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Scientific abstract
Whole-body transcriptional coordination patterns and changes with aging	Comment by Editor: I usually try to write titles with an active verb in them. Perhaps “Elucidation [or Investigation, Interrogation, etc.] of whole-body transcriptional coordination patterns and their age-related changes” pr “Exploration [or similar verb] of whole-body transcriptional coordination patterns as biomarkers of aging”?
Whole-body physiological homeostasis is pivotal for maintaining human health and longevity and is properly maintained by an inter-tissue networks communication network that coordinates pof communication coordinating physiological responses among organs and tissues. While gene-to-gene transcriptional co-regulation was has been documentedobserved in many specific tissues, the global co-regulation of the transcriptome between across tissues throughout the body at the system level remains to be studied in detail., across the whole-body at the system level remains unclear. With the advent in of ultrahigh-throughput sequencing technologies for enabling the profiling of gene expression profiling ofin multiple tissues and even single cells derived from each a given donor, we now have the opportunity to and at a single cell levels we can now investigate conduct high-level analyses of transcriptional coordination among tissuestissues associations at a large scale. 
Our central hypotheses are that (1) gene expression of patterns associated with particular molecular systems are are co-regulated and coordinated between tissues and  that (2) the perturbations in of this coordination may represent a one of the central mechanism s by which health predispose topredisposing individuals to disease and the aging process and such that studies of shifts in these complex regulatory processes may reveal an important biomarker of aging.therefore may be a marker for aging. 	Comment by Editor: 	Comment by Editor: Is this a fair way to raise this final point? I was concerned that the original phrasing was a bit too open-ended.
Here, we propose to develop a new computational approach and framework to leverage analyze inter-tissue co-expression to the systems at the whole-body level so as to decipher the global transcriptomic coordination patterns and how they changeacross the whole body and its aberration with aging. We will apply our methodology to multi-tissue RNA-seq  and single-cell RNA-sequencing data of from both young and aging cohorts. In specificSpecifically, we will (1) develop a computational approach to evaluate a global system-level coordination at the whole-body scale, (2) extend our approach to detect specific whole-body transcriptional coordination patterns, and (3) show document the age-related changes in suchof coordination with age. Our Our more focused preliminary studies have already demonstrated that metabolic gene expression networks are preliminary results show that metabolic networks are significantly co-regulated and coordinated across the body and that this coordination changes with age, emphasizing the feasibility and biological relevance of our hypotheses and experimental objectives.. 	Comment by Editor: Saying global, system level, and whole-body all in the same sentence feels redundant. Can you cut the global here?	Comment by Editor: This may be a better way to present this – see what you think.
The proposed study pioneers employs a pioneering approach to leveragingin taking advantage of high-throughput data for as a means of elucidating showing the validity of the general global whole-body transcriptional coordination at the system level, of functionally related genes. In addition, it will define specific coordination patterns to draw develop a fully comprehensive picture model of the tissue-axis coordination and leading to the establishment of a catalog of crosstalk patterns catalog. Finally, the proposed this innovative study will innovate advance our understanding of aging and can be used to define a diagnostic tool to evaluate for evaluating the beneficial effects of particular therapeutic drugs and lifestyle  changes on the biological age. This can work may thus pave the way for new perceptions about regarding aging-related treatments, with practical implications that can assist in the development of therapeutic strategies for complex age-related diseases and other interventions that may assist withhelp to facilitate healthy aging.	Comment by Editor: I don’t know if I would recommend using this, particularly given your statement that your preliminary data already support your hypothesis – this word raises the concern that the model might be invalid. I would just change it to “extent” or something like that.




1  Scientific Background	Comment by Editor: Any particular reason for the font shift between the Abstract and the main text?
1.1  Transcriptomice coordination
Whole-body physiological homeostasis is pivotal for maintaining the maintenance of human health1,  and longevity and is preserved throughis properly acquired by simultaneous tissue co-regulation. Indeed, the These tissues in tissues of multicellular organisms do not operate in isolation but but instead interact with each other through complex communication networks.  networks of communication. SSeveral factors can cause contribute to inter-tissue interactions: (1) they are regulated independently by the same genetic locus, or (2) they respond independently to the same environmental cues or internal events (such as circadian rhythms), or (3) the transcription of genes is regulated by biological signaling between tissues via biological signals, such as ligand-receptor interactions  and receptor, to regulate the transcription of genes (e.g. gene i product in one tissue signals to another tissue and regulates expression of gene j) [3, 4]. Indeed, c Consistently, circadian clocks 2–4 as have been shown to regulate gene expression, as have both internal and external stimuli well as internal or external stimuli, such as metabolic signals 5–7, were shown to regulate gene expression. 	Comment by Editor: These references are formatted differnetly than others.
Intriguing These complex inter-tissue interactions raise several interesting questions that warrant further investigation: (1) Is gene expression regulated at the whole-body level?; (2) Cquestions related to whole body regulation are (1) is gene expression regulated at a whole-body level? and (2) can we detect global and specific cross-tissue coordination patterns in of coordinated gene gene expression?; and  (3) Do these does theses coordination patterns changes during aging? . The arrival development of RNA-sequencing (RNA-seq) and otherof “omics” technologies, together with  such as RNA-seq combined with the creation of public multi-tissue gene expression public databases such as the GTEx (Genotype-Tissue Expression) Project8, which is a growing repository of RNA-seq-derived  gene expression data from multiple tissues profiled for each individual across hundreds of individual donors in a publicly accessible portal, provide us with the unprecedented opportunity today enable us to explore systematically explore high-level and tissue-tissue relationships.on a large-scale tissue–tissue associations. 
Multiple researches studies to date have explored analyzed gene-to-gene tissue tissue-specific co-expression mechanisms, and there have been several reports seeking to test . Several efforts to test tissue-tissue associations detected leading to the detection of gene-level relationships between pairs of tissues through analyses of gene co-expression in two different tissues at the , e.g., co-expression of genes from two distant tissues, and was conducted at the gene-to-gene and gene-to-pathway levels 9–11. One work study9, for example, tested tissue-to-tissue connectivity by exploring yet gene-to-gene associations across three tissues – the —hypothalamus, liver, and adipose tissue – —of healthy and obese mice. These analyses enabled the authors to construct per-tissue co-expression networks and to demonstrate, constructed per tissue co-expressed networks and showed connectivity using gene-to-gene Spearman’s correlation coefficients between single individual genes in one tissue and genes in co-expressed modules in another. Another work report10 analyzed six murine tissues, enabling the detection and experimental validation of detected new gene- level tissue-to-tissue endocrine associations, highlighting co-expression  i.e., co-expression, between ligand gene expression levels in source tissues and affected pathway genes i forming a pathway in the target tissue in six-tissue mouse data, which were then validated experimentally in these animals. The  GTEx8 multidataset has also been used to -tissue dataset was used 11 to calculateassess inter-tissue connections in humans between single genes in one tissue and genes forming a pathway in other tissues, for example by analyzing , e.g., to find the importance of  the DPP4  gene in heart to -to-blood communication11. A recent workAnother recent report 12 offered outlined an approach to evaluating e ga global gene-to-gene coordination between single cells in each tissue.  It While these studies have been informative, it is now time to advance beyond single-tissue and single-gene analyses to develop a holistic understanding of how the body as a wholeis now the time to go beyond a single tissue and a single gene level analysis into a holistic understanding that make sense of how the biological system functions as an interconnected biological system.	Comment by Editor: Have I understood this correctly?
 one whole connected system. ThesePrior gene-level analyses have focused on the association between individual genes, but these relationships are potentially susceptible to noise that may impact  scarce studies of inter-tissue interactions were based on detecting the associations between a single gene in the source tissue and a single gene within pathways in the target tissue. In addition, these gene-level efforts that count on a single gene’s association with other genes may be prone to noise, which may affect the levels of single genes13. Conducting large-scale analyses such as those proposed herein that focus on complex arrays of network- and system-level interactions across multiple tissues may A large-scale study, based on ensemble of associations, as we suggested in this proposal, of multiple tissues presenting network-level and system-level interactions, which to date is absent, may circumvent this problem, as such analyses remain absent to date. MoreoverEstablishing such an approach has the potential to advance research efforts focused on confirming the , such an approach can elevate the research to identifying the validity of general global whole-body system-level coordination patterns in as well as specific general and multi-inter-tissue coordination patterns in specific.  Here we aim to fill in this lacuna and in the research field and to systematically investigate transcriptomic coordination throughout the human body. Our research will be guided by two key questions: (1) investigate if the human body transcriptome is coordinated. We ask the following main questions: Can we detect transcriptomic and pathway ccoordination patterns of transcriptomic systems (co-expression networks) and pathways across human tissues? and (2) Do these patterns change with aging? Answering this these questions will be an important step toward developing a detailed model of global transcriptomic  may be an important step in delineating a comprehensive view of systems transcriptome regulation patterns across the human body. To this that end, we will develop employ a comprehensive large-scale multi-inter-tissue network-level approach strategy to evaluate whole-body transcriptomic coordination patterns., which we We have already initially applied specifically this strategy to specifically assess to metabolic network coordinations across 31 human tissues, highlighting the feasibility and biological relevance of these analyses.. 	Comment by Editor: Levels meaning expression levles?	Comment by Editor: This feels a bit redundant, can you cut at least one of these?	Comment by Editor: If you are going to mention your preliminary data in this paragraph, saying something like this is needed.
1.2 3 Aging and transcriptional regulation
Aging is one a fundamental biological process that contributes to the risk of characteristically age-related diseasesof the most important biological processes and is a known risk factor for many age-related diseases in humans such as cardiovascular disease, cancer, Type 2 diabetes, Alzheimer’s disease, and Parkinson’s disease. It Through the aging process, organs and tissues is a process in which multiple organs and tissues gradually lose their physiological integrity, followed by the functional impairment and eventual ly death of the aging individual14. There are many theories of regarding the biological causes of aging, which and many mechanisms have been suggested to suggests that many different mechanisms contribute to the aging process. The Prominent current hypotheses encompass mechanisms including genetic predisposition, calorice restriction, mitochondrial dysfunction, telomere attrition, and genomic instability, and manymong others15. Whereas While chronological age represents is a major risk factor for diseasemany diseases, there is marked heterogeneity in human lifespan and health outcomes for people of the same chronological age16. 	Comment by Editor: This is more of an anti-aging thing, I’m not sure it belongs on this list.
Numerous age-related tissue-specific transcriptomic studies have been conducted in humans and other species, often with the goal of , mainly for detecting aging-related marker genes or predicting age using machine learning models have been conducted in several species, including humans [17,18,19]. The AGEMAP project 20 profiled gene expression in 16 tissues in mice and tested for the coordination of aging with among different tissues using a new metric representing the apparent age of each tissue based on age-related changes in gene expression profiles  changesin that tissue for each specific tissue. Ren X et al. 21 introduced a versatile tissue-specific transcriptional age calculator for multiple tissues using based on the GTEx database, machine learning models, and feature selection approaches. Yang et al. 15 used employed an unsupervised method based on dimensionality reduction (principal component analysis)-based method and a supervised learning method using with the Elastic Net regression on theto analyze GTEx data to , estimate tissue age, and calculate estimate tissues’ age and calculated the age coordination for each tissue pair, demonstrating that aging  to show that tissues age is synchronized in multiple tissues as reflected by the age-related gene expression changes. 
The These prior studies have focused on definingdescribed studies defined tissue-specific aging-related genes and their coordination with age. We Here, we propose suggest here a different approach that extends our framework to define the changes of in inter-tissue global coordination patterns with age which that, to the best of our knowledge, have  were not been studied before. Moreover, we suggest aim to developing an inter-tissue coordination-based score for the prediction of age. The development of a predicting age. Developing a systematic method of uncovering global age-related coordination changes in tissues across throughout the whole body can will enhance our understanding of the aging process and promote enable the development design of therapeutic strategies interventions for complex age-related diseases and other interventions tools that may assist withhelp to facilitate healthy ageing.
2. Research objectives and significance 
The overall objective of the proposed study is to establish a novel computational methodology methods and a framework for defining whole-body transcriptional coordination patterns and their changes with aging. To achieve this objective, we will address three specific aims:propose the following three specific aims:
2.1 Aim 1:. Methodology Develop methods to measure a whole-body global transcriptional coordination 
We In this Aim, we will develop a novel methodology and pipeline to that will allow us to evaluate a global whole-body inter-tissue transcriptomic coordination at the system level (e.g., metabolic coordination). The This new methodology will combine computational techniques of dimensionality reduction, meta-network analysis, and statistical analysis to detect and measure the extent of inter-tissue whole-body system-level global coordination. The approach will be applied to publicly available single single-cell and bulk RNA-seq human/mouse multi-tissue datasets. In preliminary work, we have already demonstrated We already showed that metabolic modules are significantly coordinated (Fig. 3) across the whole body as compared to random modules (Fig. 3). 
Significance: 
The proposed study pioneers is a pioneering effort to takein taking advantage of high-throughput data for in order to demonstrateshowing the validity of global whole-body transcriptional coordination of functionally related genes at the system level, of functionally related genes. The established global coordination measures can then be used in further other systems and conditions, for example, to and for testingtest health states.. We will construct and make available an installable package available that will perform similar analyses for any for performing a similar analysis for any type of organism,  or condition, or system type, and at various scales,  at the single- gene,  or pathway, or /network levels. 
2.2 Aim 2:. An Design an algorithm capable of definingto define a specific tissue-axis coordination patterns 
We will extend our developed methodology with an algorithm to define specific inter-tissue-axis coordination patterns and crosstalk of among molecular biology systems and pathways (using annotated co-expression modules and KEGG pathways.). The approach will define communities of densely coordinated systems/pathways between tissues and allow us to detect the consistent co-regulation and co-inhibition of systems in these communities. The approach will be applied to publicly available single single-cell and bulk RNA-seq human/mouse multi-tissue datasets. 
WeIn our preliminary research we have successfully performed the automated and manual detection of  have already detected communities automatically and manually one brain-tissues-axis metabolic feedback loop pattern as a proof-of-concept (Fig. 6). Our collaborator, the Importantly, through collaboration with the Mikl lab will experimentally validate relevant detected patterns using the c. elegancein the C. elegans model system (see attached letter).
Significance: 
The proposed research will provide a fully comprehensive picture overview of the tissue-axis coordination and will allow us to establish a crosstalk patterns catalog that will be publically available to the research community. The new detected patterns will innovate our knowledge. TheAnalyzed single single-cell data will test enable us to better elucidate patterns of crosstalk between the general coordination of cell type composition s across tissues and specific coordination of cell-autonomous expression changes within particular cell types. 	Comment by Editor: This is too general and “buzzword”y to be meaningful, so I cut it.
2.3 Aim 3:. Examine changes in inter-tissue transcriptional coordination with aging and develop a scoring model that can predict aging  Inter-tissue coordination changes in aging and scores to predict aging
We In our final Aim, we will extend our approach to focus on aging. Specifically, we will propose to extend our approach to aging. We will (1) study the possible effects of aging on whole-body gene expression coordination patterns, (2) define a novel, clinically meaningful novel metric of age classification per for each individual , based on the level of inter-tissue coordination level, and, to classify the age of individuals (3) feed the these novel scores into machine learning classifiers to predict aging and after which we can use a feature analysis approach to define key markers of aging, such as the most dis-coordinated  feature analysis to define the key markers, i.e., mostly dyscoordinated genes and pathways during agingduring the aging process. We will evaluate and compare the performance of the models trained on humans and test the models on a combination of datasets while reducing feature size and elevate elevating model performance. Based on the conclusions of the above analyses is we will develop optimized machine learning classifiers for age prediction and inferring aging-related markers and age prediction. The Atzmon lab will use their aging expertise to help us , an aging expert, will assists with results interpretation and the the eventual experimental validation of detected aging-related markers detected markers will be experimentally validated (out of the scope).	Comment by Editor: You don’t really use underlining to emphasize points in the rest of the proposal so I am not sure why this is underlined. It is fine to use underlining for emphasis, of course, but you may want to do some more often.	Comment by Editor: Have I understood this correctly?
Significance: 
The proposed study will innovate provide innovative insight into the biological mechanisms of aging by our understanding of aging while pinpointing on key changes in inter-tissue coordination changes withthat coincide with the aging process. Our results will provide important insights into the key features that drive the deterioration of whole-body transcriptomic coordination deterioration with the aging process. Moreover, the novel coordination-based metric for age developed herein can be used to define a person’s biological age more effectively than chronological age alone, serving as , even better than the chronological age and serve as a diagnostic tool to evaluate the beneficial effects of therapeutic drugs and lifestyle changes on the biological age. In the future, we intend to calibrate our metric to tissues that can be easily sampled. This can will pave the way for new perceptions about regarding aging treatments, with practical implications that can assist in the development of therapeutic strategies for complex age-related diseases and other interventions that may assist with healthy aging.
3  Detailed description of the proposed research (Each aim is presented separately)
[image: ]
Figure 1. Schematic overview of the methodology in the planned research.
3.1 Aim 1: Develop methods to measure whole-body global transcriptional coordination Aim 1. Methodology to measure a whole-body global transcriptional coordination
3.1.1 Working hypothesis and rationale: 
We conjecture hypothesize that transcription is co-regulated and coordinated at the whole-body level. Moreover, we hypothesize propose the existence of a global system-dependent transcriptional co-regulation that can be detected from through analyses of gene expression data. Our main working hypothesis is that not only does gene expression vary in specific but that the whole sets o of functionally related genes varies vary in a coordinated manner across the whole body, a phenomenon that we suggest plan to being measure through ed by computational and statistical means. 
3.1.2 Experimental design and methods: 
Data will be pre-processed and adjusted for technical artifacts (see explanation in the Ppreliminary Rresults section). We will conduct our analyses in the non-ventilator is onsubgroup of individuals who experienced rapid death from accidents or natural causes, as we have previously detected genomic changes in the ventilator subgroup of relatively healthy individuals that were under ventilation at the time of death the non-ventilation group (fast death from accidents or natural causes), since genomic changes we detected22. Ventilator patient samples will be used for  in the ventilator group (relatively healthy individual at time of death that were under ventilation). Ventilation samples will be used for validation purposes. 	Comment by Editor: Specify where these data are derived from. Are the n numbers known or to be determined?
Using these samples wWe will develop a computational methodology methodological and framework termed the , named (WBCL) Whole Body Coordination Level (WBCL) to evaluate the global system-level multivariate inter-tissue dependency of tissues. Our WBCL methodology includes will include three steps, which are 3 steps as detailed below. 
Step 1: Co-expression network analysess: The robust Weighted Gene Co-Expression Network Analysis (WGCNA) and related R packages 23 will be used to calculate the co-expression networks (modules) and module ’s eigengenes  (the ffirst principal component of the expression matrices for each module). The WGCNA approach groups related genes into gene modules (networks) based on their co-expression patterns and topological similarity to neighboring genes in the network. The algorithm calculatesd a similarity co-expression matrix using correlation coefficients cor(i,j) for all genes, and  (we will use the biweight midcorrelation measure that accounts for outliers during this stage). The co-expression matrix is transformed into an adjacency matrix by using the soft thresholding power beta , to which co-expression similarity is raised aij = (0.5*(1+cor(i,j)))β. where aij represents the resulting adjacency that measures the connection strengths. The power  will be defined based on the criterion of approximating the scale-free topology of the network, as recommended in the original publication 23. Then, a topological overlap matrix (TOM) 23 is computed and converted into a dissimilarity TOM. Thise TOM calculates the topological similarity between every two neighbors in the network, thus evaluating i.e., evaluates the similarity of the neighbors for every two nodes. Finally, hierarchical clustering is used to produce a tree (dendrogram) from the dissimilarity TOM. By using dynamic tree cutting, different numbers of clusters (modules) are obtained from the this tree. The resulting modules contain densely interconnectedes genes, densely interconnected, which that construct comprise co-expression networks (modules) for , per each tissue. We will use the “signed” networks— meaning that the co-expressed modules include positive correlations between the nodes. The module eigengene is defined as the first principal component of the module and represents the weighted average of the expression profile for the that module. The eigengenes can be used to merge clusters and to screen for suitable gene targets by calculating module membership (kME) measures, also known as eigengene-based connectivity 23,, 24. We will use eigengenes to calculate the inter-tissue correlations between modules. We will eliminate tissue-tissue pairs with a sample s overlap < 15.	Comment by Editor: Multiple packages? Or a speicifc WGCNA package?
Step 2: Modules annotation: We will perform Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for the gene sets in each module based on the hypergeometric test by using the “enrichKEGG” function in the clusterProfiler R package25, utilizing  using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (the “enrichKEGG” function) combined with additional pathway databases if required. The All pP-values will be corrected for multiple testing using the BH (Benjamini & Hochberg ) method 26, using the R psych package. Module annotation will be based on a plurality vote for each of eight BRITE hierarchies (see Fig. 4A) annotated for the significantly enriched pathways (adjusted p-value < 0.05). For example, a module will be annotated as a “Metabolic” module if its enrichment plurality votes are classified in the as being “Metabolism” class using based upon the BRITE classification of KEGG pathways. 	Comment by Editor: clusterProfiler, I assume? (Rather than clusterProfile)
Step 3: Detecting global system-level coordination: We will test global system-level coordination using eigengenes of co-expression networks. Since As the modules eigengenes explain 0.2-0.7 of modules variability (see Fig. 3), we will compute eigengenes of for KEGG pathways and validate the results for pathways coordination. For example, if we detect the a significant whole-body positive coordination of metabolic networks, we will validate metabolic pathways to see if they exhibit similar trends. 	Comment by Editor: 20-70%?
To evaluate global system-level coordination, we test the coordination of similar molecular systems such as metabolic transcriptomes. For example, we will compute pairwise tissue-tissue positive and negative co-expression measures of the metabolic modules eigengenes across tissues and their ratio. We will evaluate correlation coefficients using Pearson’s, Spearman’s, and bias-corrected distance correlation (bcdCorr) 22 methods. To study the statistical significance of the these systemic coordination patterns, we will generate Monte Carlo randomization tests27,  randomly sampling . We will randomly sample a number of modules equal to the total number of metabolic modules from all the modules generated for the tested tissues and measured measuring the number of positive and negative correlations and their ratio between these random modules. We will repeat the this analysis 1000 times and calculate the empirical p-value as the fraction of test statistic values from these random sets that are at least as extreme as the test statistic value of from our original data 28 , (see Fig. 4). We then will then repeat these analyses for other systems beyond the analyzed metabolic networks. repeat for other systems than metabolic.	Comment by Editor: THe ratio of positve/negative co-expression?
Single- cell analyseis: Tto test the coordination pattern for specific cells, we will apply our pipeline to human GTEx single single-cell data, with each  where now each cell cell now representing represents a sample within a tissue. 
Datasets: We will apply our pipeline to multiple publicly available RNA-seq datasets derived from multiple tissues of for each donor. See Table 1 for the datasets used in the the researchreserach.
Table 1. Datasets summarizing species, tissues, number of individuals, and age range.
	Dataset accession number
	Species
	Num. Tissues
	N
	Age range
	Method
	reference

	Izgi et al.
	Mice
	4
	8
	3–30 months
	RNA-seq
	

	Jonker et al.
	Mice
	5
	18
	3–30 months
	Microarray
	

	GEO GSE132040 

	Mice
	8
	26
	3–27 months
	RNA-seq
	22

	
	Mice
	20
	
	
	Single- cell
	22

	GTEx
	Humans
	52
	~1000
	20–79 years
	RNA-seq
	8

	GTEx
	Human
	8
	16
	20-80
	Single-cell RNA-seq
	8

	AGEMAP
	Mice
	16
	
	
	RNA seq
	20



3.1.3 Preliminary results: we To date we have preprocessed the data and executed completed steps 1-3, successfully using the specifically executed the WGCNA23 algorithm on to analyze 19 human tissues, generating  to generate 609 modules. This was , followed by pathway enrichment analysis and the plurality module annotation of 40 metabolic modules. We Through these results, wedetected a highlight significant whole-body global positive coordination of these metabolic modules, validating our approach and highlighting the feasibility of these large-scale computational analyses  (Fig. 3).
3.1.4 Pitfalls: Our module s annotation approach may yield skewed results, since as shared genes shared between pathways can skew the plurality votes (, e.g., as many human disease pathways share genes, skewing this may skew the plurality vote results towards human disease). We will combine overlapped pathways to refine our annotations. Another issue is the insufficient gene coverage (about ~8000 genes) and the tissue non-specificity of pathways in the KEGG pathways library. Therefore, we will incorporate additional available GO annotations and additional Pathways DBs (e.g., Reactome) to enlarge increase gene s coverage and to refine our annotations. A third issue is that a third of our modules were not annotated in preliminary analyses (204/609 modules  out of the 609 did not have an adjusted p-value score of under < 0.05). The usage of multiple gene pathways libraries should complement these annotations. In addition, the random module s sampling analysesis yielded a skewed p-values since due to the higher proportion of networks with more samples than the tested (metabolic) samples. In order to balance these  numbers, we selected and showed the refinement of using the same number of co-expression networks per tissue as the tested (metabolic) networks. In addition b By combining an ensemble of signals our analysis is robust  and will overcome the issue of spurious single correlations. In case pathways analyses fail to is will not validate the modules results, we will validate our results at the single- gene -levels. For this, we will gather system-level gene sets (, e.g, metabolic genes), and conduct the analysis as presented. We have already successfully conducted gene-to-gene validation in our preliminary work (Fig. 4).	Comment by Editor: Is this a possible or definite issue? If it is a definite issue, I would just incorporate this step into the protocols detailed above.	Comment by Editor: Make a statement about what this demonstrates.
3.1.5 Expected results: An We expect to establish an automated pipelinee for detecting statistically significant global coordination patterns and their statistical significance, allowing us to . It will define the globally coordinated tissues at the whole-body system level.s. 
3.2  Aim 2: Design an algorithm capable of defining specific tissue-axis coordination patternsAim 2. An algorithm to define specific tissue-axis coordination patterns
3.2.1 Working hypothesis and rationale: The biologicalBiological systems are is co-regulated using by cross- feedback loops, with  while some systems/pathways are being downregulated while others are upregulated concordantly. We conjecture thus hypothesize that the transcriptome can be leveraged as a a valid tool for unraveling tissue-axis-specific coordination patterns and feedback loops between organs at the whole-body level, and we propose that  and our developed method will enable us to draw construct a comprehensive map of these patterns.
3.2.2 Experimental design and methods: 
Following the detection of a general system- level coordination (Aaim 1) we will extend our framework with through community analysis and the development of a dedicated algorithm for detecting specific positive/negative crosstalk between clusters of systems, as detailed below.. 
Step 1. Community analysis: This This step will detectstep detects densely coordinated systems in tissues. We Here, we use the term system to represent a co-expression network/biological pathway within a tissue and we . We use the term node to represent system’s eigengene. We will conduct the analyseis for co-expression networks and pathways separately, where with networks and pathways respectively providing higher and lower levels of abstraction. networks give a higher-level abstraction and pathways a lower level. We will use nodes calculated in Aaim 1 to generate community graphs, which will consist of , i.e., densely inter-connected systems in tissues. In our these graphs, the edges are the correlation coefficients between every two nodes. We will use the Clique Percolation Method (CPM) 29 algorithm for k-clique community detection. Briefly, aA community is a group of nodes that are densely connected to each one another, while.  aA k-clique is a complete subgraph of size k, where an edge connects each node to the other k-1 nodes. A community 29, (i.e., a k-clique community) is defined as the union of all k-cliques that can be reached from each other through a series of adjacent k-cliques (where adjacency means indicates sharing k-1 nodes). The community analysis defines interconnected cliques, each of size k, between any k nodes in the community. Thus, a community’s members can be reached through well-connected subsets of nodes and a single node can belong to several communities. We define an edge (, edge.weight = 1) , as a statistically significant (adjusted p-value < 0.05) Spearman’s 30 correlation coefficients’ value s between each two pair of nodes. We will calibrate the analysis and generate communities that include the recommended29 clique s size of k = 3 or k = 4. We define the edges as undirected (absolute values of correlation coefficients absolute values) but will maintain information on the sign. Low tissue-tissue individual overlap (size < 15) will be assigned the value of 0 (edge.weight = 0). 
Validation: To study the statistical significance of the size of the resulting communities, we will generate Monte Carlo randomization tests27 similarly to aim 1. as in Aim 1.
Step 2. Pattern detection algorithm: We will next detect the positively and negatively co-regulated clusters of nodes within a community. Here For this approach, we will consider the sign of edges (positive/negative). We will use various levels of cluster analysis and distances metrics (Euclidian, Jaccard, etc.) accompanied with by our developed algorithm applied to the community graph (adjacency matrix) A from S step 1. Each matrix cell aij represents the edge value between row i (node i) and column j (node j). Where aij = 1 for a statistically significant positive Spearman’s correlation coefficient between node i and node j,  and aij  = -1 for a significant negative correlation, and aij = 0 for no significant associations (see Fig. 6A exemplifying the this method). Data: as in Aaim 1 (Ttable 1). 	Comment by Editor: I’m not sure what you mean by this. That you will use the same data as Aim 1?
Validation: We will validate the detected synchronization patterns by exploring the genes included in these  systems and using the literature and will experimentally validate new patterns with the assistance of the Mikl lab for c. eleganceC. elegans modelling. The human patterns will be validated with mice murine data (Tabel Table 1). 
3.2.3 Preliminary results: We already computed a metabolic community composed of 12 metabolic modules and manually detected 2 inversely correlated clusters of nodes (see Fig. 5B). 	Comment by Editor: I would make another statement about the specifics 
3.2.4 Pitfalls: At the gene level, the community graph s algorithm will be massive and contain many nodes and edges. The current iteration of the graph algorithm needs requires considerable computational power and processing time on for such large-scale graphs. We will need to reduce the graph size by conducting more pre-processing steps and using high-performance cloud-distributed computational solutions provided by the Haifa Uuniversity. We will use dimensionality reduction, i.e., module and pathway-level eigengenes, to reduce node size. We may also may detect inconsistent patterns within a community that will be eliminated. 	Comment by Editor: How will you determine when to eliminate a pattern?
3.2.5 Expected results: We When completed, we expect the results of these analyses to advance current understanding by revealingexpect to enrich the current knowledge with new novel tissuee-axis crosstalk patterns and feedback loops, establishing a s-axes’ cross talk patterns and feedback loops to generate a comprehensive catalog of such these patterns located compiled in a dedicated database for use bythe usage of the scientific community.
3.3 Aim 3: Examine changes in inter-tissue transcriptional coordination with aging and develop a scoring model that can predict aging Aim 3. Inter-tissue coordination changes in aging and scores to predict aging
3.3.1 Working hypothesis and rationale: 
A single-tissue coordination level between single genes in single cells was tested in distinct tissues to decline with age31,32. Here we proposeWe hypothesize that the transcriptional coordination between tissues declines with the aging process, along coinciding with age-related functional deterioration. with the aging functionality decline. We thus suggest plan to extending extend our coordination measures to aging to in order to generate a global view of age-related inter-tissue coordination changes at the transcriptional level. We also conjecture that novel genomic inter-tissue coordination scores can be used to predict the chronological age of individuals using machine learning classifiers.	Comment by Editor: I’m not sure I understand your meaning here – a previous study (or studies) demonstrated a decline in such coordination with age?
3.3.2 Experimental design and methods: 
Correction for confounding factors correction will use be performed using multivariate linear regression by analyses retaining the age signal.
Aging-related changes in cCoordination changes in aging: We will test whole-body global coordination changes in aging using our new approach in objective 1 developed in Aim 1. To account for subtle changes and to be able to compare between the groups, we will use a gene-level analysis approach, a(since s non-identical co-expression networks is will be generated for the old vs. young cohorts). The genes will be partitioned into functional groups, (e.g., metabolic genes) to infer metabolic , system-level, changes. We will divide the human/mouse datasets (Table 1, bulk RNA-seq) into young/old cohorts and use statistical tests (e.g., t-tests) to evaluate the significance of these  changes. Future work includes will include a focus on changes in specific patterns. specific pattern changes.
Coordination scores (features) for predicting the prediction of age: We will develop novel coordination scores for each individual. The score will represent representing the level of the transcriptomic coordination of for an that individual and and will be calculated for each pair of genes in pairs of tissues. We For this process, we will usechose here a gene-level analysis to be able to detect coordination marker genes for related to aging. The final scores  will be based on the ratios of the standard deviations of genes across tissues calculated for each individual. Finally, each individual will have a feature space of its pairwise tissue-tissue synchronicity score. These coordination scores will be fed into machine learning classifiers to classify old/young individuals. Feature analysis will then be used to represent the mostly dis-coordinated marker genes across tissues that are the highest strongest predictors of aging. 
Machine learning models: We will generate a binary classifier for age prediction (old/young) by several methods including: distributed gradient boosting framework xGBoost33; support vector machine classifier (SVM); random forest; and logistic regression classifier. In our first set of experiments, we will train and test the models within each dataset. We will use a 60/20/20% split of the data to generate the training/validation/test sets, relying on several different splitting approaches, e.g., 1) random split, 2) proportional representation of each age group. Classifiers’ performance will be compared using 10-fold cross-validation.
Identifying key features in each dataset: We will employ our best cross-validated trained model for SHapley Additive exPlanations (SHAP)32 to explain the output of the machine learning model and find the most predictive features, i.e., a combination of marker genes which inter-tissue coordination changes with age. These SHAP values of each feature represent the feature’s impact on the model output/classification of age (see Fig. 6 of our SHAP analysis for predicting age from epigenetic data).	Comment by Editor: Do you mean a combination of marker genes that change with age-related shifts in inter-tissue coordination?
Comparing organisms and developing better predictive models: We will compare the most predictive features between humans and mice and develop and test new models: combine the data from different organisms; reduce the feature set to core features that are ranked as important in all datasets.  
Validation: The detected marker genes will be investigated by the Atzmon lab and we will further experimentally validate age-related marker genes on longed- lived animal models compared to short-lived animal models with the Atzmon lab (, out of the scope of this proposal).
Data: We will use bulk RNA-seq data for the analysis, as single-cell sample sizes are too  (sample size is too small for single cell data)small (Table 1). 
3.3.3 Preliminary results: 
We To date, we have performed a proof-of-concept analysis demonstrating that show a proof of concept that older individuals exhibit weaker and fewer inter-tissue gene-to-gene metabolic coordination levels using 1200 metabolic genes applied to six tissue-tissue pairs (see Fig. 5). 
3.3.4 Pitfalls: It is possible that the initial training set will be too small for training a classifier training and the that the age cohorts will be unbalanced , due to (1) low levels of inter-tissue overlap between individuals,  and (2) the smaller size of the rapid death group used for this analysis (as compared to the ventilator group), and (3) the presence of more old than young individuals in the dataset. To overcome these issues we will the lower sized fast death group we use for analysis (as opposed to the ventilated death type) (3) more old than young individuals in the dataset. Thus, we will try the following solutions: 1) use different splits for age and will2) use different death type group filtration or combine the groups for humans. We will try to add samples from the high-sized larger ventilator group comprised of ventilation group (relatively healthy individuals that were on ventilation a ventilator prior to death, carefully selecting the samples from individuals who were not on a ventilator for an extended duration.) choosing the samples carefully of individuals who were not on ventilation for a long duration. In addition, Tissues with small numbers of sample overlap will also be omitted from this analysis given that tissues with a small number of samples overlap will be omitted from the analysis as a small sample size may lead to biased results. T, 3) to account for unbalanced cohorts, we will use state-of-the-art oversampling methods including generative models. For the mouse datasets, we will use meta-analysis approaches to combine multiple datasets following a batch correction or we will combine the results of the classifiers to yield the general performance. To handle the the too-large feature size in cases where the sample size is too small, we will too large feature size in a case of too small sample size we will (1) reduce the feature size by using state-of-the-art feature selection methods such as the Lasso approach,  and (2) use the XGBoost classifiers, which are appropriate for such conditions,  and (3) use dimensionality reduction to generate the analysis on the system level. 
3.3.5 Expected results: The proposed pipeline will be automated for to define changes in molecular coordination with age and to predict defining the molecular coordination changes with age, and predicting biological age based on global inter-tissue transcriptomic coordination scores. In addition, by conducting feature analysis we expect to detect marker genes and pathways whose coordination changes are associated and drive the prediction of the chronological age.
4  Conditions available for the research
Resources: The Department of Information Systems Engineering at the University of Haifa has provided Dr. Somekh with high-performance computing of resources including GPUs,  and CPUs, and storage clusters to perform the proposed research. For The proposed budget includes the purchase of additional servers for long-term use, Dr. Somekh asked for a budget to buy additional servers. Domain expert assistance and experimental validation of detected patterns (Aim 2) and age marker genes (Aim 3) will be performed by the Mikl and Atzmon labs. Statisitcial Statistical assistance will be conducted provided by Dr. Vakulenko.	Comment by Editor: Is this right?
Expertise: During her Ph.D., Dr. Somekh has developed an executable approach for to modeling molecular biology systems of gene expression 34,35. During her Postdoc training and her 4 years as a faculty member, Dr. Somekh she has further gained expertise in across a broad spectrum of computational approaches to enabling the comprehensive analyses of analyze genomic and high-throughput sequencing data to investigate computational systems biology questions that produce yield a large repertoire of biological knowledge. In particular, her she holds expertise in expertise includes comparative genomics, computational prediction using machine learning and feature construction, and the analysisis of complex gene networks. Dr. Somekh has developed an approach methodology using executable models to explore disease comorbidities36, combined simulations with gene expression analysesis for newto facilitate novel dynamic pathway enrichment analyseis32, used deconvolution algorithms to infer cell proportions from bulk RNA-seq data37, developed a method to recover noise in biological RNA-seq data without losing the biological signal13, developed established an approach for predicting the tissue-specific roles of receptors using RNA-seq GTEx data38 combined with machine learning classification, feature analysis, network analysis, and enrichment analysis. From herSince her Ph.D.  studies, Dr. Somekh combines has focused on combining systems engineering and molecular biology, and she is fascinated with understanding the  to gain holistic view of insight into systems and how the human system operates as a whole co-regulated system in specific. Dr. Somekh hSince establishing her as established her research group 4 years ago, she and her students have endeavored to and together with her students she aims to develop a suite of methods and tools to study general biological patterns and changes related toin aging from a system-level perspective. 
Collaborators: Prof. Gil Atzmon is a PI in the Department of Human Biology at the University of Haifa and a– an expert in the epigenetics of aging and longevity. He has developed a systematic approach to assessing the contributions of epigenetic changes to the aging process and has been studying a centenarian cohort for more than 20 years to gainsuch that he has tremendous experience in utilizing the most advanced genomic tools to interrogate molecular genetics of longevity. Martin Mikl is the head of the gene regulation and RNA systems biology lab at the University of Haifa working on the regulation of gene expression regulation, and specializes in human cell s in culture and the nematode C. elegans research. Bella Vakulenko-Lagun is a statistician at the University of Haifa working on public health datasets developing methods for correcting biased sampling and missingness in time-to-event data with competing risks and multi-state structures.	Comment by Editor: If these individuals have doctorates, perhaps include “Dr.” or “Prof.”? I know that is the convention in the US.
Preliminary results
Data pre-processing: we We have preprocessed and corrected the GTEx data, including the filtering, normalizing normalization, and adjustment of each tissue dataset for technical artifacts including and adjusting each tissue dataset for technical artefacts—death type, experimental batch, ischemic time, age, and gender. Our previous work 13 (Fig. 2) showed demonstrated that using some common methods for used to adjust GTEx expression adjusting the GTEx expression data for hidden confounding factors (e.g., using principal components) filters can filter out many of biological signals relevant to our study.out many of the biological signals—which is relevant here. Tissues having with sample batch sizes that were too small for analysis were too small sample sizes in each batch were eliminated from this analysisexcluded. A total of 25 tissues for V6 and 31 tissues for V8 were processed.	Comment by Editor: Have I understood this correctly?	Comment by Editor: What are these V numbers? GTEx varsions? The nomenclature isn’t used elsewhere so it is a bit confusing – maybe revise to something different or clarify.
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Figure 2. Performance Evaluation of the performance ofevaluation of five batch correction methods and analyzing raw gene expression data for six tissue datasets derived fromthe raw data applied to six gene expression tissues datasets derived from the GTEx project. The pePerformance was evaluated based on a -priori high high-confidence gene-gene associations derived from an external reference. The presented Abbreviations: LR – linear regression-based adjustment, PCA – principal component-based adjustment, ComBat – using the combat algorithm, PEER – using the PEER Algorithm, PCA_opt – optimized principal components approach. ROC curves and their corresponding AUC values are presented. ROC curves are graphical representations of both specificity and sensitivity that comparinge s the gene-gene co-expression of for each adjusted dataset against a gold standard, a -priori knowledge of true and false gene-gene associations derived from an external reference, and are presented with corresponding AUC values.. A. (A) Performance evaluation of for the Adipose Subcutaneous tissue dataset. Performance was evaluated using 2,975 gold standard edges. (B) B. Performance evaluation of for the Skin Suprapubic tissue dataset. Performance was evaluated using 2986 gold standard edges. (C)C. A pPlot summarizing the AUC values for six tissue datasets (x-axis) and five raw data correction methods. adjustment methods and raw data. It can be seen that LR (linear regression-based adjustment for known confounders) and Combat outperformeds the other adjustment methods.  Abbreviations: LR – linear regression-based adjustment, PCA – principal component-based adjustment, ComBat – using the combat algorithm, PEER – using the PEER Algorithm, PCA_opt – optimized principal components approach. 	Comment by Editor: Usually these come last in Figure Legends in my experience.
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Figure 3. Modules’ enrichment analysis and explained variation analyseis. A-. B. Exemplifies Examples of death type-related differences for a the death type differences for a representative gene and the erroneous correction results when we use multiple linear regression to correct for death type. Thus Given these results, we will conduct analyses separately for individuals in the ventilator group and those in the rapid death group we conduct the analysis separately for the ventilation group and the fast death group (elaborated in22) C. Pathway enrichment analysis of demonstrative metabolically annotated modules across 19 human tissues. A heatmap of log-transformed p-values (adjusted for multiple corrections) of thecorresponding to KEGG pathways’ enrichment is presented. Metabolic pathways are highlighted in the annotation rows to the left in turquoise and corresponding to the KEGG BRITE “Metabolism” hierarchical classification. D-. E. Eigengenes variance explained for co-expression modules and their annotation for adipose subcutaneous and adipose visceral tissue samples. It can be seen that tThe variance explained varies between 0.2 to 0.7 for these different  co-expression modules. 
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Figure 4. Whole-body global metabolic transcriptome coordination patterns. A. Heatmap A heatmap containing contains 609 co-expression network s pairwise correlation coefficient p-values derived from 19 human tissues. The co-expression networks (modules) are annotated and classified into 8 types using the KEGG BRITE classification. The y-axis bar to the leftRows are colored according to the types of network annotations (e.g., The 40 metabolic modules are colored on the left bar in red) and the while columns are colored according to tissue types. are colored on the x-axis top bar. B. Number of pairwise samples overlap overlapping between donors. It can be seen that the sample size includes range from more than 50 samples (red) and many more thanto well over 100 (blue) per for each tissue-tissue pair, with variations  and size varies across pairs. C. The chart presents tThe number of pairwise metabolic correlation coefficients (Pearson’s) that exceed a given correlation threshold. In total, we had evaluated a total of 780 pairwise metabolic correlations from 40 cross-tissue metabolic networks from across 19 tissues. The line colored in dark green represents the number of metabolic positive pairwise correlations exceeding the indicated threshold. The dark red line represents the number of negatively correlated metabolic pairwise correlations meeting or exceeding the given threshold. The light green line represents the number of average positive pairwise correlations from a random module sample repeated 1000 times, with the same representative proportion of tissues as the 40 metabolic modules across tissues. The light red line represents the average negative correlation for a given threshold. The dashed turquoise line represents the fifth percentile. The positive correlations between inter-tissue metabolic modules are significantly larger (p-value < 0.05) than the random values.
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Figure 4D. Positive to negative ratio perspective-based p-values of for the correlation coefficients in Figure 4plod C. For a given p-value ratio, the dark blue line shows us the average ratio of the positive to the negative instance with a pair-wise correlation p-value threshold at the given level. The dashed blue line shows uscorresponds to the 95th% percentile of the positive-to-negative ratio and the green line shows usrepresents the actual positive-to-negative ratio of the metabolic network given a specified p-value. This graph demonstrates that metabolic co-expression networks tend to have more than twice more as many (p-.value < 0.01) positive than versus negative inter-tissue relationships and this ratio is statistically significant (exceeds exceeding the 95th % percentile).	Comment by Editor: This is what was meant, correct?
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Figure 5. Schematic overview of our method and an example of a cross-tissue metabolic coordination pattern. A. Schematic view of the our method. B. Community adjacency matrix C. Schematic representation of a detected pattern between metabolic networks across tissues. All community metabolic modules are positively correlated except for one metabolic brain module (Brain-Module4) which is negatively correlated to the community. 
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Figure 6. Age-related changes in iInter-tissue transcriptional coordination changes with age. It can be seen that iThese preliminary results reveal that inter-tissue gene-level correlation coefficients are are visibly weaker with age, i.e., the there are fewer inter-tissue has fewer connections with aging, and these connections are less strong. that are less strong with aging. A, C. Results from an old (age: 60-80) cohort (n=53 samples) shOld cohort age 60-80 (53 samples). Howing a heatmap of clustered absolute values of Pearson’s correlation coefficient values for s of 1200 metabolic genes. B, D. Results from a yYoung cohort age (age: 20-49 years) cohort (n=69 samples). (69 samples). E. The bar plots emphasize the changes of in transcriptional coordination between young and old across individuals for 6 representative tissue-tissue pairs. The bar plots represent the percentage of inter-tissue positive correlation coefficients across cutoffs of 0.4, 0.5, and 0.6 cutoffs. It These results demonstrate similar trends for all but one of these 6 tissue-tissue pairs, with the coordination remaining stronger in the young cohort. can be seen the same trend in all 6 tissue-tissue pairs (except one pair) that the coordination is stronger at the young cohort.  	Comment by Editor: Perhaps change the lettering order so that A/B are old and C/D are young?
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