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1  Scientific Background
1.1  Transcriptomic coordination
Whole-body physiological homeostasis is pivotal for the maintenance of human health1, and longevity is preserved through simultaneous tissue co-regulation. Indeed, the tissues of multicellular organisms do not operate in isolation but instead interact with each other through complex communication networks. Several factors can contribute to inter-tissue interactions: (1) they are regulated independently by the same genetic locus, (2) they respond independently to the same environmental cues or internal events (such as circadian rhythms2–4), or (3) the transcription of genes is regulated by biological signaling between tissues, such as ligand-receptor interactions5 (e.g. gene i product in one tissue signals to another tissue and regulates expression of gene j). Consistently, circadian clocks2–4 have been shown to regulate gene expression, as have both internal and external stimuli such as metabolic signals6–8. 
These complex inter-tissue interactions raise several interesting questions that warrant further investigation: (1) Is gene expression regulated at the whole-body level?; (2) Can we detect global and specific cross-tissue patterns of coordinated gene expression?; and (3) Do these coordination patterns changes during aging? The development of RNA-sequencing (RNA-seq) and other “omics” technologies, together with the creation of public multi-tissue gene expression databases such as the GTEx (Genotype-Tissue Expression) Project9, which is a growing repository of RNA-seq-derived gene expression data from multiple tissues profiled for each individual across hundreds of individual donors in a publicly accessible portal, provide us with the unprecedented opportunity to systematically explore high-level tissue-tissue relationships.
Multiple studies to date have analyzed gene-to-gene tissue-specific co-expression mechanisms, and there have been several reports seeking to test tissue-tissue associations leading to the detection of gene-level relationships between pairs of tissues through analyses of gene co-expression in two different tissues at the gene-to-gene and gene-to-pathway levels10–12. One study10, for example, tested tissue-to-tissue connectivity by exploring gene-to-gene associations across three tissues – the hypothalamus, liver, and adipose tissue – of healthy and obese mice. These analyses enabled the authors to construct per-tissue co-expression networks and to demonstrate connectivity using gene-to-gene Spearman’s correlation coefficients between individual genes in one tissue and genes in co-expressed modules in another. Another report11 analyzed six murine tissues, enabling the detection and experimental validation of new gene-level tissue-to-tissue endocrine associations, highlighting co-expression between ligand gene expression levels in source tissues and affected pathway genes in the target tissue in these animals. The GTEx9 dataset has also been used to assess inter-tissue connections in humans between single genes in one tissue and genes forming a pathway in other tissues, for example by analyzing the importance of DPP4 in heart-to-blood communication12. Another recent report13 outlined an approach to evaluating global gene-to-gene coordination between single cells in each tissue. While these studies have been informative, it is now time to advance beyond single-tissue and single-gene analyses to develop a holistic understanding of how the body as a whole functions as an interconnected biological system.
Prior gene-level analyses have focused on the association between individual genes, but these relationships are potentially susceptible to noise that may impact the expression levels of single genes14. Conducting large-scale analyses such as those proposed herein that focus on complex arrays of network- and system-level interactions across tens of tissues may circumvent this problem, as such analyses remain absent to date. Establishing such an approach has the potential to advance research efforts focused on confirming the validity of general whole-body system-level coordination patterns as well as specific multi-inter-tissue coordination patterns.  Here we aim to fill in this lacuna in the research field and to systematically investigate transcriptomic coordination throughout the human body. Our research will be guided by two key questions: (1) Can we detect transcriptomic and pathway coordination patterns across human tissues? and (2) Do these patterns change with aging? Answering these questions will be an important step toward developing a detailed model of global transcriptomic regulation patterns across the human body. To that end, we will employ a comprehensive large-scale multi-inter-tissue network-level strategy to evaluate whole-body transcriptomic coordination patterns. We have already initially applied this strategy to specifically assess metabolic network coordination across 19 human tissues, highlighting the feasibility and biological relevance of these analyses.
1.2 Aging and transcriptional regulation
Aging is a fundamental biological process that contributes to the risk of characteristically age-related diseases in humans such as cardiovascular disease, cancer, Type 2 diabetes, Alzheimer’s disease, and Parkinson’s disease. Through the aging process, organs and tissues gradually lose their physiological integrity, followed by the functional impairment and eventual death of the aging individual15. There are many theories regarding the biological causes of aging, and many mechanisms have been suggested to contribute to the aging process. Prominent current hypotheses encompass mechanisms including genetic predisposition, mitochondrial dysfunction, telomere attrition, and genomic instability, among others16. The concept of biological age measures the progress of the biological aging process as opposed to the chronological age which relates the elapsed time from death17. While chronological age is a major risk factor for many diseases, there is marked heterogeneity in human lifespan and health outcomes for people of the same chronological age18. 
Numerous age-related tissue-specific transcriptomic studies have been conducted in humans and other species, often with the goal of detecting aging-related marker genes or predicting age using machine learning models19,20,21. The AGEMAP project22 profiled gene expression in 16 tissues in mice and tested for the coordination of aging among different tissues using a new metric representing the apparent age of each tissue based on age-related changes in gene expression profiles in that tissue. Ren et al.23 introduced a versatile tissue-specific transcriptional age calculator for multiple tissues based on the GTEx database, machine learning models, and feature selection approaches. Yang et al.16 employed an unsupervised dimensionality reduction (principal component analysis)-based method and a supervised learning method with the Elastic Net regression to analyze GTEx data, estimate tissue age, and calculate age coordination for each tissue pair, demonstrating that aging is synchronized in multiple tissues as reflected by age-related gene expression changes. 
These prior studies have focused on defining tissue-specific aging-related genes and their coordination with age. Here, we propose a different approach that extends our framework to define changes in inter-tissue global coordination patterns with age that, to the best of our knowledge, have not been studied before. Moreover, we aim to develop an inter-tissue coordination-based score for the prediction of age. The development of a systematic method of uncovering global age-related coordination changes in tissues throughout the body will enhance our understanding of the aging process and enable the design of therapeutic interventions for complex age-related diseases and other tools that may help to facilitate healthy aging.
2. Research objectives and significance 
The overall objective of the proposed study is to establish novel computational methods and a framework for defining whole-body transcriptional coordination patterns and their changes with aging. To achieve this objective, we propose the following three specific aims:
2.1 Aim 1: Develop methods to measureMeasure whole-body global transcriptional coordination of similar systems 
In this Aim, we will develop a new novel methodology and pipelinemethodology that will allow us to evaluate global whole-body inter-tissue transcriptomic coordination at the system level (e.g., global metabolic coordination). This Our new methodology will combine computational techniques of dimensionality reduction, meta-network and graph analysiis, and statistical analysis to detect and measure the extent of inter-tissue whole-bodyglobal system-level global coordination. The approach will be applied to publicly available single-cell and bulk RNA-seq human/mouse multi-tissue datasets. In preliminary work, we have already demonstrated thatthe s ignificant metabolic modules are significantly coordinatedcoordination of metabolic co-expression networks across the whole body as compared to randomly chosen modules networks (Fig. 3). 
Significance: The proposed study is a pioneering effort to take advantage of high-throughput data in order to evaluate the extent of demonstrate the validity of global whole-body  transcriptional coordination of functionally related genes at the system level. The established global coordination measures can then be used in other systems and conditions, for example, to test health and aging states (see aim 3). We will construct and make available an installable package that will perform similar analyses for any organism, condition, or system type at the single-gene, pathway, or network levels. 
2.2 Aim 2: Design an algorithm capableDefine of defining specific tissue-axis coordination patterns 
We will extend our developeddevelop a methodology and with an algorithm to define specific inter-tissue-axis coordination patterns and crosstalk among molecular biology systems and pathways using annotated co-expression modules and KEGG pathways. The approach will define communities of densely coordinated systems/pathways between tissues and allow us to detect the consistent co-regulation and co-inhibition of systems. The approach will be applied to publicly available single-cell and bulk RNA-seq human/mouse multi-tissue datasets. In our preliminary research we have successfully performed the automated detection of a metabolic community and manual detection of one brain-tissues-axis metabolic feedback loop pattern as a proof-of-concept (Fig. 6). Importantly, through collaboration with the Mikl lab will experimentally validate relevant detected tissue-tissue metabolic patterns in the C. elegans model system (see attached letter). C. elegans has been recently established as a premier model system to study metabolism24.
Significance: The proposed research will provide a fully comprehensive overview of tissue-axis coordination and will allow us to establish a crosstalk patterns catalog that will be publically available to the research community. Analyzed single-cell data will enable us to better elucidate patterns of crosstalk between the general coordination of cell type composition across tissues and specific coordination of cell-autonomous expression changes within particular cell types. 
2.3 Aim 3: Examine Define changes in inter-tissue transcriptional coordination with aging and develop a scoring model that can predict aging 
In our final Aim, we will extend our approach to focus on aging. Specifically, we will (1) study the possible effects of aging on whole-body gene expression coordination patterns, (2) define a novel, clinically meaningful metric of age classification for each individual based on the level of inter-tissue coordination, and (3) feed these novel scores into machine learning classifiers to predict aging after which we can use a feature analysis approach to define key markers of aging, such as the most dis-coordinated genes and pathways during the aging process. We will evaluate and compare the performance of the models trained on humans and test the models on a combination of datasets while reducing feature size and elevating model performance. Based on the conclusions of the above analyses we will develop optimized machine learning classifiers for age prediction and inferring aging-related markers. The Atzmon lab will use their aging expertise to help us with result interpretation and the eventual experimental validation of detected aging-related markers (out of the scope). The Mikl lab will perform validation experiments in aging C. elegans worms, a powerful model system to follow aging-related physiological changes25.
Significance: The proposed study will provide innovative insight into the biological mechanisms of aging by pinpointing key changes in inter-tissue coordination that coincide with the aging process. Our results will provide important insights into the key features that drive the deterioration of whole-body transcriptomic coordination with the aging process. Moreover, the novel coordination-based metric for age developed herein can be used to define a person’s biological age more effectively than chronological age alone, serving as a diagnostic tool to evaluate the beneficial effects of therapeutic drugs and lifestyle changes on biological age. In the future, we intend to calibrate our metric to tissues that can be easily sampled. This will pave the way for new perceptions regarding aging treatments, with practical implications that can assist in the development of therapeutic strategies for complex age-related diseases and other interventions that may assist with healthy aging.
3  Detailed description of the proposed research (Each aim is presented separately) 
[image: ]
Figure 1. Schematic overview of the methodology in the planned research.

3.1 Aim 1: Measure the whole-body transcriptional coordination of similar systemsDevelop methods to measure whole-body global transcriptional coordination 
3.1.1 Working hypothesis and rationale: 
We hypothesize that transcription is co-regulated and coordinated at the whole-body level. Moreover, we propose the existence of global system-dependent transcriptional co-regulation that can be detected through analyses of gene expression data. Our working hypothesis is that whole sets of functionally related genes vary in a coordinated manner across the whole body, a phenomenon that we plan to measure through computational and statistical means. 
3.1.2 Experimental design and methods: 
Human/mouse public RNA-seq Data (presented in Table 1) will be pre-processed and adjusted for technical artifacts (explained in the Preliminary Results section). We will conduct our analyses in the non-ventilator subgroup of individuals who experienced rapid death from accidents or natural causes, as we have previously detected genomic changes in the ventilator subgroup of relatively healthy individuals that were under ventilation at the time of death26. Ventilator patient samples will be used for validation purposes. 
Using these samples we will develop a computational methodological framework termed the Whole Body Coordination Level (WBCL) to evaluate global system-level inter-tissue dependency. Our WBCL methodology will include three steps, which are detailed below. 
Step 1: Co-expression network analyses: The robust Weighted Gene Co-Expression Network Analysis (WGCNA) and related R package27 or other suitable algorithms will be used to calculate co-expression networks (modules) and module eigengenes (the first principal component of the expression matrices for each module). The WGCNA approach groups related genes into gene modules (networks) based on their co-expression patterns and topological similarity to neighboring genes in the network. The algorithm calculates a similarity co-expression matrix using correlation coefficients cor(i,j) for all genes, and we will use the biweight midcorrelation measure that accounts for outliers during this stage. The co-expression matrix is transformed into an adjacency matrix by using the soft thresholding power , to which co-expression similarity is raised aij = (0.5*(1+cor(i,j)))β. where aij represents the resulting adjacency that measures connection strengths. The power  will be defined based on the criterion of approximating the scale-free topology of the network, as recommended in the original publication27. Then, a topological overlap matrix (TOM)27 is computed and converted into a dissimilarity TOM. This TOM calculates the topological similarity between every two neighbors in the network, thus evaluating the similarity of the neighbors for every two nodes. Finally, hierarchical clustering is used to produce a tree (dendrogram) from the dissimilarity TOM. By using dynamic tree cutting, different numbers of clusters (modules) are obtained from this tree. The resulting modules contain densely interconnected genes that comprise co-expression networks (modules) for each tissue. We will use the “signed” networks— meaning that the co-expressed modules include positive correlations between the nodes. The module eigengene is defined as the first principal component of the module and represents the weighted average of the expression profile for that module. The eigengenes can be used to merge clusters and to screen for suitable gene targets by calculating module membership (kME) measures, also known as eigengene-based connectivity27,28. We will use eigengenes to calculate the inter-tissue correlations between modules. We will eliminate tissue-tissue pairs with a sample overlap < 15.
Step 2: Module annotation: We will perform Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for the gene sets in each module based on the hypergeometric test using the “enrichKEGG” function in the clusterProfiler R package29. All p-values will be corrected for multiple testing using the Benjamini & Hochberg method30, using the R psych package. Module annotation will be based on a plurality vote for each of eight BRITE hierarchies of KEGG pathways (see Fig. 4A) annotated for significantly enriched pathways (adjusted p-value < 0.05). For example, a module will be annotated as a “Metabolic” module if its enrichment plurality votes are classified in the “Metabolism” class BRITE classification. Since the insufficient gene coverage (~8000 genes) and tissue non-specificity of pathways in the KEGG library, we  will incorporate available GO annotations and additional Pathways DBs (e.g., Reactome) to increase gene coverage and refine our annotations.
Step 3: Detecting global system-level coordination of similar systems: We will test global system-level coordination using eigengenes of co-expression networks. As the module eigengenes explain 20%-70% of module variability (see Fig. 3), we will compute eigengenes for KEGG pathways and validate the results for pathway and gene-level coordination. For example, if we detect the significant whole-body positive coordination of metabolic networks, we will validate metabolic pathways and metabolic genes to see if they exhibit similar trends. 
To evaluate global system-level coordination, we test the coordination of similar molecular systems such as metabolic transcriptomes. We will abstract and model the human system as a graph (network) of annotated co-expression networks (modules) in tissues (nodes). The graph nodes are represented by eigengenes of co-expression networks. To this end, we will compute pairwise tissue-tissue correlation coefficients of module eigengenes across tissues. We will evaluate correlation coefficients using Pearson’s, Spearman’s, and bias-corrected distance correlation (bcdCorr)26 methods. To evaluate the global coordination of similar systems we test our meta-graph for relevant graphs metrics, such as the assortativity graph measure, that represents the extent to which similar sorts of nodes in a network associate with other similar nodes in the network. Using this metric we will analyze to what extent similar systems (e.g., metabolic networks, the graph nodes) in our graph are connected/coordinated relative to other nodes. For example, we will compute pairwise tissue-tissue positive and negative co-expression measures of the metabolic module eigengenes across tissues and the positive/negative ratio. We will evaluate correlation coefficients using Pearson’s, Spearman’s, and bias-corrected distance correlation (bcdCorr) 26 methods. To complement the network analysis and To study the significance of these systemic coordination patternsthe number of similar systems that are truly coordinated rather than coordinated as a result of random chance, we will generate Monte Carlo randomization tests31,  randomly sampling a number of modules equal to the total number of metabolic modules from all the modules generated for the tested tissues1000 repetitions of modules (the number modules sampled is equal to the number of tested modules) and measuring the statistical significance of the number of positive and negative correlations module-to-module correlations and their ratio between these random modules. This will allow us to calculate an empirical P-value as a We will repeat this analysis 1000 times and calculate the empirical p-value as the fraction of test statistic values from these random sets that are at least as extreme as the test statistic value from our original data 32 (see convincing preliminary results in Fig. 4). We will then repeat these analyses for other systems beyond the analyzed metabolic networks. To achieve better granularity and signal (module eigengenes explain 20%-70% of module variability (see Fig. 3)) we will validate the approach with KEGG pathways or GO processes as the graph nodes. For example, if we detect the significant coordination of metabolic networks, we will validate metabolic pathways for similar trends. 


Datasets: We will apply our pipeline to multiple publicly available bulk and single cell RNA-seq datasets derived from multiple tissues for each donor. See Table 1 for the datasets used in the research. 
Single-cell analyses: To test the coordination pattern for specific cells, we will apply our pipeline to human GTEx single-cell data, with each cell now representing a sample within a tissue. 
Table 1. Datasets summarizing species, tissues, number of individuals, and age range.
	Dataset accession number
	Species
	Num. Tissues
	N
	Age range
	Method
	reference

	Izgi et al.
	Mice
	4
	8
	3–30 months
	RNA-seq
	33

	Jonker et al.	Comment by יהודית סומך: insert:
https://pubmed.ncbi.nlm.nih.gov/23795901/
GSE34378
	Mice
	5
	18
	3–30 months
	Microarray
	

	GEO GSE132040 

	Mice
	8
	26
	3–27 months
	RNA-seq, 
Single-cell
	26

	
	Mice
	20
	
	
	Single-cell
	26

	GTEx
	Humans
	52
	~1000
	20–79 years
	RNA-seq
	9

	GTEx
	Human
	8
	16
	20-80
	Single-cell RNA-seq
	9

	AGEMAP	Comment by יהודית סומך: not sure the tissues are from the same mice
	Mice
	16
	
	
	RNA seq
	22



3.1.3 Preliminary results: To date we have preprocessed data and completed steps 1-3, successfully using the WGCNA27 algorithm to analyze 19 human tissues, generating 609 modules. This was followed by pathway enrichment analysis and the plurality module annotation of 40 metabolic modules. Through tThese results, we highlight the significant whole-body global positive coordination of these metabolic modules, validating our meta-network approach and highlighting the feasibility of these large-scale computational analyses (Fig. 3).
3.1.4 Expected results: We expect to Extend the scientific knowledge with new inter-tissues coordination patterns. establish an automated pipeline for detecting statistically significant global coordination patterns, allowing us to define globally coordinated tissues at the whole-body level. 
3.1.5 Pitfalls: Our module annotation approach may yield skewed results, as genes shared between pathways can skew the plurality votes (e.g., as many human disease pathways share genes, this may skew plurality vote results towards human disease). We will combine overlapped pathways to refine our annotations. A second issue is that a third of our modules were not annotated in preliminary analyses (204/609 modules did not have an adjusted p-value < 0.05). The usage of multiple gene pathway libraries should complement these annotations. In addition, the random module sampling analyses yielded skewed p-values due to the higher proportion of networks with more samples than the tested (metabolic) samples. In order to balance these numbers, we selected and showed the refinement of using the same number of co-expression networks per tissue as the tested (metabolic) networks. By combining an ensemble of signals our analysis is robust and will overcome the issue of spurious single correlations. In case pathway analyses fail to validate the module results, we will validate our results at the single-gene level. For this, we will gather system-level gene sets (e.g, metabolic genes) and conduct the presented analysis. We have already successfully conducted a bottom bottom-up gene-to-gene validation that shows significant and higher coordination of meatblolic metabolic genes.
3.2  Aim 2: Define specific tissue-axis coordination patternsDesign an algorithm capable of defining specific tissue-axis coordination patterns
3.2.1 Working hypothesis and rationale: Biological systems are co-regulated by cross-feedback loops, with some systems/pathways being downregulated while others are upregulated concordantly. We thus hypothesize that tissues  the transcriptomehigh-throughput data can be leveraged as a valid tool for unraveling tissue-axis-specific coordination patterns and feedback loops between organsof the tissue transcriptomes at the whole-body level, and we propose that our developed method will enable us to construct a comprehensive map of these patterns.
3.2.2 Experimental design and methods: Following the detection of general system-level coordination (Aim 1) we will extend our frameworkWe will utilize the global meta-networks from Aim 1 to construct a new methodology through community analysis and thecomplemented development ofwith a new dedicated algorithm for detecting specific positive/negative crosstalk between clusters of systems, as detailed below.
Step 1. Community analysis: This step will detect graph communities, i.e.,  densely coordinated systems nodes (co-expression networks), in tissuesour meta-graph of systems in tissues. Here, we use the term system to represent a co-expression network/biological pathway within a tissue and we use the term node to represent system’s eigengene. We will conduct analyses for co-expression networks and pathways separately, with networks and pathways respectively providing higher and lower levels of abstraction. We will use nodes calculated in Aim 1 to generate community graphs, which will consist of densely interconnected systems in tissues. In these graphs, the edges are the correlation coefficients between every two nodes. We will use the Clique Percolation Method (CPM)34 algorithm for k-clique community detection. Briefly, a community is a group of nodes that are densely connected to one another, while a k-clique is a complete subgraph of size k, where an edge connects each node to the other k-1 nodes. A community 34 (i.e., a k-clique community) is defined as the union of all k-cliques that can be reached from each other through a series of adjacent k-cliques (where adjacency indicates sharing k-1 nodes). The community analysis defines interconnected cliques, each of size k, between any k nodes in the community. Thus, a community’s members can be reached through well-connected subsets of nodes and a single node can belong to several communities. We define an edge (edge.weight = 1) as a statistically significant (adjusted p-value < 0.05) Spearman’s 35 correlation coefficient value between each pair of nodes. We will calibrate the analysis and generate communities that include the recommended34 clique size of k = 3 or k = 4. We define edges as undirected (absolute values of correlation coefficients) but will maintain information on the sign. Low tissue-tissue individual overlap (size < 15) will be assigned the value of 0 (edge.weight = 0). Validation: Statistical significance of the size of the resulting communities   weill be evaluated by randomization tests31 as in Aim 1.
Step 2. Pattern detection algorithmmethod: We will next detect the positively and negatively co-regulated clusters of nodes within a community. For this approach, we will consider the sign of edges (positive/negative). We will use various levels of cluster analysis and distances metrics (Euclidian, Jaccard, etc.) with our developed algorithm applied to the community graphs Aij (adjacency matrix) from Step 1. Each matrix cell aij represents the edge value between row i (node i) and column j (node j). Where aij = 1 for a statistically significant positive Spearman’s correlation coefficient between node i and node j, aij  = -1 for a significant negative correlation, and aij = 0 for no significant association (see Fig. 5A exemplifying the method).
Validation:  The patterns will be (1) compared verified with to public mice bulk and single-cell data to detect tissue-tissue metabolic patterns in our findings for humans (Table 1), (2) validated with our biological collaborators using the literature by. Additionally, we will exploring module genesvalidate the detected synchronization patterns by exploring the genes included in these systems and using the literature, and (3) importantly, experimentally validated through collaboration with the Mikl lab using fluorescence reporter systems based on representative genes from the clusters. This will also allow us in the future to follow coordination between tissues across time and environmental conditions (see attached letter). and will experimentally validate new metabolicly related patterns with the assistance of the Mikl lab. 
3.2.3 Preliminary results: We computed a whole-body metabolic community composed of 12 metabolic netwroks networks in tissues and manually detected 2 inversely correlated clusters of 7 7 netwroksnetworks. Figure. 5B and C provide examples of a community adjacency matrix and the pattern of two inversely ,C exemplifies the adjaceny matrix of the community and the pattern of 2 inversly correlated clusters of networks in tissues that relates to the brain-tissues starvation-feeding feedback loop.
3.2.4 Expected results: We will develop an installable package for defining coordination patterns applicable for various organisms, conditions, and single cells, and available for use by the research community. In addition, the new tissue-axis crosstalk patterns and feedback loops When completed, we expect the results of these analyses towill advance current fundamental scientific understanding of tissue co-regulation. by revealing novel tissue-axis crosstalk patterns and feedback loops, establishing a comprehensive catalog of these patterns compiled in a dedicated database for use by the scientific community.
3.2.5 Pitfalls: We used dimentinality dimensionality reduction techniques to reduce node size. YetHowever, the current iteration of the graph algorithm requires considerable computational power and processing time for such large-scale graphs composed from of hundreds of nodes. We will try to further reduce the graph size by conducting more pre-processing and heuristics steps and using high-performance cloud-distributed computational solutions provided by the Haifa University. We may also detect inconsistent behaviour within a community, e.g., a non-consistant consistent associations between nodes in the sub-clusters. We will calibrate the edges (change correaltion correlation cutoffs) or eliminated these patterns or nodes. 
3.3 Aim 3: Examine changes in inter-tissue transcriptional coordination with aging and develop a scoring model that can predict aging 
3.3.1 Working hypothesis and rationale: 
We hypothesize that the transcriptional coordination between tissues declines with the aging process, coinciding with age-related functional deterioration. We thus plan to extend our coordination measures to aging in order to generate a global view of age-related inter-tissue coordination changes at the transcriptional level. We also conjecture that novel genomic inter-tissue coordination scores can be used to predict the chronological age of individuals using machine learning classifiers.
3.3.2 Experimental design and methods: 
Correction for confounding factors will use multivariate linear regression analyses while retaining age signal.
Aging-related changes in coordination: We will test whole-body global coordination changes in aging using our new approach developed in Aim 1. To account for subtle changes and to be able to compare between groups, we will use a gene-level analysis approach, as non-identical co-expression networks will be generated for the old vs. young cohorts. We will divide the human/mouse datasets (Table 1, bulk RNA-seq) into young/old cohorts and use statistical tests (e.g., t-tests) to evaluate the significance of the amount of coordination changes. Future work will include a focus on system-level changes in specific patterns. 
Coordination scores (features) for the prediction of age: We will develop novel coordination scores for each individual representing the level of the transcriptomic coordination for that individual and calculated for each pair of genes in pairs of tissues. For this process, we will use a gene-level analysis to be able to detect coordination marker genes related to aging. The final scores will be based on the ratios of the standard deviations of genes across tissues calculated for each individual. Finally, each individual will have a feature space of its pairwise tissue-tissue synchronicity score. These coordination scores will be fed into machine learning classifiers to classify old/young individuals. Feature analysis will then be used to represent the mostly dis-coordinated/coordinated marker genes across tissues that are the strongest predictors of aging. 
Machine learning models: We will generate a binary classifier for age prediction (old/young) by several methods including: distributed gradient boosting framework xGBoost36; support vector machine classifier (SVM); random forest; and logistic regression classifier. In our first set of experiments, we will train and test the models within each dataset. We will use a 60/20/20% split of the data to generate the training/validation/test sets, relying on several different splitting approaches, e.g., 1) random split, 2) proportional representation of each age group. Classifiers’ performance will be compared using 10-fold cross-validation.
Identifying key features in each dataset: We will employ our best cross-validated trained model for SHapley Additive exPlanations (SHAP)37 to explain the output of the machine learning model and find the most predictive features, i.e., a combination of marker genes that change with age-related shifts in inter-tissue coordination. The SHAP values represent the feature’s impact on the model output/classification of age (we already applied SHAP analysis when predicting receptors38 and age from epigenetic data (with Atzmon lab)).
Comparing organisms and developing better predictive models: We will compare the most predictive features between humans and mice and develop and test new models: combine the data from different organisms; reduce the feature set to core features that are ranked as important in all datasets.  
Validation: The detected marker genes will be investigated by the Atzmon lab and we will further experimentally validate age-related marker genes on longed-lived animal models compared to short-lived animal models with the Atzmon lab (out of the scope of this proposal). In collaboration with the Mikl lab we will explore the conservation of the observed age-related changes in coordination using representative genes from the different functional groups in the nematode C. elegans, a powerful model system for aging research due to its short life span and the many genetic tools available (see attached letter of collaboration).  
Data: We will analyze bulk RNA-seq data, as age-divided single-cell sample sizes are too small (Table 1). 
3.3.3 Preliminary results: To date, we have performed a proof-of-concept analysis demonstrating that older individuals exhibit weaker and fewer inter-tissue gene-to-gene metabolic coordination levels using 1200 metabolic genes applied to six tissue-tissue pairs (see Fig. 6). 
3.3.4 Expected results: The proposed pipeline will be automated to define changes in molecular coordination with age and to predict age based on the new scores. In addition, feature analysis will to detect marker genes and pathways whose coordination changes are associated and drive the prediction of chronological age.
3.3.5 Pitfalls: It is possible that the initial training set will be too small for classifier training and that the age cohorts will be unbalanced due to (1) low levels of inter-tissue overlap between individuals, (2) the smaller size of the rapid death group used for this analysis (as compared to the ventilator group), and (3) the presence of more old than young individuals in the dataset. To overcome these issues we will use different splits for age, state-of-the-art oversampling methods including generative models and different death type group filtration or combine the groups for humans (e.g., combine with the larger ventilator group comprised of relatively healthy individuals that were on a ventilator prior to death). Tissues with small numbers of sample overlap will also be omitted from this analysis given that a small sample size may lead to biased results. For the mouse datasets, we will use meta-analysis approaches to combine multiple datasets following batch correction or we will combine the results of the classifiers to yield the general performance. To handle the large feature size when the sample size is too small, we will (1) reduce the feature size by using state-of-the-art feature selection methods such as the Lasso approach, (2) use the XGBoost classifiers, which are appropriate for such conditions, and (3) use dimensionality reduction techniques. 
4  Conditions available for the research
Resources: The Department of Information Systems Engineering at the University of Haifa has provided Dr. Somekh with high-performance computing resources including GPUs, CPUs (located at the Natural Sciences Faculty), and storage clusters to perform the proposed research. The proposed budget includes the purchase of additional servers for long-term use. Domain expert assistance and experimental validation of detected patterns (Aim 2) and age marker genes (Aim 3) will be performed by the Mikl and Atzmon labs (out of proposal budget). Statistical assistance will be provided by Dr. Vakulenko.
Expertise: During her Ph.D., Dr. Somekh developed an executable biology approach to modeling molecular biology systems of gene expression 39,40. During her Postdoc training and her 4 years as a faculty member, she has further gained expertise across a broad spectrum of computational approaches enabling the comprehensive analyses of genomic and high-throughput sequencing data to investigate computational systems biology questions that yield a large repertoire of biological knowledge. In particular, she holds expertise in batch correction and cell proportions deconvolution, computational prediction using machine learning and feature construction, and the analysis of complex gene networks, which is the requisite knowledge required for the proposed reserachresearch. Dr. Somekh has developed an approach using executable models to explore disease comorbidities41, combined simulations with gene expression analyses to facilitate novel dynamic pathway enrichment analyses37, used deconvolution algorithms to infer cell proportions from bulk RNA-seq data42, developed a method to recover noise in biological RNA-seq data without losing the biological signal14, established an approach for predicting the tissue-specific roles of receptors using RNA-seq GTEx data5 combined with machine learning classification, feature analysis, network analysis, and enrichment analysis. Since her Ph.D. studies, Dr. Somekh has focused on combining systems engineering and molecular biology to gain holistic insight into how the human system operates as a whole co-regulated system. Since establishing her research group 4 years ago, she and her students (currently 1 PhD, 3 MSc,  and 2 research associates) have endeavored to develop a suite of methods and tools to study general biological patterns and changes related to aging from a system-level perspective. 
Collaborators: Prof. Gil Atzmon is a PI in the Department of Human Biology at the University of Haifa and an expert in the epigenetics of aging and longevity. He has developed a systematic approach to assessing the contributions of epigenetic changes to the aging process and has been studying a centenarian cohort for more than 20 years such that he has tremendous experience in utilizing the most advanced genomic tools to interrogate molecular genetics of longevity. Dr. Martin Mikl is the head of the gene regulation and RNA systems biology lab at the University of Haifa working on the regulation of gene expression, and specializes in human cell culture and in C. elegans research, an established model system to study metabolic networks and aging-related physiological changes. Dr. Bella Vakulenko-Lagun is a statistician at the University of Haifa working on public health datasets developing methods for correcting biased sampling and missingness in time-to-event data with competing risks and multi-state structures.
5 Preliminary results
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Description automatically generated]Data pre-processing: We have preprocessed and corrected the GTEx TPM RNA-seq data (V8), including the filtering, normalization, and adjustment of each tissue dataset for technical artifacts including death type, experimental batch, ischemic time, age, and gender. Our previous method 14 (Fig. 2) evaluated and compared common data adjustement methods (for hidden and known confounding factors) applied to GTEx expression data to filter out many of biological signals relevant to our study. 

Figure 2. Evaluation of the performance of five batch correction methods analyzing GTEx gene expression six tissues data. Performance was evaluated based on thousands of a priori high-confidence gene-gene associations derived from an external reference. The presented ROC curves with corresponding AUC values are graphical representations of both specificity and sensitivity comparing gene-gene co-expression for each adjusted dataset against a gold standard, a priori knowledge of true and false gene-gene associations. A. Performance evaluation for the Adipose Subcutaneous. B. Performance evaluation for Skin Suprapubic. C. A plot summarizing the AUC values for six tissue datasets (x-axis) and five data correction methods. It can be seen that LR (linear regression-based adjustment for known confounders) and Combat outperformed the other adjustment methods. Abbreviations: LR – linear regression-based adjustment, PCA – principal component-based adjustment, ComBat – using the combat algorithm, PEER – using the PEER Algorithm, PCA_opt – optimized principal components approach. 
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Figure 3. Module enrichment and explained variation analyses. A-B. Examples of death type-related differences for a representative gene and the erroneous correction results when we use multiple linear regression to correct for death type. Given these results, we will conduct analyses separately for individuals in the ventilator group and those in the rapid death group (elaborated in26) C. Pathway enrichment analysis of demonstrative metabolically annotated modules across 19 human tissues. A heatmap of log-transformed p-values (adjusted for multiple corrections) corresponding to KEGG pathway enrichment is presented. Metabolic pathways are highlighted in the annotation rows to the left in turquoise corresponding to the KEGG BRITE “Metabolism” hierarchical classification. D-E. Eigengene variance explained for co-expression modules and their annotation for adipose subcutaneous and adipose visceral tissue samples. The variance explained varies between 0.2 to 0.7 for these different co-expression modules. 
[image: ]

[image: Chart, histogram

Description automatically generated]Figure 4. Whole-body global metabolic transcriptome coordination patterns. A. A heatmap containing 609 co-expression network pairwise correlation coefficient p-values derived from 19 human tissues. The co-expression networks (modules) are annotated and classified into 8 types using the KEGG BRITE classification. Rows are colored according to the network types (e.g., The 40 metabolic modules are colored in red) while columns are colored by tissue types. B. Number of pairwise samples overlapping between donors. It can be seen that the sample size range from more than 50 samples (red) to well over 100 (blue) for each tissue-tissue pair, with variations across pairs. C. The number of pairwise metabolic correlation coefficients (Pearson’s) that exceed a given correlation threshold. In total, we evaluated 780 significant pairwise metabolic correlations between 40 metabolic networks across 19 tissues. The line colored in dark green represents the number of metabolic positive significant pairwise correlations exceeding the indicated threshold. The dark red line represents the number of negatively correlated metabolic pairwise correlations meeting or exceeding the given threshold. The light green line represents the number of average positive pairwise correlations from a random module sample repeated 1000 times, with the same representative proportion of tissues as the 40 metabolic modules across tissues. The light red line represents the average negative correlation for a given threshold. The dashed turquoise line represents the fifth percentile. The number of positive correlations between inter-tissue metabolic modules are significantly larger (p-value < 0.05) than between the random modules. D. Positive to negative ratio perspective-based p-values for the correlation coefficients in Figure 4C. For a given p-value ratio, the dark blue line shows us the average ratio of the positive to the negative instance with a pair-wise correlation p-value threshold at the given level. The dashed blue line corresponds to the 95th percentile of the positive-to-negative ratio and the green line represents the actual positive-to-negative ratio of the metabolic network given a specified p-value. This graph demonstrates that [image: Chart

Description automatically generated]metabolic co-expression networks tend to have more than twice as many (p-value < 0.01) positive versus negative inter-tissue relationships and this ratio is statistically significant (exceeding the 95th percentile).
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Figure 5. Schematic overview of our method and an example of a cross-tissue metabolic coordination pattern. A. Schematic view of our method. B. Community adjacency matrix C. Schematic representation of an actual detected pattern between metabolic networks across tissues. All community metabolic modules are positively correlated except for one metabolic brain module (Brain-Module4) which is negatively correlated to the community nodes. 
[image: ]

Figure 6. Age-related changes in inter-tissue transcriptional coordination. These preliminary results reveal that inter-tissue gene-level correlation coefficients are visibly weaker with age, i.e., there are fewer inter-tissue connections with aging, and these connections are less strong. A, B. Results from an old (age: 60-80) cohort (n=53 samples) showing a heatmap and its zooming-in of clustered absolute Pearson’s correlation coefficient values for 1200 metabolic genes. C, D. Results from a young (age: 20-49 years) cohort (n=69 samples). E. The bar plots emphasize the changes in transcriptional coordination between young and old individuals for 6 representative tissue-tissue pairs. The bar plots represent the percentage of inter-tissue positive correlation coefficients across cutoffs of 0.4, 0.5, and 0.6. These results demonstrate similar trends for all but one of these 6 tissue-tissue pairs, with the coordination remaining stronger in the young cohort. 
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