
RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

Learning and Exploiting Decompositions in Automated Reasoning

1 Introduction

In this proposal, we outline our strategy to push the boundaries of planning and verification by pioneering inno-

vative decomposition and compositional analysis techniques and algorithms. Our primary objective is to elevate

the performance of decomposition methods and substantially enhance reasoning capabilities in these domains.

Traditional planning and verification techniques treat all system states uniformly, disregarding the internal

structures and nuances of these states. While this approach offers flexibility in planning and enhances verification

accuracy, it comes at the cost of potentially dealing with vast state spaces and extensive exploration paths. A

burgeoning research direction in recent years is the exploration of internal symmetries, structures, and recurring

patterns within systems, which can be harnessed to circumvent the exhaustive examination of all possible paths

and states.

In particular, our focus is investigating how systems can be systematically decomposed to enable compo-

sitional analysis. This entails the ability to analyze a composed system while simultaneously establishing the

properties of its components. We will develop and employ advanced inference rules that consider the semantics

of the composition, allowing for a more efficient and effective approach to planning, verification, and analysis.

The core concept underlying our approach is the shift from solving a single, large, and intricate problem to

addressing numerous smaller and more manageable problems. Each of these smaller problems is comparatively

simpler to solve when contrasted with the larger overarching challenge. We will employ advanced learning tech-

niques to break down complex systems into their constituent parts, considering various composition semantics,

as illustrated in the two following examples. Additionally, we will employ advanced inference tools to reason

about the properties of the composed system based on the insights gleaned from analyzing its components. Our

primary goal is to develop robust and efficient methods for learning and effectively utilizing decomposition within

the context of planning, synthesis, and model-checking challenges. In pursuit of these objectives, we will har-

ness the power of Description Logic, Temporal Logic, and Formal Methods, which are mathematical and logical

techniques for specifying and tackling the complexities of planning, synthesis, and model-checking tasks.

Through this research initiative, we intend to contribute to the broader field of artificial intelligence and com-

putational problem-solving, ultimately leading to more effective and practical solutions for real-world challenges.

Our dedication to developing these advanced methods signifies our commitment to pushing the boundaries of

what is currently achievable in AI and search algorithms, with the ultimate goal of driving technological progress

and innovation. Our study will focus on four main objectives:

1. Compositional Analysis: To enhance our ability to reason about the composed system, we will create

heuristics and techniques that consider the interaction and dependencies among its components. These

heuristics will facilitate more nuanced and insightful compositional analyses.

2. Automatic Decomposition: We aim to develop automated methods for effectively decomposing complex

systems into their constituent elements. By automating this process, we seek to reduce the manual effort

required and enable more efficient analysis and reasoning.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

3. Learning Domain-Specific Patterns: Recognizing that different domains exhibit unique characteristics,

our research will delve into the development of algorithms and tools that can identify and learn domain-

specific patterns. These patterns may include symmetries, structures, or recurring behaviors, which can be

leveraged to optimize planning and verification processes.

4. Techniques for Exploiting Learned Patterns: Once we’ve identified and learned these domain-specific

patterns, we will explore innovative techniques for exploiting these patterns to our advantage. This could

involve creating specialized algorithms, inference rules, or strategies that use the learned insights to stream-

line planning, verification, and synthesis challenges in a domain-specific context.

2 Two Motivating Examples

To demonstrate our research techniques, we present two representative research activities in detail. We chose to

present one example in planning and one example in model-checking to demonstrate the breadth of our approach.

Example: Subtask decomposition by learning description logic formula

The greedy best-first search (GBFS) algorithm is a classic search algorithm that uses a heuristic function to

determine the most promising path. Although simple, fast, and efficient, this algorithm is not always accurate

and sometimes converges to local maxima. The paper by [15] showed that the search space of GBFS with a

given heuristic h induces a bench transition system (BTS) in which benches are connected via progress stats and

bench entry states, which are all components of the search space that one may carefully use to improve planning

techniques. Figures 1 and 2 illustrate the idea with an example from Heusner et al. on a toy domain. In Figure 1,

a search space is presented with the heuristic values needed to determine which of the states are considered to

be progress states (progress in the sense that, if such a state is encountered during the search, it might be best to

continue from that point and not skip to another state). In Figure 2, a search space is presented with the heuristic

values needed to split it into benches according to the progress states such that for each bench, we move forward

to another bench via an “exit” progress state. Before our work [8], other methods could identify progress states

only for a single task, and only after a solution for the task has been found. We surpassed this limitation and are

able to learn progress states and use this knowledge during the search. Learning the entire BTS is a huge step

toward decomposing planning tasks into subtasks. In this study, we plan to achieve the following two goals:

1. Learn a generalized representation of the BTS for a given domain and heuristic based on data from small

instances;

2. Exploit the learned BST by performing a sequence of searches from a bench entry state to a progress state.

In Heusner et al. [15] and other studies, the BTS is not learned but deduced afterwards when the solution (the

plan) has already been found. Our main goal is to use those benches, break down the search into intermediate

subsearches, and ultimately achieve subplans such that, if combined sequentially, produce one plan. In [6], there

is a similar approach; however, it uses a different technique that is limited to some specific domains.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

To decompose planning problems into subtasks, the suggested research will use a technique based on decision

trees to learn the BTS and represent them using description logic formulas. The learning process is performed for

each domain from small examples (small instances), and then the learned BTS is used to solve large instances of

the same domain.

A high-level overview of our approach is as follows: First, all benches for each task are generated, and then

the description logic features are generated. For each bench, a formula is learned that describes its exit states, and

bench A is merged into bench B if the goal formula of B is also suitable for A. Lastly, for each bench, a formula

is learned that describes a state in the bench. To use this framework, bench walking, i.e., an intermediate search

between the learned benches, is performed.

This line of research is an extension of our successful study presented at IJCAI 2022 [8], in which the main

goal was to introduce a novel approach that learns a description logic formula characterizing all progress states

in a classical planning domain. Using the learned formulas in a GBFS to break ties in favor of progress states

often significantly reduces the search effort. Our previous work showed that learning progress states is feasible

and efficient. The next step is to not only resolve cases of tie-breaking but to take the power of learning progress

states to learn the complete BTS and improve the search itself. The immediate implication of the results attained

and knowledge gained is the ability to decompose a planning problem into subproblems and solve it sequentially.

Other work that is based on Sketches [6] showed that the decomposition technique is efficient and revolution-

ary. An additional secondary implication is related to the implementation; we aim to represent PDDL goals as

description logic and vice versa, and this itself is a contribution.

Fields likely to benefit from our results are learning and automated planning, including but not limited to

applications such as path and motion planning for autonomous robots, unmanned aerial vehicles, and autonomous

driving. As to our latest publication [8], we guarantee that progress states can be learned and improve the expan-

sion rate during search. In this proposal, we move to our next questions: Can a complete BTS be learned? Would

it improve search? Would it be possible to perform a sequence of searches from a bench entry state to a progress

state? Positive answers to these questions would mean a more efficient search, smaller expansion rate, and shorter

run time. Of course, trade-offs should be considered and presented as part of the empirical analysis.

Example: Behavioral programming decomposition for efficient model checking

The behavioral programming (BP) paradigm is an approach for modeling and developing complex reactive sys-

tems, such as interactive games, robotic systems, or traffic control systems. BP allows the programmer to specify

the system behavior as a collection of independent modules, called b-threads, that communicate and coordinate

via events. Each model component, called a b-thread, can request, wait for, or block events, thus influencing the

global event selection mechanism that determines the next system state. BP enables modular, incremental, and

scenario-based development of reactive systems and easy debugging and testing. See [12] and references therein

for an overview of the approach.

To give another concrete example of the main methods we will use in the proposed research, we describe

how behavioral programming decomposition and automated deduction techniques can enhance the efficiency

of model checking of reactive systems. We illustrate this approach using an example scenario where multiple

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

Figure 1: Search space topology from [15] for a toy
domain, where the goal states are indicated by
double lines.

Figure 2: Search space topology from [15] for a toy do-
main, divided into benches connected via progress states. The
progress states are indicated by double lines. Note that the
progress states are actually the goal states for each bench.

behavioral threads interact within a system. We aim to show how this method allows for significant computational

savings, reducing the complexity from o(p ·q) to O(p+q) through behavioral programming and automatic logical

reasoning.

Consider a reactive system composed of three key b-threads, each contributing to the system’s overall be-

havior. B-thread A continuously requests an event, indicating a persistent need for a specific action. B-thread B

blocks the event at times not divisible by the integer p, introducing a periodic and conditional interruption to the

event’s availability. Similarly, B-thread C plays its role by blocking the event at times not divisible by the integer

q. These three b-threads function concurrently, intertwining their actions through BP interleaving. This concur-

rent operation forms the joint run of the b-threads, governing how they interact within the system. Scrutinizing

the behaviors of these individual b-threads and their interactions enables advanced analysis techniques to verify

the correctness and desired properties of the system efficiently.

Traditional model checking necessitates exploring the entire product space of these b-threads, which results

in a time complexity of o(p · q). The key innovation in our approach is the application of behavioral decomposi-

tion and automatic mathematical deduction to mitigate this complexity. By examining each behavioral b-thread

individually, we can significantly alleviate the computational load. An automatic analyzer can independently

scrutinize the states of b-thread B and mechanically deduce that the event cannot be triggered at times that are not

divisible by p. Similarly, it can separately analyze the state space of b-thread C and infer that the event cannot be

triggered at times that are not divisible by q. Utilizing straightforward automatic reasoning with tools such as the

Z3 theorem prover [3], it can be determined that the event can only occur at times divisible by p × q (assuming

that both are prime numbers).

By leveraging behavioral decomposition and number theory, we reduce the overall complexity of model check-

ing from p(p ·q) to O(p+q). This approach efficiently verifies reactive systems without exploring the entire prod-

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

uct space. In previous work, [11], we studied the possibility of achieving a succinct decomposition of systems.

This research proved to be a significant step forward in understanding how to efficiently manage and manipulate

complex reactive systems using behavioral programming.

Building on this successful work, our proposed research aims to develop compositional analysis techniques

and automatic decomposition approaches. The goal is to leverage the succinctness of behavioral programming

into the efficiency of different analysis tasks. By doing so, we hope to enhance the capabilities of behavioral

programming, making it an even more powerful tool for managing the complexity inherent in reactive systems.

This research will not only build upon our previous work but also open new avenues for exploration in the

field of behavioral programming. We believe our approach will contribute significantly to the ongoing efforts to

improve reactive system development and analysis efficiency and effectiveness. This illustrative example demon-

strates the potential of behavioral programming and decomposition techniques in the context of model checking.

By focusing on individual behavioral threads and using number theory, we can achieve substantial computational

savings, ultimately leading to more efficient and effective solutions for real-world challenges in automated rea-

soning and verification.

In the proposed research, as elaborated in subsequent sections of this proposal, we will explore applying

various theories for compositional deduction, develop idioms for behavioral programming, and demonstrate real

systems that benefit from this approach.

3 Background

3.1 Classical Planning

Throughout this proposal, we work with planning domains and tasks defined in the Planning Domain Description

Language (PDDL) [21]. A domain is a tuple D = ⟨P,A, C⟩, where P is a set of predicate symbols (along with

an arity); A is a set of action schemata and C are constants.

A task Π of domain D is a tuple ⟨O,P, A, sI, δ⟩, where O is a set of objects and P is a set of first-order

predicates. A fact refers to a predicate p ∈ P with arity k grounded to p(o1, o2, . . . , ok) with oi ∈ O. Let

F be the set of all facts. Then, any s ⊆ F is called a state, and the set of all states S(Π) is called a state

space. Moreover, sI ∈ S(Π) is the initial state and δ is the goal condition, a first-order logical formula over

P , C and O. All states s ⊇ δ are goal states, and the set of all goal states is denoted SG(Π). A is a set of

action schemas that can be grounded using O. We call grounded action schemas actions. An action a is a tuple

⟨pre, add , del⟩ with pre, add , del ⊆ F and is associated with a cost cost(a) ∈ R+
0 . Action a is applicable in state

s if pre ⊆ s. Applying a in s, written as sJaK, leads to the successor state (s \ del) ∪ add . An action sequence

π = ⟨a1, a2, . . . , an⟩ is applicable in state s if every action ai is applicable in the state sJa1KJa2KJ. . .KJai−1K.

The cost of an action sequence is the summed-up cost of its actions. A state s′ is reachable from s if there is an

applicable action sequence starting in s and ending in s′. The reachable state space SR ⊆ S is the set of all states

reachable from sI. An applicable action sequence starting in state s and ending in a goal state is called an s-plan.

The objective in classical planning is to find an sI-plan, i.e., a plan for the given task.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

3.2 Behavioral Programming

Behavioral Programming (BP) is a paradigm that facilitates the modeling and development of complex reactive

systems, such as interactive games, robotic systems, or traffic control systems. BP enables the programmer to

define the system behavior as a collection of independent modules, known as b-threads, which communicate and

coordinate via events. Each b-thread can perform three basic operations on events: request, watch, and block.

These operations allow b-threads to express their preferences and constraints on the system behavior, and to

cooperate or compete with each other to achieve the desired system goals.

The core concepts of BP are formally defined as follows:

• B-thread: A b-thread is a Labeled Transition System (LTS) with three state labeling functions. An LTS is

a triple TS = (Q,Lab,→), where Q is the finite set of states, Lab is the finite set of labels (events), and

→⊆ Q×Lab×Q is the transition relation. In the context of a b-thread, each state in Q is labeled with three

functions: R (requested events), W (waited-for events), and B (blocked events). The transition relation →
defines how the b-thread transitions from one state to another in response to events.

• B-program: A b-program is a collection of b-threads. If we denote the ith b-thread as BTi = (Qi, Labi,→i

, Ri,Wi, Bi), then a b-program BP can be represented as a set of b-threads, i.e., BP = {BT1, BT2, ..., BTn}.

• Composition Semantics: The composition semantics of a b-program is defined by the set of all possible

interleavings of the events triggered by its b-threads. Each run is a sequence of events resulting from the

state evolution as defined by the transition relations of the b-threads. The composition semantics thus

define the behavior of the b-program as a whole. The event triggered in each step must be requested and

not blocked, and each b-thread that waited for the selected event advances accordingly while the other

b-threads remain in their states without moving. Formally, the semantics are defined by the sequences

of events consistent with the following composed LTS: (s1, . . . , sn)
e−→ (s′1, . . . , s

′
n) if and only if e ∈

R1(s1) ∪ · · · ∪ Rn(sn) and e /∈ B1(s1) ∪ · · · ∪ Bn(sn) and s′i = si if e /∈ Wi(si) and si
e−→i s′i if

e ∈ Wi(si).

To put it simply, a b-thread can be thought of as a single player in a team, each following its own set of instruc-

tions or rules. A b-program is the entire team, where each player (b-thread) collaborates to achieve a common

goal. The Composition Semantics serve as the rulebook that guides how the team plays together. It determines

when each player can move and how their actions influence the game. This analogy can aid in understanding the

intricate concepts of behavioral programming.

3.3 Description Logic

Description logic (DL) is a family of knowledge representation formalisms [1] that use the notions of concepts,

which are classes of objects that share some property, and roles, which are the relations between these objects.

Interpreting the concepts and roles for a planning state yields a denotation, i.e., a set of objects O ⊆ O for a

concept, and a set of object pairs {⟨o1, o2⟩, ⟨o3, o4⟩, . . .} ⊆ O ×O for a role.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

Concepts and roles are recursively defined and interpreted for a state s ∈ S. At its base are the universal

concept ⊤ and the bottom concept ⊥ with semantics ⊤(s) = O and ⊥(s) = ∅, as well as atomic concepts and

roles. A atomic concept Cp,i for a k-ary predicate p ∈ P and its i-th argument is interpreted in s as Cp,i(s) =

{oi | ∃o1, . . . , ok s.t. p(o1, . . . , ok) ∈ s}.
Accordingly, an atomic role Rp,i,j for a k-ary predicate p ∈ P and its i-th and j-th arguments is interpreted

as Rp,i,j(s) = {⟨oi, oj⟩ | ∃o1, . . . , ok s.t. p(o1, . . . , ok) ∈ s} in s. Let X and X ′ be two concepts (respectively,

two roles). They can be combined to form new concepts and roles via grammar rules. Examples are negation,

union, and intersection, which are interpreted in a state s as (¬X)(s) = O \X(s) resp. (¬X)(s) = O ×O \
X(s), (X ⊔X ′)(s) = X(s) ∪X ′(s), and(X ⊓X ′)(s) = X(s) ∩X ′(s). respectivly.

We use the same grammar as [9]. For details, we refer to their extended paper [10].

3.4 Decision Trees

A binary decision tree is a machine learning model with a binary tree structure [2]. Let C be a set of classes and

let F be a list of features. A decision tree assigns a class c ∈ C to a vector v ∈ RF . Each internal tree node nI

is associated with a feature f(nI) ∈ {1, . . . , F} and threshold τ(nI) ∈ R. Each leaf node nL is associated with

a class c(nL) ∈ C. To assign a class to an input vector v, the decision tree is traversed from the root node to a

leaf node. At every internal node nI , if v[f(nI)] ≤ τ(nI), then the traversal continues to the first child node,

otherwise it continues to the second one. When a leaf node nL is reached, the input is labeled as c(nL).

Decision trees are greedily constructed given some training data ⟨D,L⟩ with feature matrix D ∈ RM×F and

the label vector L ∈ CM , where M is the number of training samples. Each node n is associated with a non-

exclusive submatrix Dn ∈ RM ′×F and Ln ∈ RM ′
. The root node is associated with the whole training data

D and L, and is initially a leaf node. Leaf node nL is associated with the most frequent class in LnL . During

training, the algorithm chooses a leaf node nL and searches through combinations of features f ′ and thresholds τ ′,

which are used to group data points ⟨DnL [i], LnL [i]⟩ for i ∈ {1, ...,M ′} into two sets using test DnL [i][f
′] ≤ τ ′.

The quality of the groups is evaluated using a metric (e.g., the Gini impurity [2]). The leaf is associated with a

combination of the best split (f(nL) = f ′ and τ(nL) = τ ′), and two child leaves are added to it, one per data set

split. This transforms nL into an internal node.

The algorithm continues until all leaves contain only labels from the same class or a maximum tree depth is

reached.

4 Related Work

4.1 State Space Topology/Progress States

Based on Heusner et al.’s paper [16], let Π be a planning problem with a state s. A heuristic h : S → R+
0 ∪ {∞}

estimates the cost of an optimal s-plan. Let P be the set of all acyclic s-plans. The high-water mark of s is the

largest heuristic value that needs to be considered to reach a goal state from s. In [16], Heusner et al. defined a

state s as progress state iff its high-water mark is higher than the high-water mark of at least one of its successor

states. Counterintuitively, this definition excludes goal states for goal-aware heuristics.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

Let X () denote a state space. A bench b is a set of states s ∈ X (). Let B denote the set of all benches of X ().

Intuitively, we would expect B to be a partitioning of X (,) but this is not the case. By the original definition, states

can be in multiple benches. For a bench b ∈ B, states(b) denotes the states of b; entry(b) denotes the entry states

of b; and exit(b) denotes the exit states of b. The level of a bench is denoted by level(b). In paper [16] the authors

manually identify progress states and benches, in this proposal, our goal is to use the topology from paper [16] to

decompose the state space and learn the different benches before execution.

4.2 Learning and Exploiting Progress States in GBFS

Theoretical properties of optimal state-space search algorithms like A* or IDA* have been extensively studied

and are comparatively well understood [20, 23, 4, 19, 14, 18]. A corresponding theory for suboptimal search

algorithms such as GBFS [5] has received growing attention only in the last few years [24, 25, 26, 15, 16].

The main insight of [15] is that every run of a GBFS can be partitioned into different episodes defined by

so-called high-water mark benches, and the state-space topology can be partitioned in the same way. All states

s on a bench share the same high-water mark value, progress states are states that must be expanded to reach

the next high-water mark bench. Exploiting knowledge of high-water mark benches or progress states during

search gives rise to many applications. The only known algorithm that computes high-water mark benches does

so a posteriori, i.e., it computes the benches of a problem after a plan has been found [16]. At this point, the

high-water mark information is not needed.

In [8] they proposed the following pipeline: For a given domain and heuristic, fully expand the reachable state

spaces of several small tasks and annotate all states with their heuristic value. Using the heuristic values, determine

whether each state is a progress state. Next, compute a set of description logic features and evaluate each on a

subset of states. Then, adopt a decision tree [2] learning algorithm to learn simple formulas over the description

logic features in disjunctive normal form (DNF), which predicts whether a state is a progress state. Finally, use

the formulas to break ties in a greedy best-first search, demonstrating a use case for the trained progress state

classifier.

Their method is evaluated by using the h+ and hFF heuristics [17] and showed that the approach successfully

learns useful formulas for identifying progress states. There is some trade-off between the quality of the formulas

and the time required to evaluate them. However, they showed that exploiting progress states is beneficial: it

significantly reduces the number of expansions required to find a plan.

4.3 Succinctness of Behavioral Programs

In our recent paper, “On the Succinctness of Idioms for Concurrent Programming,” [11] we conducted an in-depth

analysis of the efficiency of various concurrent programming idioms, particularly emphasizing their descriptive

succinctness. Our study centered on three fundamental concurrent programming idioms: event requesting, block-

ing, and waiting. We found that a programming model that integrates all three idioms is exponentially more

succinct than non-parallel automata. Furthermore, its succinctness complements classical nondeterministic and

“and” automata.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

This paper is relevant to this research proposal, which aims to use succinct decomposition methods to enhance

analysis techniques such as model-checking and planning. Our findings offer a rigorous framework for evaluating

the complexity of specifying, developing, and maintaining intricate concurrent software, aligning seamlessly with

the proposal’s objectives.

Our paper’s exploration of the descriptive succinctness of automata and its implications for software reliability,

maintainability, reusability, simplicity, and software analysis and verification could offer valuable insights for this

research. Each idiom’s unique succinctness advantages, which are not overshadowed by their counterparts, could

be potentially harnessed in your proposed decomposition methods to boost the efficiency of model-checking and

planning.

Our paper lays a solid foundation and offers valuable insights into the role of descriptive succinctness in

concurrent programming. These insights could prove instrumental in our research on enhancing analysis through

succinct decomposition methods.

5 Road map

The central idea of this proposal is to deconstruct reasoning problems into their fundamental elements, such as

subtasks or b-threads. This understanding will then be used to enhance algorithms and search techniques. To

achieve this, we will first establish formal definitions for components, generalized components, and a system of

components.

We have divided the research into specific work plans. Each of these will be assigned to Ph.D. and M.Sc.

students who will be recruited and advised by us. Before delving into the specifics of each work plan, we would

like to highlight the common topics addressed in this research:

• Compositional Analysis Techniques: We will advance the development of specific techniques for gener-

ating logical features. These features aim to describe the properties of the components and the connections

between them, with the goal of deducing properties of the composed system without the need for component

composition.

• Automatic Decomposition Techniques: We will develop innovative decomposition techniques to dissect

complex systems into manageable parts. These techniques will include, but are not limited to, automata-

based decompositions, subtask-based decomposition, and behavioral programming-based decompositions.

• Learning and Exploiting Domain-Specific Patterns: We will create new techniques for learning and

exploiting common structures within specific application domains. This aspect of our research will focus

on identifying patterns and structures that can be used to better understand and analyze the systems we are

studying.

These contributions will form the foundation of our research and guide each work plan’s direction, as elabo-

rated below.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

Work Package 1: Subtask Systems decomposition in planning problem for a specific domain

This proposal’s main idea is to decompose reasoning problems into its components. To do so, we need to formally

define subtasks, generalized subtasks, and a system of subtasks. In the described case, instantiating a generalized
subtask with a given state of a given instance yields a subtask, which is a PDDL task. In this work pack, we need

to implement the following abstractions towards the learning phase together with heuristic and search analysis.

Generalized Subtask Systems

Definition 1 (Generalized Subtask). Let D = ⟨P,A, C⟩ be a planning domain and let PG = {pG | p ∈ P} and

PI = {pI | p ∈ P}. A generalized subtask G for D is a tuple G = ⟨ϕmembership, ϕgoal⟩, where

• ϕmembership is a first-order logic formula over P,PG, C;

• ϕgoal is a first-order logic formula over P,PI ,PG, C.

Definition 2 (Subtask). Let s be a state of planning task ⟨O,P,A, sI, δ⟩ of domain D, where δ is a conjunction

over F , and let G = ⟨ϕmembership, ϕgoal⟩ be a generalized subtask for D. The (instantiated) subtask of s is the

planning task ΠG(s) = ⟨O,P ∪ PI ∪ PG,A, s′I, ϕgoal⟩, where s′I = s ∪ {fI | f ∈ s} ∪ {fG | f ∈ δ}.

Definition 3 (Generalized Subtask System). A set of generalized subtasks S for domain D is a subtask system for

a set of tasks T = {Π1, . . . ,Πn} of D if for each Π ∈ T , the following hold:

• For a state s ∈ S(Π) \SG(Π), there is exactly one generalized subtask G = ⟨ϕmembership, ϕgoal⟩ ∈ S such

that s |= ϕmembership, which we denote S(s).

• Let s ∈ S(Π) \ SG(Π) be a state and π = π0 ◦ · · · ◦ πn (◦ is the concatenation of plans) be any sequence

of operators such that π0 is a plan for ΠS(s)(s) and πi is a plan for ΠS(sJπ0◦···◦πi−1K)(sJπ0 ◦ · · · ◦ πi−1K).
Then, π is a (global) s-plan.

If these properties hold for each task of D, we say that S is a generalized subtask system.

A generalized subtask system can be used to decompose a planning task by identifying the bench for the

current state s (starting with sI), constructing and solving the corresponding bench task, and continuing with the

resulting goal state until a (global) goal is reached.

Finally, we intend to show that,

Theorem 1. A generalized bench transition system(plus some restrictions, e.g., perfect data classification) is a

subtask system.

Exploitation: Bench Walking Baader et al. [1] showed that any description logic (DL) concept/role can be

converted to first-order logic (FOL). Any FOL is easily written in PDDL. To support this end, one of the side

effects of this research is to support the translation from DL to PDDL. This is especially necessary to switch from

the learned “exit” progress states represented as DL formulas into subgoals represented as PDDL, which provide

the syntax and semantics needed in Fast Downward planning systems [13].

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

The first step of our “bench walker” is to identify the initial state and bench to use for the next subsearch. In

the simplest case, we have the current initial state s′I and identify exactly one bench b that has s′I as an inner state,

and that we have not traversed in a circle. Then, we execute a subsearch for the pair ⟨s′I, b⟩.
In the second step, we set up and execute the subsearch. We first update the initial state of the task Π to s′I.

Then, we construct the next subgoal from the outer goal formula of the bench.

For each bench b, we calculate a formula ϕb, which identifies all the states of the bench. We exclude the exit

states here, because they are also part of another bench as entry state and the correct subgoal is determined by the

other bench. ϕb evaluates to true on a state s ∈ X () iff s ∈ states(b) \ exit(b). To learn ϕb, we take all states

s ∈ X () and label them as true iff s ∈ b. Now, we can use any approach – e.g., our description logic and decision

tree technique – to learn the formula. Unfortunately, the learned formula can contain errors.

In addition, we associate each bench b with a formula δb that evaluates to true on all states s ∈ exit(b) and to

false on all states s ∈ states(b) \ exit(b). To learn δb we use only the states s ∈ states(b) and label the results as

true iff s ∈ exit(b).

Work Package 2: Learning Subtask Systems

This work pack is also related to the first example and illuminates its learning aspects. Heusner et al. [15] intro-

duced high-water mark benches, which enable a run of GBFSs to be decomposed into several subsearches. So far,

this decomposition has not been applied in practical tasks, as high-water mark benches can only be generated a

posteriori, i.e., after a planning task has been solved. Here, we exploit the idea by learning a generalized subtask

from benches that are generated on a set of tasks {Π1, . . . ,Πn} from domain D = ⟨P,A, C⟩ that can be solved.

We hope to show experimentally that the learned subtask systems generalize to large instances of the same domain

in the empirical evaluation of the research. For now, we formally define such systems. Figure 3 is an example of

a generalization over small instances; we plan to add more details as the research progresses. In the following, we

describe the learning steps in detail.

Our approach consists of the following steps:

1. Generate Benches: generate all benches for each task;

2. Generate Features: generate the description logic features; that allow to (perfectly) describe all states on

all benches and all exit states of all benches.

3. Learn Goals: for each bench, learn a formula that describes its exit states; separate exit states from all

other states reachable from that bench

4. Merge Benches: merge bench A into bench B if the goal formula of B is also perfect for A;

5. Learn Memberships: for each bench, learn a formula that describes the states in the bench; separate

member states from all other states

6. Iterate: if any learned formula is imperfect, return to description logic feature generation (step 2) with a

higher complexity limit and repeat.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

Generating Benches: For each input task Πi, we label the states of a planning instance with respect to a heuristic

h as progress or non-progress states. To do this, we first expand the reachable state space. For each state s, we

track its predecessors pred(s), successors succ(s), and heuristic estimate h(s). Note that this is done on small

examples, where expending the search space is feasible.

In a second iteration, we compute the high-water marks (hwm). Initially, we set hwm(g) = h(g) for all goal

states g and regard hwm(s) as undefined for all other states s. We maintain an open list of states ordered by

high-water mark values that initially contain all goal states. Upon retrieving a state s from the open list, we insert

all its predecessors p ∈ pred(s) with undefined high-water marks into the open list with a high-water mark value

of hwm(p) = max(h(p), hwm(s)). The algorithm guarantees that a state is only inserted once into the open list,

namely after its successor with the lowest high-water mark value has been retrieved from the open list. When this

process terminates, only unsolvable states have an undefined high-water mark, which we treat as ∞ from here on.

As a result, for each input task Πi, we have constructed a BTS Bi = ⟨Vi, Ei⟩, where Vi is a partition over

Si \ SG and Ei are the edges between the benches. Let B = ⟨V,E⟩ such that V =
⋃

i Vi, E =
⋃

iEi, and

S =
⋃

i Si are all goal state S.

Inner: robby at B ∧ ¬carry ∧ ball at A

Inner Goal: robby at A

Outer Goal: ¬carry ∧ robby at A ∧ ball at A

Membership: ¬carry ∧ ball at A

1
Inner: robby at A ∧ ¬carry ∧ ball at A

Inner Goal: carry

Outer Goal: carry ∧ robby at A

Membership: robby at A ∧ ¬carry ∧ ball at A∨
robby at A ∧ carry

2

Inner: robby at A ∧ carry

Inner Goal: robby at B

Outer Goal: robby at B ∧ carry

Membership: carry

3
Inner: robby at B ∧ carry

Inner Goal: ¬carry
Outer Goal: robby at B ∧ ¬carry
Membership: robby at B

4

Inner: ⊥
Inner Goal: ⊤
Outer Goal: ¬ball at A ∧ ¬carry
Membership: ¬ball at A ∧ ¬carry

5

Figure 3: GBTS for a toy domain, a gripper with one arm
that needs to move balls between rooms using the h∗ heuris-
tic. In each box, a formula representing the relevant states is
presented.

Generating Features: In the second step, we gen-

erate the features used in our formulas to describe the

membership and goals of the subtasks. The feature

generation is an iterative process and is parameterized

with a complexity limit ℓ. In iteration j, only features

of complexity j are generated. In the first iteration, we

only consider atomic concepts and roles over the pred-

icates P . In every succeeding iteration j, we addition-

ally consider all features obtained by combining fea-

tures from iteration j − 1 with a rule from Section 3.3

if their combined complexity is equal to j. We prune

any new feature f if its denotation is the same on all

states s ∈ S as the denotation of a previously consid-

ered feature. We stop the feature generation once we

reach the complexity limit. Let Fℓ denote the set of

considered features.

Learning Goals: For each bench v ∈ V , we com-

pute a formula ϕgoal that describes all exit states of the

bench. Those exit states become subgoals of subtask. We generate the training samples by enumerating all pairs

of states ⟨s, r⟩ such that s ∈ v and r is reachable from s without traversing over an exit state. We label a pair

⟨s, r⟩ positively if r is an exit state and negatively otherwise. Furthermore, for each feature f ∈ Fℓ we com-

pute whether its denotations on s and r as well as the set differences between those denotations are empty, i.e.,

|f(s)| > 0, |f(r)| > 0, |f(s) \ f(r)| > 0, |f(r) \ f(s)| > 0. As [8], we train a decision tree on those samples,

extract a formula in disjunctive normal form from the tree, and simplify it using SymPy [22].

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

There is no guarantee that the generated features are sufficient to perfectly separate exit states from non-exit

states because we might need a feature with a complexity higher than the complexity limit ℓ. In this case, we have

to increase ℓ and start again.

Merging Benches: Let v, v′ ∈ V be two benches with goal formulas ϕgoal(v) and ϕgoal(v
′), respectively.

If these two benches represent the same subtask, then we replace ϕgoal(v) with ϕgoal(v
′) iff ϕgoal(v

′) is more

general than ϕgoal(v) (same for ϕavoid(v)).

Learning Membership: In this step, we learn formulas for ϕmembership(v) for each v ∈ V ′.

Theorem 2. What we learn (under some assumptions) is a subtask system.

Note that if the input is such that all domain features are included, we learn a generalized subtask system. (in

our experiments, it generalizes to all instances of a domain)

Iteration: This process is planned to be executed iteratively as long as there are still benches that can be merged.

Regarding work packages 1 and 2, we already have some preliminary code and successful preliminary results

for some domains. However, learning the right formula for all domains could be challenging. Because the research

is carefully structured, we will gain a deeper understanding of the problem, even if the results are not as hoped.

Work Package 3: Decomposing Systems through Abstraction and Decomposition

This work package is intricately crafted to unravel the complexities embedded within computer systems, human-

made processes, and natural phenomena. Our overarching objective is to forge sophisticated methodologies that

autonomously construct models from data, thereby empowering a profound understanding and analysis of the

intricate behaviors inherent in these systems.

Guided by the principles of decomposition, we systematically dismantle the overall behavior of systems into

smaller, more manageable components. This strategic breakdown not only enhances the conceptualization, under-

standing, and maintenance of each individual system element but also sets the stage for a more detailed analysis.

Complementing the decomposition process is the application of abstraction, a meticulous mapping of system be-

havior to a less detailed version within labeled transition systems (LTS). This abstraction empowers each model

component to focus on specific system patterns in isolation, significantly improving overall comprehensibility.

At the heart of our proposed solution lie transformations—a mechanism designed to represent the behavior

patterns of the system in a succinct and isolated manner. Our aim is to identify a set of transformations that

is strongly equivalent to the language describing the system. This set may include an identity transformation

singleton or a collection of intersection-based transformations, each weakly equivalent by definition. The optimal

set of transformations ensures that the corresponding automata exhibit simplicity, gauged through various criteria

such as state and transition counts.

An initial validation of the approach: To validate our methodology, we embarked on an exploration of

automata-based transformations using Tic-Tac-Toe (TTT) as a model. Despite challenges in applying the RPNI

algorithm to construct a deterministic finite automaton (DFA) tailored to legal TTT games, we successfully de-

vised three specialized transformations aligning with TTT’s rules. These transformations resulted in 26 DFAs,

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

providing an interpretable representation of TTT and highlighting the impact of automata-based structures on

explainability and expressiveness. Future explorations will delve into advanced automata-related structures, in-

cluding context-oriented behavioral programming [7], to elevate our modeling capabilities for intricate patterns.

Our ongoing research trajectory pivots towards advancing the understanding and application of decomposed

systems. We aspire to pioneer techniques for learning decomposed systems, leveraging networks to decipher

composed systems, and conducting a user study to assess various decomposition formalisms. Building on the ob-

served success with Tic-Tac-Toe (TTT), we plan to integrate solvers and logical engines to enhance adaptability.

Additionally, we are unwaveringly committed to developing a graphical modeling language for decomposed sys-

tems, refining existing formalisms through user studies. This holistic approach not only contributes significantly

to the theoretical foundations of decomposed systems but also holds practical promise in system modeling and

understanding.

Work Package 4: Inferring Properties of Behavioral Programs from B-threads

This work package spearheads the development of robust methodologies and tools to compose reactive systems

seamlessly. Our central objective is to augment development and documentation with comprehensive correctness

proof. Our approach harnesses behavioral programming (BP) principles to analyze individual b-threads and de-

duce the properties of the combined system from these properties, effectively bypassing the need to scrutinize the

product space encompassing the overall state space of the system. Our overarching vision entails a paradigm shift

in program verification methodologies.

Example: Consider a b-program with three b-threads. Each b-thread exhibits distinct behaviors related to

the “ping” event: the first blocks “ping” when time is not divisible by p, the second when not divisible by q,

and the third consistently requests “ping”. Leveraging an existing BP model-checker, we can verify individual

b-thread properties, ensuring the correct implementation of these properties. Our paradigm shift lies in employing

a deduction engine to deduce system-wide behavior. By combining the conditions from the first two b-threads,

we deduce that “ping” occurs only when time is divisible by p · q, obviating the need to scrutinize the entire state

space. This innovative methodology achieves an exponential improvement in verification time, reducing it from

p · q to p+ q states.

The concept of verifying behavioral programs compositionally was introduced in the work by Harel et al. [?
]. In this study, thread properties are expressed as logical formulas and then processed by an SMT solver for

the verification of global properties. An interesting insight arising from this research is that, within a simple and

strict computational model, it is possible to reason about modules without relying on complex assume-guarantee

proofs (e.g., [? ?]) or the circular reasoning often required in less constrained paradigms. This suggests that

instances like these support the idea that a straightforward model can fulfill the condition that modules allow

for the formulation of meaningful properties, which may later imply the desired global property. The additional

requirement, stating that programs can be decomposed into modules, with the verification of module properties

being substantially more economical than verifying the composite program, is met due to the linear nature of

model-checking in relation to program size. This implies the need for modules to be exponentially smaller than

the composite program in terms of the number of states. While concurrency inherently enables the creation of

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

smaller modules, a relevant research question arises: does the limited form of concurrency provided by the BP

synchronization method, along with its request, wait-for, and block idioms, suffice for this purpose?

Our method is poised to demonstrate the automation and streamlining of program verification by strategically

amalgamating the properties of individual modules. These modules, intricately specified and rigorously verified

in isolation, will undergo a harmonization process with application-independent specifications. This synthesis

will encompass both BP semantics and general theories, engendering a synergistic effect that exponentially accel-

erates the verification process. This efficiency surpasses the traditional model-checking approaches for composite

applications, signifying a leap forward in verification methodology.

A fundamental dimension of our work involves accentuating the inherent value of formalizing properties

for independent modules. Beyond their role in facilitating correctness proofs, this formalization process stands

as an invaluable source of documentation for future development endeavors. Our commitment is steadfastly

aligned with the broader industry objective of instating formal correctness proofs as a standard practice in the

development of reactive systems. Our vision extends beyond this work package, aspiring for widespread adoption

by programmers across the industry. Through this concerted effort, we envision a future where formal proofs of

correctness seamlessly integrate into the very fabric of reactive system development, championed and embraced

by programmers at large.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

References

[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider,

editors. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University

Press, 2003.

[2] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.

Wadsworth, 1984.

[3] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of the Theory and

Practice of Software, 14th International Conference on Tools and Algorithms for the Construction and Anal-

ysis of Systems, TACAS’08/ETAPS’08, page 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[4] Rina Dechter and Judea Pearl. Generalized best-first search strategies and the optimality of A∗. JACM,

32(3):505–536, 1985.

[5] James E. Doran and Donald Michie. Experiments with the graph traverser program. Proceedings of the

Royal Society A, 294:235–259, 1966.

[6] *Dominik Drexler, Jendrik Seipp, and Hector Geffner. Learning sketches for decomposing planning prob-

lems into subproblems of bounded width. In Proc. ICAPS 2022, pages 62–70, 2022.

[7] Achiya Elyasaf. Context-Oriented Behavioral Programming. Information and Software Technology,

133:106504, May 2021. Publisher: Elsevier BV.

[8] Patrick Ferber, Liat Cohen, Jendrik Seipp, and Thomas Keller. Learning and exploiting progress states in

greedy best-first search. In Proc. IJCAI 2022, pages 4740–4746, 2022.

[9] Guillem Francès, Blai Bonet, and Hector Geffner. Learning general planning policies from small examples

without supervision. In Proc. AAAI 2021, pages 11801–11808, 2021.

[10] Guillem Francès, Blai Bonet, and Hector Geffner. Learning general policies from small examples without

supervision. arXiv:2101.00692 [cs.AI], 2021.

[11] David Harel, Guy Katz, Robby Lampert, Assaf Marron, and Gera Weiss. On the succinctness of idioms for

concurrent programming. In Luca Aceto and David de Frutos-Escrig, editors, 26th International Conference

on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages

85–99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[12] David Harel, Assaf Marron, and Gera Weiss. Behavioral programming. Commun. ACM, 55(7):90–100, jul

2012.

[13] Malte Helmert. The Fast Downward planning system. JAIR, 26:191–246, 2006.

[14] Malte Helmert and Gabriele Röger. How good is almost perfect? In Proc. AAAI 2008, pages 944–949, 2008.

RESEARCH PROGRAM Application No. 1820/24, PIs: Liat Cohen, Gera Weiss

[15] *Manuel Heusner, Thomas Keller, and Malte Helmert. Understanding the search behaviour of greedy best-

first search. In Proc. SoCS 2017, pages 47–55, 2017.

[16] Manuel Heusner, Thomas Keller, and Malte Helmert. Best-case and worst-case behavior of greedy best-first

search. In Proc. IJCAI 2018, pages 1463–1470, 2018.

[17] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuristic search.

JAIR, 14:253–302, 2001.

[18] Robert C. Holte. Common misconceptions concerning heuristic search. In Proc. SoCS 2010, pages 46–51,

2010.

[19] Richard E. Korf, Michael Reid, and Stefan Edelkamp. Time complexity of iterative-deepening A∗. AIJ,

129:199–218, 2001.

[20] Alberto Martelli. On the complexity of admissible search algorithms. AIJ, 8:1–13, 1977.

[21] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel

Weld, and David Wilkins. PDDL – The Planning Domain Definition Language – Version 1.2. Technical

Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, Yale University,

1998.

[22] Aaron Meurer, Christopher Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey Kirpichev, Matthew Rocklin,

AMiT Kumar, Sergiu Ivanov, Jason Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian Granger,

Richard Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa,

Matthew Curry, Andy Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cim-

rman, and Anthony Scopatz. SymPy: symbolic computing in Python. PeerJ Computer Science, 3:e103,

2017.

[23] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley,

1984.

[24] Christopher Wilt and Wheeler Ruml. Speedy versus greedy search. In Proc. SoCS 2014, pages 184–192,

2014.

[25] Christopher Wilt and Wheeler Ruml. Building a heuristic for greedy search. In Proc. SoCS 2015, pages

131–139, 2015.

[26] Christopher Wilt and Wheeler Ruml. Effective heuristics for suboptimal best-first search. JAIR, 57:273–306,

2016.

	Introduction
	Two Motivating Examples
	Background
	Classical Planning
	Behavioral Programming
	Description Logic
	Decision Trees

	Related Work
	State Space Topology/Progress States
	Learning and Exploiting Progress States in GBFS
	Succinctness of Behavioral Programs

	Road map

