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Abstract: 
Convolutional neural networks (CNNs) are broadly used in numerous applications such as: computer vision and, image classification and many more. While Although CNN models achieve deliver state-of-the-art accuracy, they require heavy computational resources which that cannot beare not always affordable or available onby every platform. Limited performance capabilities, system cost, and energy consumption, such as those in edge devices, are all catalystsargue for the development optimization of computations inal optimizations for neural networks. In this studyToward this end, we introduce propose herein theVELCRO: vValueE- lLocality- based cComprRessioOn (VELCRO) algorithm for neural networks. VELCRO is a novel method to compress general-purpose neural networks which that are deployed for a small subset of focuses tasks. Although this study is focusesd on CNNs, VELCRO can be used for to compression of any deep neural network. It should be nNote alsod that VELCRO does not aim at compressing the network memory footprint but rather reducesing the computational requirements. VELCRO relies on the property of value locality, which suggests that activation output elements exhibit values in proximity thorough the inference process when the network is used for specialized tasks. VELCRO consists of two stages: a pre-processing stage which that identifies output elements of the activation function output elements with a high degree of value locality; and a compression stage which that replaces these elements with their corresponding arithmetic average arithmetic values. As a result, VELCRO does not only saves the computation of the replaced activations but also avoids the processing of their corresponding output feature map elements. Unlike common neural network compression algorithms, which require computationally intensive training processes, VELCRO introduces relatively moderate computational requirements. Our An analysis of our experimental analysis indicates that, when CNNs are employed used for specialized tasks, they introduce a significantly high degree of value locality relative to the general-purpose case. In addition, our the experimental resultss show that VELCRO can achieveproduces a compression- saving ratio in the range of 13.5% up– to 30.0% with no degradation in accuracy. Finally, our the experimental observations resultsalso indicate that, when VELCRO is used with a relatively low compression target, it can accomplish a significantly improves the accuracy improvement of by2%–-20% for specialized tasks CNNs tasks.	Comment by Brett Kraabel: Please note that claims of novelty are discouraged in peer-reviewed journals because they are hard to verify and because all work published in such journals must be novel to be published.
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1. Introduction
Convolutional neural networks (CNNs) are broadly employed by numerous computer vision applications such as autonomous systems, healthcare, retail, and security and many more. Over time, the processing requirements and complexity of CNN models processing requirements and complexity have significantly increased. For example, AlexNet [44], which was introduced in 2012, has 8 eight layers, while whereas ResNet-101 [45], which was released in 2015, uses 101 layers and requires an approximately seven7-fold greater computational throughput [55]. The increasing model complexity in conjunction with large datasets, used for model training, have has enabled endowed CNNs with to demonstrate phenomenal performance for various computer vision tasks [46]. Typically, large and complex networks have the capability tocan further extend their capacity to learn complex image features and properties. The growing model size of CNNs and the requirements for of heavy significant processing power have become a major deployment challenges for migrating CNN models into mobile, IoT Internet of Things, and edge applications. Such applications incur limited computational and memory resources, energy constraints, and system cost; and, in many cases, cannot rely on cloud infrastructure computational resources due to privacy, online communication network availability, and real-time considerations.	Comment by Brett Kraabel: Please note that references should be cited in chronological order in the text.
Compression The compression of CNN models without excessive , while maintaining fairly reasonable performance loss, can significantly contribute to enablefacilitates their deployment by a variety of edge systems. Such compression can has the potentially to reduce computational requirements, save energy, reduce memory bandwidth and storage requirements, and speedup theshorten inference time. Various techniques have been suggested to compact compress CNN models, one of the most common of which is. P pruning is one of the most common methods for CNN optimization [1, 2, 26], which exploits the property tendency to over-parameterize of CNNs tendency to be heavily over-parameterized [47]. Pruning allows tradesing off degradation in model prediction accuracy forwith model size by removing weights, output feature maps, or filters that have amake minor or no contribution to the inference of a network. Quantization [11-14] is another common technique which that attempts to further compress network size by reducing the number of bits used to represent values of weights, filters, and output feature maps with only a minor impact on accuracy impact. These methods and other compression approaches are discussed in more details in Section 2. 	Comment by Brett Kraabel: Please ensure that this edit maintains the intended meaning. If modified, please suggest a correction.
In tThis paper we focuses on machine learning models which that are usemployed for specialized tasks. Specialized neural networks have recently become common not only for edge devices but also for datacenters [48–-50]. Unlike general-purpose neural networks which that are employed used for a diverse range of classification tasks, specialized neural networks are used for a small number of specific classification tasks. For example, a CNN model which that is used for to detect vehicless detection does not utilize use its animal classification capabilities [49]. Another example is related to offline video analytics [49], which is processed by a specialized CNN model, and only in the cases when the model has a low level of confidence are the corresponding frames are sent to a general-purpose CNN. 
As part of this study, weWe introduce in this study the VELCRO: vValueE-l Locality- based cComprRessioOn (VELCRO) algorithm. VELCRO is a method to novel compression method for deep neural networks which that have beenwere originally trained for a large set of diverse classification tasks but are deployed for a smaller subset of specialized tasks. Although this work is focusesd on CNN models, VELCRO can be used for to compression of any deep neural networks. The main principle of VELCRO is based on the property of value locality, which we. Value locality is a new property introduce by this studyherein in the context of neural networks. It This property suggests that, when the network is used for specialized tasks, the a proximal range of values are exhibited output by the activation function output elements is in proximity thorough because of the inference process when the network is used for specialized tasks. VELCRO consists of two stages: a pre-processing stage, which identifies activation-function output elements with a high degree of value locality; , and a compression stage, which replaces these activation elementss with their corresponding arithmetic average svalues. TherebyAs a result, VELCRO avoids not only the computation of these activation elements but also their related Output output fFeature mMap (OFM) elements. Unlike common neural network compression algorithms, which require quite heavysignificant computations for back propagation training, VELCRO presents has fairly lowlow computational requirements. For our experimental analysis we use three CNN models: ResNet-18 [45], MobileNet V2 [54], and GoogleNet [51] with the ILSVRC-2012 (ImageNet) [52] dataset to examine compression capabilities and model accuracy impact. 	Comment by Brett Kraabel: Please ensure that this edit maintains the intended meaning. If the meaning is modified, please suggest a correction.
We summarize theThe contributions of this paper are summarized as follows:
1. We introduce the notion of value locality in the context of deep neural networks which are used for specialized tasks. 
2. We present the  VELCRO algorithm a novel method that, which exploits value locality for theto compression of neural networks which that are deployed for specialized tasks. 
3. VELCRO introduces a fast compression process and avoids the heavy computations of involved in back propagation training, which is used by traditional compression approaches such as pruning.
4. VELCRO can be used straightforwardly directly used in conjunction with other compression methods such as pruning and quantization.
5. Our The results of our experiments indicate that:
a. VELCRO can achieveproduces a compression savingcompression-saving ratio of computations in the range of 20.0%–-27.7% for ResNet-18, 25%–-30% for GoogleNet, and 13.5% to nearly –20% for MobileNet V2 with no impact on the model accuracy. 
b. VELCRO can also accomplish a significantly improves accuracy improvement ofby 2%–-20% for specialized- tasks CNNs when given a relatively small compression- savings target. 
	The remainder of this paper is organized as follows: Section 2 reviews previous works. Section 3 introduces our the proposed method and algorithm. Section 4 presents our the experimental results. Finally, Section 5 summarizes our the conclusions and suggests future research directions.
2. Prior works
Many Numerous recent studies have proposed various techniques to optimize CNNs computations, reduce redundancy, and improve their computational efficiency and memory storage. As Tpart of this section, we  describes the following related methods: pruning, quantization, knowledge distillation, deep compression, CNN folding, and ablation.
Pruning is one of the most common methods used for CNN optimization that and was first introduced in Refs.by [1, 2, 26]. The concept of pruning, which is inspired by neuroscience, relies on the assumesption that among the network parameters some network parameters are redundant and may not contribute to the network performance. Various pruning techniques [1, 3–-7] suggest the removal ofing activations, weights, output feature mapsOFMs, or filters that have make a minor or no contribution to an the inference process of an already- trained network. Thereby, pruning can significantly reduce the network size and the number of computations. Traditional pruning techniques typically require a fine--tuneding training on the full model, which may involve a significant computational overhead [59]. 
Pruning techniques can be classified into unstructured and structured classes. Unstructured pruning does not imposes anoy constraints on the activations or weights with respect to the network structure, (i.e., individual weights or activations are removed by replacing them with zero)0. Structured pruning [20], on the other handin contrast, restricts the pruning process to a set of weights, channels, filters, or activations. While Whereas structured pruning incurs limitations on the sparsity that can be exploited in the network due to its coarse pruning granularity, unstructured pruning can utilizeuses a broader scope of the available sparsity. On the other handConversely, unstructured pruning may involve additional overhead for representing the pruned elements and may not always fit parallel processing elements such as GPUs. 
The process of pruning is typically performed by ranking the network elements in accordance with their contribution. The rank can be determined by using various functions such as the L1 or L2 norms [2–1-24] of weights, activations , or other metrics [31]. Pruning of activations requires dynamic mechanisms to monitor activation values because, since activation importance may depend on the model input. For example, Ref. [56] employs reinforcement learning to prune channels, and Refs. [57, 58] leverages spatial correlations of CNN output feature mapOFMs spatial correlation to predict and prune zero-value activations. Further pruning techniques based on weights magnitudes were recently introduced in Refs.by [27–-29], which which demonstrated that computation efficiency and network scale can be improved significantly. Various gradual pruning approaches [25], given memory footprints and computational bounds, were studieds by examining the accuracy and size tradeoffs. Neuron The neuron iImportance sScore pPropagation (NISP), introduced by Ref. [30], suggestsed jointly performing pruning neurons pruning jointly based on a unified goal. Other approaches such as, random neurons pruning and random grouping of weight connections into hash buckets were introduces introduced by in Refs. [32,-33]. Pruning based on a Taylor- expansion criterion [39] focuses on transfer learning by optimizing a network trained to a large dataset of images into a smaller and more efficient network specialized in a subset of classes. Their pruning method performs an iterative back propagation pruning by removing feature maps with the least level of importance. Reference [39] compared evaluated their pruning method performance by using various criteriaons such as weight pruning, using l2 norm, and activation pruning, using mean, variance, mutual information, and Taylor- expansion criteriaon. Their observations results indicate that the importance of output feature map (OFMs) importance decreases with layer depth and that every each layer has feature maps with both high and low degrees of importance. Reference [60] introduced CURL pruning by compression using residual connections and limited data method was introduced by [60] for residual CNN compression when relying on a small datasets which that can represent specialized tasks.
Quantization methods attempt to reduce the number of bits used to represent the values of weights, filters, and output feature mapsOFMs from 32-bit floating point to 8 -bit or less with a minorslight degradation in model accuracy while simplifying computational complexity. Employing quantization methods lower that use fewer than 8 bits, however, is not trivial, due to thebecause quantization noise excessively leading to degradesation in model accuracy. Quantization-aware training (QAT) techniques uses training processes for quantization in order toto reduce quantization noise and recover model accuracy [8–-10]; it. QAT can be limited when the training process cannot be employed used due to lack of dataset availability of datasets or lack of computational resources. Various fixed-point and vector quantization methods, introduced bin Refs.y [11–-14], presented tradeoffs between network accuracy and quantization- compression ratios. A combination of pruning and quantization was introduced by in Ref. [15]. Post-training quantization (PTQ) methods [16–-19] can avoid these limitations by searching for the optimal tensor- cutting values to reduce quantization noise after the network model has been trained.	Comment by Brett Kraabel: Please ensure that this edit maintains the intended meaning. If the meaning is modified, please suggest a correction.
Knowledge distillation is another machine learning optimization introduced by [34] and [,35]. The idea of knowledge distillation that  relies on a process of transfersring knowledge from a large machine learning model into a smaller compact model thatwhich mimics the original model (instead of being trained on the original dataset) in order to obtain perform a competitively performance. Such These systems consists of three main elements: knowledge, an algorithm for knowledge distillation, and a teacher-student model. A broad survey of knowledge distillation is presented byavailable in Ref. [36].
Deep compression was introduced in Ref. [37] and consists of a three-stage pipeline: pruning, trained quantization, and Huffman coding, which operate simultaneously to optimize model size. The first stage prunes the model by learning the important connections, the second stage performs weights quantization and sharing, and finally the last stage uses Huffman coding. Reference [38] extendsed the deep compression idea and introducesd the once-for-all (OFA) network. The , which OFA can be installed under diverse architectural constraints and configurations, such as performance, power, and cost. The once-for-all OFA approach introduces the progressive shrinking techniques which that generalizes pruning. While Whereas pruning shrinks the network width, progressive shrinking operates on four dimensions: image resolution, kernel size, depth, and width, thereby achieving a higher level of flexibility.
FoldedCNN [50] is another approach to optimize CNNs for specialized- inference tasks. Unlike compression techniques, FoldedCNN does not aim at compressing the CNN model, but rather attempts to increase the inference throughput and hardware utilization. The FoldedCNN approach suggests CNN model transformations to increase their arithmetic intensity when processing a large batch size without increasing processing requirements. 
Additional studies have attempted to understand the internal mechanisms of CNNs and their contribution to classification tasks. From CNN models, Refs.. [40,-41] have created visualized images based on the OFMs of different layers and units from CNN models. Their findings results indicate that OFMs act asextract features that extractors which detect patterns, textures, shapes, concepts, and various elements related to the classified images. Ablation techniques have beenwere used by Ref.by [42] to further quantify the contribution of OFM units to the classification task. Their findings results indicate that elements which that are selective to certain classes may be excluded from the network not without necessarily impacting the overall model performance when excluded from the network. The impact on ablation on of a subset of classes has beenwas further studies studied by in Ref. [43], which. They have found that single- OFM- unit ablation can have a majorsignificantly impact on the model accuracy for a subset of classes and thereby, leading them to suggested different various methods to measure the importance of internal OFM units to specific classification accuracy. These observations results provide the motivation for this the present study by suggesting that, when the using the CNN model is used for specialized tasks, we can eliminate unrelated computations and as a resultthereby compress the model, all with minimal impact on classification accuracy.
3. Method and Algorithm
Our proposed VELCRO compression algorithm relies on the fundamental property of value locality. We start our discussion by first presenting qualitative and quantitative aspects of value locality, following which. Next, we present the propose thed forward propagation compression algorithm for specialized neural networks. 
3.1. Value Locality of Specialized CNNsConvolutional Neural Networks
The principle of our the proposed compression method proposed to compressfor specialized CNNs is based on the property of value locality. Value locality suggests that, when a CNN model runs specialized tasks, the output of the activation tensor output values will beis in proximity through the inference process of images. The rationale behinds this theory relies on the assumption that the inferred images,, which already have a certain level of similarity,, will exhibit common features such as patterns, textures, shapes, and concepts. TherebyAs a result, the intermediate layers of the model will produce relatively similar values in the certain vicinity. Figure 1 explains tThe property of value locality is demonstrated in Figure 1, which by illustratinges the  activation- function output tensors output tensors in a givenin each convolution layer k and channel c. In this example, the set of elements, A(m)[k][c][i][j] for images m = 0, 1, …, N- − 1, in the activation tensor exhibit is populated with values in proximity through the inference process betweenof the images.

[image: ]
Figure 1. Value locality: The elements with coordinates i, j of the activation- function output tensor elements in convolutional layer k, channel c, and coordinates i and j exhibitsare populated with  values in proximity through the inference process ofbetween images 0 to N- − 1. The variance tensor, V , is usedserves to a measure for the degree of value locality.
For every convolution layer k, we define a variance tensor V[k], where every each element, V[k][c][i][j], in the variance tensor is defined by theas following equation:
	V[k][c][i][j] = Var(A[k][c][i][j]) = E(A[k][c][i][j]2)-) − E(A[k][c][i][j])2 =,
	(1)


wWhere c is the channel index and i and j are the element coordinates.
We use the variance tensor as a measure to quantify the proximity of values for every activation tensor element A[k][c][i][j]. Thereby, a small value of V[k][c][i][j] suggests that the corresponding activation element exhibits has a high degree of value locality. Our The proposed compression algorithm leverages such activation elements for compression. In Section 4 we presents an experimental analysis on of the distribution of the variance tensor for various specialized CNN models
3.2. VELCRO Algorithm for Specialized Neural Networks 
The VELCRO algorithm consists of two stages: preprocessing and compression.: 
1. Preprocessing stage.: In this stage, VELCRO performs makes an inference by using applying the original CNN model on to images from the specializeds task  training dataset. During this stage, the variance tensor is calculated based onby using Equation (1) for each activation output in every each convolution layer in the CNN model. Since Because the preprocessing stage of VELCRO relies only on inference only, it involves a significantly smaller computational overhead with respect to traditional compression methods, which employ heavy back propagation training processes which that can in the durationlast from a few hours up to hundreds of hours [61]. 
2. Compression stage.: The compression stage uses a tuple of threshold values provided by the user as thea hyperparameter, which is provided by the user. Each threshold element in the tuple corresponds to an individual activation function in every each convolution layer. The threshold value of every each layer represents the percentile of elements in the variance tensor which to be their corresponding activation elements will be compressed by the algorithm. All the elements in the activation tensor with a variance with in the percentile of the threshold will beare replaced by a constant equal to their corresponding arithmetic average of said elements. All other activation elements will remain unchanged. The result of rReplacing activation function output elements by constants values will avoids not only the activation computation but also the computation of their related Output Feature Map (OFM) elements. In fact, the compression savings of every each layer is determined by the corresponding threshold value, thereby so the user can determine the overall compression -saving ratio, C, for the model through the threshold tuple as indicate by the following equation:s:	Comment by Brett Kraabel: Please ensure that this edit maintains the intended meaning. If the meaning is modified, please suggest a correction.
	,
	(2)


where the tuple T = {T0, T1, …, TK} represents contains the threshold values for the activation in every each convolution layer. In addition, ck, wk , and hk represent are the number of channels, the width, and the height of the activation function output tensor in for convolution layer k, respectively.  
The complete and formal definition of the algorithm is described given in Algorithm 1. 
A simple example which that demonstrates the operation of the VELCRO algorithm is illustrated in Figure 2. In this example, which shows the activation output tensor in convolution layer k is shown for a training set of N = 3 images. The dimensions of the activation tensor are ck=1, wk=3, and hk=3. The VELCRO preprocessing stage performs inference on the training dataset and at the end of this stageto create a variance tensor, V[k], and an average tensor, B[k], are created. The hyperparameter threshold value for layer k is defined in this example as Tk= = 0.33, i.e.,which means that the three elements in the activation function output tensor with the lowest variance (illustrated highlighted in red color) will beare replaced with their corresponding arithmetic average values. The rest ofremaining elements remain unchanged. The outcome of the VELCRO compression stage is shown given in by the compressed activation- function output tensor, , where the computation of three elements (illustrated highlighted in green color) have beenare replaced by the constant values which correspond to their arithmetic averages. 

[image: ]
Figure 2. An Eexample of VELCRO preprocessing and compression stages.
























	Algorithm 1:  VELCRO algorithm for specialized neural networks

		Input: A CNN model, M, with K activation- function outputs (each in a different convolution layer), N training images, and a threshold tuple, T={T0, T1, …, TK}, where 
	Output: A compressed CNN Model, MC.

	Preprocessing stage
	Step 1: Let A[k] be the activation- function output tensor in convolution layer k and let A(m)[k] be the corresponding activation- tensor values at the inference of image m, , where the dimension of the tensors A[k] and A(m)[k] is have dimension  and ck, wk , and hk represent are the number of channels, the width, and the height of the tensor at convolution layer k, respectively.

Step 2: For every , , and :
	Let the tensors S and K be initialized such that: S[k][c][i][j] = 0, and Q[k][c][i][j] = 0,

Step 3: For every each image :
	Perform inference by model M on image m.
For every convolution layer :
	For every , , and ,
	Let the tensors S and Q be: 
	S[k][c][i][j] = S[k][c][i][j] + A(m)[k][c][i][j],
	Q[k][c][i][j] = Q[k][c][i][j] + (A(m)[k][c][i][j])2.,
	
	Step 4: Let B[k] be the arithmetic average tensor in convolution layer k such that every each tensor element is:

For every , , and ,

	Step 5: Let V[k] be the variance tensor of convolution layer k such that every each tensor element is:

For every each , , and 

	Compression stage:
	Step 6: For every each convolution layer :
		Let p(x,Y) be the percentile function of element x in tensor Y. p returns the percentile value for x with respect to all elements in tensor Y.

	Let the tensor  be such that:
	
For every each , , and 

	Step 7: Let the compressed CNN model, MC be such that every activation function output tensor A[k] is replaced with  for every convolution layer .




4. Experimental Results and Discussion
Our experimental study consists of a comprehensive analysis on of both value locality and the performance of various CNN models when used for specialized tasks. In the following, wFirst, we first describe our the experimental environment and then, next we introduce the value locality experimental measurements. Finally, and last, we present discuss the performance of the VELCRO compression algorithm.
4.1. Experimental Environment
Our experimental environment is based on PyTorch [53], the ILSVRC-2012 dataset (also known as “ImageNet”) [52, 53], and the ResNet-18, MobileNet V2, and GoogleNet CNN models [40, 51, 54] with their PyTorch pretrained models. Table 1 summarizes the specializesd tasks which are used for our experimental analysis are summarized in Table 1. Our The experiments examine five groups of specialized tasks:s. tThe groups of Cats-2, Cats-3, and Cats-4 include two2, three3, and  four4 classes from the ILSVRC-2012 dataset, respectively, while and the groups of Dogs and Cars include four4 classes each. Throughout our the experimental analysis, we do not make any modificationy on the first layer of the model, which. Skipping the first layer is a common approach which that has been updated used by many numerous studies [].	Comment by Freddy Gabbay: Gil Please review and add reference
Table 1. Specialized tasks summary.
	Specialized tasks
	ILSVRC-2012 Classes

	Cats-2
	Egyptian cat, 
Persian cat


	Cats-3
	Egyptian cat
Persian cat
Cougar


	Cats-4 (Cats)
	Egyptian cat
Persian cat
Cougar
Tiger cat


	Dogs
	English setter
Siberian husky
English springer
Scottish deerhound


	Cars
	Beach wagon
Cab
Convertible
Minivan



4.2. Experimental Analysis of Value Locality Experimental Analysis
As part of our experimental analysis, we present tThe distribution of the variance tensor elements in every each layer (skipping the first layer) as is a measure to quantify the proximity of the activation -function output values. Figure 3 illustrates shows the distribution of the variance tensor elements distribution for the selected activation function outputs in the convolution layers 1, 3, 7, 10, and 14 in ResNet-18. The distribution is illustrated shown for the groups of classes Cats-2, Cats-3, and Cats-4, which include two2,  three3, and four4 classes of cats from the dataset. The group “all” refers tocontains a mixture of all ILSVRC-2012 dataset classes and represents the case when the CNN model is employed used for general tasks. It can be clearly observed that wWhen the CNN model is used for specialized tasks (Cats-1, -2, and -3), the distribution of the variance tensor elements clearlyis shiftsted towards the zero with respect to the distribution when the model is used for general tasks (all). Thereby, it which indicates that the CNN model exhibits produces values of closer proximity of values, (i.e., a higher degree of value locality), for specialized tasks. Another important outcome which is observedmade apparent in Figure 3 is that the three3 groups of specialized tasks behaves similarly regardless of the number of classes. The distribution of variance tensor elements in all RreseNnet-18 layers is presented in Appendix A Figure 10 (Appendix A) which exhibits similarand behaves similarlyior to the distribution presented herein. 
Figure 4 illustrates the same experimental analysis but, this time for the GoogleNet CNN model for selected layers 1, 6, 12, 21, 32, 38, 47, 51, and 56. The results of variance tensor elements for of GoogleNet show behave very similarly behavior to those of ResNet-18. When the model is used for specialized tasks, the variance distribution shifts left with respect to the general-purpose usage, thereby exhibitingindicating a higher degree of value locality. The distribution in in all GoogleNet layers is presented in Appendix A Figure 11 (Appendix A). 
Figure 5 presents a sSimilar experimental analysis for Mobilenet V2 layers 1, 6, 12, 19, 28, 30, and 35, is presented in Figure 5 and the distribution in in all MobileNet V2 layers is presented in Appendix A Figure 12 (Appendix A). Our observationsThe results indicate that a lower degree of value locality occurs relative to ResNet-18 and GoogleNet when MobileNet V2 is used for specialized tasks, the degree of value locality is lower relative to ResNet-18 and GoogleNet. Our The results indicate that the shift of the variance tensor elements distribution is smaller with respect to the other CNN models. These observations conform reflect to the fact thatthe highly compact nature of the MobileNet V2 is considered a highly compact network with respect to ResNet-18 and GoogleNet, thereby which results in a lowerthe potential for leveraging of value locality for the former is lower. 	Comment by Brett Kraabel: Please ensure that this edit maintains the intended meaning. If the meaning is modified, please suggest a correction.
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Figure 3. Distribution of ResNet-18 variance tensor elements distribution in layers 1, 3, 7, 10, 14, and 16 for specialized tasks: aAll ImageNet classes, cats-Cats-2, cats-Cats-3, and cats-Cats-4.
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Figure 4. Distribution of GoogleNet variance tensor elements distribution in layers 1, 6, 12, 21, 32, 38, 47, 51, and 56 for specialized tasks: aAll ImageNet classes, cats-Cats-2, cats-Cats-3, and cats-Cats-4.
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Figure 5. Distribution of Mobilenet-V2 variance tensor elements distribution in layers 1, 6, 12, 19, 28, 30, and 35 for specialized tasks: aAll ImageNet classes, cats-Cats-2, cats-Cats-3, and cats-Cats-4.

Figures 6–, 7 and 8 extend our experimental analysis for additional groups of specialized tasks,: Dog and Cars, each of which includes four4 classes from the ILSVRC-2012 dataset. Note that and the group of Cats group corresponds to the group Cats-4. The presented results provide further support confirmto our observationsthose shown in Figures 3–-5. In all the examined CNN models and in the majority of activation-function outputs in all convolution layersIt can be clearly observed that for the specialized tasks, the distribution of variance tensor elements for the specialized tasks clearly distribution shifts towards the zero relative to the distribution when the model is used for general tasks (all) in all the examined CNN models and in the majority of the activation function outputs in all convolution layers. Similar toLike the results presented in Figure 5, we also observe that MobileNet V2 is able tocan leverage value locality but in a smaller magnitude with respect to ResNet-18 and GoogleNet. 	Comment by Brett Kraabel: Please ensure that this edit maintains the intended meaning. If the meaning is modified, please suggest a correction.
These experimental results provide indications which support our expectations that CNN models which that are used for specialized tasks will exhibit a high degree of value locality. Figures 13–15 (Appendix A) show tThe experimental results for all layers of all models are presented in Appendix A Figures 13-15. The complete experimental results for all layers exhibit behave similarly behavior to the distribution presented in Figures 6–-8.	Comment by Brett Kraabel: Please ensure that this edit maintains the intended meaning. If the meaning is modified, please suggest a correction.
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Figure 6. Distribution of ResNet-18 variance tensor elements distribution in layers 1, 3, 7, 10, 14, and 16 for specialized tasks: Cats, Dogs, Cars, and all ImageNet classes. 
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Figure 7. Distribution of GoogleNet variance tensor elements distribution in layers 1, 6, 12, 21, 32, 38, 47, 51, and 56 for specialized tasks: Cats, Dogs, Cars, and all ImageNet classes.
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Figure 8. Distribution of MobileNet V2 variance tensor elements distribution in layers 1, 6, 12, 19, 28, 30, and 35 for specialized tasks: Cats, Dogs, Cars, and all ImageNet classes.
4.3. Performance of Compression AlgortihmAlgorithm Performance
As part of our experimental analysis, we examine the compression savingcompression-saving ratio of the VELCRO algorithm on three groups of the specialized tasks: cats, cars, and dogs which have been presented in (see Table 1). Figures 9 (a)–9, (b) and (c) presents the top-1 prediction accuracy versus the compression savingcompression-saving ratio for cars, dogs, and cats, respectively. The experimental analysis is performedis applied to on the ResNet-18, GoogleNet, and MobileNet V2 CNN models. For every giveneach compression savingcompression-saving ratio, we have examined different thresholds values and have choosen those that introduce produce the highest top-1 accuracy. The Appendix B summarizes the tuples of threshold values used are summarized in Appendix B. Table 2 summarizes the maximum compression savingcompression-saving ratio for every each group of specialized tasks and every each CNN model which that achievedproduces the same accuracy as the original uncompressed model.	Comment by Brett Kraabel: You may want to explain this terminology.


[image: ]
(a)
[image: ]
(b)
[image: ]
(c)
Figure 9. Accuracy for ResNet-18, GoogleNet, and MobileNet V2 accuracy results versus compression savingcompression-saving ratio for specialized tasks: (a) Cars, (b) Dogs, and (c) Cats. 
Our The experimental observations results indicate that VELCRO can achieveproduces a compression savingcompression-saving ration of 20.00%–-27.73% (25.46%–30.00%) in ResNet-18, (while in GoogleNet) it achieves 25.46-30% saving. The higher compression savingcompression-saving ratio in GoogleNet can be explained byis attributed to the fact that GoogleNet employs uses fewersmaller number of kernels which are aimed to detect area-specific features which that are distributed across the inferred images. Thereby it canThis explains why GoogleNet is able to better leverages value locality when the network is employed for special tasks. Conversely, MobileNet V2, on the other hand, achievesproduces a smaller compression savingcompression-saving ratio, in the range of 13.50%–-19.76%, for the examininges specialized tasks. These observations results comply with our previous measurements of the distribution of the variance tensor elements, which implyied that the potential of leveraging value locality in MobileNet V2 is smaller relative tothan that of the other examined CNNs examined. This can beis explained by the fact that MobileNet V2 is  much more compact CNN model with respect than the other examined CNNs examined and thereby introduces has a lower potential to leverage value locality.	Comment by Brett Kraabel: Please ensure that this edit maintains the intended meaning. If the meaning is modified, please suggest a correction.
Table 2. Maximum compression savingcompression-saving ratio achieved while keeping maintaining the same accuracy of the original uncompressed CNN model.
	Specialized tasks
	ResNet-18
	GoogleNet
	MobileNet V2

	Cats
	27.73%
	30.00%
	13.50%

	Dogs
	27.70%
	25.46%
	19.76%

	Cars
	20.00%
	27.70%
	16.80%



It should be nNoted that VELCRO does not aim at to compressing the network memory footprint but rather to reduceing the computational requirements. TherebyTherefore, when comparingany comparison of VELCRO to pruning approaches the comparison should consider computation aspects rather than the number of parameters in the network. Table 3 A comparesison of the VELCRO algorithm versus with other pruning approaches is summarized in Table 3:.
	Compression method
	Networks
	Specialized
 tasks
	Training 
required
	Computation 
speedup acceleration 
	Accuracy loss

	Tylor criterion [39]
	AlexNet
	Yes
	Yes
	1.9X
	0.3%

	CURL [60]
	MobileNet V2
ResNet-50
	Yes
Yes
	Yes
Yes
	3X
4X
	Up to 4%
Up to 2%

	Deep 
compression [15]
	Various CNN models
	No
	Yes
	3X
	None

	Weights and connection learning [3]
	AlexNet
	No
	Yes
	3X
	None

	VELCRO
	ResNet-18
GoogleNet
MobileNet V2
	
Yes
	
No
	1.25-1.38X
1.38-1.42X
1.15-1.24X
	None
None
None


Table 3. Maximum compression savingcompression-saving ratio achieved while keeping maintaining the same accuracy of the original uncompressed CNN model.

With respect to pruning approaches for specialized CNNs and for general-purpose CNNs, Although VELCRO achieves smalleraccelerates computation speedup less than do the other compression methodswith respect to pruning approaches for both specialized CNNs and general-purpose ones, VELCRO although its offers a compression process requires significantly smaller fewer computational resources. While In addition, although VELCRO requires back propagation training which required by is in the ranginge between from a few hours up to hundreds of hours [61], VELCRO it involves a preprocessing stage which is faster by few ofseveral orders of magnitude faster. 	Comment by Brett Kraabel: Please ensure that this edit maintains the intended meaning. If the meaning is modified, please suggest a correction.
As part of our experimental analysis,W we also examined the output value of the activation functionss which have been compressed by VELCRO. Table 4 presents the percentages of compression ofes activation elements with zero value of zero out of all the compresseds activation elements. The presented results in Table 3 corresponds to the compression savingcompression-saving ratios in Table 2, (i.e., when the network achieves maximum compression without losing no accuracy) loss. In With ResNet-18 (GoogleNet) the portion fraction of compressed zero values is in the range of 0.08%–-0.31% and in GoogleNet the range( 0.56%-–0.64%). In contrast, MobileNet V2 exhibits produces as significantly higher larger fractionportion of compressed zero values: in the range of 10.48%–-14.91%, which is attributed to t. The fact that MobileNet V2 is a much more compact model with respect tothan the other CNNs can explain why it exhibits a high ratio of compressed zero values. These results imply that VELCRO introduces an additional scope ofoffers more compression with respect to pruning, which aims to remove weak connections of zero values.  	Comment by Brett Kraabel: Please ensure that this edit maintains the intended meaning. If the meaning is modified, please suggest a correction.
Table 4. Percentages ofC compressed activation elements with zero value of zero outas a percent of all compressed activation elements. 
	Specialized tasks
	ResNet-18
	GoogleNet
	MobileNet V2

	Cats
	0.08%
	0.56%
	14.91%

	Dogs
	0.20%
	0.63%
	10.48%

	Cars
	0.31%
	0.64%
	12.00%



Another important observation which is concludedresult gained from Figures 9 (a)–9, (b) and (c) is that, when VELCRO is used with a relatively moderate compression ratio, it achieves produces a significant accuracy increase in accuracy. The results are presented in Table 5, which summarizes the maximum top-1 accuracy achieved by VELCRO. These results can be explained byare attributed to the fact that a relatively moderate level of compression can helps the network leverage value locality to strengthen connections, which thereby increasinges the probability of favoring the prediction off classes which that are part of the specialized tasks. 	Comment by Brett Kraabel: Please ensure that this edit maintains the intended meaning. If the meaning is modified, please suggest a correction.
Table 5. The maximum top-1 accuracy increase achieved produced by VELCRO with respect to the uncompressed model when used for specialized tasks. 
	Specialized tasks
	ResNet-18
	GoogleNet
	MobileNet V2

	Cats
	13.00%
	20.00%
	3.50%

	Dogs
	8.50%
	11.00%
	2.50%

	Cars
	4.00%
	15.00%
	4.50%



5. Conclusions
We have present herein theed VELCRO: vValueE- lLocality- based cComprRessioOn (VELCRO) algorithm. VELCRO introduces a new , wherein a compression approach is introduced for general-purpose deep neural networks which are deployed for a small subset of specialized tasks. We have introduced the notion of value locality in the context of neural networks for specialized tasks neural network and have shown that CNNs which that are used for specialized tasks, exhibit produce a high degree of value locality. Our An analysis of the experimental analysis results indicates that VELCRO can leverages value locality to compress the network and thereby saves 20%–-30% of the computations in ResNet-18 and GoogleNet and up to 20% in MobileNet V2. Our experimentalThe analysis also indicates that VELCRO can achieve a significantly accuracy improves thement accuracy byof 2%–-20% when given a relatively small compression savingcompression-saving target. One Finally, a of the main major advantages of VELCRO is that it presents offers a fast compression process which is that is based on inference rather than using back propagation training, thereby which involves liberating VELCRO from a significantheavy computational processingload. 
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Figure 10. Distribution of ResNet-18 variance tensor elements distribution for specialized tasks: All ImageNet classes, cats-Cats-2, cats-Cats-3, and cats-Cats-4.
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Figure 11. Distribution of GoogleNet variance tensor elements distribution for specialized tasks: All ImageNet classes, cats-Cats-2, cats-Cats-3, and cats-Cats-4.
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Figure 12. Distribution of MobileNet V2 variance tensor elements distribution for specialized tasks: All ImageNet classes, cats-Cats-2, cats-Cats-3, and cats-Cats-4.
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Figure 13. Distribution ResNet-18 variance tensor elements distribution for specialized tasks: Cats, Dogs, Cars, and all ImageNet classes.[image: ][image: ][image: ][image: ][image: ][image: ]
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Figure 14. Distribution of GoogleNet variance tensor elements distribution for specialized tasks: Cats, Dogs, Cars, and all ImageNet classes.
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Figure 15. Distribution of MobileNet V2 variance tensor elements distribution for specialized tasks: Cats, Dogs, Cars, and all ImageNet classes.
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Abstract: 


 


10


 


C


onvolutional neural networks (CNNs) are broadly used in 


numerous


 


applications such as


 


com-


11


 


puter vision


 


and


 


image classification


. 


Although


 


CNN 


models 


deliver


 


state


-


of


-


the


-


art


 


accuracy, they 


12


 


require heavy computational resources 


t


h


a


t


 


are not always


 


affordable 


or available on


 


every plat-


13


 


form. Limited 


performance


, system cost


,


 


and energy consumption, such as 


in edge devices, 


argue


 


14


 


for 


the 


optimization


 


of computation


s in


 


neural networks


. 


Toward this end,


 


we 


propose herein the


 


15


 


v


alu


e


-


l


ocality


-


based 


c


omp


r


essi


o


n 


(


VELCRO


)


 


algorithm 


for neural networks. VELCRO is 


a 


method


 


16


 


to compress general


-


purpose


 


neural networks


 


that


 


are deployed


 


for 


a 


small subset of focuses tasks. 


17


 


Although this study


 


focuse


s


 


on CNNs, VELCRO can be used 


to


 


compress


 


any deep neural network. 


18


 


N


ote


 


also


 


that VELCRO does not 


compress


 


the network memory footprint but rather reduc


es


 


the 


19


 


computational requirements. 


VELCRO relies on the property of value locality


, which suggests that 


20


 


activation output elements exhibit values in proximity th


rough the inference process when the 


net-


21


 


work


 


is 


used


 


for specialized tasks


. VELCRO 


consists of two stages:


 


a pre


processing stage 


that


 


iden-


22


 


tifies 


output elements


 


of the


 


activation 


function 


with


 


a


 


high degree of value locality; and a compres-


23


 


sion stage 


that


 


replaces these elements with their


 


corresponding 


average 


arithmetic 


values. 


As a 


24


 


result, 


VELCRO


 


not only save


s


 


the computation of the replaced activation


s 


but also avoid


s


 


pro-


25


 


cessing


 


their corresponding output feature map


 


elements.


 


Unlike common neural network com-


26


 


pression algorithm


s,


 


which require 


computationally intensive


 


training process


es


, VELCRO 


intro-


27


 


duce


s


 


relatively 


moderate computational requirements. 


A


n


 


a


n


a


l


y


s


i


s


 


o


f


 


o


u


r


 


experiment


s


 


indicates 


28


 


that


,


 


when CNNs are 


used


 


for specialized tasks


,


 


they introduce a 


high degree of value locality rela-


29


 


tive to the general


-


purpose case


.


 


In addition


, 


t


h


e


 


experiment


a


l


 


r


e


s


u


l


t


s


 


show that 


VELCRO


 


p


ro


d


u


c


e


s


 


30


 


a compression


-


saving ratio in the range 


13.5%


–


30


.


0


%


 


with no degradation in accuracy


. 


Finally, 


t


h


e


 


31


 


experimental 


results


 


indicate that


,


 


when VELCRO 


is used with 


a 


relatively low compression 


target


,


 


32


 


it 


significan


t


ly improves the


 


accuracy 


by


2


%


–


20%


 


for specialized 


CNN


 


tasks


.


 


33


 


Keywords: 
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n
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al
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com-


34


 


pression


 


35


 


 


36


 


1. Introduction


 


37


 


Convolutional neural networks (CNNs) are broadly employed by numerous com-


38


 


puter vision applications such as autonomous systems, healthcare, retail, 


and 


security


. 


39


 


Over time


,


 


the 


processing requirements and complexity


 


of


 


CNN models 


have 


signifi-


40
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  puter vision   and   image classification .  Although   CNN  models  deliver   state - of - the - art   accuracy, they 

12

  require heavy computational resources  t h a t   are not always   affordable  or available on   every plat-
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  form. Limited  performance , system cost ,   and energy consumption, such as  in edge devices,  argue  
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  for  the  optimization   of computation s in   neural networks .  Toward this end,   we  propose herein the  

15

  v alu e - l ocality - based  c omp r essi o n  ( VELCRO )   algorithm  for neural networks. VELCRO is  a  method  

16

  to compress general - purpose   neural networks   that   are deployed   for  a  small subset of focuses tasks. 

17

  Although this study   focuse s   on CNNs, VELCRO can be used  to   compress   any deep neural network. 

18

  N ote   also   that VELCRO does not  compress   the network memory footprint but rather reduc es   the 

19

  computational requirements.  VELCRO relies on the property of value locality , which suggests that 

20

  activation output elements exhibit values in proximity th rough the inference process when the  net-

21

  work   is  used   for specialized tasks . VELCRO  consists of two stages:   a pre processing stage  that   iden-

22

  tifies  output elements   of the   activation  function  with   a   high degree of value locality; and a compres-

23

  sion stage  that   replaces these elements with their   corresponding  average  arithmetic  values.  As a 

24

  result,  VELCRO   not only save s   the computation of the replaced activation s  but also avoid s   pro-

25

  cessing   their corresponding output feature map   elements.   Unlike common neural network com-

26

  pression algorithm s,   which require  computationally intensive   training process es , VELCRO  intro-

27

  duce s   relatively  moderate computational requirements.  A n   a n a l y s i s   o f   o u r   experiment s   indicates 

28

  that ,   when CNNs are  used   for specialized tasks ,   they introduce a  high degree of value locality rela-

29

  tive to the general - purpose case .   In addition ,  t h e   experiment a l   r e s u l t s   show that  VELCRO   p ro d u c e s  

30

  a compression - saving ratio in the range  13.5% – 30 . 0 %   with no degradation in accuracy .  Finally,  t h e  

31

  experimental  results   indicate that ,   when VELCRO  is used with  a  relatively low compression  target ,  

32

  it  significan t ly improves the   accuracy  by 2 % – 20%   for specialized  CNN   tasks .  
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