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Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously affected the public health and social stability. Because Due to both of the direct destruction harmful effects of SARS-CoV-2 and disordered immune responses, some COVID-19 patients may progress to acute respiratory distress syndrome or even multiple organ failure. Genetic variants of SARS-CoV-2 have been emerging and circulating around the world. Currently, there is no worldwideinternationally -approved precise treatment for COVID-19. Mesenchymal stem cells (MSCs) can traffic and migrate towards the affected tissue, regulate both the innate and acquired immune system and participate in the process of healing. Here, we will discuss and comb investigate the mechanisms of immune disorder in COVID-19 and the therapeutic activity of MSCs, especially in particular the human gingiva mesenchymal stem cells.
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Instroduction
An The outbreak of a new coronavirus pneumonia (named as COVID-19; previously known as 2019-nCoV) is nowcontinues to causeing a severe public health emergency worldwide. Epidemiological analysis shows that COVID-19 is an acute self-resolvinged diseasedisease, but thatit can also be deadly, with an almost a 2% case fatality rate [1-3]. Although the lung basically bears the brunt of the virus-induced damage, other parts of the body like such as the liver, gastrointestinal tract, and heart are also affected [4-7]. Up to dateCurrently, there is no precise and effective treatment for COVID-19. With the progress ofAccumulating data from clinical case reports and basic research indicate that, a hyperinflammatory response including cytokine storm possibly plays a role in the progression of COVID-19. Mesenchymal stem cells (MSCs), which offer strong efficacy of hypersensitivity and inflammatory orchestration, are regarded as a promising therapeutic strategy in virus-induced hyperimmunoreactive disease, one of them issuch as COVID-19. Gingival tissue-derived MSCs (GMSCs) have potent capacity of for multi-directional differentiation and inflammatory modulation, making them an ideal subtype of MSCs for therapeutic use. In this review, we summarize the current understanding ofn the biology of the GMSC population and explore their possibly potential therapeutic curative effects ion virus- related diseases. We assume hypothesize that application the administration of GMSCs could provide an innovative treatment in for combating patients with COVID-19.	Comment by Editor: I do not know what the authors are trying to say here. I assume it is related to the immunosuppressive and immunomodulatory properties of MSCs. Maybe “Mesenchymal stem cells (MSCs) are both mmunosuppressive and immunomodulatory, and are regarded…”

1. Clinical characteristics of COVID-19 and organ involvement
[bookmark: _Hlk34229869][bookmark: _Hlk34229896][bookmark: _Hlk34229916][bookmark: _Hlk34229942]Coronaviruses were given their name based on the crown-like projections on their surfaces;. “cCorona” in Latin means “halo” or “crown.” Human coronaviruses (HCoV) were first identified in the 1960s in the noses of patients with the common cold [8]. Coronaviruses possess a remarkable ability for interspecies transmission as exemplified by the emergence of the human severe acute respiratory syndrome CoV (SARS-CoV), Mmiddle Eeast respiratory syndrome CoV (MERS-CoV) and other low pathogenic hCoVs, which include HCoV-229E, HCoVOC43, HCoV-NL63, and HKU1 [9, 10]. SARS-CoV-2 is the a highly pathogenic hCoVs with high morbidity and mortality that infects the lower respiratory tract and causes severe pneumonia, even more leads tand can result o in acute respiratory distress syndrome (ARDS) [11, 12]. The B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta), and P.1 (Gamma) variants circulating all over the world are classified as variants of concern. There are currently no effective, licensed therapies for the virus infection and existing implement strategies are generally limited to symptomatic treatment and supportive care.  
In general, all ages of the population are susceptible to SARS-CoV-2 infection, however, clinical manifestations differ with age. Notably, compared to young people and children, older men (>60 years old) with co-morbidities are more likely to develop severe respiratory disease, requiring ventilation or an intensive care unit (ICU) -monitoingmonitoring[13-15]. SARS-CoV-2 infection causes a series of systemic symptoms, such as fever, fatigue, dry cough, diarrhea, or even no symptoms at all [6, 16, 17]. Severe cases may occur involve organ dysfunction, including acute respiratory distress syndromARDSe, acute cardiac injury, acute kidney injury and even death particularly when the patients haveing underlying diseases like hypertension, diabetes, and heart disease, etc[16-19] [Fig 1]. In addition, over 40% of COVID-19 patients were have asymptomatically infection ed[20]. Blood tests on most of the patients showed a decreased leukocyte counts, prolonged prothrombin time and elevated lactate dehydrogenase in most patients [21, 22]. Lung CT imaging indicates progressive infiltrate and diffuse gridding shadow in both lungs [21-23]. Currently available evidence indicates that SARS-CoV-2 is likely emerged from a bat reservoir, although it remains unclear whether there are other animal species that acted as an intermediate host between bats and [image: Diagram

Description automatically generated]humans [24, 25]. 	Comment by Editor: I think it would be better to remove this since this is a list of symptoms and asymptomatic cases are mentioned a few lines below.

[image: ] 
Systemic multi-system involvement of SARS- CoV-2 infection.

As the current understanding of the ACE-2 receptor expressed on the brain neurons and glial cells, an understanding of the impairment of                             and the early diagnosis [26] . Neurological abnormalities have been described in ∼30% of patients who required hospitalization for COVID-19 [6]. Common symptoms included hHeadache, dizziness, taste and smell dysfunctions, and impaired consciousness were the most frequently reported neurological symptoms in COVID-19 patients, each observed in more than five of the analyzed studies, and with an overall frequency of greater than 4% of the populations studied. From the reported studies, headache was the most common symptom, which was more frequently in mild or moderate patients than the severe ones. Rare symptoms such as acute cerebrovascular events, meningitis/encephalitis also have also been observed in severely ill patients [6, 26, 27]. The neurotropism of SARS-CoV-2 hwasere been demonstrated and the several potential mechanisms of its invasion into the CNS were recohave been suggestedgnized, such as the virus entry through the transcribial route, axonal transport [image: ]and trans-synaptic transfer or through the bloodstream or lymphatic system [28].	Comment by Editor: I don’t understand this sentence and I wonder if something is missing. The ACE-2 receptor and its part in covid-19 hasn’t been mentioned previously. I assume this is to explain the neurological symptoms, but not sure what how that is connected to early diagnosis.
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Systemic multi-system involvement of SARS- CoV-2 infection.

2. Coronaviral structural proteins and the, genome structure of SARS-CoV-2
[bookmark: _Hlk34230055]Coronaviruses belong to the virus family coronaviridae, which are enveloped, nonsegmented, positive- sense and single- stranded RNA virus genomes, infecting a variety of host species, including humans and several other vertebrates. As a novel betacoronavirus, SARS- CoV-2 shares 79% genome sequence identity with SARS- CoV and 50% with MERS- CoV;, which itstheir genomes range approximately ranges from 26 to 32 kilobases, making these viruses the largest known RNA viruses [29, 30]. They It encodes four major structural proteins: the spike protein (S), nucleocapsid protein (N), membrane protein (M) and the envelope protein (E), all of which are required to produce a structurally complete viral particle [31]. However, not all the protein is required for forming a complete, infectious virion [32-34]. The role of eEach protein reacting oin the structure of the virus particle or involveding in other aspects of the replication cycle most mainly depends on the specific disease. In general, the S protein mediates attachment of the virus to the cell surface receptors and subsequently facilitates the viral entry process [34-36]. The N protein is the only protein that functions primarily to bind to the CoV RNA genome, usually making up the nucleocapsid [37, 38]. The M protein is the most abundant structural protein, which not only determines the shape of the viral envelope but is also regarded as the central organiserorganizer of CoV assembly [39, 40]. The E protein is the smallest of the major structural proteins, which and is abundantly expressed inside the infected cells during the replication cycle;, however, only a small portion is assembled into the virion envelope [41]. Full-genome sequencing and phylogenic analysis demonstrated that SARS-CoV-2 is a novel clade probablye from the betacoronaviruses that includes bBat-SARS-like (SL)-ZC45, bBat-SL ZXC21, SARS-CoV and MERS-CoV [25]. Chen et al reported that SARS-CoV-22019-nCoV is close to CoVs circulating in Rhinolophus (Horseshoe bats) using the full genome comparisons. They demonstrated that SARS-CoV-2 2019-nCoV shared 98.7% nucleotide identity to bat coronavirus strain BtCoV/4991, and 87.9% nucleotide identity to bat-SLCoVZC45 and bat-SL-CoVZXC21, indicating that it was quite divergent from the currently known human CoVs, including SARS-CoV (79.7%) [24]. Another study delineated calculated that the genome of SARS-CoV-2 2019-nCoV has 89% nucleotide identity with bat SARS-like-CoVZXC21 and 82% with that of human SARS-CoV. The phylogenetic trees of the structural proteins are also clustered closely with those of the bat, civet and human SARS coronaviruses [42]. Nevertheless, the external subdomain of spike (S) receptor binding domain of SARS-CoV-22019-nCoV shares only 40% amino acid identity with other SARS-related coronaviruses [42]. Wrapp et al dissected a 3.5-Å cryoelectron microscopy (cryo-EM) structure of the SARS-CoV-2 2019-nCoVs trimer in the prefusion conformation [43]. The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated up in a receptor-accessible conformation. Finally, angiotensin-converting enzyme-2 (ACE2), the unequivocally functional receptor of SARS-CoV-2, encoded by a gene located on chromosome Xp22, plays a crucial role in the process of viral entry into human cell. The spike (S) protein binds ACE2 with higher affinity than (S) protein [44]. 	Comment by Editor: higher affinity than what? 

3. Immunopathogenesis of coronavirus and SARS-CoV-2
[bookmark: _Hlk34230076][bookmark: _Hlk34230093][bookmark: _Hlk34230133][bookmark: _Hlk34230149][bookmark: _Hlk34230343][bookmark: _Hlk34230420][bookmark: _Hlk34230618][bookmark: _Hlk34230767]Coronavirus’s interactionng with the host immune system plays an important role in determining the outcome of infection. The hHost’s innate immune system spies on viral infections by activating pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs). What is clear from the current study is that toll-like receptor (TLR), RIG-I-like receptor (RLR), NOD-like receptor (NLR) and free-molecule receptors in the cytoplasm, such as cGAS, IFI16, STING, are main PRRs [45]. The IFN system is, a crucial frontline, defenses against viral infection and limits virus spread. IFN production-related PRRs mainly include TLRs, RLRs, and NLRs [46]. Type I IFNs (particularly IFN-α and IFN-β) activate the downstream JAK-STAT signal pathway, promotinge the expression of IFN-stimulated genes (ISGs), subsequently mediating antiviral effects by directly inhibiting coronavirus replication and indirectly modulating the host immune response [47, 48]. IFNs also play an immunomodulatory role to suppress the function of T cells or the innate immune cells in chronic infection [49]. The abnormality of these cytokines and signals also contribute to the inflammatory diseases [50].	Comment by Editor: what abnormality? Do you mean “Any abnormalities of these cytokins and signals…”?
[bookmark: _Hlk34230787]Rapid coronavirus replication reaching high titers and associated with enhanced inflammatory responses, such as the maladjustedan unregulated production of IFNs, are believed to result in "cytokine storm” [51]. Virus-associated "cytokine storm” was is characterized by an immunogenic cascade reaction. After infection, the highly pathogenic hCoVs may lead to delayed IFNs production via multiple structural and non-structural proteins [52-54]. Unrestrained virus replication and more viral PAMPs may result in excessive release of more pro-inflammatory cytokines, recruitment of a large number of inflammatory cells, and an aberrant cascade of inflammatory responses [55]. Research has shown that SARS-CoV-2 can promote autophagy, which plays a crucial role in suppressing the type I interferon response [56]. The hypercytokinemia and systemic immunopathology lead to a progressive immune-associated injury resultings in the SARS-CoV infected severe pneumonia [57]. In SARS-CoV and MERS-CoV infection, lung pathology revealed diffuse alveolar damage (DAD) and extensive cellular infiltrates (mainly neutrophils and macrophages) in the interstitium and alveoli are prominent features [58, 59]. In patients with severe conditionillness, high levels of pro-inflammatory cytokines (IFNs, IL-1, IL-6, IL-12, and TGF-β) and chemokines (CCL2, CXCL10, CXCL9, and IL-8) were found in serum [60-62].
Recent studies have suggested that the pathophysiology of SARS- CoV-2 infection is due to not only to the damage caused by the virus itself,al damage but also the host response. It is certain that uncontrolled inflammation, also referred as cytokine storm, contributes to disease severity in COVID-19 [63]. From 40 confirmed patients, Huang et al analyzed the immunological features from of the peripheral blood from 40 confirmed patients. They presented reported that about 25% patients showed had leucopenia and approximately 63% showed had lymphopenia [17]. Liu et al also observed a dozen patients and found that the more severe the disease, the higher the prothrombin time and D-dimer levels are [21]. In addition, aspartate aminotransferase and hypersensitive troponin I (hs-cTnI) was mildly increased compared to the levels seen in general pneumonia. A uncontrolled systemic inflammatory response results from the release by immune cells of large amounts of pro-inflammatory cytokines (IFNα, IFNγ, IL-1β, IL-6, IL-12, IL-17, IL-18, IL-33, TNF-α, TGFβ, etc) and chemokines (CCL2, CCL3, CCL5, CXCL8, CXCL9, CXCL10, etc) by immune cells [64]. Interestingly, the plasma concentrations of IL-2, IL-7, IL-10, G-CSF, IP10, MCP-1 and TNFα were significantly higher in ICU patients than non-ICU patients. Thereby, it is documentedThis provides preliminary evidenceily that the extent of the hypercytokinemia may predict different the clinical consequences. Qin et al. observed the abnormal changes of in the adaptive immune response in COVID-19 cases. The levels of bBoth suppressor T cells (CD3+CD8+) and T helper cells (CD3+ CD4+) were below normal levels. Meanwhile, the percentage of naïve T cells (CD3+CD4+CD45RA+) was increased and the of memory T cells (CD3+CD4+CD45RO+) was decreased in severe cases, indicating the severity of immune system impairment [64]. Compared with to mildly ill patients, most severe cases of COVID-19 have lower percentages of monocytes, eosinophils, and basophils [65]. Using RNA-sequencing combined with single-cell proteomics, some one research group determined that elevated frequency of HLA-DRhiCD11chi inflammatory monocytes with an IFN-stimulated gene signature were found in mild COVID-19, whereas, severe COVID-19 was characterized by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils and HLA-DRlo monocytes [66]. 

4. Mesenchymal stem cells
Up to datenow, more than 150 clinical trials have been launched to test coronavirus treatments all over the world (https://www.who.int/ictrp/zh/). Although there are several vaccines that are effective in preventing the spread of COVID-19, however, no specific drugs are available to specifically treat COVID-19 patients [67].  Previous studies reported on the safety and applicability of mesenchymal stem/stromal cells (MSCs) to ameliorate pulmonary inflammation in acute respiratory distress syndrome [68]. In this regardIn light of this, MSCs-based immunomodulation treatment has been proposed as a powerful therapeutic approach against COVID-19.
4.1 Characteristic of MSCs 
[bookmark: _Hlk34231475]Stem cells can be split into two major groups: embryonic and nonembryonic stem cells. Among nonembryonic stem cells, MSCs represent an intensively investigated population investigated population givenwith their unique biological properties [69]. SThe similar subsets of multipotent MSCs have been identified in dental pulp, skin, umbilical cord blood, and adipose tissue, et al [70-73]. MSCs usually express specific genes for embryonic stem cells, such as Octamer-4 (Oct-4) and stage-specific embryonic Ag 4 (SSEA-4), and share a similar expression profile of cell surface molecules, such as CD105, CD73, CD90, CD146, CD29, but typically lack hematopoietic stem cell markers, such as CD34 and CD45 [74-76]. All of these MSC subsets have the capacity of for self-proliferation and multi-differentiation. In addition, they also display chemotactic, anti-inflammatory, and immunomodulatory properties, similar to immune regulatory cells, in response to tissue insult and inflammation via production of anti-inflammatory cytokines and antiapoptotic molecules [77]. Indeed, immune regulatory cells have potent functional capacity on to suppressing immune response and controlling inflammatory diseases [78]. Because of theMSCs’ unique characteristics have led to the suggestion that, MSC-based therapies have been proposed asprovide a potential approach to harness controlling inflammation in the repair or regeneration of a variety of damaged tissues and organs [Fig. 2].


[image: ]
[image: ] 
MSC therapys produces meaningful therapeutic outcomes for in the treatment of pulmonary, cardiovascular, neurological, liver, kidney, arthritic and CNS inflammatory diseases. 

4.2 The pParacrine system, homing effects and immunomodulation
[bookmark: _Hlk34231444][bookmark: _Hlk34231422][bookmark: _Hlk34231405]A growing body of evidence has demonstrated that MSCs have the potential to secrete a wide variety of cytokines, chemokines and growth factors, which exert profound effects on when they interacting with the microenvironments mediated the tissue function [79, 80]. MSC secretome identified the which released factors are at high levels, such as proteins involved in immune system signaling [i.e., IL-6, IL-8, MCP-1, and TGF-β], extracellular matrix remodelers [i.e., TIMP-2, fibronectin, periostin, collagen, decorin, etc.et al], and growth factors and their regulators [i.e., VEGF, GM-CSF, BMP-2, IGFBPs] [81-83]. Beyond thatMoreover, MSC-conditioned media also acts as a chemoattractants for recruiting macrophages and endothelial cells into the wound tissue to enhance the healing process or improveddecrease the cardiac infarct size [78, 84]. The homing mechanism of MSCs involves in several cell trafficking-related molecules such as chemokines, adhesion molecules, and matrix metalloproteinase [85]. Among them, CCR-2/3, CXCR-4, VLA-4, and CXCR-9, et al are the most important signalers [86, 87]. In order to reach the injured tissue, MSCs exhibit the ability of transendothelial migration, from adhering to vascular endothelial cells to crossing the endothelial barrier. In this process, several MMPs have proven to provide an assistance to increase the invasiveness of MSCs [88]. MSCs exerted their immunomodulatory function mostly dependent on cell-to-cell contact and/or the release of soluble immunosuppressive factors [89] [Fig 3]. A series of studies have demonstrated that MSCs interact with a wide range of immune cells and display an ability to suppress the excessive response of T and B lymphocytes, dendritic cells, macrophages, mast cells, and natural killer cells, as well as promote the expansion of regulatory T cells [90-93]. For the crosstalk with Treg cells, short lived MSCs could can act as catalysts in induction and expansiond of long-lasting antigen-specific Treg cells to continue the immunosuppressive capacity [94, 95]. In cytoimmunotherapy, MSCs could become the gold standard for the treatment of organ damage associated with intense inflammatory activity (e.g., rheumatoid arthritis, kidney failure, heart injury, GVHD, systemic lupus erythematosus, multiple sclerosis) [96].	Comment by Editor: unclear what is mean here
[image: ][image: ] 
MSCs can alter the behavior of both adaptive and innate immune cells, regulating the condition of a variety of pathological microenvironments.

4.3 MSCs from dDifferent sources have different functions against virus infection
Source-related features of MSCs directly contribute to the diversity of opinions regarding the mechanisms of MSC-mediated immunomodulation. In terms of current clinical applications, the main sources of MSCs are bone marrow (BM), adipose tissue (AT) and umbilical cord (UC) [97]. BM-MSCs separation is painful for the patient and is accompanied by a risk of infection. Pittenger et al. demonstrated that there is only 0.001 to 0.01% of the cells is are the real mesenchymal stem cells when extracted by density gradient centrifugation extraction. Functionally, BM-MSCs possess a longer duplication period and reach senescence earlier. However, several basic and clinical studies showed that a lower immunomodulatory activity of BM-MSCs in an inflammatory environment in vitro and poor therapeutic effects were observed in a real-world study [97, 98]. 
AT-MSCs have been shown to have higher proliferation capacities than BM-MSCs, which with the population doubling times is of 45.2 h for AT-MSCs compared to the 61.2 h for BM-MSCs, illustrated by Peng et al. [99]. AD-MSCs also have avoid less the ethical problems than of BM-MSCs. Multiple clinical trials have proved that AD-MSCs can treat arthritis, diabetes, heart failure, and achieve good clinical outcome [100, 101]. It should however be noted that the heterogeneity of AT-MSCs varies with different regions of the body, posing a challenge for clinical application [102]. In comparison, umbilical cord-derived MSCs (UC-MSCs) are more primitive and immunosuppressive than their adult counterparts. Nevertheless, in terms of these three products, there are still many questions regarding the clinical application of MSCs that need to be answered, and further studies are warranted, such as the effect of donor selection, long-term therapeutic effects, product consistency, and potential tumorigenicity [103].
4.4 Potential Mechanism of MSCs against SARS-CoV-2
Coronaviruses, such as SARS, MERS even the SARS-CoV-2, continuously undergo mutations resulting in the generation of new viral strains that can become resistant to antiviral drugs [104, 105]. Several mechanisms by which MSCs therapy has several mechanisms of actionworks, making it stand in the breachunlikely that the virus could develop resistance to this treatment [Fig. 4]. MSCs administration hads the beneficial effects on the ARDS in animal models [106, 107]. They observed that MSCs were shown not only to repress the activities of influenza viruses, but also directly inhibit the replication and virus-induced apoptosis in lung epithelial cells capacities [108]. Furthermore, the production of the proinflammatory cytokine TNFα and the chemokine CXCL10 was significantly decreased after MSCs administration, accompanied by the an increased production of IL-10 [108],. IL-10 is a potent anti-inflammatory cytokine [109-111]. The influenza A (H5N1) virus also causes the acute lung injury, and some two groups reported that human umbilical cord derived-MSCs (hUC-MSCs) or and bone marrow MSCs (BM-MSCs) were effective in restoring impaired alveolar fluid clearance and protein permeability of A(H5N1)-infected human alveolar epithelial cells [112, 113].  
Clinical trials are ongoing across the world to evaluate the efficacy of cell-based therapy to against the COVID-19. A case study was reported that of an acute SARS-CoV-2 infected female patient with poor oxygenation, who received the chUC-ord MSCs by intravenous infusion. After three weeks of dynamic observation, the results of blood tests and CT images provided evidence of an extremely effective good prognosis [5, 114]. In another study released reported recently in China, patients with severe COVID-19 were randomly divided into 2 groups: the standard treatment group and the standard treatment plus hUC-MSC infusion group (well-certified, good manufacturing practices-grade single dose of 1 × 106 UC-MSC/kg per patient). The results showed that the MSCs- treated group had much greater clinical improvement than the control group, accompanied by lower CRP and IL-6 levels in peripheral blood, and faster lung inflammation absorption [115]. Also, the gene expression profile showed MSCs were ACE2 negative, which means that transplanted MSCs did not differentiate and remained free of virus [114, 115]. Results from the phase I-II and multi-center study (ChiCTR2000029990) showed that over-activated immune cells (CXCR3+CD4+T cells, CXCR3+CD8+ T cells and CXCR3+NK cells) and serum TNF-α and IL-6 levels were significantly decreased, while anti-inflammatory IL-10 levels were increased in the MSCs treatment group [115, 116]. Mechanically, human bone marrow-MSCs were negative for ACE2 and TMPRSS2 genes, partially indicatingsuggesting that human BM-MSCs may be free from SARS-CoV-2 infection and its immunomodulatory properties may might be maintained under the virus microenvironment [117]. Meanwhile, MSCs possess the capacity for tissue regeneration, cytokine storm suppression in treating ARDS, which were also applied to fight against COVID-19.
[image: ]
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Schematic of the potential mechanism of MSCs action and host immune system responses during SARS-CoV-2 infection.

5. Human gingiva mesenchymal stem cells 
5.1 Characteristics and functions of GMSCs 
[bookmark: _Hlk34231300]Human gingiva is a tissue that is not only easily obtained from the oral cavity, but also can be used as a discarded biological sample. Human gingiva MSCs (GMSCs) are capable of eliciting a potent inhibitory effect on peripheral blood lymphocyte proliferation, and cytokine production [118]. Most importantly, GMSCs expresses a wide panel of immunosuppressive factors including IL-10, IDO, inducible NO synthase (iNOS), and cyclooxygenase 2 (COX-2) in response to the inflammatory milieu [119]. 
GMSCs transplantation can was shown to effectively alleviate the arthritis symptoms of mice in collagen- induced arthritis (CIA) and ameliorate immune-mediated bone marrow failure of aplastic anemia (AA) [120]. Additionally, our group found that GMSCs can generate adenosine via extracellular enzyme CD39 and CD73, which can inhibit the differentiation of osteoclastogenesis and promote osteoblast via Wnt/β-Catenin pathway [121]. In a diabetes model, we confirmed that GMSCs even enhanced their suppressive function in the inflammatory condition and that the microRNA-21a-5p/PDCD4 axis regulates their functional activities [122, 123]. Using the AopE-/- mice, we observed that GMSCs administration significantly reduced the frequency of inflammatory monocytes/macrophages, which contributed to the atherosclerosis alleviation [124]. Moreover, with the application ofin Xeno-Graft-versus-Host Disease (GVHD), we spotted observed that GMSCs can inhibited the diseases mediated initially by human cells, implicating implying that GMSCs have values favourable clinically for GVHD  application value [125]. More studies using several mice models revealed that GMSCs transplantation can prevent the experimental colitis and, alleviate the oral cavity mucosal inflammation induced by chemotherapy [126, 127]. In a pre-clinical study, we demonstrated that the administration of GMSCs is highly very safe. In addition to possessing the stem cell-like properties and immunomodulatory functions, GMSCs also have the following special biological characteristics, compared to other MSCs: 1) They are easy to isolate and culture, and proliferate faster than BM-MSCs; 2) They have no tumorigenesis, maintain stable and uniform phenotype after long-term cultivation; 3) Whether from the autoimmune patients or healthy volunteers, their cellular properties and physiological functions remain unchanged, which implies that the autologous GMSCs can be applied to treat the relevant diseases [128, 129]. 

5.2 GMSCs against SARS-CoV-2
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]From the autopsy results of a SARS-CoV-2 infected pneumonia patient, histological examination showed bilateral diffuse alveolar damage with cellular fibromyxoid exudates and interstitial mononuclear inflammatory infiltrates in the both lungs, dominated by lymphocytes [2]. The main manifestation was excessive inflammatory response. Although peripheral CD4+ and CD8+ T cells were substantially reduced, they were overactivated, as evidenced by the high proportions of HLA-DR and CD38，accompanied by increased concentration of CCR4+ CCR6+ Th17 cells. Besides, CD8+ T cells were found to harbour high concentrations of cytotoxic granules, in of which a few were perforin positive and some were granulysin positive. From this case, we can speculate that the redistribution of lymphocytes in the infected body may contribute to the peripheral blood lymphocytopenia and the increased lymphocytes infiltration in lung tissue. In other words, the immune system excessively mobilizes lymphocytes to migrate to the pneumonic lungs or virus-infected lung tissue produces some chemotactic factors that attract the lymphocytes migration. It is also increasinglyA controverted controversial question currently is whether the acute liver injury seen in some COVID-19 patients that what kinds of mechanism gives rise to the acute liver injury in some COVID-19 patients,is SARS-CoV-2-caused or drug-induced? More It is more likely, that it is due to the cytokine storm, which a virus triggered the immune overreaction. In research by Ahmadi et al. performed an analysis of CD39 and CD73 expression pattern on CD4+ T, CD8+ T, natural killer T cells of COVID-19 using a flow cytometry panel. [43]., which was a control group study, performed an analysis of CD39 and CD73 expression pattern on CD4+ T, CD8+ T, natural killer T cells of COVID-19 using flow cytometry panel, Tthe results were a correlation between the absence of CD73 from CD8+ T cells and NKT and more increased capable ability of to secreteing granzyme B, perforin, TNF-α, and IFN-γ regardless of the disease status. Another study also confirmed that SARS-CoV-2 can exhauste CD8 T lymphocytes with elevated CD39 and TIM-3 exhaustion markers. Studies from our group showed that human GMSCs highly expressed CD39/CD73, contributing to the therapeutic effect on several autoimmune inflammatory diseases. Because of the advantage, GMSC may be more effective on treating COVID-19.  

6. Conclusions
Although COVID-19 therapies have targeted various pathogenic mechanisms, there are no established treatments currently. We have described here MSCs’ biology was all-sided outlined with particular emphasis on lung diseases. Meanwhile, tThe therapeutic potential of GMSC-based cell therapy against the SARS-CoV-2-related diseases will also be highlightedis explained. Multiple ongoing trials are now testing MSCs in patients with severe COVID-19, and pilot uncontrolled trials have reported promising results. However, the efficacy and side effects of MSCs therapy should be confirmed further in larger trials. Besides, hHuman gingiva MSCs is a up-rising starhave great potential, that and their the clinical application needsed to be carefully strictly designed and applied. 
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