1, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vk :

p(v1, . . . , vi−1, x, vi+1, . . . , vj−1, y, vj+1, vk))

fR(¬S, x, y) = ¬(fR(S, x, y))
fR(S

+, x, y) = (x, y) ∈ S ∨ ∃v1 : (x, v1) ∈ S∧
((v1, y) ∈ S ∨ ∃v2 : (v1, v2) ∈ S∧
((v2, y) ∈ S ∨ ∃v3 : (v2, v3) ∈ S∧
((v3, y) ∈ S ∨ ∃v4 : (v3, v4) ∈ S∧
. . .

((vn−2, y) ∈ S ∨ (vn−2, vn−1) ∈ S∧
(vn−1, y) ∈ S) . . .)))

fR(S
∗, x, y) = (x = y) ∨ fR(S

+, x, y)?

A.1 Transitive Closure
Computing the transitive closure not easily achieved in PDDL, as the following suggests.

Naive approach.

TC(c) = ∃x, y :(x, y) ∈ R

∨ ∃v1 : (x, v1) ∈ R ∧ (v1, y) ∈ R

∨ ∃v1, v2 : (x, v1) ∈ R ∧ (v1, v2) ∈ R ∧ (v2, y) ∈ R

. . .

∨ ∃v1, v2, . . . , vn−1 : (v, v1) ∈ R ∧ . . . , (vn−1, y) ∈ R

18

Number of Operators:

1 +
n−1∑
i=1

2i+ 1 = 1 + n ∗ (n− 1) + (n− 1) = n2

More sophisticated approach.

TC(c) = ∃x, y :

(x, y) ∈ R

∨ ∃v1 : (x, v1) ∈ R∧
((v1, y) ∈ R

∨ ∃v2 : (v1, v2) ∈ R ∧ (

(v2, y) ∈ R

∨ ∃v3 : ((v2, v3) ∈ R ∧ (

(v3, y) ∈ R)

∨ ∃ . . . ∧ (

(vn−2, y) ∈ R

∨ (vn−2, vn−1) ∈ R ∧ (vn−1, y) ∈ R))))

Number of Operators:

2 ∗ (n− 1) + 1 = 2n− 1

If R is an atomic role (e.g., rprimitive(link,0,1)), then we can just replace (x, y) ∈ R by link(x, y). If it
is a complex role, then we can easily construct the PDDL formula for it using the procedures described
here. However, inserting this formula at every point where R is used means we compute the formulas
from scratch every time. Instead, the formula should be constructed and stored in an axiom A. Then,
the fast downward step computes role R once and stores it in axiom A. Afterwards, A can be used as an
atomic role, i.e., A(x, y).

A.2 Caching
If the formula is evaluated at every bottleneck and some concepts appear mutliple times in the overall
concept, then we can construct an axiom for that subconcept and evaluate it only once.

19

	Introduction
	Background
	Classical Planning
	Description Logic
	State Space Topology/Progress States
	Decision Trees
	Learning and Exploiting Progress States in GBFS

	Road map
	Generalized Subtask Systems
	Generalized BTS
	Learning Subtask Systems
	Bench Walking

	Experiments
	Formula to PDDL
	Transitive Closure
	Caching

