Initial Post-contact Behavior of an Axially Compressed Fiber Constrained Inside a Rigid Cylinder: Experimental, Analytical, and Numerical Investigation
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Abstract 
The post-buckling behavior of a clamped-clamped elastic fiber constrained inside a rigid circular cylinder is analyzed theoretically, numerically, and experimentally. We concentrate on characterizing the contact configuration between the fiber and the cylinder wall, during initial post-contact stages of the fiber deformation, in which only a small segment of the fiber length makes contact with the cylinder wall. This is apparently the first study of that phenomenon in which an in-depth analysis of the fiber deformation stages has been presented at different load levels. The research was performed using several independent methods, including representative experiments, image processing of test data, finite elements analysis complementing the experimental part, and analytical models. The entire deformation history is investigated from initial fiber loading up to a transition to 3-D deformation. The main experimental challenge is to identify regions of contact between the fiber and the cylinder wall, and to distinguish them from segments of the fiber that are very close to the cylinder wall but make no contact with it. To this end, we employed a novel experimental setup consisting of a transparent rigid cylinder filled with an opaque milky fluid, combined with image processing and synchronized force measurements. The results agree with published theoretical predictions that are based on a simplified theoretical model assuming a thin fiber and no friction, under the restriction of initial diminutive geometrical imperfection. Supported by finite-element analysis (FEA), we found that friction increases the measured force for the same level of ends shortening but has a small effect on the overall behavior. In contrast, presence of small initial geometrical imperfection may significantly affect the force-displacement relation and the evolution of the contact configuration. Both symmetrical and anti-symmetrical initial imperfections of the fiber shape are analyzed theoretically. The study provides insights regarding the influence of relevant parameters on the behavior of such systems that may have practical implications in the fields of stent procedures, medical endoscopy, deep drilling, and the mechanics governing the growth of roots and plants.
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1. Introduction 
The post-buckling behavior of a linearly elastic fiber subjected to lateral constraints is of practical importance in a variety of fields, ranging from medical procedures (such as in vivo diagnosis) to various engineering applications. Examples of applications in the field of medical procedures include the threading of fiber for the purpose of medical imaging or for catheterization of the heart, urinary tract, and blood vessels. Understanding the nonlinear behavior of such systems, and in particular, the forces exerted by the fiber (the guidewire) on the constraining walls (the artery) is important in order to ensure the safety of the procedure [1]. In rare cases, the extensive deformations of the guidewire can result in the fracture of the guidewire or cause damage to the artery during the procedure [2, 3]. Other applications include the internal examination of pipe systems, the insertion of artificial fibers in industrial crimpers, drilling of wells from a platform to reach deep hydrocarbon or gas reservoirs [4], effects of delamination in composite materials [5, 6] , the insertion of paper into toner, growth of plant roots [7], and the growth of filopodia in living cells [8-11].
Originally, the engineering community was mainly concerned with ways of avoiding critical deformations followed by buckling, and the scientific discussion focused on assessing critical forces [12-15]. During the second half of the twentieth century, starting in the early 1950s, theoretical models of post-buckling behavior began to emerge. These early works dealt with formulating and solving problems of laterally-unconstrained compressed columns and curved beams subjected to various types of boundary conditions [16, 17]. In recent decades, the interest in post-buckling behavior of laterally constrained fibers has increased. Theoretical and experimental studies have shown that a bilaterally constrained fiber undergoing plane deformations exhibits intriguing behavior, and ensuing studies have exposed a rather rich sequence of events under controlled axial end displacement [6, 18-21]. This sequence includes the formation of discrete (point-contact) or continuous (line-contact) regions of contact between the fiber and the constraining walls, and the instantaneous transition from one equilibrium configuration to another due to the onset and formation of new instability modes.. Specific details of such events and their dependence on parameters like fiber slenderness, the ratio between the fiber radius of gyration and the width of the gap between the walls, loading rate, and friction are given in [22]. Theoretical studies have adopted various strategies and simplifying assumptions, such as fixed constraints, frictionless walls, or small deformations [4, 23]. Research objectives were to examine a range of possible equilibrium configurations and the evolution of the contact between the fiber and the constraining walls [4]. In addition, numerical methods were employed to study the planar deformation of fibers subjected to more complex lateral constraints, such as non-parallel walls and non-continuous and curved surfaces [24-30] . Only a handful of studies consider the effects of friction [4, 23], and an even smaller body of work has approached the realistic case of compliant (deformable) constraining walls [31, 32]. 
The out-of-plane three-dimensional (3-D) response of a fiber constrained inside a rigid cylinder is discussed in [33]. Here, in addition to the formation of discrete and/or continuous contact regions, a transition between planar deformation and three-dimensional configurations occurs. Typically, the initially straight elastic fiber buckles into a planar wavy shape when subjected to edge thrust. As the edge thrust increases, the fiber contacts the cylinder wall, switches to a non-planar deformation, and eventually twists and adopts a helix-like shape. In some applications, such as for drilling oil wells, understanding the details of this behavior is crucial. Once the fiber contacts the wall, the effectiveness of the drilling operation is considerably reduced. Moreover, locking might occur when the fiber turns into a helix-like shape with extensive wall contact. A similar phenomenon also occurs in stent operations [2, 3, 22, 34]. Studies of the 3-D deformation of a laterally constrained fiber have been performed also in the context of delamination occurring in fiber-reinforced composites [35, 36]. 
Theoretical studies investigating the 3-D deformation of a fiber constrained inside a cylinder can be roughly divided into two main groups. The first group assumes that the constraining cylinder is slender, and that the deformation of the fiber is small, thus making the model of small rotations applicable. Different formulations for the critical loads and post-critical configurations were employed. Several papers considered the effects of friction [22], gravity [37, 38], and the inclination angle of the constraining cylinder [12, 39]. 

Nearly all theoretical studies of finite deformations, of a fiber constrained inside a cylinder, have focused on the final stage of the deformation process where almost the entire length of the fiber contacts the cylinder wall, and the fiber adopts a helix-like configuration [8-11]. The studies in [16, 37]  among the earliest in this direction have utilized an energy method to extract the relation between the edge thrust and pitch of the circular helix. To date, not much attention has been devoted to the initial (post-contact) stages of the fiber deformation that follow the first contact between the fiber and the cylinder wall. In this respect, the studies in [40-42] provide valuable theoretical, numerical, and experimental information; the focus therein is on extremely slender cylinders (inner radius to length ratio of ~) and on horizontal orientation, causing nearly 90% of the fiber length to initially be in contact with the cylinder, even before the external load is applied. In papers published recently by Chen et al. [43, 44], a rigorous theoretical model was developed to describe the post-buckling behavior of a perfectly straight  fiber inside a rigid and frictionless cylinder. Before external force is applied, the fiber coincides with the center line of the cylinder, making no contact with the cylinder wall. Numerical results for a relatively large inner radius to length ratio of ~[image: ]have demonstrated the many possible equilibrium configurations of a fiber inside a constraining cylinder. However, there is a definite need for experimental studies that thoroughly investigate post-contact behavior in such processes. 
The goal of the present paper is to present further progress towards bridging this gap. We systematically studied the initial deformation stages of a fiber constrained inside a rigid cylinder by means of novel experiments as well as a finite-element analysis (FEA). Special effort has been made to develop an experimental method that enables the identification of the characteristics of the contact between the fiber and the cylinder wall. This is a challenging task, since even if a transparent cylinder is used, the curvature of the cylinder strongly affects the optics and makes it practically impossible to realistically identify contact (or non-contact) between the fiber and the cylinder wall. The approach we have adopted is based on filling a transparent cylinder with an opaque white fluid and using a dark fiber along with post-experiment image processing. Synchronized force-displacement measurements have enabled accurate quantitative identification of the deformation pattern, including the important part of contact behavior. A comparison of the results with the theoretical predictions of [44] provides valuable information regarding the applicability of the underlying assumptions in that model.
1.1. A brief review of pertinent available theoretical predictions




Since the model and results of [44] are of immediate relevance to the current research, we briefly review the main theoretical findings and predictions in this section. In preliminary work, [43] adopted the assumption of small deformations to study the post-buckling of a fiber constrained inside a rigid cylinder. The model considered a slender, isotropic, linear elastic, stress-free and perfect fiber (no geometrical or material imperfections) of length, with a circular cross-section of bending stiffness- which is the flexural rigidity of the beam in the plane of bending. The effects of gravity and friction were assumed to be negligible, and clamped-clamped boundary conditions were imposed; this is, one end of the fiber is completely fixed (zero displacements and rotations) at the center of the cylinder cross-section, while the other end can only move along the axis of the cylinder. The effects of the edge thrust on the fiber deformation and corresponding contact configuration were investigated. According to this model, the transition from 1-point contact configuration to 2-point contact configuration occurs at edge thrust of , which corresponds to the critical (Euler) buckling load of a clamped-clamped column of length . Interestingly, this transition was found to involve a jump in the ends shortening upon an additional load. It has been argued that this peculiar jump phenomenon is due to the limitation of the small-deformation theory. In order to remedy this deficiency, a theory associated with the elastica model was developed in [44]. A similar approach was applied in [45, 46] to study the deformation of a fiber subjected to end-twist rather than end-thrust. The aforementioned model assumptions of [43] were adopted in [44], except for the assumption of small deformations. Also, it was found that, contrary to the small-deformation theory, the planar 1-point contact evolves to spatial (3-D) 1-point contact first and then gradually transforms to the 2-point contact configuration. Moreover, seven distinct deformation shapes, each characterized by a different contact configuration, were identified [44]: (1) no-contact, the fiber buckles into a curved shape as force approaches Euler’s critical load; (2-1) contact forms between the fiber and the cylinder,  leading to a planar (2-D) 1-point contact configuration, which in turn results in a sharp increase of the fiber response slope; (2-2) the fiber switches to a spatial (3-D) 1-point configuration, associated with a significant decrease of that slope; (3) the gradual evolution of a 2-point contact configuration; (4) 3-point contact configuration; (5) point-line-point contact; (6) one-line contact; and (7) three-line contact.
The current paper is organized as follows: Section ‎2 describes the methods and materials that include the experimental system, image processing, and numerical simulations to characterize the contact configuration between the fiber and the cylinder wall. In Section ‎3, we discuss the results of experiment, the image processing, and the numerical simulation results, and compare them with the results from the theoretical predictions. The effect of initial symmetrical and anti-symmetrical imperfections of the fiber's shape are investigated analytically. Finally, Section ‎4 summarizes the main conclusions drawn from this study and identifies several issues for future research. 
2. [bookmark: _Ref530928407]Materials and methods


[bookmark: _Ref504911074]The theoretical predictions are based on the assumptions that the thin elastic fiber of length  with a circular cross-section is inextensible and unshearable. The fiber is uniform in its mechanical properties along its length, and in the stress-free state is straight and untwisted. The fiber deformation is constrained inside a straight circular cylinder with radius, and the cylinder centerline coincides with the unstressed straight fiber. Gravity and friction force are not considered. The diameter of the fiber cross-section is negligible compared to that of the cylinder. We consider the deformation of the fiber when it is subjected at one end to prescribe edge thrust and bends under the constraint of the cylinder wall. It is assumed that the fiber is completely clamped at one end and not allowed to rotate around the longitudinal axis, while at the loaded end, the fiber is clamped laterally but is free to slide longitudinally. 




It is imperative that the solution method applied in the analysis, should envision at the outset the expected deformation pattern, such as 1-point contact or 2-point contact. During the early stage of the deformation sequence, one is guided by previous experience from the small-deformation theory, leading to point-line-point contact. Further on, for given fiber and cylinder dimensions, the ensuing constrained elastic deformation depends on the relevant geometric parameters. Based on the parameter , the ratio between cylinder radiusand fiber length ,  it has been found that for a relatively slender cylinder, with   [44], the early stages of the deformation sequence are similar to those obtained from the small-deformation theory. Thus, the sequence of stages is 1-point, 2-point, 3-point, and point-line-point contact configurations. However, there are some differences between the predictions of small-deformation theory and the elastica model, even during this early stage of deformation. 
According to the small-deformation theory [4, 23], the 1-point contact stage is only in planar form. The elastica model also exhibits the 1-point contact stage in the spatial form. In fact, the latter model predicts a 3-D deformation pattern at the 1-point contact stage. In addition, according to the small-deformation theory [4, 23], the point-line-point contact configuration is the final stage of the deformation. As the radius of the constraining cylinder increases, the deformed patterns become less complex and the number of distinct configurations before the fiber end meet decreases. 
2.1 [bookmark: _Ref28594595]Experimental setup 






Experiments were performed in the material-mechanics laboratory (Faculty of Mechanical Engineering, Technion – Israel Institute of Technology) using an Instron 4483 machine, on which the designated experimental system was installed; see Fig. 1. The experimental system included five different setups with CSN EN 10270-1 steel wire fibers of length , with three radii inside transparent Perspex cylinders (of radii and ). When the experiments with the cylinder with a radius of 100 mm were performed with the fibers with a diameter of only 0.78 and 0.88 mm, so that in total there were 5 different experiments. The latter were filled with an opaque white fluid (metalworking-cooling fluid, PVR-925S, mixed with water). Due to the inherent curvature of the cylinder, which strongly affects the optics, it is practically impossible to identify the onset and progress of contact between the fiber and the cylinder wall. Filling the transparent circular cylinder with the opaque white milky fluid enabled the progress of these contact regions to be identified and traced, as explained below. Special adapters were designed and installed to impose clamped boundary conditions at both ends of the fiber. The lower adapter was then fixed to the cylinder, while the upper one was attached to the moving arm of the Instron machine, so that the fiber coincided with the symmetry axis of the cylinder at the beginning of the experiment. During the experiment, the distance between the two ends of the fiber was slowly decreased upon loading and lowering the upper end by the Instron machine. This process resulted in the bending deformation of the fiber constrained by the cylinder. It must be noted that our method of shortening the distance between the two ends of the fiber while the length of the fiber remains constant differs from the method employed in [36]. Therein the fiber is injected from the left to the right and pulled over two feeder rollers through a slave injector, forming a slack loop. It is then pulled through a primary injector into the constraining glass cylinder. We believe that the experimental method employed in the present study has advantages over previous experimental setups, that include minimizing friction and higher accuracy in measuring the fiber force. In our experiments, reaction forces are transmitted to the force sensor over an air bearing slider. The fiber is then pulled through a channel by an idler wheel and a drive wheel, which is driven by a servo-stepper motor holder of an acrylic clamp holding the cylinder in place. The deformation is examined for the two different cylinders chosen to enable a quantitative comparison with the results presented in [44]; that is, two different values of the non-dimensional ratio of  were employed for R=55 and 100 mm respectively.  Ends shortening (decrease of the distance between the two clamps) was determined by the displacement control of the upper clamp as controlled by the Instron machine. In this setting, loads were applied to an adapter, generating the displacement, and the displacement was determined using an Encoder installed on the Instron. Thus, the displacement changed incrementally while the reaction force magnitude is dictated by the stiffness of the structure. Edge thrust (axial compressive force) applied to the fiber was measured by a static load cell, and together with the displacement adapter, both were synchronized with a digital camera (MAKO G-223 with CMOSIS/ams CMV2000 sensor, global shutter; 50 frames per second) that was used to record the experiment. To prevent plastic deformations, the maximum level of ends shortening was restricted by the software. 
In each experiment, two essential characteristics of the fiber response were recorded, namely, the force displacement relation and relevant details of the contact. To determine these features, the axial force applied to the fiber was monitored along with the corresponding ends shortening. The analysis of the force-displacement relation provides the core information on the fiber loading path, revealing important aspects of the fiber behavior. The details of contact between the fiber and the cylinder were determined by analyzing the successive frames taken by the camera and complemented with MATLAB® - assisted image processing, thus providing clear exposure of the contact region between the fiber and the cylinder wall. Synchronization between the camera and the Instron machine enables the contact configuration to be identified and combined directly with the force-displacement relation. This synchronization allows instructive qualitative and quantitative comparisons between the behavior observed in the experiment and the structural response predicted by FEA and by the theoretical predictions of [44].
2.2 [bookmark: _Ref518197343]Image processing
Each snapshot (image) underwent image processing with MATLAB® to identify the contact region between the fiber and the inner wall of the cylinder. To this end, the following procedure was applied: First, the image is converted to a digital array of scalar integers in the range of [0,255]. The array size is identical to the number of pixels in the image, and the scalar integer values represent the gray level of each pixel, where the extreme values of 0 and 255 correspond to black and white, respectively. 
Next, the image is corrected to produce a uniform background, that is, to ensure that all pixels of the white fluid have the same level of gray. The purpose of this step is to minimize the effects of non-uniform illumination due to the curvature of the cylinder wall. Without this correction, columns of the array (image) that are remote from the center are generally darker (have smaller gray-level values). This correction involves multiplying each column by a different factor so that the average values of the fluid pixels in all columns are identical. Finally, a threshold filter is applied to isolate pixels corresponding to contact between the fiber and the cylinder. The threshold level is calibrated by using the force-displacement plots, so that the image where the fiber makes first contact with the cylinder wall is identified. At this stage of deformation, the contact configuration is necessarily of the point-contact type. Thus, the threshold level is set as the gray level of that contact point, and the extent of the contact region associated with a point-contact is determined. In practice, due to effects such as imperfections and wall reaction applied to the fiber during contact, the so-called point contact configuration should be considered a small region of contact.
2.3 Finite-element analysis


FEA was performed with the commercial FEA software Abaqus®. A dynamic implicit analysis, designed to simulate the experimental system, included a fiber that was clamped at both ends and was laterally constrained by a rigid cylinder. The fiber model was meshed with hexahedral solid elements, type C3D8R (8-node brick, accounting for geometrical nonlinearity), with over 50 elements in the fiber cross-section and a total of 2700 elements in the entire fiber. An elasticity modulus of was assigned to the fiber, in accordance with tensile experiments that were performed with the Instron machine. Preliminary analyses with high-order brick elements and with a larger number of elements in the mesh provided similar results.  





As shown in Fig. 1 and Fig. 2, the lower end of the fiber was fixed to avoid all displacements and rotations. At the upper end of the fiber, where the force was applied, the only degree of freedom was displacement in the x direction, under a constraint that allowed for a predefined displacement of . In the numerical analysis, the vertical displacement was identified with the shortening between the two ends of the fiber. The vertical force on the upper end of the fiber applied by the Instron machine was determined in the simulation. The shortening rate of the ends was , which is comparable to the rate at which the experiments were performed. Preliminary FEA showed that lower rates produced similar results, implying a quasi-static experimental response. To facilitate a fiber-bending response from the outset and avoid a bifurcation analysis at the first buckling load, we introduced a realistic geometrical imperfection into the analysis. Thus, the stress-free configuration of the fiber was assumed to admit on initial imperfection, where  define the fiber axis and is bending displacement of the fiber ; see Fig. 2.

According to post-buckling theory, the worst clamped-clamped geometrical imperfections are identical with the first (symmetrical) and second (anti-symmetric) buckling modes. This is implemented in the present study, combining theory, experiments, and numerical analyses. In the numerical analyses, contact between the cylinder and the fiber was defined using penalty stiffness in the normal direction of the contact surfaces (pressure-overclosure with hard contact and no penetration). In addition, tangential interaction, accounting for friction between the two bodies, was set in the model. Two values of the friction coefficient,  representing the estimated range of the friction coefficient between the metal fiber and the Perspex wall of the cylinder, including a greasy metalworking-cooling fluid as discussed earlier.  	



2.4 [bookmark: _Toc410558713]Analytical insights from the initial imperfection analysis
In this section, we present analytical derivations for the initial post-buckling response of the fiber, accounting for the presence of the initial imperfection; see Fig. 2. Both symmetric and antisymmetric components are assumed, aiming at simple, if approximate, relations for critical points along the loading path.    

2.4.1 End displacement for the first contact 




The analysis in this section is based on the well-established elastic solution for a clamped-clamped fiber. The analytical model that describes the behavior of the fiber in  presence of the initial imperfection is adopted from [15], where  is the initial, stress-free, wavy shape of the fiber axis. Introducing a small initial imperfection provides a realistic deviation from the perfectly straight shape and avoids numerical difficulties in treating the bifurcation point at the Euler critical load. When a longitudinal compressive force  is applied at the end of the fiber, an additional bending deflection  develops, so the total shape of the deflection curve becomes. In absence of a lateral load, the differential equation for the column bending response is

[bookmark: ZEqnNum481744]		    	  







Here we assume, following [15], that the stress in the fiber is due to the deflection only, but the bending moment component is produced by the total deflection .  In ,  represents the flexural rigidity and  denotes the distance along the fiber, with the origin located at the fiber center (Fig. 2). When the load  increases beyond the first wall contact load , an additional deflection component occurs, as will be discussed later.  For further analytical consideration, we define the initial imperfection as a superposition of symmetric and antisymmetric modes, which represent the first two eigenmodes of the perfect beam buckling equation, namely

[bookmark: ZEqnNum961664]		 	      





Here  are the scaling amplitudes of symmetric and antisymmetric imperfection modes, respectively, and  is the first antisymmetric eigenvalue obtained from . By substituting  into  and implementing clamped boundary condition the additional displacement  is obtained from (1) in the form

		   		 

and  denotes the critical (symmetric) buckling force of a perfect clamped-clamped fiber.

The total bending displacement of the fiber therefore becomes

[bookmark: ZEqnNum794560]			        









As expected, eq.  implies that the fiber bending tends to increase without limit near the two critical loads,  and . The values of imperfection amplitudes  can be assessed from experimental data. As a first approximation, we assume that  and  and neglect the anti-symmetric branch at the first wall contact (, at ), when the first contact force  is applied to the fiber. Using ,  the symmetric imperfection amplitudecan then be evaluated from the simple approximate relation

[bookmark: ZEqnNum351377]						

To obtain the antisymmetric scaling amplitude , we then calculate the fiber end displacement due to bending only, using the standard geometrical relation

[bookmark: ZEqnNum111889]		
After the substitution of equations -, this relation provides the nondimensional end shortening 

[bookmark: ZEqnNum224151]			   



Coefficients  and  can now be evaluated from  measurements along the loading path, using relations  and , or more accurately, by the best fit procedure (least-squares method) using Eq.  for measurements of the end shortening variation as a function of the applied load.








Notice that, in agreement with , as  the leading asymptotic term of  is given by the asymptotic approximation . Similarly, when, the leading asymptotic term is . The accuracy of these approximations depends of course on the magnitude of the initial imperfection and on the ratio . In fact, we now write  as , implying that the load needed for first wall contact as  increases with increasing .

To simplify the analysis, we shift now to the nondimensional coordinate  and rewrite (see Fig. 2) the total deflection curve  as 

[bookmark: ZEqnNum439029]	   	       
With, by eq., 

[bookmark: ZEqnNum145933]		                  

The exact location of the first wall contact  can be evaluated from - by solving the two equations

[bookmark: ZEqnNum845648]			       


for the two unknowns . Assuming that the first contact is near the fiber midpoint, with , we find from  the first order approximations

[bookmark: ZEqnNum725146]		             



Tracing the loading path , along with the solutions of  and approximations , and comparing with experiment data, we can determine the imperfection amplitudes . The compact formulation  for the displacement  allows us to determine its asymptotic behavior near the two critical loads, , shown as triangles in Fig. 3 (a)-(e).

2.4.2 Post first contact state 



With a further increase of the applied load, beyond first contact with the cylinder wall , the solution  does not apply, as two separated zones of the fiber need to be considered. To this end we denote by the additional fiber deflection, for , so the total deflection in the post first contact range is

[bookmark: ZEqnNum951052]				         
where

[bookmark: ZEqnNum383781]			            


denotes by  the fiber shape at contact . Recall that an overhead bar denotes nondimensionalization with respect to fiber length . 
The bending curve is now governed by the equation

[bookmark: ZEqnNum353451]			     	
where

						    

However, at contact  and  is reduced to

[bookmark: ZEqnNum976358]			    
where

	  		    		      
Subtracting  from  we arrive at the differential equation, for the additional post contact deflection,

[bookmark: ZEqnNum638130]			     

with  given by .




The solution of  is separated into two zones, under the assumption that the point of contact remains at the center of the fiber. Accordingly, we write the two branches of solution, on the left and right  to the center , as

[bookmark: ZEqnNum406858]		      

	 	    (19b)

where  are integration constants, and

	          


The eight integration constant in  and (19b) are determined from eight boundary conditions, four for each branch. In our model, the point of the first contact  remains constant beyond , and apart from a jump of fiber cross-section shear resultant (due to the wall reaction), clamped conditions apply at ends of fiber branches. Thus, 

			            

				(21b)
Implementing that boundary data, we find the integration constant

[bookmark: ZEqnNum325636]		          
and

		                 (22b)
where

				    



and the four load-dependent functions  are specified in the Appendix. The solution  and (19b) for the fiber bending shape beyond the initial contact  is valid as long as . However, in absence of a continuous wall constraint, part of the fiber can protrude beyond the virtual wall. Nevertheless, along with , the present small strain comparison model provides insight regarding the nature of the problem, particularly the role of initial imperfection as manifested by the fiber response. Regarding end shortening in the post first contact range, we have the overall shortening

[bookmark: ZEqnNum438197]		     	     
where, for completeness, we have added the fiber contraction due to axial compression. In evaluating , we use the expression for end shortening at first contact

[bookmark: ZEqnNum284745]		 	   
and rewrite  as

[bookmark: ZEqnNum142194]	                  



for . Integration in  is performed over both branches, is given by  and follows from  as 

[bookmark: ZEqnNum129106]			

The circles in Fig. 3 represent the results of the analytical model in Eq., which describes the situation in which the fiber touches the cylinder wall .





3. [bookmark: _Ref530928842]Results	Comment by Editor 3: To decrease the length of the results, I have removed the first paragraph. I feel this information can be provided in a Supplmental Information section, Appendix, or in the Experimental section.











All results herein are presented in terms of non-dimensional quantities: the fiber-tip displacement , the axial compressive force , and the magnitude  of the symmetric initial imperfection. These quantity functions of the following real parameters are the following: the actual fiber-tip displacement , the initial unloaded fiber length  (i.e., the vertical distance between the clamped ends of the fiber at the beginning of the experiment), the vertical force applied to the fiber, , the Euler buckling force  for a perfect clamped-clamped column, the Young’s modulus of the fiber , the moment of inertia of the fiber , the inner radius of the cylinder  and the fiber radius .  









The curves in Fig. 3 represent the normalized experimental results obtained by using the Instron device. In Fig. 4, the curves of  versus  calculated from  are presented for five experiments where the fiber contacts the cylinder wall, together withalong with the calculated values of the contact location and buckling force, . The dashed red curves in Fig. 4 indicate the boundaries of the cylinder for  and . Fig. 5 represents the results of the analytical model for deflection curves from the expression  versus  calculated from  for fiber radius:, for several values of .	Comment by Editor: Should there be an 'and' between these?






Fig. 6 and Fig. 7 represent the vertical force versus fiber-tip displacement up to the first contact point between the fiber and the cylinder wall for , respectively. BAs expected, before the first contact occurs, the height of the plateau region approaches the theoretically predicted value of  (ideal fiber, marked by a dashed curve), as the geometrical imperfections amplitude becomes smallerdecreases. In addition, the analytical model represents the effect of the geometrical imperfection on a force before the first contact. Due to increasing  value and no effect of , the force required to produce the plateau decreases. Note that the theoretical predictions are obtained without the initial bending, boundary conditions differ from the analytical results, and the solution in Ref. [44] is numerical. By comparing the FEA results with those of the experiment at the initial stage of a fiber deformation, we deduce that the level of imperfection in the experiment is equivalent to  and . 




Fig. 8 represents the force-displacement relationship measured in three experiments that differ only in the fiber radius:where the fiber radius was , respectively, with a . All three experiments used the same free fiber length  and the cylinder inner radius, providing . The results of the experimentsexperimental results are were compared with the theoretical prediction (red dashed curve), which can . The theoretical prediction may be divided into five distinct stages for theof the fiber-bending process that occurs over the measured range of loading. These stages are indicated in Fig. 8 by numbers in parentheses and are separated by the filled circles that are on the theoretical force-displacement curve [44]. 

To avoid plastic deformations, the fiber-tip displacement was limited in our experiments, so the theoretically predicted deformation stage (5), which is associated with the point-line-point contact configuration, could not be realized. As can be seen,It is seen that the measured force-displacement relationship for the fiber with (black curve) is consistent with the theoretical prediction.






The minor deviation (less than 8%) of the critical value calculated for the fiber-buckling force is apparently due to geometrical imperfections. This effect is expected to , which becomes more pronounced for thinner fibers. , which are more susceptible to geometrical imperfections. In fact, the critical loads measured for fibers with  (blue curve) and  (azure curve) are below theless than the Euler buckling load by 15% and 40%, respectively. As expected, the effect of geometrical imperfections declines decreases with increasing fiber-tip displacement. Once contact occurs between the fiber and the cylinder, the effect of the initial imperfection becomes negligible for both fiberss                                     (). For the  fiber, however, the imperfection is so significant that it affects the fiber behavior over a large range of fiber-tip displacements, up to about . Note that the first contact between the fiber and the cylinder wall can be deduced directly from the measured force-displacement curve; namely, it occurs at the end of the plateau region associated with , followed by a sharp increase in the slope of the loading curve. 






For all three fibers, the first contact occurs at almost the same dimensionless fiber-tip displacement , which is consistent with the theoretical prediction. This result suggests a very minor initial deviation of the as-received fibers from the straight perfect geometry. Note that the transition from a planar 2-D deformation to a 3-D deformation occurs at a force , in accordance with results reported in Refs. [43, 44]. The fluctuations of the measured force are presumably due to friction between the fiber and the cylinder, causing stick-slip–like behavior. The larger contact forces between the fiber and the cylinder wall cause these fluctuations to increase with increasing fiber-tip displacement. The, but this contact configuration cannot be directly obtained directly from the force-displacement relationship. We thereforeTherefore, we used the image-processing procedure described in Section ‎2.2 and presented in detail inthe results in Fig. 9. For each of the three fibers radiusof the three fibers,  , the top row presents side-view photographs for different fiber-tip displacements. For comparative purposes, these fiber-tip displacements and associated labels a–i are identical to those in Fig. 8 and in the figures that follow. Specifically, the fiber-tip displacement  associated with deformation i could not be attained for the fiber with . The application of the image-processing procedure to the photograph results in the images are presented in the bottom row of Fig. 9. For the fibers with , the deformation stages and contact evolution are qualitatively consistent with the predictions by of the theoretical model and the FEA, which are similar to the deformation stages described in Fig. 8. 
Perhaps the only discrepancy with the theoretical predictions is related to the notion of point contact. Clearly, theoretical point contact cannot occur in practice. Instead, a small segment of contact may be considered equivalent to the theoretical point contact. As a result, all images (for both fibers) up to stage e reflect a single-point-contact configuration. These images also clearly represent the development of two distinct regions of contact that seem to move farther apart with increasing fiber-tip displacement, as predicted by the theoretical model for stages f–h. Still, it is noteworthy that the size of these contact regions depends on the fiber length. 

Finally, the image-processing procedure reveals three separate regions of contact at stage i, which is consistent with the theoretical prediction. The qualitative agreement, in terms of contact characteristics, between the experimental results and theoretical predictions is consistent with the quantitative agreement in terms of the force-displacement relation. In contrast, for the fiber with , the measured force-displacement curve deviates significantly from the results of the theoretical prediction, mainly because of thedue to the effects of geometrical imperfection; see Fig. 8. 
Fig. 9  shows that the deviation from the theoretical prediction is also reflected in the way in which the contact evolves. For example, afterafter the formation of the 2-point contact, a further increase in fiber-tip displacement does not increase the distance between the contact points. Instead, the contact area at each of the contact points increases, resulting in what appears as ato be a line-contact configuration. This evolution of contact, which is not identical between the two contact points, eventually evolves into a single line-contact configuration that connects the original point-contacts. This phenomenon and especially the observed asymmetry evolve from the single line contact and are and probably the consequence of significant geometrical imperfections combined with friction. 






We then analyzed the deformation of the constrained fiber by using FEA. Fig. 10 represents the results of experimentexperimental results and the FEA for the fiber with and . Several force-displacement relationships are shown, each of which is associated with a different geometrical imperfection amplitude  and friction coefficient  (Coulomb-type friction in Fig. 10 see the black dashed curve, orange dashed curves, and orange curve). In addition, we have included a simulation with negligible geometrical imperfection and a very smallextremely low friction coefficient (red curve). The results of this simulation are completely consistent with the theoretical prediction that assumes a perfect fiber and no friction (red dashed curve). A minor discrepancy appears only for a relatively large fiber-tip displacement, for which the transverse force applied to the fiber by the wall becomes stronger, resulting in non-negligible friction forces. These results and the results of the FEA-based analysis of the contact, increase the confidence in the results of the FEA shown in Fig. 11. , from which several conclusions can be drawn.  Importantly, the geometrical imperfection in the latter stages of the deformation has a negligible effect for . For larger values of   (azure point-dashed curve and azure dashed curve in Fig. 6), the external force is noticeably smaller, especially during the initial stages of deformation before 2-point contact occurs. A similar trend also occurs in experiments when the behavior of fibers with different radii is compared; see Fig. 8. In addition, Fig. 10 reveals the effect of friction, when where a larger friction coefficient results in a higher external force for the same reduction in fiber length (orange curves). Contrary to the effect of geometrical imperfection, the effect of friction increases with fiber-tip displacement, and the difference between the measured force and the prediction of the theoretical model, in which friction is considered, becomes larger. This increased difference is probably likely a consequence of thedue to the higher normal force and larger contact area that develops in the advanced stages of fiber deformation. 




Next, for the fiber, we studied the evolution of a fiber-wall contact based on the FEA with conditions similar to the experimental conditions; namely,  and . Fig. 11 represents the deformation of the fiberfiber deformation for different fiber-tip displacements , where labels a–i specify the corresponding locations on the force-displacement curve in Fig. 10. For each fiber-tip displacement, the top and bottom rows represent side and top views, respectively. The following contact configurations are were studied: (a) no-contact; (b, c) planar (2-D) 1-point contact; (d, e) spatial (3-D) 1-point contact; (f–h) 2-point contact with increasing distance between the two contact points; and (i) 3-point contact. These results are completely, and the results were consistent with the theoretical predictions. Note that the extreme proximity of the fiber to the cylinder wall at the deformation stages that include 2- or 3-point contacts render the investigation of the contact characteristics extremely difficult. In fact, without the aid of the FEA or the unique experimental setup used in this study, one could easily and have interpreted the contact characteristics incorrectly as a continuous curve contact rather than as the actual case of two or three small areas of contact separated by a rather long segment that is extremely close to the cylinder wall but does not interact with it. 











Further experiments investigated the behavior of the loaded fiber for ; see Fig. 12. Here we used a cylinder with an inner radius of  and fibers with (black curve and azure curves). The theoretical prediction [44] (red dashed curve) shown in Fig. 12 suggests that the deformation patterns should become less complex with the increasing radius of the constraining cylinder. For , the theory predicts that only deformations 1–4 should occur, whereas deformations 5–7, which occur for , should not occur for . In addition, the force-displacement relation for  should differ significantly from that for , and the first contact should occur at a larger fiber-tip displacement. More important is the prediction that once spatial (3-D) deformation occurs (at force ), the force no longer increases but slowly decreases. This prediction contrasts with the case of , where the force increases close to , whereas the deformation sequentially evolves from configuration 2-2 to configurations 3, 4, and 5. The exception is the minor discrepancy before the first fiber-wall contact occurs. As discussed earlier, this discrepancy is associated with geometrical imperfection. These theoretical predictions are consistent with the results shown in Fig. 12.	Comment by Editor 3: Should this be 1-2?


Following the experimental investigation and conclusions for the case of , it is not unsurprising that the prediction of the theoretical model is consistent with the evolution of contact between fiber and cylinder wall shown in Fig. 13. Here we also used the image-processing procedure described in Section ‎2.2 and presented in detail in Fig.13. For fiber radius , the top row presents side-view photographs for different fiber-tip displacements. For comparative purpose, these fiber-tip displacements and associated labels a–f are identical to those in Fig. 12. 
4. [bookmark: _Ref530928756]Summary and conclusions

We investigated the post-buckling behavior of an elastic clamped-clamped fiber constrained inside a rigid cylinder, experimentally, analytically, and numerically. The main purpose and contribution of this study is was to characterize similar problems with of a fiber in a cylinder in various engineering fields, and to better understand the modes of failure. By In using a novel experimental setup, with a transparent cylinder filled with an opaque fluid, combined with image processing, and synchronized force measurements, we studied the quantitative evolution of contact between the fiber and the constraining cylinder. The Previous relevant experiments were done onlycompleted only with extremely slender constraining cylinders, namely , or for cases where almost the entire fiber was in contact with the cylinder. 	Comment by Editor: Please ensure that this accurately reflects your meaning

In contrast, this paper presents experimental results for the evolution of deformation and contact configuration due to the initial stages of deformation for non-negligible values of . Supported by FEA and analytical modeling, we determined the contributions of geometrical imperfection and friction. In general, the level of geometrical imperfection can be evaluated by analyzing the measured force-displacement relationship before the fiber contacts the constraining cylinder. 
The effect of friction can be determined based onfrom the difference between the measured force and the theoretical prediction (i.e., no friction) at advanced stages of deformation, where the effect of geometrical imperfection is relatively small. The results show that the main contribution to friction is due to the increase in theincreased force (edge thrust) associated with the reduction in fiber length and the addition to the measured force fluctuations associated with stick-slip behavior. Qualitatively, friction does not significantly affect the fiber deformation or the contact configuration. It must be noted that this conclusion is limited to small-to-moderate values of the friction coefficient and needs to bemust be further examined for larger values.

The results also show that the geometrical imperfection of amplitude  or of a larger fiber length can significantly affect the measured force and the evolution of fiber-wall contact. When a geometrical imperfection is below thisless than this value, the experimental data, the FEA results, and the theoretical predictions that consider a perfect fiber and ignore the effect of friction are all consistent with one another. 
AIn additionally, this study of fiber behavior inside a cylinder includes an in-depth analysis of the fiber deformation stages for different loads. Various tools were used for thise analysis, including representative experiments, image processing of the experimental results, finite elements analysis used to simulate the experimental setup, and analytical models for all stages of deformation from the onset of fiber load until the transition to a 3-D deformation. 
In this paper, we investigated the mechanical response of a fiber undergoing large deformation inside a stiff cylinder by comparing FEA, experiments, and theoretical predictions. The use of analytical developments and the comparison with experiments and finite element analysis is of great importance. Finding a mathematical model for a problem that can be substantiated by actual experiments and by finite elements can may be used to find solutions to for similar medical and engineering problems. All computer and control systems are based on mathematical models; defining the problem with the help of a mathematical model certainly helps in providing a solution insolutions for mechanical systems as well. As can be seen in theseen in this current article, there is a very good match between the mathematical model, the experiments, and the simulation of the finite elements. That is, the model presented in this article could help provide solutions to problems other than those mentioned here.

Future research should study the behavior of fibers subjected to boundary conditions that differ from those considered in the current study, and should extend the investigation to a range of sizes for the constraining cylinder sizes (i.e., different values of ). In addition, larger fiber-tip displacements than those used in this study should be applied to examine more complex contact configurations, such as the point-line-point and three-line contact configurations. Cylinders and/or fibers made of several types of materials could be used by controlling their surface roughness, or perhaps by changing the fluid inside the cylinder. The replication of each experiment with different friction coefficients and other configurations would likewise be interesting with potential  and may have practical applications.  	Comment by Editor: ‘altering’ perhaps?
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Nomenclature

 	scaling amplitude of symmetric imperfection


 	

 	scaling amplitude of antisymmetric imperfection


 	

	Left branch of solution integration constant

	Right branch of solution integration constant

 	Young’s modulus



   



   

 	inertia moment of fiber cross-section

  Number of boundary conditions 


 	 

 	fiber length

 	compressive force


 	

 	critical (Euler) buckling force

 	force applied to the fiber at first wall contact


 	

 	fiber radius

 	inner radius of the cylinder

 four load dependent function (specified in the Appendix)

	distance along the fiber

 	fiber deflection

 	initial imperfection

 	additional deflection 


 	additional deflection when a longitudinal compressive force is applied in left branch of solution


 	additional deflection when a longitudinal compressive force is applied in right branch of solution




	

 	end shortening (decrease in distance between fiber ends)

	nondimensional end shortening

 	nondimensional end shortening at first contact between fiber and cylinder


 	first antisymmetric eigenvalue from 

	friction coefficient


	
FEA	Finite-Element Analysis

Appendix: Additional calculation details
The purpose of this appendix is to provide some additional details regarding the calculation that appear in Section 2.4.2. The four functions of  and (22b) are given by 

			        
        
Post first contact end shortening  is given by

	

Where integrals  are expressed as 
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[bookmark: _Ref502321015][bookmark: _Ref79519520]Fig. 1: The experimental setup. (a) Schematic description of the main experiment. (b) System components. (c) Overall view of the system during an experiment with a rigid cylinder. (d) Overall view of the system during an experiment with a rigid cylinder.  In these images, the cylinder filled with an opaque milky fluid for the purpose of clarity. 
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[bookmark: _Ref532729580][bookmark: _Ref533165423][bookmark: _Ref532729568]Fig. 2: Schematic illustration of the problem with boundary conditions and initial imperfection. A clamped fiber is subjected to an axial compressive force  and is laterally constrained by the rigid cylinder.	














Fig. 3(b): Normalized vertical force versus end shortening for the dimensions:. The results of the experiment were compared to the results of the analytical model with values of imperfection amplitudes (circle) and to the results of the asymptotic model (triangle).  






[bookmark: _Ref8681293][bookmark: _Ref79334214]Fig. 3(a): Normalized vertical force versus end shortening for the dimensions:. The results of the experiment were compared to the results of the analytical model with values of imperfection amplitudes (circle) and to the results of the asymptotic model (triangle).  

















Fig. 3(d): Normalized vertical force versus end shortening for the dimensions:. The results of the experiment were compared to the results of the analytical model with values of imperfection amplitudes (circle) and to the results of the asymptotic model (triangle).  






Fig. 3(c): Normalized vertical force versus end shortening  for the dimensions:. The results of the experiment were compared to the results of the analytical model with values of imperfection amplitudes (circle) and to the results of the asymptotic model (triangle).  










Fig. 3(e): Normalized vertical force  versus end shortening  for fiber radius:. The results of the experiment were compared to the results of the analytical model with values of imperfection amplitudes  (circle) and to the results of the asymptotic model (triangle).  
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[bookmark: _Ref8681312]Fig. 4: Results of the analytical model for deflection curves from the expression  versus  calculated from  for three different fiber radii: and for several values of 
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[bookmark: _Ref79330950]Fig. 5: Results of the analytical model for deflection curves from the expression  versus  calculated from  for fiber radius:, for several values of 







































[bookmark: _Ref533276518]Fig. 6: Measured vertical force versus end shortening  up to the first contact point of the fiber in the cylinder wall for fiber radius:. The experiment, analytical model and FEA results are compared to the theoretical predictions of [44] for  (ideal fiber: red dashed curve). Results of the analytical model are shown with various values of  and  (symmetric and antisymmetric imperfection amplitude respectively). FEA results are shown for simulations with various values of  (symmetric imperfection amplitude) and friction coefficient). 
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[bookmark: _Ref81344837]Fig. 7: Measured vertical force versus end shortening  up to the first contact point of the fiber in the cylinder wall for two different fiber radii:. The experiment and analytical model results are compared to the theoretical predictions of [44] for  (ideal fiber: red dashed curve). Results of the analytical model are shown with various values of  (symmetric imperfection amplitude).
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[bookmark: _Ref81344914][bookmark: _Ref517681614]Fig. 8: Measured vertical force versus end shortening  for three different fiber radii: . The experimental results are compared to the theoretical predictions of [44] for (ideal fiber: red dashed curve). Numbers in parentheses indicate the contact configuration in accordance with [44]. Filled circles identify a transition from one configuration to the next.
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[bookmark: _Ref81729132][bookmark: _Ref518562563]Fig. 9: Contact between the fiber and the cylinder wall at different stages of deformation for the fibers from Fig. 8 (). For each fiber, the first row represents snapshots from the experiment at different levels of end shortening, while the second row represent the same snapshot after applying the image-processing procedure. End shortening is indicated by the numbers between the two rows and by the letters a-i that appear in the force-displacement curve.
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[bookmark: _Ref81345141][bookmark: _Ref519542599]Fig. 10: Measured vertical force versus end shortening  for fiber radius: 




. The experiment and FEA results are compared to the theoretical predictions of [44] (ideal fiber: red dashed curve). FEA results are shown for simulations with various values of  (amplitude of the deviation) and friction coefficient). Numbers in parentheses indicate the contact configuration in accordance with [44] or (ideal fiber: red dashed curve). Filled circles identify a transition from one configuration to the next.
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[bookmark: _Ref82618257][bookmark: _Ref518562278]Fig. 11: Results of FEA showing the deformation of the fiber and contact with the cylinder wall, for fiber radius:. First row: side view, where a lighter (greenish) color indicates interaction with the wall (in these images, the schematic cylinder is shown for clarity/orientation, but the images are not at identical scale to allow focusing on the contact region). Second row: top view (all images are at identical scale)
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[bookmark: _Ref81345192][bookmark: _Ref517681652]Fig. 12: Measured vertical force versus end shortening  for two different fiber radii: . The experimental results are compared to the theoretical predictions of [44] for (ideal fiber: red dashed curve). Numbers in parentheses indicate the deformation stage described in [44]. Filled circles identify a transition from one deformation pattern to the other
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[bookmark: _Ref8682609][bookmark: _Ref27496190][bookmark: _Ref519420939]Fig.13: Contact between the fiber and the cylinder wall at different stages of deformation for the fibers from Fig. 12 (). The first row represents snapshots from the experiment at different levels of end shortening, while the second row represent the same snapshot after applying the image-processing procedure. End shortening  is indicated by the numbers between the two rows and by the letters a-f that appear in the force-displacement curve.
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