RAS Mutations in Head and Neck Cancer: A Systemic Review and Meta-Analysis
Ofra Novoplansky*#1, Sankar Jagadeeshan*1, Ohad Regev*2, Idan Menashe3, Moshe Elkabets#1

1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
2 Joyce & Irving Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
3 Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
*Equally contributed to the study
#Corresponding Author

Abstract:
Herein, aA systematic review and meta-analysis were conducted to determine establish the prevalence of HRAS, KRAS, and NRAS mutations in head and neck cancer (HNC) patients. Overall, 149 studies from the past 20 years comprising over 8500 patients were selected and integrated for this analysis, comprising more than 8500 patients. The available data was were stratified according to geographical regions, clinical features, and tumor characteristics, including human papillomavirus (HPV) infection status, tumor stage, and tumor ggrade. The estimated mutations global HRAS mutation prevalence worldwide forwas  HRAS is 7% (95 % CI = 5.38-9.06, p<0.01, I2 = 87%), but is this rate was more than twice as high in more than double in South Asia (15.28% ,95 % CI = 12.34-18.77, p=0.13, I2 = 39%). KRAS and NRAS estimated estimated mutation prevalence rates were mutations prevalence is 2.89% (95 % CI = 2.19-3.80, p<0.01, I2 = 67%) and 2.20% (95 % CI = 1.86-2.59, p<0.01, I2 = 29%) respectively. Odds ratio (OR) analyses revealed is shows a significant association between HRAS mutation and high tumor stage or grade (OR = 3.63; 95% CI = 1.53-8.64). Additionally, , and a significant association was found between HPV-positive status and KRAS mutation s (OR=2.09, 95% CI = 1.01-4.31). Moreover, theIn addition, the distribution of codon substitutions of in HRAS, KRAS, and NRAS in associated with different HNC anatomical sites was assessed. Overall, this each of the HNC sites is presented. This comprehensive meta-analysis gives offers insight into the worldwide prevalence of RAS family members mutations and reinforces them their promise as viableas potential therapeutic targets in HNC patients

[bookmark: _Hlk81901377]1. Introduction:
[bookmark: _Hlk81901347]Head and neck cancer (HNC) includes neoplasms that arise in the oral cavity, pharynx, larynx, sinuses, nasal cavity, and salivary glands (1). The main risk factors are associated with HNC incidence include tobacco smoking, alcohol abuse, and human papillomavirus (HPV) infection. Other risk factors include wood and leather dust exposure, Epstein Barr Virus (EBV) infection, and betel nut chewing (2).  Intensive research in in recent decades has confirmed that this disease isthe last decades confirmed on the molecular level that this disease is exceptionally heterogeneous at the molecular level, , and there is no single genetic alteration or a unique dysregulated molecular pathway responsible for its development and progression (3). This heterogeneity may explain the limited efficiency of current systemic therapies for HNCs,  and emphasizinge the need to study specific and less common genetic alterations that may affect patients' disease characteristics and clinical outcomes in HNC patients.. 
Ras GTPase family are proteins are crucial players in many signaling networks, controlling cell proliferation, differentiation, and survival (4). HRAS, KRAS, and NRAS share significant sequence homology and largely overlapping functions (5). Mutations in RAS family members are well-established drivers of cancer. Gain-of-function mutations in RAS genes are found in ∼19% of human cancers (6), prompting interest in identifying anti-RAS therapeutic strategies for cancer treatment. The immense effort put over towards the development of RASthe years in developing inhibitors for RAS has led to several breakthroughs in recent years, allowing for the targeted therapy treatment of for patients with alterations in thesee RAS genes (7)(8). 
Many studies have reported the prevalence of HRAS, KRAS, and NRAS in mutational status in HPV-p positive and HPV-negative HNC patients. Although the mutations in these  RAS family genes are seemingly rare in some large cohorts, a broader analysis of the data reveals a considerable variation among studies. A bBroad analysis of the prevalence of mutations in specific RAS family members thus has the potential to the mutation prevalence in genes within the RAS family can better characterize the HNC landscape and the potential for innovation in personalized treatments. Therefore, the purpose of this study was to conduct the first systematic review and meta-analysis on evaluating the prevalence of mutations in the RAS genes in HNC. We included further analysis on aIn addition, this analysis examined the relationship between these mutations and tumor anatomical sites, geographical regions, and association with patient 's clinical features. 


2. Methods
This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Checklist (9)
2.1 Study design
We evaluated the prevalence of mutations in the  following genes of the RAS family—HRAS, KRAS, and NRAS genes i—in patients with head and neck squamous cell carcinoma.
2.2 Search Strategy
A systematic literature review was conducted in by searching the PubMed, Embase, Web of Science, and Cochrane Central Register of Controlled Trials databases in June 2021 for studies published in the English language since 1 January 2000. The search string included 'RAS' and ‘mutation’ and one of the following terms: ‘Head and neck cancer’, ‘Head and neck squamous cell carcinoma’,  ‘Oral cancer’, ‘oral squamous cell carcinoma’, ‘tongue’, ‘lips’,  ‘nasopharyngeal’ /’nasopharynx’, ‘pharyngeal’/’pharynx’  , ‘laryngeal’/’larynx’, ‘oropharyngeal’/’oropharynx’, ‘Salivary gland’, ‘sinonasal’/’nasal’/’sinus’, ‘oropharyngeal’/’oropharynx’, ‘hypopharyngeal’/’hypopharynx’, or ‘tonsil’. The bibliographies of retrieved studies and systematic reviews identified in the search were screened for relevant references. Publicly available databases were screened for unpublished data. 
2.3 Selection Criteria
To be eligible for inclusion in this meta-analysis, sStudies had to include a mutationals analysis of at least one of the target genes (HRAS KRAS, NRAS) and report the prevalence and frequency of mutations as an outcome measure. Exclusion criteria were defined as:  : (1) Studies displaying results from patients with tumors other than HNC or mutations other than those in the target genes;  (2) Studies that did not report data related to the prevalence or frequency of the target genes mutations; (3) studies that did not evaluate the target genes for somatic mutations; (4) Studies done published before January 1, 2000; (5) studies that were done conducted usingon cell lines or animal models; (6) studies of pediatric populations; (7) review articles, letters, personal opinions, book chapters, and or conference abstracts; (8) studies that contained data included in other studies or studies in which it was not possible to state determine whether duplicate data were included; andif they contained duplicate data; (9) sStudies with enrolling fewer than 10 patients. n<10. 

2.4 Data extraction 
Two reviewers (SJ, ON) screened the studies at the title and abstract level, followed by a full-text review.  and then full text. Disagreements over inclusion were resolved by consensus adjudication, and studies were extracted into a standardized extraction database. Extracted variables included study cohort size, number of mutated cases of for each RAS family gene, primary tumor location, tumor grade or stage of the tumor, geographical origin of studied patients, mutation assessment method, mutated codon, HPV-status, and biopsy type, if reported.

2.5 Evaluation of Quality and Risk of Bias 
Our study selection process excluded single individuals case reports and cohorts of n<1< 10 patients due to the risk of bias. All papers considered after initial screening were reviewed and scored for risk of bias according to the Joanna Briggs Institute Critical Appraisal Checklist for Studies Reporting Prevalence Data (10) (Supplementary Table 1). Studies that did not evaluate all three RAS family members were considered more prone to the risk of bias and were not included in the general prevalence analysis. In addition, publication bias and heterogeneity were assessed by visual inspection of funnel plots and via Egger's regression test (11) (Supplementary figure 1).

2.6 Statistical analysis
PThe pooled prevalence rates’s, pooled odds ratios, and forest plots were generated using the R Meta and MetaFor Packages (12,13). The Cochrane Q chi-squared test and I2 statistic were used to examine the heterogeneity across studies. Fixed-effects models were used to assess the pooled prevalence of genes for results with low heterogeneity (I2 ≤ 50%). O otherwise, random-effects models were used for conducted analysesis. A sensitivity analysis using  a "leave-one-out" paradigm from the built-in function in MetaFor as proposed by Wang et al. (14) was used to  assess each study's effect on the overall pooled prevalence and detected outliers (14). First, the pooled overall prevalence of the mutations in the three different target genes (KRAS, HRAS, NRAS) was calculated with its a corresponding 95% confidence interval (95% CI). Next, 95% CI. Next, we performed subgroup analyses according to geographical region and anatomical site. Finally, we assessed the association between the RAS gene mutational status and s to HPV status and or tumor grade using the RR's MetaBin function.

3. Results
3.1 Study selection and characteristics
The flow diagram in shown in Figure 1 depicts the search strategy, study selection process, and the obtained results for the present. results obtained. A total of 867 studies were retrieved from four electronic databases (Pubmed, Scopus, Web of Science, and Cochrane) and a bibliography screen. After the removal of duplicates, 375 studies were considered potentially eligible for evaluation, of which . 217 did not meet all inclusion criteria, leaving a final sample of 158 studies. The references of for the studies included in the meta-analysis are listed in Supplementary Materials 2. Nine additional studies were excluded due to the high risk of bias according to the Joanna Briggs Institute Critical Appraisal Checklist for Studies Reporting Prevalence Data. To reduce the risk of bias, only papers with the highest grade (n=85) were included for pooled analyses of overall mutation prevalence synthesis. 	Comment by Editor: Is this what you meant?

3.2 Study characteristics
The Ddetailed characterization of the studies is provided in Supplementary Table 3. Of the 149 records included in the this analysis, 112, 130, and 93 included data pertaining to HRAS, KRAS, and NRAS, respectively, with 85 studies including analyses  included data on HRAS, 130 on KRAS, and 93 on NRAS, respectively. 85 studies included analysis of all three RAS family genes.
All 149 included studies were published in English between the years 2000 and 2021. The studies were conducted in 29 different countries: Australia, Belgium, Brazil, Bulgaria, Canada, China, the Czech Republic, Denmark, France, Germany, Greece, Hungary, India, Israel, Italy, Japan, Korea, Malaysia, Mexico, the Netherlands, Serbia, Singapore, Spain, Sweden, Taiwan, the United Kingdom, the United States of America, Vietnam, and Yemen. Four studies included a mixed population from various geographical regions. In total,.  148 of the included studies were cohort studies, and while one was a phase 1 clinical trial. 47 Forty-seven studies used targeted next-generation- sequencing (NGS), 46 used utilized the Sanger sequencing, 23 used employed whole-exome sequencing, 9 used conducted Mass Array analysis, 4 used whole-genome analysis, and 20 used employed other or mixed analysis methods.
The aAnatomical location of the tumors in the included study cohorts was predominantly in the oral cavity (HRAS n=3102 [33.9%]; KRAS n=2949 [32.2%]; NRAS n=2113 [23.1%]) followed by the salivary glands (HRAS n=2478 [27.1%]; KRAS n=2352 [25.7%]; NRAS n=2199 [24%]).  Aadditional sites included the are sinonasal region (HRAS n=233 [2.5%]; KRAS n=654 [7.1%]; NRAS n=168 [1.8%]), nasopharynx (HRAS n=687 [7.5%]; KRAS n=702 [7.7%]; NRAS n=587 [6.4%]), oropharynx (HRAS n=1428 [15.6%]; KRAS n=1695 [18.5%]; NRAS n=1243 [13.6%]), hypopharynx (HRAS n=228 [2.5%]; KRAS n=293 [3.2%]; NRAS n=113 [1.2%]), larynx (HRAS n=753 [8.2%]; KRAS n=786 [8.6%]; NRAS n=518 [5.6%]), and other sites (HRAS n=233 [2.5%]; KRAS n=285 [3.1%]; NRAS n=244 [2.6%]). 

3.3 Risk of bias within studies
Regarding With respect to the risk of bias by identified using the Joanna Briggs Institute Critical Appraisal Checklist for Studies Reporting Prevalence Data scoring, two studies (15)(16) were classified as having a high risk of bias and were ; therefore, they were excluded from thise meta-analysis. 11 Eleven studies were classified as having a moderate risk of bias due to a smaller small cohort size, while . 57 studies were classified as having a moderate risk of bias due to their having only analyzed one of the three RAS family target genes.  analyzing only one of the three RAS genes. The remaining 85 studies were classified as having a low risk of bias and were used in the general prevalence analysis. All low and moderate risk papers studies were used in prevalence analysis analyses pertaining to tumor anatomical sites, mutated codons, and the of the anatomic sites, mutated codon, and the association between RAS mutations and patient clinical features.  The A summary of the risk of bias assessment for each study can be found in Supplementary Table 1.

3.4 Prevalence of RAS mutations
HRAS mutations were identified in 564 tumors from 8501 patients. The mean prevalence of HRAS mutations was 7% (95 % CI = 5.38-9.06, p<0.01, I2 2 = 87%) (Fig. 2A). Geographical region- specific analysis showenalyses revealedd significant differences between in these rates in different regions of the world the different parts of the world (Q=22.51, Pv<0.0001). The mean frequency of HRAS mutations in South Asia is was 15.28% (95 % CI = 12.34-18.77, p=0.13, I22 = 39%), with this rate being  higher from than in other geographical regions including : East Asia ( 5.07%;  (95 % CI = 1.99-12.31, p<0.01, I2 = 93%), Europe (4.65%;  (95 % CI = 2.57-8.28, p<0.01, I2 = 80%), and Nnorth Aamerica (6.87%; (95 % CI =4.77-9.79, p<0.01, I2 = 76%). (Fig. 3A, Supp Figure 2).
KRAS mutations were identified in 188 tumors from 8631 patients. The mean prevalence of KRAS mutations was 2.89% (95 % CI = 2.19-3.80, p<0.0.1, I2 = 67%) (Fig. 2B), with no significant difference in prevalence between the analyzed geographical regions (Q=1.41, Pv=0.7). The mean frequency of KRAS mutations in Europe is was 3.54% (95 % CI = 2.18-5.17, p<0.01, I22 = 58%), which was  slightly but not significantly higher from than rates in other geographical regions including : East Asia (2.20%;  (95 % CI = 1.09-4.42, p<0.01, I22 = 70%), South Asia (2.95%;  (95 % CI = 0.76-10.77, p<0.01, I22 = 72%), North America (2.61%;  (95 % CI =1.60-4.23, p<0.01, I22 = 65%). (Fig. 3B, Supplementary Figure 2).
NRAS mutations were identified in 113 tumors from 8512 patients. The mean prevalence of NRAS mutations was 2.20% (95 % CI = 1.86-2.59, p<0.01, I22 = 29%) (Fig. 2C). No significant differences in geographical region analysis wasthese rates were observed seen among the different parts of the world (Q=3.32, Pv=0.34). The mean frequency of NRAS mutations in South Asia is was 1.11% (95 % CI = 2.18-5.17, p=0.98, I22 = 0%) and while in East Asia this rate was 1.66% (95% CI 1.05-2.60, p=0.27, I2 2= 0%) which is was slightly, but not significantly, lower than the rates in Europe: (2.72%; 9 (95% CI=1.88-3.92, p=0.02, I22 = 46%) and North America: (2.45%;  (95 % CI =1.82-3.28, p=0.29, I22 = 10%) (Fig. 3C, Supplementary Figure 2).

3.5 Anatomical  site
As HNC includes tumors that arise from a wide span range of anatomical sites and sub-sites,,. the an analysis of the frequency of the mutations in these three RAS genes was performed on for the seven major anatomical areas. The A summary of these analyses is represented presented in Figure 4A and Supplementary Figure 3).
HRAS mutation - A significant difference in the prevalence of HRAS was mutations was detected between the anatomical sites (Q=67.96, Pv<0.0001). HRAS mutations were  is more frequently found in tumors arising from thethat arise from salivary gland (: 10.37%;  (95% CI=7.18-14.06) and oral cavity (7.36%;  (95% CI=5.39-9.76) as compared to tumors that arise fromarising from the, sinonasal cavity (1.2%;  (95% CI=0.2-3), oropharynx (2.6%;  (95% CI=1.12-4.56), nasopharynx (0.68%;  (95% CI=0-4.06), larynx (2.76%; (95% CI=0.99-5.38) and hypopharynx (0.12%;  (95% CI=0-0.04). 
KRAS mutation -– there A trend towards is a trend towards more frequent KRAS mutations in was observed tumors that arise from arising from the sinonasal cavity (5.67%;  (95% CI=1.33-12.74) as compared to tumros arising from the , rather than in salivary glands (: 0.98%;  (95% CI=0.33-1.96), oral cavity (0.7%;  (95% CI=0.17-1.59), oropharynx (1.49%;  (95% CI=0.6-2.77), nasopharynx (0.83%;  (95% CI=0.29-1.63), larynx (1.43%; (95% CI=0.34-3.25) and hypopharynx (0.84%; 9 (95% CI=0-3.18).  However, these differences were not robust (Pv=0.29 and Q=8.5). 
NRAS mutation – A significant difference between anatomical sites was also seen for NRAS mutations (Q=18.37, Pv 0.01),  with a rate of 1.85% (95% CI=0.92-3.1) in the nasopharynx as compared to lower rates in tumors arising from the salivary glands (compared to salivary gland: 0.51%;  (95% CI=0.11-1.22), oral cavity (0.3%;  (95% CI=0.11-0.58), sinonasal cavity (0.28%;  (95% CI=0-1.65), oropharynx (0.65%;  (95% CI=0.28-1.16), larynx (0.16%;  (95% CI=0-0.68), and hypopharynx (0%;  (95% CI=0-0.85).

3.6 Amino acid substitution
HRAS mutation - in the an analysis of all the cases with HRAS mutated mutationscases, 24%, 20%, and 39% were in codons 12, 13, and 61, respectively. Salivary gland tumors have exhibited a higher frequency of mutations in codon 61 (67%), while in tumors of the oral cavity, mutations in codon 12 are were the most frequent (50%) (Figure 4B left panel). Mutations in codon 12 were mostly G12S (56.3%), while mutations in codon 13 were primarily G13R (46.8%). Lastly, mutations found in Q61 were mostly primarily Q61R (49.2%), Q61K (26.4%), and Q61L (22.2%) (Supplementary Figure 4).  Mutations in ‘other’  other codons accounted for 16% of overall HRAS mutations..
KRAS mutation - mutations in codon 12 are were the most frequent across all anatomic sites, followed by codon 13. Mutations in codon 61 was were primarily found detected in tumors arising from the oropharynx (17%) (Figure 4B middle panel).  Within theAmong codon 12 mutations, the most common amino acid substitution was G12D (51%), followed by G12V (16.3%), G12C (12.9%). Other substitutions included G12A (7.5%), G12R (6.1%), and G12S (5.4%) (Supplementary Figure 4). Mutations in other codons accounted for 19% of overall KRAS mutations.Mutations in ‘other’ codons account for 19%.
NRAS mutation -– are NRAS mutations were more evenly distributed between among codons (Figure 4B right panel). Site-specific analysesis should be considered interpreted with caution due owing to the small limited number of mutated cases.  Mutations in other codons accounted for 33% of overall NRAS mutations.Mutations in ‘other’ codons account for 33%.

3.7 Association between RAS mutations and patient clinical features
3.7.1 RAS mutation and disease stage/grade
Tumor grade and stage are well-identified studied prognostic factors for HNC (17). 44 In total, 44 cohorts studies reported details of regarding the patient tumor stage or grade with of patients along with mutation status. Tumors with stage or grade of 1 and 2 were defined as low-grade tumors, while those with a stage or grade of 3 and 4 were categorized as high-grade tumors. An odOdds ratio analysis showed revealed a significant association between HRAS mutation and advanced stage (OR = 3.63; 95% CI = 1.53-8.64) (Figure 5). KRAS (OR = 2.41; 95% CI = 0.85-6.86) and NRAS (OR = 1.52; 95% CI = 0.68-3.41) mutations were both associated with an had OR>1, but did not reach statistical significance (Supplementary Figure 5)
3.7.2 RAS mutations and HPV status
[bookmark: _Hlk81161099]Of the 38 cohort studiess that reported on the HPV status of patients, only 25 provided specific patient data, and of themthese, 17 included both HPV-n negative and HPV-positive patients allowing for an odds ratio analysis. Odds ratioThis analysis found revealed a significant association between the HPV-positive status and KRAS mutations with an OR of 2.09 (95% CI = 1.01-4.31) (Figure 6), but no significant correlation between HPV-positive status and HRAS or NRAS mutation (Supplementary Figure 6). 

4. Discussion
[bookmark: _Hlk81115158][bookmark: _Hlk81136352]The current low survival rates of patients with advanced and metastatic HNC highlights the need for improvements in the  of a personalized treatment of affected individuals (18). The RAS proteins are the most common targets of oncogenic mutations  across cancer types (4). After years of extensive research, new strategies allow have emerged allowing for the targeting of the RAS-MAPK pathway, opening new therapeutic options to affected patients (7).  AlthoughWhile RAS mutations are not as prevalent in HNC as in other cancer types, many studies on RAS mutational prevalence in HNC have been conductedwere done over the years. These studies have lled to various and sometimes contradictorying conclusions about pertaining to RAS mutation prevalence and its the association with between such mutations and prognosis and risk factors. This meta-analysis integrates the findings from the past 20 years and gives provides an updated insight into the worldwide global prevalence of mutations in RAS family membersgenes, underscoring their promise as p and suggests them as a potential therapeutic targets in HNC patients. 
The prevalence of mutations was highest in for the HRAS gene, following by K that in KRAS and NRAS. This aligns with previous reports on the higher frequency of HRAS mutation in HNC as compared to its frequency in other cancer types where in which KRAS is mutations are most prevalent, followed by NRAS mutations (6).  The results of oOur prevalence analysis shows exhibit some divergence from the results of The Cancer Genome Atlas the TCGA (19,20), one of the most significant studies carried out in the on an HNC patient population. Our data suggest a slightly higher incidence of HRAS (7% compared to 6.25%) and KRAS (2.89% compared to 1.65%) mutations and a somewhat lower prevalence of NRAS mutations (2.2% compared to 2.65%). These slight differences may be due to the more heterogeneous population of patients from diverse geographical regions, disease stages, and detection methods included in our analysis. 	Comment by Editor: I assume this is what was meant?
HNC cancer is a heterogeneous disease spanning many anatomical sites. Our analyses revealed that there were certain is shows some differences in RAS mutational prevalence according to the anatomical site, which  and may account for some of the heterogeneity between cohorts in the overall prevalence analysis. HRAS mutations were more prevalent in the oral cavity and salivary gland tumors. In contrast, KRAS mutations were more frequent in sinonasal tumors, and NRAS was mutations were found chiefly in tumors of the nasopharynx. This variation in frequency between tissue types may be due to the differences in baseline expression and activity of RAS in different anatomical sites that may affect cellular reprogramming and tumor formation (6). An additional explanation may be differences in quality and quantity of exposure to risk factors (21). For example, the higher frequency of HRAS mutation in the salivary gland and oral cavity tumors might be due to their exposure to volatile nitrosoamines through the mouth and nose (22).  
These findings emphasize the importance of considering the anatomical site of the tumor to in order to achieve a more accurate assessment of RAS mutation frequenciesy. In addition, the site-specific prevalence analysis hints at mutual exclusivity between the RAS genes as each gene is most prevalent in a different anatomical siteregion, in which the other RAS family members are rare. Mutual exclusivity between RAS family members is expected, as co-expression leads to oncogene-induced senescence (23).

Our data reveal a significantly higher prevalence of HRAS mutations in South Asia (above 15% as compared to 7% worldwide). These findings corroborate previous studies (24–27). Studies done conducted assessingon oral cancer in India identify have identified region-al specific risk factors, such as smoking bidis (cigarettes wrapped in a tendu or temburni leaf) (28,29), chewing betelnut (30), and oral hygiene (31). The These risk factors noted above contribute, separately and synergistically, to the development of tumors specifically with in the oral cavity (32–35). Indeed, in our database, 86% of the samples from South Asia were oral cancer patients, as opposed to other primary tumor sites. As noted above, HRAS mutation frequency is higher in oral cancer worldwide. Thus, further studies need to be done to distinguish determine whether these risk factors directly cause mutation in HRAS upon exposure or whether these factors raise increase the chance odds of tumors developing in the oral cavity, in which HRAS the prevalence of HRAS mutations is high. 
Recent studies showed have shown that different amino acid substitutions in KRAS can mutations result in distinct oncogenic effects (36,37). In addition, mutant-specific KRAS inhibitors, namely G12C and G12D, are in various stages of development (38–40).  We found that the most frequent amino acid substitution in codon 12 of KRAS is was G12D (51%), followed by G12V (16.3%) and G12C (12.9%). These is alterations  in the KRAS G12 codon is are more likely associated with patients patient smoking habits, as described by Dogan et al. , in the context of lung cancers (41). 
A considerable percentage of HRAS mutations al are atwere present in codon 61, especially particularly in salivary gland tumors. in Salivary gland cases. Limited studies to date have been performed to understand the etiology of these specific alterations,  but , recent studies analyses in salivary gland cancer patients s have pointed out thenoted the diagnostic significance of these mutations (42). Clinicians have thus started to target HRAS for the treatment of HRAS- driven salivary gland tumors (43). These findings may help evaluate the size of the subpopulations that may benefit from a particular treatment.   
Around 20% of mutations on HRAS and KRAS mutations were are in sites other than codons other than 12, 13, and 61. For NRAS, this number is was even higher (33%). This These data emphasizes the importance of unbiased gene sequencing and the possibility of bias in studies that use codon-specific analysis methods. 
TuThe tumor stage is a well-identified prognostic factor for HNC (17). Data on regarding the association between RAS gene mutationss and prognosis in HNC, however, are contradictory.  are contradicting. Some studies link RAS mutation with stage and disease recurrence (44–47), while others predict better prognosis and overall survival (48–50). Our meta-analysis showed found that the mutations in HRAS are significantly associated with high stage/grade scores, emphasizing and emphasizes the importance of considering RAS mutational status when gauging patient in prognosis. KRAS and NRAS mutations exhibited demonstrated a trend towards an associationbeing associated with high stage/grade scores. The lower number of mutated cases available for OR analysis for KRAS and especially particularly NRAS may account for the observed lack of statistical significance. 
An association between RAS mutations and HPV status in HNC has been suggested before previously (46,51). In accordance with previous these prior findings, our data show reveal a significant association between HPV-positive status and KRAS mutations. Other HPV-related cancers also showed exhibited a similar association. For instance, HRAS, KRAS, and NRAS expression levels among cervical cancer patients were higher in HPV- positive cases than relative to HPV- negative samples (52). In vitro studies have shown that the mechanistic basis for HPV-induced tumorigenesis the HPV tumorigenic mechanism employs RAS activation and MAPK signaling (53). In addition, transduction of HRAS on the background of E6E7 expression causes tumorigenic oncogenic transformation (54). Notably, KRAS mutations, HRAS mutations, and HPV infection were mutually exclusive in benign neoplasms of the head and neck (15). These findings suggest that RAS mutations in the context of HPV infection contribute to carcinogenesis transformation. In contrast to KRAS's  the significant association with between KRAS mutational status and HPV status, this meta-analysis did not detect a substantial difference regarding when comparing the relationship between HPV status for and the prevalence of HRAS and NRAS mutations.
Several agents are currently under evaluation for RAS-MAPK pathway inhibition in various cancers (reviewed in (7)). HNC patients are currently included in some of these clinical trials, which include ERK and MEK (NCT02465060, NCT03264066), G12C KRAS (NCT04185883), HRAS (NCT03719690, NCT02383927, NCT04997902), SHP2 (NCT04721223, NCT04000529, NCT03634982), and SOS1 (NCT04111458) inhibitors. Knowledge on regarding the prevalence of of RAS family mutations and associated characteristics in HNC alteration in the RAS family and their characteristics in HNC may enable researchers to better assess the need and potential of trials with molecularly relevant targeted therapytherapeutics.
The major strength of this work is the large number and range of patients included to estimate the prevalence of HRAS, KRAS, and NRAS mutations. Some However, certain methodological limitations of this review should be considered. First, even after choosing selecting only the those studies with a low ‘risk of bias score’, the heterogeneity between studies was remained high. We believe this that this is due to the heterogeneous nature of HNC, which includes a wide range of anatomical sites and etiologies. We tried attempted to address this issue by conducting additional sub-group analysesis, which indeed consistently revealed showed significant differences between groups. A second limitation is of this analysis is the differences in the sequencing methods used among studies,, which might may have influenced overall pooled results by interfering with the accuracy and precision of pooled estimates. Third, influence the results by interfering with the pooled estimates' accuracy and precision. Third, ourwe did not analyze sufficient data pertaining to patient-specific risk factor exposure. Such data could potentially have  data collection lacked enough patient-specific data on exposure to risk factors which could have strengthened the observed associations in this study and provided additional corresponding insights for some of the observations noted in our study. Lastly, we did not present quantitative data on regarding the mutual exclusivity of mutations of thein RAS family genes. NeverthelessDespite these limitations, this is the most extensive analysis and the first meta-analysis conducted on to date to have assessed the prevalence and characteristics of mutations in the RAS family genes among HNC patients. in HNC. 
In conclusion, this study points highlightsat RAS as a potential therapeutic target in a subset of HNC patients, shedding light . It sheds light on the differences in mutational prevalence rates according to geographical region and tumor anatomical site. In addition, the this analysis shows demonstrates that RAS mutations are associated with tumor stage and HPV status. 
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