	[image: C:\Users\home\Desktop\logos\带白边的logo\JCDD-Water\Mathematics\mathematics_high.png]
	
	[image: ]




Mathematics 2023, 11, x FOR PEER REVIEW	4 of 5

Article
Improving Weather Forecast for Sailing Events Using a Combination of a Numerical Forecast Model and Machine- Learning Postprocessing
Stav Beimel, 1, Yair Suary, 2 and Freddy Gabbay 3,*
	Citation: To be added by editorial staff during production.
Academic Editor: Firstname Lastname
Received: date
Revised: date
Accepted: date
Published: date
[image: ]
Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).


1	Faculty of Marine Sciences, Ruppin Academic Center; e-mail@e-mail.com	Comment by Cheryl Baltes: AUTHOR: Is this affiliation correct? Later on you say the research was part of this author’s master’s thesis project.	Comment by Cheryl Baltes: AUTHOR: Add email here
2	Faculty of Marine Sciences, Ruppin Academic Center; yairs@ruppin.ac.iyairs@ruppin.ac.il 
3	Faculty of Engineering, Ruppin Academic Center; freddyg@ruppin.ac.il
*	Correspondence: freddyg@ruppin.ac.il;
Abstract: Accurate predictions of wind and other weather phenomena are paramount essential for making informed strategic and tactical decisions in sailing. Sailors worldwide utilize current state-of-the-art forecasts, yet such forecasts are often insufficient because they do not offer the high temporal and geographic resolution required by sailors. This paper examines wind forecasting in competitive sailing where weand demonstrates that traditional wind forecasts can be improved for sailing events by using an integration of traditional numerical modeling and machine-learning (ML) methods. Our primary objective is to provide practical and more precise wind forecasts that will give sailors a competitive edge. As a case study, we demonstrate the capabilities of our proposed methods on improving wind forecasting at Lake Kinneret, a popular sailing site. The lake wind pattern is highly influenced by the area’s topographic features and is characterized by unique local and mesoscale phenomena at different times of the day. In this research, we simulate the Kinneret wind during the summers of 2015–2021 in up to one-kilometer resolution using the Weather Research and Forecasting (WRF) atmospheric model. The results are used as input for convolutional neural network (CNN) and multilayer perceptron (MLP) machine-learning (ML) models to post-process and improve the WRF model accuracy. These advanced ML models are trained using training datasets based on the WRF data as well as real data measured by the meteorological service, and subsequently, a validation process of the trained ML model is performed on unseen datasets against site-specific meteorological service observations. Through our experimental analysis, we demonstrate the limitations of the WRF model. It uncovers notable biases in wind direction and velocity, particularly a persistent northern bias in direction and an overestimation of wind strength. Despite its inherent limitations, this study demonstrates that the integration of ML models can potentially improve wind forecasting, due to the remarkable prediction accuracy rate achieved by the CNN model, surpassing 95%, and partially for the MLP model. Furthermore, a successful CNN-based preliminary forecast was effectively generated, suggesting its potential contribution to the future development of a user-friendly tool for sailors.	Comment by Cheryl Baltes: AUTHOR: It is unclear what you mean here. Are you saying the MLP was less accurate or it is a partial solution? Please explain/reword.
Keywords: Weather forecasting; Machine learning; Convolutional Neural Networks; Multi-layer Perceptron. 
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1. Introduction
In the realm of atmospheric science, wind- pattern forecasting holds a pivotal role in understanding and predicting weather phenomena. This introductory section discusses the fundamental principles governing wind behavior, challenges in accurate wind prediction, the importance of accurate weather predictions, and their impact on competitive sailing. In doing so, it highlights the significance of wind forecasts for sailors' strategic and tactical decisions. To enhance wind predictions, the research employs machine-learning (ML) techniques, particularly convolutional neural networks (CNNs) and multilayer perceptron (MLP). These models are trained using data from the Weather Research and Forecasting (WRF) atmospheric model and real data from the Israeli Meteorological Service (IMS), to improve wind velocity and direction predictions on Lake Kinneret. The research aims to provide improved wind forecasts for competitive sailing, where accurate weather information can give sailors a competitive advantage.
   1.1. Wind Characteristics
The atmosphere is characterized by many quantitiesvariables. Temperature and relative humidity particularly control the atmospheric pressure gradient to a large extent [53] (McGauley, Zhang, and Bond 2004). According to Pascal's Law, air flows from higher to lower pressures to equilibrate, which results in air movement (i.e., wind). The parameters controlling wind are affected by many factors, the major ones being latitude-dependent radiation and geographic differences in heat fluxes. When flowing from high to low pressure, air is diverted by the Earth’s rotation and formsing cyclonic weather systems, where air movement is parallel to the pressure isobars form. This global process is attributed to the Coriolis effect (McDonald 1952)[52]. 
Unlike synoptic system-based winds, which are generated by global processes and sprawl over a big large scale (1,000 km or more), local wind patterns are highly dependent on land topography (Jiménez and Dudhia 2012; Ruel, Pin, and Cooper 1998)[35, 71]. Varied topography over a certain area can result in wind enhancement, deceleration, and changes in direction and strength within space and time. For instance, the wind shadow effect causes a reduction of in wind velocity and increased fluctuations in the velocity airflow, usually due to land obstructions such as topography, flora, and urbanization (Spirn and Whiston 1986)[76]. On the contrary, narrow valleys or building avenues can result in forced air movements, a phenomenon known as the wind funnel effect, that results in an increase in wind velocity (Ricciardelli and Polimeno 2006)[70].
In addition, mountainous topography is related to downslope wind, which results in air forced down the slope. The air is compressed by the increasing air pressure toward the lower altitude and therefore is accelerated. Downslope wind is usually caused by warmer and drier conditions, due to the wind's enhancement (Durran 2003)[21]. Another common and important phenomenon is the sea breeze, a local- scale effect that occurs along coastlines. The sea breeze is caused by temperature differences between the a body of water and its adjacent land. During the day, the water, characterized by higher specific heat, is cooler than the land, which results in a landward wind breeze due to the local pressure gradient and air (Miller 2003)[56].

   1.2. Wind Forecasting
Currently, weather predictions, are mostly conducted by numerical analysis using physical simulation models. The major global models used are the GFS (Global Forecast System) and ECMWF (European Centre for Medium-Range Weather Forecasting),. While whereas local simulations are conducted using other models such as WRF (a regional model which that is used in this research) and ICON (Icosahedral Nonhydrostatic). Numerical Weather Prediction (NWP) relies on the physical conservation laws, specifically the ideal gas law. It calculates the future state of weather systems by computing spatial and temporal derivatives of the weather system (Pu and Kalnay 2019)[66].
Numeric forecasting is a cyclical process, and its main stages are as follows:
1. Synthesis of measured environmental and simulated data that describes the state of the atmosphere. It is used as input (initial and boundary conditions) for simulation software.
2. Four-dimensional (3D space + time dimension) simulation of the future atmospheric state is performed using atmospheric model simulators. 
3. Postprocessing of simulation output produces a forecast.
4. Data assimilation of model output and newly measured atmospheric properties are used to create initial conditions for the next run of the model.

The forecasting cycle has been used since the 1960s (Bauer, Thorpe, and Brunet 2015; Coiffier 2011)[8, 18]. Since then, immense improvements in predictability have been achieved. The improvements arose mostly from better measurement of atmospheric quantities (Bauer, Thorpe, and Brunet 2015)[8] and increased processing power that enables an ever-increasing resolution of simulation (Lynch 2008)[48]. Atmospheric modelers gave focused most of their attention to on Sstage 4 of the prediction cycle (data assimilation). Methods such as ensemble forecasting (Hatfield et al. 2018; Vallino 2000)[31, 80] and Kalman filters (Monache et al. 2011; Allen, Eknes, and Evensen 2003)[1, 57] are used to produce better representations of the atmosphere, and, with it, better predictability. As a result, weather predictability has increased from about three days in advance during the 1990s to currently about 10 days in advanceat present (Bauer, Thorpe, and Brunet 2015)[8].
However, even this improved weather predictability has does not meet operational forecasting needs. Currently, the ability to perform both long-range weather prediction (predicted occurrence of rain events in the upcoming winter or even month ahead) and short-range weather forecasts or nowcasting (probability of extreme wind gusts during the next hour) remains limited. Meteorological systems are considered chaotic, meaning minor inaccuracies in the initial prediction conditions may grow rapidly and therefore affect the forecasting performance (Buizza 2001)[16]. This conception relies on atmospheric instability, which has many variables and thus many degrees of freedom in its set of equations (Trevisan and Palatella 2011)[79].
Small- scale forecasting plays an ever-greater role in competitive sailing. The use of very high- resolution data, thanks to current simulation tool capabilities, has allowed models to exhibit higher performance. Recent works in the field show great improvement and further potential, yet some challenges and questions remain unanswered. For instance, one study suggests using a super-high-resolution WRF simulation and presents an improved wind- direction prediction (Giannaros et al. 2018, Arrillaga et al. 2016)[6, 24]. However, this work failed to provide reliable prediction on specific days, and it suggested initialization and lateral boundary conditions as a barrier needing to be overcome (Crosman and Horel 2010; Giannaros et al. 2018)[19, 24].  
Forecasting for sailing events focuses on two areas: site characterization (Spark and Connor 2004; Pezzoli and Bellasio 2014; Li 2008)[46, 65, 75] and high-resolution short-term forecasting (Spark and Connor 2004; Giannaros et al. 2018)[24, 75]. Site characterization aims to help sailors prepare for sailing events. Knowing the characteristic weather conditions helps them plan trainings and select suitable equipment. Recently, a comprehensive method of characterization was suggested by Pezzoli and Bellasio (2014)[65], who created clusters of typical days for a sailing venue and a “call book” that helps with tactical decisions based on the characteristics of the cluster of days. 
   1.3. Competitive Sailing
Sailing is a globally popular competitive sport that is has been a part of the Olympic games since Paris 1900. It is also a common recreational activity that is performed using many different types of seacrafts, including dinghies, windsurfers, kite surfs, and yachts. The sport greatly developed advanced during the 20th century. A sailing competition (regatta) consists of a series of races as illustrated in Figure 1. A signal given at the starting line begins Tthe race starts at the starting line by a signal, and the competitors' race scores is given to competitors by theirare based on the order of they reaching the finish line. The competition winner is determined by summing the race scores. A Vvariety of courses and scoring systems are used. Each course is composed of several legs, each with different angles relative to wind direction.
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Figure 1. Inner trapezoidal course, one of the most common Olympic sailing courses. The red and green lines indicate the sailing course that is marked by white buoys. Mark rounding order is Start-1-4s/4p-1-2-3s/3p-Finish (Iimage courtesy of the BBC.).	Comment by Cheryl Baltes: AUTHOR: This is the only time you reference the “Start-1-4s/4p-1-2-3s/3p-Finish” mark rounding order, and it does not correspond to figure labels, so I deleted it. If it is essential, you need to explain what the numbers and letters represent here or in the main text. 

In most cases, the upwind leg is crucial because sailing upwind is physically impossible (in contrast with the other legs/angles). Thus, the upwind leg requires the craft to “zig-zag” to the windacross the course. The exact course being sailed upwind is not determined by the racing rules, however. Therefore, sailors can alternate between routes, which causes the spreadsing of the competitors on across the racecourse. In the different positions,This means that each sailor experiences different wind velocities and directions. Naturally, the selection of the correct best route is crucial for the sailor’s success. Additionally, the zig-zag route makes upwind legs longer in duration (60% of the racing time).
The success of a sailor or sailing team is determined by three factors: (1) the physical shape that allows them to use the sail craft optimally, (2) the technical ability that enables them to trim the sail craft efficiently to the best aerodynamic and hydrodynamic efficientlypath, and (3) the tactical skills composed ofneeded to adjusting course, according tobased on the courses of other sailors and predicting and changes ofaccount for wind prediction and changes during the race (Gourlay and Martellotta 2011; Messager et al. 2020; Giannaros et al. 2018)[24, 27, 54]. An additional way to describe the aspects necessary for success focuses on the decision-making during a race: strategy, tactics, boat speed, and boat handling (Banhegyi et al. 2022)[7]. Temporal changes in wind velocity affect the way the equipment should be trimmed and the selection of the optimal upwind route, which is why accurate high spatial and temporal resolution wind forecast is crucial for the success of sailors in races.	Comment by Cheryl Baltes: AUTHOR: The shape of what? Please clarify if you are referring to the route/path or the craft here.	Comment by Cheryl Baltes: AUTHOR: Is this edit correct? Aerodynamic and hydrodynamic are adjectives, so they need a noun to modify.
The specific requirements of high temporal and spatial resolution forecasting for sailing events are similar in other fields such as wind farms (Wang 2018)[94], marine operations (Natskår 2015)[95], artillery (Zhiyuan 2019)[96], and more. However, these requirements are inherently hard to satisfy using the standard numerical weather prediction process (Lorenz 1969, Buizza 2015)[97, 98], which calls for implementation of new prediction methods.
Extensive research was has been conducted on forecasting to for sailing events,. Bbeginning at with improving and adjusting numerical models to specific sites (Massager et al. 2020)[54]. In one study, the integration of WRF simulations and a large observation database were summarized, collected, and finally organized into a “call book”. This provided athletes with the necessary local weather information simply and effectively; in the context of decision-making, it was found by other work to help support and guide their race strategy preparation (Masino et al. 2021)[51]. Therefore, in major events, using a dedicated weather forecast team is both common and beneficial. 
   1.4. Machine Learning
Machine learning (ML) is a field of computer science that uses algorithms that improve automatically through experience (Jordan and Mitchell 2015)[36]. It is commonly regarded as a subdomain within the broader field of artificial intelligence (AI) and that encompasses various challenges such as classification, regression, clustering, and anomaly detection. Machine- learning algorithms build a mathematical model based on sample data, known as "training data," to make predictions or decisions without being explicitly programmed to do so (Koza et al. 1996)[40].
During the last decade, ML methods have matured, and among others, deep- learning approaches have become prominent. Deep learning is a branch of ML based on various types of artificial neural networks. It was found to be a powerful tool for a variety of tasks, mainly due to its ability to recognize patterns and relations within high-dimensional spaces (Rasp et al. 2020)[67]. Application areas of this technology include natural- language processing (Otter, Medina, and Kalita 2021)[62], speech recognition (Amodei et al. 2016)[4], image analysis (Komura and Ishikawa 2018)[39], stock market forecasting (Patel et al. 2015)[64], and recently, even predicting local pandemic outbreaks (Ardabili et al. 2020)[5]. The usage of ML techniques in natural science has significantly increased in recent years.
The deep- learning models employed in this work consist of CNN and MLP. Both models can extract features and process complex relations of raw input data. Deep neural network (DNN) structures are characterized by multiple layers of interconnected nodes, each performing specific computations and activations (the most common activators are ReLU, Sigmoid, and Tanh). These layers, typically consisting of an input layer, multiple hidden layers, and an output layer, enable the network to learn intricate features and hierarchies from the input data. Activation functions within each layer introduce nonlinearity, facilitating the DNN's ability to model complex relationships and make accurate predictions or classifications (Goodfellow, Bengio, and Courville 2016; Montavon, Samek, and Müller 2018; Krizhevsky and Sutskever 2012)[26, 42, 58]. A MLP is a fully connected neural network, where each neuron in one layer is connected to every neuron in the subsequent layer. It is a densely connected graph structure. MLPs are versatile and suitable for various tasks, including general-purpose ML problems, tabular data analysis, and tasks where relationships between features are important. A CNN, on the other hand, is characterized by its specific architecture, including convolutional layers, pooling layers, and fully connected layers. Convolutional layers use filters to scan across the input data, extracting features through local receptive fields, enabling better handling of grid-like data such as images. CNNs are primarily designed for processing grid-like data, making them highly effective for tasks involving images, video, audio, and other multidimensional and spatial data. Their ability to automatically learn and detect hierarchical features from input data is crucial in image recognition and computer vision tasks.
In this research, we aimed to improve the temporal prediction of wind velocity and direction at a specific point in Lake Kinneret. We employed a machine learningML model to post-process the WRF atmospheric model predictions, to improve prediction accuracy. The WRF atmospheric model output was used as an input for the training process of the machine learningML model in conjunction with the site observations (provided by the Israeli Meteorological Service, IMS) as the validation set. This methodology was applied to two machine learningML models (CNN and MLP). 
The remainder of this paper is structured as follows: Section 2 describes prior work,; Section 3 presents our combined numerical forecast model and machine learningML method,; Section 4 showcases the experimental results, and Section 5 summarizes our conclusions.

2. Prior Works
LatelyIn prior works, ML methods have been introduced into the numerical weather prediction cycle (Krasnopolsky and Fox-Rabinovitz 2006),[41] and attempts have been made to use ML methods in different stages of numerical weather prediction. Some examples include improving remote sensing of the environment (Lary et al. 2016)[44], data assimilation (Gilbert et al. 2010)[25], and subgrid scaling of physical processes that were previously performed using approximation formulas (Brenowitz and Bretherton 2018)[15]. In 2019, the first attempt was made to completely abandon physical simulation and use a ML model for weather prediction (Rasp et al. 2020)[67].
One of the earliest implementations of ML learning were in the field of numerical weather prediction is involved Kalman filters (Tarn et al. 1970, Urrea et al. 2021)[87, 88]. The filter, which improves forecasting in nonlinear forecasting by performing non-Gaussian estimation of the system, was used for to improveing the observation data and data assimilation (Lorenc 1986, Richter et al. 1970)[89, 90]. Later, when multi model ensemble forecasting was developed, ensemble Kalman filters became the near norm for representation of forecast uncertainty.
Recent examples of ML methods for weather forecasting include analyzing the wind signal of the prior minute by using a neural network to predict wind shifts during the following minute in order to support competitive sailors (Tagliaferri, Viola, and Flay 2015)[78].; Pprecise short-term wind forecasting was done by using a measured wind signal decomposed using a wavelet transform as an input for a fuzzy ARTMAP neural network (which is superior to generic neural networks in learning new features while forecasting); the forecasted signal is was then recomposed to wind signal forecast using wavelet transform (Haque et al. 2015)[29]. Estimation of a non-direct model output (Rroad surface temperature) by using quantile regression forests on a multiple prediction models’ output has beenwas suggested by (Kirkwood et al. 202)[91].	Comment by Cheryl Baltes: AUTHOR: Confirm citation number here. There was not a single author by this name in your list.
These earlier implementations of machine learning in weather predictions have caught the attention of both AI moguls such as Google and Huawei and weather prediction agencies such as the European center for weather predictionECMWF, who which recently published their versions of an AI weather forecast. Google implemented a unique data- interpolation method on 0.25° weather reanalysis data to create the input for a 16- layers graph neural network in an encoder- decoder configuration to create a six-hour global forecast (which can then be fed used as input to create longer- range forecasts). That approach and achieved more accurate forecasts skill higher than current prior operational forecasts both in terms of everyday prediction and in terms of extreme weather prediction (Lam 2023)[92]. Huawei implemented a standard encoder- decoder design for vision transformers on reanalysis data with an eEarth- specific positional bias version of the shifting window and were also able to that also performed better than current prior NWP methods (Kaifeng 2023)[93]. Both Google and Huawei have were also been able to significantly reduce computer resources in when performing their forecasts.
3. Combined Numerical Forecast Model and Machine Learning
In this section, we present our integrated numerical forecast model in conjunction with the ML approach. In the present study, our objective was to enhance the temporal forecasting of wind velocity and direction at a designated location within Lake Kinneret. To achieve this goal, we implemented a machine learningML framework to refine predictions derived from the WRF atmospheric model, thereby augmenting prediction accuracy. As illustrated in Figure 2, the output of the WRF atmospheric model served as the input for the training process of the machine learningML model, incorporating site-specific observations obtained from the IMS as the validation dataset. We begin this section by describing the research site, followed by a detailed discussion of the WRF simulation model, the training and validation dataset, and finally, our proposed ML model.
	[image: ]	Comment by Cheryl Baltes: AUTHOR: In Fig. 2, change “data set” to dataset (2 instances).
Figure 2. Research model system flowchart: Part I is the training phase of the model, where theduring which GFS data is used as initial conditions for a WRF simulation, which produces an initial wind prediction (output). This output serves as an input to train the ML model with the IMS observation data set. Part II Ⅱ is the validation of the trained ML model forecasts. In this phase, the output of the physical prediction (WRF) is used as an input to the trained ML model in conjunction with the IMS validation dataset to measure the model prediction accuracy on unrecognized input data.
   3.1. Research Site
Lake Kinneret, also known as the Sea of Galilee and shown in Figure 3, (also known as the Sea of Galilee) is the world’s lowest freshwater lake, with an altitude range of 208–215 m below sea level. It is located at the northern part of the Dead Sea rift, between the Galilee and the Golan Mountain regions (N 35°35, E 32°50). The average daily annual air temperatures range between 17–18°C in the winter and up to 40°C during the summer, whereas the lake's average surface water temperatures are 15–16°C in the winter and reach 31°C in the summer. The Kinneret’s surface area is about 166 km2 with a maximum length and width of 22 and 12 km, respectively. (Hadas, Kaplan, and Sukenik 2015; Herschy 2012; Pan, Avissar, and Haidvogel 2002)[28, 32, 63].
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Figure 3. Map of the study site: (a) is the Llocation of the research site in the Eastern Mediterranean., tThe green box illustrates the largest physical simulation domain (low- resolution simulation), the red box illustrates the second physical simulation domain, and the orange markers in (b) and (c) illustrates the meteorological measurement’s location (Kfar Nahum, also in c). The blue box in (b) illustrates the high-resolution domain.
The Kinneret wind system during the summer is characterized by strong westerly winds in the afternoons, which makes it a popular sailing site. The daily wind cycle starts with the morning's lake breeze, from approximately 07:00 to 11:00, blowing from the lake toward the shores and usually light, up to 4–5 m/s (Alpert et al. 1982)[3]. The mechanism that drives the afternoon winds is the westerly Mediterranean Sea breeze, which develops in the morning to early noon and blows toward Lake Kinneret. The high prevalence of the Mediterranean Sea breeze is a local phenomenon that relies on the stable presence of the Persian trough, that dominates during summer (Berkovic 2016)[10]. When the westerlies originating from the Mediterranean reach the lake, they blow significantly stronger, reaching velocities of 8–15 m/s (Serruya 1975, Saaroni and Ziv)[72, 73]. 
The wind velocity enhancement process in the Kineret is substantial, and whereas seasonal average winds at the Mediterranean are in the 4–6m/s range (Saaroni and Ziv 2000)[72], they increase approximately threefold when reaching the Kinneret. Due to the lake’s shape, the westerly wind reaches the lake first at the west bank, at the area of Vadi Arbel, where the strongest winds are experienced. The wind gradually decreases toward the middle of the lake and the eastern coast.
Three factors affect the temporal and geographic distribution of the Kinneret’s wind. The primary factor is the downslope wind., The westerly Mediterranean breeze (~45 km west of the Kinneret) climbs the Galilee Mmountains and then blows downwards toward the rift. This process is intensified by differences in air temperature, between the colder, humid, and mountain-descending air and the warm, dry rift air. Furthermore, the pressure gradient is intensified by the afternoon deepening of the Persian trough (Arieh Bitan and Sa’Aroni 1992)[13]. The second factor is a wind funnel mechanism:, tThe wind strengthens by the Galilee valleys, most of them which are oriented east-west (Arieh Bitan 1981; Arich Bitan 1976)[11, 12]. The third factor is the inversion layer height which that is a hot air layer located above the surface air. The inversion layer acts as a top barrier for the westerly breeze, compressing the air above the higher surface at the mountain ridges and increasing wind velocity.
The altitude of the inversion layer is a determinant of Kinneret wind velocity in two opposing mechanisms. While Whereas an inversion layer of 700–800 m (or more) above sea level will dismiss the compressing effect, an inversion of 400 m or less may block the westerly winds at the mountain ridges and prevent the wind from reaching the lake. Sometimes the height of the inversion layer is such that wind is formed over the westerly coast but is blocked by the inversion layer at the Golan Heights on the eastern coast, which causes the wind to change direction northward and/or southward, toward the rift, instead of resuming the westerly direction [99](Tomer Segev & Guy Cohen, personal communication).
3.2 WRF Physical Modeling
The WRF model Vversion 3.2 sSetup using the UEMS[footnoteRef:1] sSetup sScript vVersion 19.8 was used to produce atmospheric forecasts. WRF is a next-generation mesoscale numerical weather prediction system designed for both atmospheric research and operational forecasting applications. For this study, the WRF model's physical configuration was provided on the model website. To achieve a high-resolution forecast (illustrated in Figure 3 b) forecast, we ran three nested domains in increasing resolutions (9, 3, and 1 km grid spacing). We used one- way nesting where information only flowed from the outer domain to the inner domain (Skamarock et al. 2008)[74]. [1:  https://strc.comet.ucar.edu/index.htm] 

The initialization and boundary conditions were extracted from the Global Forecast System (GFS) 0.25deg archive (NOAA-NCEP 2015)[60]. The WRF was run for every summer day from June to August of the years 2015–2021. The model was initialized once per day at midnight and run for a duration of 18 hours. The first 10 hours were used as a spin-up period, so ML modeling was conducted from 10:00 to 18:00. The machine learningML model was trained with only the input from the 9 km resolution domain (WRF9) and the 1 km resolution domain (WRF1). The attributes of WRF1 and WRF9 resolutions are summarized in Table 1. 	Comment by Cheryl Baltes: AUTHOR: Should this be the degree symbol, like in prior instances?
Table 1. Comparative table of WRF domains entered into the ML models.
	Parameter
	WRF9
	WRF1

	Model shape (x, y, z)
	89 x 89 x 45
	78 x 51 x 45

	Area ([km2)]
	69,696
	3,850

	Output Iintervals
	3 h
	30 min

	Number of samples
	1,340
	7,600




3.3 Building the Training and Validation Datasets
The datasets utilized for ML training and validation comprise data generated by the WRF numerical model, serving as input features for the ML models, and IMS observations, used as labels. Because the high-resolution domain output frequency was 30 min and the low-resolution domain output frequency was once per three hours, we interpolated the coarse- resolution simulation to 30 m output resolution using linear interpolation. This adjustment was made to allow for a quality comparison between simulations and machine learningML models. For the ML model inputs, we used the meridional (east-west) and zonal (north-south) 10 m wind vectors from the WRF output, denoted as U10 and V10, respectively. The data labels (observations) were taken from the IMS Kfar Nahum meteorological station, shown in Figure 3, by the Israeli Meteorological ServiceIMS data repositories. which This is the closest station to the Kineret sailing competition area, and because this station hadit was chosen because it has the largest and most reliable dataset of the Kineret stations. The complex topographic area of this station is advantageous when trying to develop a local-scale forecasting method. The sampling rate at the IMS station was 6 six samples h-1. The U10/V10 and IMS observations from the Kfar Nahum were downscaled to model the output interval using a moving average. The observed data was randomly partitioned into two portions: adatasets for training dataset and a validation dataset, with a ratio of 1:4 in favor of the training dataset. Since Because we employed classification ML models, we began by converting the IMS observations into five equally- sized wind- interval classes. This resulted in extreme wind conditions being represented by only a few samples. In a later stage, we further refined the approach by converting the IMS observations into equal bins of classes, significantly improving predictability.

3.4 Machine Learning Models
In this study, we investigate two machine learningML models, convolutional neural network (CNN) and multi-layer perceptron (MLP), which are commonly employed in image- classification tasks. We start bythen presenting the ML models, followed by the hyperparameter optimization. 

3.4.1 ML Models 
In this study, we explore two distinct ML models,the CNN and MLP models, for individually forecasting the meridional and zonal (U and V respectively) components of wind speed (U and V, respectively). Each ML model utilizes both U and V components of the atmospheric model as input and is evaluated on both high- and low-resolution WRF data.
The use of CNN for weather prediction and parameterization was is similar to the method implied by Larraondo, Inza, and Lozano (2017)[43], which was used to predict rainfalls in different site locations. Our CNN model architecture, illustrated in Figure 4a, consists of multiple convolution layers originally designed to process image data effectively. The first CNN model layer consists of a 2D convolutional layer structure with 64 output channels, each employing a 3 x 3 convolutional kernel, followed by a rectified linear unit (ReLU) activation function. and A max pooling with a 2 x 2 pool size and stride of 2 x 2 was also applied. The second layer consists of 2D convolutional layer structure with 128 channels, employing a 3 x 3 convolutional kernel, a ReLU activation function. and aA max pooling with a 2 x 2 pool size and stride of 2 x 2 was subsequently applied. Finally, the output feature maps are flattened to a 1D vector, producing 61,952 output shapes of (61952) for WRF9 and (29,184) for WRF1 input data. The last layer is a fully connected layer that employs a SoftMax activation function that performs sorts the categorial classification into five classes. Figure 4b illustrates the MLP architecture employed in this study, comprising several dense, fully connected layers for effective feature extraction and classification. Each layer consists of multiple perceptrons, which are the fundamental building blocks of the network. A perceptron operates on multiple input features, each appropriately weighted; it aggregates these inputs and applies an activation function to generate an output. During the learning process, the perceptron undergoes weight adjustments to minimize the disparity between its output and the desired target output, facilitating the acquisition of patterns and the ability to make predictions. The first layer in the MLP model is a fully connected dense layer, with the number of perceptrons set to the size of the input shape's dimension (Table 1) and a sigmoid activation function. The second and third dense layers comprise 32 and 10 perceptrons, respectively, and use sigmoid activation. Similar to the CNN, the last layer consists of 5 five fully connected SoftMax activation functions used to classify the model output into five 5 categories. To regularize the model and avoid overfitting, L2 regularization with a penalty of 0.00001 is applied in every dense layer (Kim, Ko, and Seo 2022)[38].
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Figure 4. The ML model output (presented here high-resolution output shown here) is postprocessed through the ML model. (a) The CNN model architecture. (b) The MLP model architecture.
3.4.2 Hyperparameters Optimizations
The hyperparameters of each model, including the learning rate, number of epochs, activation function type, and layer sizes, were optimized using grid search optimization (Yang and Shami 2020)[84]. This method systematically explores a predefined set of hyperparameter values, creating a grid of all possible combinations. Each combination is then evaluated for model performance, allowing the identification of the optimal set of hyperparameters that maximize prediction accuracy. The exhaustive grid search approach of grid search is effective for fine-tuning models, and the selected hyperparameter values from the 324 examined combinations are presented in Table 2 and illustrated in Figure 4. Notably, the best prediction accuracy was achieved with a learning rate of 0.0001 and 100 epochs.
Table 2. Value ranges for model hyperparameters used through the grid search process.
	Hyperparameter
	Value

	Learn rate
	0.0001, 0.0002, 0.0003, 0.0004

	Epochs
	100, 300, 500

	Activation function
	Sigmoid, ReLU, Tanh

	CNN Nnumber of filters in 1st layer
	64, 128, 256

	CNN Nnumber of filters in 2nd layer
	64, 128, 256

	DNN Ddense 2nd layer size
	16, 32, 64

	DNN Ddense 3rd layer size
	5, 10, 20



4.  Simulation and Experimental Results and Discussion
This section describes our experimental analysis and discusses the results obtained. We begin by presenting the tools used in our experimental environment, followed by an evaluation of the prediction accuracy of the WRF model. Lastly, we provide the experimental results of our ML models. 

4.1 Simulation and Experimental Environment Ttools
The analysis environment for the physical model and the plotting tools in this study were implemented using Python (Van Rossum and Drake 1995)[81]. The numerical foundation for the data- frame structure and computations utilized the NumPy library (Harris et al. 2020)[30]. Further analysis was conducted using the Pandas (Reback et al. 2021)[68] and SciPy libraries (Virtanen et al. 2020)[82]. The NetCDF4 library facilitated operations such as learning, reading, writing, and modifying the multidimensional NetCDF output from the WRF. Experimental visualizations were generated using plots, graphs, and charts derived from the Matplotlib library (Hunter 2007)[33]. Machine learning models were constructed using the Keras framework using TensorFlow and the Sklearn library for classification and preprocessing (Developers 2023; Garreta and Moncecchi 2013)[20, 23]. Statistical tests were performed using SciPy libraries, JMP, and Excel.

4.2 WRF Simulation Analysis
Our analysis of both the WRF atmospheric model predictions and wind observations indicates that wind speeds above 10 kts predominantly originate from the western sector, as illustrated in the wind rose in Figure 5. Additionally, it is worth noting that the WRF model predicts a direction approximately 60° more northerly and at higher velocities compared to the observed wind speeds. In the lower wind speed range, the WRF model predicts winds from the western sector, while whereas a substantial portion of the wind measurements comes from the eastern sector. Additionally, the WRF model forecasts a higher frequency (approximately 32%) of 10–15 kts winds compared to the 12% observed, and nearly roughly 5% more wind velocities in the range of 15–20 kts. The post spin-up results, which are relevant for sailing events, also exhibit the same trends of directional and velocity bias trends in the atmospheric simulation results. For stronger winds, the simulations generally indicate a W-NW direction, with a minor increase in the northern bias, as indicated by the higher frequency of the NW direction becoming dominant, whereas the observed data still indicates a SW-WSW direction. To conclude, the wind-rose investigation highlights the inaccuracies of the WRF simulation. First and foremost, it presents a solid preference for the northern wind component throughout the day. This is important in two contexts:
 1. The WRF fails to predict the morning to midday lake breezes, which are the are the ESE to SE winds that are visible at IMS wind roses, as illustrated in Figure 5 (mainly in the morning observation).
 2. Like typical sea breeze, these measurements are from the onshore direction and characterized by low velocities. 
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Figure 5. Wind -roses of simulated (WRF) and measured (IMS) wind during fore the complete dataset and post spin- up results. Measured versus simulated for the (a) the 18 h simulation and (b) post-spin- up noon winds. Total of 8,320 and 3,940 1 h time stamp samples, respectively.
Due to the typical wind cycle (Serruya, 1975)[73], we expected that for both the WRF simulation and IMS observations for the noon winds will to present stronger and more westerly winds. Although the velocity difference is less dramatic than the direction discussed earlier, it also plays a crucial role from a competitive sailing perspective. For clarity, even a relatively small velocity difference between two boats is crucial when it comes to boat speed and angle relative to the wind origin. The 60° and the velocity simulation diversion, is are clearly significant and shows that the basic WRF simulation can be significantly improved, especially for demanding applications such as sailing competitions where a relatively small wind velocity difference can make the potential could result in victory (Kilian2021)[85]. 
The regression of direction of the regression between the simulation and observation, as depicted in Figure 6, shows that the atmospheric simulation was not able to identify any change in wind direction (r2 = 0.0, p = 1.0 for the post spin- up model). As speculated previously, this inability to identify changes in wind direction, is probably caused by the failure of the model to simulate the morning lake breeze (Matějka 2021)[86]. The simulation performed better at predicteding changes in wind velocity (r2 = 0.42, p < 0.001), possibly because the driver of the velocity change was not local patterns within the rift, rather the larger weather systems such as the penetration of wind from the Mediterranean in the afternoon., tThis conclusion is strengthened by the better results in the afternoon- only output, as illustrated in Figures 6. and 7 and by the absencet of wind direction forecasts lower than 200°, which are present in the observations. The simulation also overestimates wind velocity and direction, particularly in the noon regression graph, which is another view of the factalso illustrates that the simulated wind is more northerly than the observations. Regardless, within the full- day analysis, the p -value was found not significant (0.33) and the rR² value is close to zero, whereas in the noon analysis, the p -value was significant and rR² found similar.	Comment by Cheryl Baltes: AUTHOR: Is this rewording correct?
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Figure 6. Measured versus simulated wind direction scatterplot with point density for the (a) for the 18 h simulation and (b) post-spin- up noon winds. The x-axis shows measured direction, and y-axis simulated direction (degrees). The color map shows data point density, and each subfigure includes the regression line equation, r2R squared, and p -value. The diagonal black line indicates the 1:1 ratio between the simulation and measurement, and the red line is the regression line.
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 Figure 7. Measured versus simulated wind direction scatterplot with point density for the (a) for the 18 h simulation and (b) post-spin- up noon winds. The x-axis shows measured direction, and y-axis simulated velocity (kts). The color map shows data point density, and each subfigure includes the regression line equation, r2R squared, and p -value. The diagonal black line indicates the 1:1 ratio between the simulation and measurement, and the red line is the regression line.
The generation process of 2D linear regression for wind direction can be a challenging task. This is because wind degrees exhibit a circular characteristic; for example, 2° and 358° would appear at different edges along the axis, whereasalthough, in reality, they represent the equivalent wind direction. However, in our examined data, this did not pose a problem due to the fact that there were no observations or simulated wind from the north.
 The WRF simulated wind velocity, which is illustrated in Figure 7, is an overestimate compared with the measurements. A possible systematic deviation is observed, especially in the full- day analysis where the slope is closer to the 1:1 line. Furthermore, we see that, as wind velocity increases, the discrepancy between the measurements to and the simulation decreases, particularly in the afternoon- only graph. Examination of the daily velocity (illustrated in Figure 7a) shows that the maximum wind measured at the station reaches only 16 kts, whereas the simulated velocity contains numerous predictions for 15–20 kts and evenas well as a few days of predicted 20 kts, although those may be interpreted as artifacts. Both observations and simulations show two prevalent wind velocity modes, which are illustrated by the two hotspots in the graphsFigures 7a and 7b. The prevalent low wind mode is at wind velocities of about 1.5–4.5 kts in the observations and about 4–9 kts in the simulations (left yellow patches). The higher velocity mode is at about 9–12 kts for the measurements and about 12–15 kts for the forecast (right light blue patches). We assume that the wind modes in both the forecast model and the observations are due to the lower morning lake breeze and the afternoon stronger wind. The prevalence of the moderate and above winds increases in the afternoon- only regression as expected, and it can be noticed that most of the values of 13+ kts for IMS and, 17+ kts for WRF in the daily forecast are simulated or measured at for the afternoon. Systematic deviations, such as those we previously described, can potentially be recognized by ML methods to improve the prediction of the simulation model. 
There are multiple possible explanations for the lower prediction accuracy of the WRF. One possibility is that the data derived from the initial conditions of the GFS-27 model (27 km resolution) may not be entirely suitable for our research site. Another potential factor could be that the terrain characteristics supplied to the model within the WRF model might not have been of a resolution high enough resolution for accurate predictions. Furthermore, a more accurate parameterization scheme for subgrid processes by using a different parameterization scheme for processes such as convection could achieve better forecasting. In this case, we intentionally utilized the model with its basic configuration to explore the possibility of circumventing intricate configuration changes. The goal was to emphasize the use of the ML model, shifting the focus away from WRF reconfiguration. 
The use of high-resolution simulation, especially when focusing for on competitive sailing forecasts, is expected to yield better results. However, in our case, the high-resolution simulation was not advantageous to the low resolutionis not a good fit for this application. Lower-resolution numeric predictions (e.g., WRF 9 or even GFS with 13 km resolution), on the other hand, is considered a shelf product. Thereby it can be easily obtained from open databases and does not require heavy computational resources for processing and simulations. 
4.3. ML Models Prediction Accuracy
4.2.1. Data Pre-processing
The outputs of the atmospheric modeling using WRF served as input for the ML model. Additionally, each measured wind vector U10/V10 was converted independently into five categorical classes. For each wind component, quantization into categorical classes was conducted, ensuring that the dataset's classes had equal sizes in terms of the number of observations. This step was crucial to prevent bias and represent all classes equally during the ML model training process. The dataset was split, allocating with 80% allocated for training and the remaining portion for validation. Data pre-processing included data augmentation to expand the dataset with synthetic data, enhancing the training dataset size (Chen, Birkelund, and Zhang 2021)[17]. This augmentation method involves adding Gaussian noise to the input dataset, generating an extended dataset based on existing data. Data augmentation not only addresses overfitting concerns (Bejani and Ghatee 2021)[9] but has also proven effective in weather and climatology studies (Maharana, Mondal, and Nemade 2022; Meyer, Nagler, and Hogan 2021)[49, 55].

4.2.1. Prediction Accuracy of ML Models
Both the CNN and MLP models have been compiled with categorical cross-entropy loss using the Adam optimizer and the optimal hyperparameters discussed in subsection 3.4.2. Table 3 summarizes summarizeד the prediction accuracy and standard deviation achieved by our models for both low- and high-resolution datasets. The CNN model achieved more than 93% and 94% prediction accuracy for U10 and V10, respectively, for the low resolution. In the case of high resolution, the CNN model achieved more than 98% and 97% prediction accuracy for U10 and V10, respectively. The MLP model achieved over 97% prediction accuracy for both the U10 and V10 vector components in the low-resolution dataset. However, for the high-resolution dataset, the MLP model achieved 72% and 64% accuracy rates for the U10 and V10 wind components, respectively. A possible explanation for the lower accuracy of the MLP model in the case of high-resolution data could be that the high-resolution data encompasses a smaller geographic area compared to with the low-resolution domain, and that features that are present in the larger area help in identifying local phenomenon. As a final step, cross-validation tests (Wilcox, Granger, and Clark 2013; Marcot and Hanea 2021)[50, 83] were performed on the low-resolution forecasts for both CNN and MLP and evaluated with a high accuracy rate of 97% and above for both ML models (see Table 4).
Table 3. Final ML model evaluation results.
	(a) High Rresolution

	Model
	U10 avg. accuracy
	V10 avg. accuracy
	U10 STDEVst. dev.
	V10 STDEVst. dev.

	CNN
	93.7%
	94.8%
	1.5
	0.2

	MLP
	72.0%
	54.8%
	1.6
	2.6

	(b) Low Rresolution

	Model
	U10 avg. accuracy
	V10 avg. accuracy
	U10 STDEVst. dev.
	V10 STDEVst. dev.

	CNN
	98.2%
	97.7%
	0.14
	0.46

	MLP
	97.7%
	97.5%
	0.14
	0.60



As part of our experimental analysis, we performed cross-validation (CV) for both the CNN and DNN models. The CV was conducted by randomly selecting the training and validation dataset using the same 80%/20% split ration between the training and validation datasets. This process was repeated five times, and the mean was extracted after removing the best and worst outliers (Wilcox, Granger, and Clark 2013; Marcot and Hanea 2021)[50, 83].
Table 43. Cross-validation results summary.
	Model
	Min accuracy
	Max accuracy
	STDEVSt. dev.
	Post-trimming 
average

	CNN
	97.3%
	98.3%
	0.42
	97.9

	MLP
	97.2%
	98.0%
	0.33
	97.6




To assess the ML models' performance comprehensively, we conducted further analysis by constructing a confusion matrix (CM) and evaluating the ML model accuracy, as illustrated in Figure 7 8 for the low-resolution model. In Aan ideal CM, exhibits a diagonal matrix, where each class aligns with its counterpart, reflecting a similar prevalence across the diagonal cells. The confusion matrixCM is vital in evaluating the performance of our ML models. First, it provides a detailed breakdown of a model's predictions, revealing true positives, true negatives, false positives, and false negatives for each class. In addition, it allows for a comprehensive performance assessment, error analysis, and detection of class imbalances. In essence, the confusion matrixCM offers nuanced insights beyond basic accuracy metrics, guiding decisions on model refinement and deployment. As shown in Figures 89a and 89b, the confusion matrix (CM) illustrates favorable outcomes for both the CNN and MLP models, revealing accurate predictions, small percentages of misclassifications, and a well-balanced representation across various classes.
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Figure 87. ML model training and validation performance analysis for the, by low resolution and V10 wind component: (a) CNN Cconfusion matrix, (b) MLP Cconfusion matrix, and (c), the training accuracy with respect to the number of epochs. The (green circles and diamonds represent a 90% and 95% threshold, respectively).

An additional analysis was conducted to investigate the convergence of the CNN and MLP models during the training process, as illustrated in Figure 87c. It is notable that 50 epochs are sufficient to attain stable and converged training accuracy. The CNN exhibits a slightly faster convergence rate, surpassing a prediction accuracy ratio of 90% after 20 epochs and achieving 95% within 30 epochs. In comparison, the MLP reached 90% accuracy at 32 epochs and 95% by 45 epochs. 
The fact that we used categorial ML models for our wind prediction involves an inherit loss of information. In order to evaluate the loss of the combined model using the numerical model in conjunction with the ML model, we decategorized the combined forecast output by using the median velocity in each category and direction (U10 and V10) versus the measured wind velocity during that forecast. Figure 98 illustrates the decategorized predicted wind velocity and direction versus the observations for our CNN ML model. 
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				(a)			 					(b)

Figure 98. CNN prediction of (a) wind velocity (a) and (b) direction (b) versus. measurement. The Ccolors represent data-point density (from dark to light), and the regression line equation, R squaredr2, and p -value are included. The red line stands for the 1:1 regression line.

The forecast of both wind velocity and wind direction is significantly improved. The wind velocity r2 improved from 0.46 to 0.88 by using the machine learningML post processing and the wind direction even further improved from r2 = 0.0 to r2 = 0.52. When looking at the wind direction, the inherent data loss from categorizing continuous quantitiesy is most visible. Further improvement can be achieved by ignoring only the lowest category in both U10 and V10 forecasts (lowest line of predictions on the plot) out of the 25 forecasted wind directions (5 x 5 categories for U and V, respectively). In this case, the r2 is further improved from 0.52 to 0.78. This observation highlights an inherent challenge in the post-processing method we developed; it may not be the most suitable approach for predicting extreme weather events. The fact that many of the forecasted wind direction points are are scattered around 150° indicates that the CNN model was able to identify typical morning conditions and forecast the local morning sea -breeze, a typical Kineret phenomenon that was not resolved by the numerical forecast. The wind direction forecast is accurate even when focusing on to the afternoon predictions (Figure 98b, yellow points). Most of the sailing competitions in Llake Kineret are conducted during the strong westerly afternoon winds and the fact that the combined forecast was able to predict wind direction within the narrow angle of afternoon wind directions indicates that the combined forecast can provide sailors much more effective means for winning races.

5. Conclusion and Future Studies
This study aims to apply ML forecast models to provide a relevant, reliable, and accurate tool for tactical and strategic use in competitive sailing. This study demonstrated that ML models can be successful for post processing of numerical weather prediction models. The site used as a case study in this research is unique in its properties and introduces a challenging problem for prediction. This is reflected by a the low performance of the standard numerical prediction system (WRF) low performance. Nevertheless, we successfully developed a categorical wind predictor with five categories for both CNN and MLP with accuracy rates of 90% and above for most forecasts. In addition, we generated a preliminary wind velocity forecast based on a CNN customized for sailors, by using wind speed units (kts).
We suggest pursuing further investigations into the following areas:
1. Further optimization of the number of categories used by the post-processing ML mode. 
2. We suggest uUsing spatial wind measurements conducted by synthetic aperture radar (SAR) to further enhance the accuracy and robustness of the processing of the ML model forecast.
3. A fFurther exploration of is suggestedinto using ML models to enhance the accuracy of the GFS with 13 km resolution. Such a model is accessible online and will eliminate the need for numerical modeling.
Lastly, this research presents promising directions for advancing the area of integrated weather forecasts with ML models and will serve as a foundation for future developments in this field.  
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