[bookmark: _Hlk153625901]	
	PI Name: Guy Leshem

Development of universal methods to enhance policy enforcement across various fields using natural language processing and anomaly detection systems

Detailed description of the basic research program
Scientific background
Setting and motivation.
 The research aims to develop universal methods for enhancing policy enforcement across various domains by utilizing natural language processing (NLP) and anomaly detection systems. Numerous studies have highlighted a significant gap between theoretical frameworks, documented protocols, and real-world implementation, leading to ambiguity and inconsistencies in policy interpretation. To demonstrate the versatility of the proposed system, we will explore several distinct examples of its potential applications.
 The first example focuses on military conflicts (e.g., the Yom Kippur War in 1973 or the October 7 War in 2023). Using our system, we will analyze whether it could have detected discrepancies between the basic assumptions of the defense doctrine, the strategic objectives, and the actual events that took place on October 6, 1973, and/or October 7, 2023, in the Sinai Peninsula, Golan Heights, or Gaza Strip. This analysis will consider factors such as familiarity with the terrain, early troop deployment, force strength, and overall preparedness. For instance, military theory often assumes that a breach of the front line between opposing forces is inevitable but manageable if critical areas remain protected, there is sufficient strategic depth, and the breach can be reversed. We will assess whether our system could detect deviations from this theoretical framework and the real-world outcomes. Additionally, we will evaluate available intelligence to determine if the system could have identified signs of a large-scale attack, distinguishing them from routine training exercises.
 The second example, contrasting with the first, examines the planning and implementation of a communication network. Network planning often prioritizes hardware and protocols over clearly defined policies, leaving operators to interpret vague or incomplete guidelines. Many organizations establish policy committees to define acceptable network usage in broad natural language, but translating these policies into actionable technical configurations can create gaps and ambiguities. Poorly structured policies hinder operators from effectively enforcing policy intent, leading to misinterpretations or enforcement errors. Clear, well-defined policies are essential to mitigate these risks. Beyond preventing violations, it is also crucial to detect failures in preventive measures, such as unauthorized network traffic being allowed. Anomaly detection systems play a key role in identifying abnormal behavior in datasets, helping to flag policy breaches.	Comment by Moravec: As explained in the report, I recommend moving this to the third example. This is because SDN is a critical part of this grant, but it is the only example that requires SDN.
 The third example explores medical procedures, specifically surgical ones like coronary artery bypass surgery. This procedure is often performed on patients with angina (chest pain) and coronary artery disease, where a blockage is bypassed by grafting a vein or artery around the obstruction. Veins from the leg or arteries from the chest are typically used for these grafts. We will assess whether the proposed system could detect anomalies between the official medical procedure and the actual surgery records, identifying any discrepancies that may indicate policy deviations.	Comment by Moravec: I suggest stating why this task is important.
 This research focuses on developing innovative, universal anomaly detection algorithms capable of learning normal system behavior without prior knowledge of models or anomalies. These algorithms leverage information metrics derived from the Lempel-Ziv universal compression algorithm to assign optimal probabilities to normal behavior during the learning phase and estimate the likelihood of new data during operational phases, classifying anomalies accordingly. By capitalizing on the algorithm’s universality and efficiency, the proposed methods aim to improve policy enforcement by analyzing the quality of network policies through NLP, offering guidelines for drafting clearer policies, and converting natural language queries into actionable database queries. Furthermore, new tools based on information theory will be developed to detect anomalies and identify policy violations.	Comment by Moravec: To reduce word count, I recommend deleting this paragraph. This information is repeated in the text at the end of this section.
[image:]Figure 1: Network Policy Generation, Translation and Enforcement Workflow (Related to the second example)	Comment by Moravec: This figure is clear and adds value to the proposal.
Based Expanding on the second example, we categorize network policies into the following groups based on the description of network traffic or packets:
1) Policies related to network traffic with clear packet header information,
2) Policies requiring further processing of network traffic,
3) Policies needing network state information, and
4) Policies with exceptions.
An example of a simple network policy is as follows: "The University Wireless Network should not be misused; in particular, you should not use the network to run peer-to-peer (P2P) file sharing software, e.g., BitTorrent." This policy requires that BitTorrent traffic be blocked. It can be enforced and monitored by analyzing the low-level details associated with the BitTorrent protocol, which places it in the first policy group due to the presence of protocol-specific information. The main challenges in enforcing natural language network policies are the following:
1) difficulties in fully and accurately understanding the policies, and
2) limitations of current tools and techniques for policy enforcement and verification in complex and dynamic network environments, which must meet the diverse needs of organizations.
To address these challenges, we propose the development of three new tools aimed at improving network policy enforcement:	Comment by Moravec: I recommend moving this information to a new section called “Research Objectives” so that the grant is more conventional in structure.
1) Natural Language Processing (NLP)-Based Tool: This tool will tackle network policies written in high-level natural language. NLP provides a feasible solution for interpreting policy text, helping to "understand" the intent behind it. One effective NLP technique is a large language model (LLM) extraction, which extracts useful information from text and filters out redundant information. By applying large language model (LLM) extraction models, we can analyze network policies, derive key insights, and clarify policy intent.
2) Software-Defined Networking (SDN)-Based Tool: SDN introduces mechanisms to manage and control traditional networks by separating the data plane from the control plane, allowing for more flexible control over network devices. Network operators can write custom applications that dictate how traffic is handled, allowing for the insertion of fine-grained policy rules that may not be supported by conventional network devices. Additionally, SDN provides a comprehensive view of the network, enabling operators to monitor and detect potential policy violations.	Comment by Moravec: Again, I suggest moving this to the third item on the list.
3) Anomaly Detection Tool: The third tool focuses on detecting policy violations by identifying abnormal network behavior. This tool employs anomaly detection methods based on information measures derived from the Lempel-Ziv universal compression algorithm. The algorithm assigns optimal probability values for normal behavior during the learning phase and estimates the likelihood of new data during operation, classifying it accordingly. The method inherits the algorithm’s key strengths: universality and efficient implementation.
Together, these tools will significantly enhance the understanding, enforcement, and monitoring of network policies in complex environments.
1.2 Related work.
In this section, we review related work on: (1) various artificial intelligence (AI) techniques, such as Natural Language Processing (NLP) and machine learning models, and their contributions to network policy management; (2) SDN-based (Software-Defined Networking) solutions; and (3) anomaly detection algorithms, which form the foundation of this research. We focus on approaches aimed at simplifying network policy enforcement by introducing intent-definition languages and abstractions that bridge the gap between high-level network policy specifications and detailed implementations. We also explore research on network testing and verification to evaluate whether networks are correctly configured according to their policies. 	Comment by Moravec: This text could also be deleted to save word count.
NLP 	Comment by Moravec: I suggest adding these section titles to help orient the reader.
One of the main challenges in this area is the gap between high-level natural language policies and the low-level configurations required for implementation, making the translation process tedious and prone to errors. To address this, researchers have proposed several approaches, including intent-definition languages, which help to accurately capture the intent behind network policies or administrators' requirements. A notable example is Nile, an intent-definition language introduced in [1], which effectively captures the intent of network operators. While operators still express their network requirements in natural language, the system utilizes platforms such as Google Dialogflow [2] to extract relevant information from these inputs. Using natural language understanding techniques, the system processes user inputs to ensure accurate policy enforcement. To further enhance the translation from user input to network configuration, the authors leveraged a sequence-to-sequence learning model [3] composed of two recurrent neural networks (RNNs) and a Long Short-Term Memory (LSTM) unit. This model efficiently maps user statements to Nile, enabling precise translation of network policy with intent into actionable configurations. This body of research demonstrates significant progress in simplifying policy enforcement and improving the accuracy of network configuration through AI and intent-definition languages, laying the groundwork for the development of more intuitive and robust network management systems.
[image:]
[image:]

 Figure 2: Natural Language Processing	Comment by Moravec: I suggest considering removing the figures in this section to reduce page count. Most reviewers should understand how the basic systems work.
 In the context of SDN-based solutions, the work introduced in Policy Graph Abstractions (PGA) [4] enabled network operators to express network policies through graph-based abstractions. This approach proved especially useful in scenarios where multiple operators needed to simultaneously create and modify policies. PGA also provided mechanisms for detecting and resolving conflicts among the graphs, resulting in a unified graph that combined all policies without conflicts. Building on this, Janus, a framework proposed in [5], extended PGA by incorporating support for Quality of Service (QoS) policies, dynamic policies, and temporal policies that involve time constraints. These advancements allowed for more flexible policy expression, but operators still needed to learn how to effectively use these tools. Existing SDN frameworks have introduced additional modules, particularly intent-based Northbound Interfaces (NBI), to facilitate the definition of network policies for various purposes. For example, the ONOS (Open Network Operating System) intent framework [6] allows users to translate high-level intents into specific SDN rules. In this framework, an intent is modeled as an object containing network resources, constraints, criteria, and instructions. This intent object is then compiled into a FlowRule object, which installs SDN rules on the appropriate network devices. The ONOS framework offers flexibility, enabling users to express intents via a command-line interface (CLI) or a REST API, seamlessly translating high-level intent into enforceable SDN rules. While these systems have made significant progress in simplifying policy definition and enforcement, they still require network operators to become familiar with these specific tools.	Comment by Moravec: SDN solutions
[image: A diagram of software defined networking

Description automatically generated]

Figure 3: Software Defined Networking

 In [7], the authors introduced an entropy-based network anomaly detector, A Node, which employed parameterized versions of entropy, such as Rényi entropy, to detect anomalies. Anomalies were identified by comparing the parameterized entropy within a given time window to the maximum and minimum values observed during the training phase. Similarly, [8] explored generalized entropy measures, utilizing a one-class Support Vector Machine (SVM) for classification. However, both works [7, 8] only considered single-letter entropy measures, which focus on diversity within a specific window but fail to account for longer-term context or multi-letter measures. A comprehensive survey of Entropy-based Network Intrusion Detection Systems (E-NIDS) is presented in [9], where most systems also rely on single-letter entropy measures, calculating entropies or divergence measures for fixed-length distributions. These systems typically operate within a windowed or single-letter context, lacking the continuous long-term memory tracking that can be achieved with LZ-parsing, the method employed in this research. In [10], the authors proposed using the d-truncated Karhunen–Loève expansion to represent a stochastic process, effectively capturing memory in the data better than single-letter measures. This method relies on estimating the covariance matrix of the data, detecting anomalies when the d-dimensional vector, assumed to be normally distributed, falls outside a predefined ellipsoid. Additionally, a non-parametric model was introduced, estimating a local entropy measure for this representation. Like other entropy-based approaches, this local entropy depends on an estimated distribution. In contrast, our method eliminates the need for a "plug-in" approach, where probabilistic measures are estimated before use. Instead, we take a different approach, avoiding the assumption that such probabilistic measures exist at all. For cases where data ordering is essential for distinguishing between normal and anomalous events, permutation entropy has proven useful, as demonstrated in climate data [11]. However, in many computer security applications, anomalies may involve similar sequences of events with only slight timing variations, limiting the effectiveness of ordering-based detection methods. Anomaly detection is also closely related to change-point detection [12], particularly when the parameters after a change are unknown. However, much of the literature in this area assumes independent and identically distributed (i.i.d.) sources and a specific point in time when the change occurs, often analyzing the trade-offs between false alarms and detection delays.	Comment by Moravec: Anomaly detection	Comment by Moravec: Check date
[image: A diagram of a mathematical equation

Description automatically generated with medium confidence][image:]
Figure 4: A statistical Model for sequence “aabdbbacbbda” (right), and Classification Model based on the LZ78 universal compression algorithm (left)

[bookmark: _Hlk118212880]
Development of a Universal System to for Managing Network Policies in a SDN Network
Introduction
 The emergence of Software-Defined Networks (SDN) has given users the ability to control and monitor networks in a more fine-grained and dynamic manner. SDN enables the deployment of network services through a variety of custom applications. One of the key distinctions between SDN and traditional networks is the separation of the control plane and the data plane. This separation allows researchers to develop customized SDN applications that can modify forwarding tables of switches and routers or gather network statistics. As a result, SDN applications can exert significant control over the network, potentially managing the entire system when granted full permissions. Network administrators are responsible for ensuring that networks run smoothly and reliably, while also managing policy exceptions. Some network policy documents stipulate that exceptions to route or send certain types of traffic require administrative approval. However, this approval process can introduce delays, which contradicts one of SDN's primary advantages—its ability to configure and adjust networks in real-time. Given the differing operational mechanisms between SDN and traditional networks, one of the major challenges in a hybrid network environment is how to maintain unified control over the entire network. This challenge involves leveraging the capabilities of the SDN controller while ensuring seamless integration with legacy systems and maintaining consistent policy enforcement across both types of networks.
 Proposed system
 We propose a new approach in which the SDN controller will have partial control over legacy network switches, allowing the SDN controller to manage the entire network in a unified manner. This setup will enable the creation of SDN services that are accessible to all network users, even if they are connected to non-SDN-capable switches. The SDN controller will utilize protocols such as OpenFlow to manage network devices, but since legacy routers may not support these protocols, a different strategy is required. While SDN separates the control plane from the data plane to allow more flexible control through various applications, this flexibility is limited on legacy routers due to their lack of OpenFlow support. However, many legacy switches do support policy-based routing, which allows network administrators to define custom routing policies that can override the default routes generated by traditional protocols like OSPF. To enable communication between the SDN controller and legacy switches, two main strategies can be employed. First, the Simple Network Management Protocol (SNMP) can be used to discover the network topology, identifying how legacy switches are connected to SDN-capable devices. Second, SDN applications can be developed to SSH into the command line interface (CLI) of legacy switches and implement policy-based routing on demand. This ensures that the SDN controller can exert control over legacy devices, achieving automated, unified control of the entire network. As a result, SDN network services will be available to all users, regardless of their location or the type of switch they are connected to, ensuring seamless network management across both SDN and legacy infrastructure.
The challenge	Comment by Moravec: It is not quite clear how these challenges relate to the NLP, anomaly detection, and policy enforcement parts of the grant. If you could clarify this, it would help.
We will describe the challenge in two aspects. First, SDN-based services provide programmatic control over the network, which at the same time leads to questions such as "whether network administrations should let the users (researchers) use such services on demand?" and "how much permission should be given to such network services that change the route of the traffic?". The second is the question of how such SDN-based services can be extended throughout the other (legacy) part of the network? For the first challenge, we argue that with the cooperation of the IT and users (researcher), proper permission can be delegated to users (researchers) running such network services. These SDN-based services can be designed to cause no harm to the normal network services. For the second challenge, we use Policy-Based Routing (PBR) and a graph database to extend VIP Lanes service, which is SDN-based, to the legacy part of the network. Our simulation results in a topology testbed show that we can provide customers with VIP Lanes services even though the end-hosts do not have a direct connection to the SDN switches.
Extending VIP Lanes to Legacy Networks	Comment by Moravec: This section on VIP Lanes is very long and detailed. I recommend shortening it so that it is about as long as the section on PBR. I recommend focusing on the innovations you will make to this approach.
Nowadays the need for big data transfer is increasing. However, networks have different middleboxes such as IDS, NAT, and Firewall that may be considered obstacles to the big data transfer since at the same time these middleboxes provide services, they also require packets to be strictly checked, causing performance to decrease. To address the needs, we introduce VIP Lanes, an SDN service provided to users (researchers) that can route the data on a path that bypasses these middleboxes. Only trusted users can create pre-approved flows on demand when they transfer the data. However, what if a user is connected to a legacy switch rather than an SDN switch? How can we make the service available to them as well? To enable such network services on the network, both hardware deployment and software control are necessary. We first introduce how VIP Lanes will deploy. Then we will discuss the architecture of control software that controls the SDN-capable devices. Traditional networks consist of a set of core routers that connect the edge with the router/switch of buildings (A, B, C, D, and E.) as shown in Figure 5 (left). For the users who are connected to the traditional campus networks, the performance of the big data transfer may be degraded since all the packets have to go through the middleboxes such as IDS systems and firewalls no matter which building they are in. These middleboxes lie on the only path where users can get resources from the Internet. We have seen SDN networks are gradually deployed on the example network. We cannot use the SDN networks to replace the core network, but they run parallel to the original core networks as shown in Figure 5 (right).
[image: A diagram of a computer network

Description automatically generated][image: A diagram of a network

Description automatically generated]Figure 5: Traditional Network (left), Network with SDN Deployed (right)

high-speed paths allow to perform big data transfer experiments only when they are connected to SDN-capable switches. If they are located for instance in building A or building E, the path for the big data transfers still goes through the core switch with middleboxes on it. To extend the service to legacy routers and switches, we connect the legacy ones with the SDN core as shown in Figure 6. The dotted lines are the new links that connect legacy switches to the SDN-portion of the network. By writing customized SDN applications, traffic can be redirected to the SDN portion of the network and thus get the benefits of a high-speed flow path.
[image: A diagram of a computer network

Description automatically generated]

Figure 6: Extend the SDN Functionality to Legacy Routers/Switches

VIP Lanes Software
The system architecture of VIP Lanes is shown in Figure 7.
[image:]Figure 7: VIP Lanes Control Software

The major components of the VIP Lanes system include a front-end VIP Lanes server, the path service library, the graph database, the Policy Based Routing (PBR) module, and the VIP Lanes modules in the format of SDN applications. To use VIP Lanes, big data researchers:
1) Use the front-end VIP Lanes server for a flow request. After the authentication for credentials, he/she inputs the 5-tuple (source IP address, destination IP address, protocol, destination port) along with the timeout on the user-friendly GUI.
2) The delegation tree regulates what IP address ranges can be used by each group of users. The VIP Lanes server authenticates the source IP address based on the group. It will return the message on the GUI if users used source IP addresses that they are not allowed to use
3) Once the authentication is finished, the VIP Lanes server wraps up and sends requests from the GUI to the back-end systems. The path service library communicates with the graph database to fetch the information of the entire topology. Then it puts together the requests from the VIP Lanes server and the topology information to calculate a path that bypasses the middleboxes. This path may include those legacy switches that connect the researcher to the campus network.
4) The path service library calls the module on the controller using the REST API to insert SDN rules on all the SDN switches on the path, and the PBR module to install policy-based routing policies on legacy routers. For each calculated path, two VIP Lanes are created for both the forward traffic and reverse traffic. The user can also specify the timeout of the SDN rules based on how much data he/she is going to transfer. The policies installed on legacy routers must be removed explicitly by the PBR module when they are no longer needed.
We extend the existing VIP Lanes system to a hybrid network environment. To help the SDN controller gain the view of the entire network topology including the legacy switches and connected hosts, we made use of static JSON-encoded files as well as the graph database, Neo4j. A graph is composed of vertices and edges. In a network graph, network devices (e.g., switches and routers) and hosts are considered vertices while the links among them are the edges. The path service library first loads the topology from the controller and creates a base graph in Neo4j. Then it takes advantage of the Simple Network Management Protocol (SNMP) along with the Cisco Discovery Protocol (CDP) to search the information of the legacy layer-3 switches based on the IP address provided in the static files (alias files). It also queries the ARP table of the legacy switches to find the information about the potential hosts. After all the required information of the legacy network is collected, (including the information of the legacy L3 switches, the hosts connected to the L3 switches, and the links), a new graph is created based on this information and is added to the Neo4j graph database as a complement to the base graph. So, the graph in Neo4j represents a complete hybrid network. The path service library on the SDN controller then has a bird's-eye view of the entire hybrid network, including all the potential hosts that may use the VIP Lanes system. With the view of the entire topology, the path service library can compute a hybrid SDN path for the hosts that are connected to a legacy switch. To redirect traffic from a legacy network to SDN network, we make use of bash script that implements Policy Based Routing (PBR) and apply it on the legacy L3 switches.
Policy-Based Routing
Policy-Based Routing, as its name indicates, can route network traffic based on the policy defined. Access Control List (ACL) and route-map are the two components of the PBR. Route-map matches the traffic based on the groups defined in the access control list. Then it defines the action, for example, setting the next-hop address. Once a PBR policy is created, it needs to be applied to the specific interface of a switch. Then the packets arriving on the interface will be routed following the policy. Since users of the VIP Lanes system specify both the source IP address and the destination IP address when they request to create flows on the server, we then decide to use the extended ACL (which allows the match beyond the source IP address as in the standard ACL) so that the settings on the legacy devices have the same fields to match the traffic. Figure 8 shows a sample configuration of PBR and the application on an interface. The access control list permits the TCP traffic from source IP address 172.23.7.194 to destination IP address 172.23.7.178. The route map defines an action for this class of traffic, which is "sending the matching trac to the next-hop address of 10.1.5.1". Once the route map is set up, it is applied to a specific interface (VLAN16 in this example) acting as an IP routing policy. As a result, when the trac with source IP address 172.23.7.194 and destination IP address 172.23.7.178 arrives on interface VLAN16, it will be routed to the next-hop address 10.1.5.1, as directed by the PBR policy.
[image:]Figure 8: An Example Configuration for Policy Based Routing

Our research	Comment by Moravec: These details are good, but again, they are not related to the other parts of the grant, so it is not clear why these parts are needed. I would also rename this something like “Work package for RO 2” or something similar like that.
First, we will implant our new proposed model “SDN controller with partial control over legacy network switches” that allowing the SDN controller to manage the entire network in a unified manner. These implantations will include VIP Lanes Software (based on system architecture of VIP Lanes) and Policy-Based Routing.
Second, we will investigate a cooperative model that can assure the network administrators that letting the users (researchers) manage and control certain IT-approved types of flows will do no harm to the normal operations of the campus network since both the type of network traffic and the actions are limited and pre-approved by IT.
Third, we will investigate if we could enable SDN services network-wide by writing a customized SDN application that will control the setup of Policy-Based Routing on legacy switches/routers.
[bookmark: _Hlk153452805]Develop Universal System to Extract Network Policies from Documents using NLP Model
The methods developed in this research will be universal, where the development itself was based on the second example which examines the planning and implementation of a communication network, where our objectives can be classified into several main research.
Introduction
Network policies are typically composed and recorded in documents such as Acceptable Use Policies (AUPs), written in human-readable language. These documents are often available online for users to understand the rules governing network resource usage. However, misunderstandings or failure to read these policies can lead to unintended types of traffic in the network. As a result, in addition to ensuring basic network connectivity, network administrators are responsible for enforcing the policies outlined in these documents to manage network traffic effectively. Historically, network administrators manually translated high-level policy statements from policy documents into the corresponding low-level configurations that implement these policies. However, a significant gap persists between high-level network policy statements and the detailed configurations required to enforce them. This manual translation process is not only tedious and error-prone, but also carries the risk of misinterpreting the intent behind policy statements and introducing human errors when configuring devices in complex network environments. Such errors can lead to incorrect enforcement of policies. While recent advances in Artificial Intelligence (AI) have simplified aspects of this translation process, network administrators still play a key role in converting network policies into specific formats that can be used by AI-driven systems. Even in Intent-based Networking (IBN) systems, which generate configurations based on high-level intents, administrators must manually translate policy statements into intents. Errors may occur at this stage due to various factors, including ambiguities in the policy statements themselves. Ambiguities arise when policy statements contain unclear terms or lack crucial information needed for implementation. These ambiguities can confuse network administrators and lead to enforcement errors. Policymakers, who write the policies, and network administrators, who enforce them, are key stakeholders in this process. Therefore, they must collaborate to ensure a mutual understanding of what should be enforced and the potential consequences. However, policymakers often lack the technical expertise of network administrators and may not fully grasp the complexities of policy enforcement or the conflicts that may arise between different policies. If the terms or phrases used in policy statements are unclear to administrators, the chances of mis implementation increase. Network administrators prefer policies that are clear and precise, making it easier to translate them into low-level network configurations. When faced with ambiguous policies, administrators may need to provide feedback to policymakers, pointing out unclear or missing elements. In addition to clarifying policy intent, administrators may also highlight potential conflicts between policy statements during enforcement. To address these ambiguities, we propose the Network Policy Analyzer (NPA), a system that enables policymakers and network administrators to collaborate and improve the quality of written network policy documents. The NPA system takes a network policy document as input and analyses it from the perspective of network administrators, simulating their thought process when enforcing policies. The system identifies ambiguous or missing elements in policy statements and provides recommendations for improvement to ensure accurate enforcement.	Comment by Moravec: This text is good and explains the problem well, However, if possible, I recommend shortening it by like 20%.
For example, consider the following natural language network policy statement:
"It is inappropriate to run insecure protocols in the residence halls".
When network administrators see this policy, there may be several questions that will come up to their mind. First, what is the action that should be used to deal with traffic that is insecure? In the policy statement, it mentions "inappropriate" but says nothing about whether the network trac should be blocked or not. Second, what does the term "insecure protocols" mean? Although network administrators may have an idea about which network protocols may be considered insecure, they may still have questions about whether all these kinds of protocols should be considered. Third, what is the network information that corresponds to physical buildings (i.e., residence halls)? Or, more specifically, what IP address range represents “the residence halls"? Such questions not only provide insights into the concerns that network administrators may have during the actual enforcement process, but also reflect the ambiguities of the policy itself. With such information, policymakers can rewrite the ambiguous network policy statement, keeping it as a comparatively high-level description but make it more understandable to the network administrators.
The Principles Behind Information Collection
Network policies must eventually be translated into low-level network configurations. But what do these configurations look like on a network device? Consider the following access control rule on a Cisco device that uses Access Control List to block the ftp traffic:
router# access-list 101 deny tcp any any eq ftp [23]
In this rule, the access list named 101 is used to deny the traffic from any source to any destination address with destination port number equals to ftp port (port 21). The basic format of this rule consists of an action, (deny in this case) and the other fields to match the network traffic. The 5-Tuple, which includes source IP address, source port, destination IP address, destination port, and the transport layer protocol, is commonly used to match the traffic. Recent advances in SDN make it possible to enrich the packet header fields that can be used for the match as well as the actions that can be taken. It makes the devices capable of dealing with various types of network traffic. Based on the format of the rule a network policy will be translated into, we list five questions that network administrators would ask when enforcing the policy.
1) What is the description of the network traffic in the policy? The description is essential since it must be translated into the 5-Tuple or even more diverse matching elds in the rule. Furthermore, some types of network traffic are described using the 'amount" other than the values in the packet headers. If the description is ambiguous, network administrators will find it difficult to put the correct/exact values in the matching fields or to use other tools to detect the specified trac. As a result, the implementation may be incomplete if it deals with fewer traffic types than expected, or it will incorrectly deal with more types of network traffic than the ones described in the policy statements. Such "overkill" will of course influence the normal use of the network.
2) What is the action to take on the matching flow? There are various actions that may occur in the network policies. The basic actions include allow(permit) or block(deny) that address the security issues of the network. However, because network policies are high-level statements, the words "allow or block" do not necessarily directly appear in the policies. For example, "It is inappropriate to run BitTorrent applications on campus". This policy does not specify the action, and network administrators need to guess whether the word "inappropriate" means "blocking" such traffic. Other actions such as rate-limit or route-to can be also implied by the policy. Network administrators need to find out whether it is correct to use such actions for the implementation. Besides the content of the action, some policies may describe how long these actions should last. In other words, it is the duration of the rule. SDN rules have an optional eld called timeout to specify the duration that a rule should exist after being inserted to the switches.
3) Which location of the network resources should be focused on? Network administrators need to consider on which devices the configurations/rules should be set up. If no location information is mentioned in the policy, network administrators may wonder about the scope the policies apply to. Because the network policies focused on in this chapter are mainly university network policies, we can roughly think of the locations as either on-campus or of-campus. For those policies about on-campus network resources, which network devices (e.g., switches and routers) should the rules be placed on? For the traffic that flows between on-campus locations and of-campus locations, what rules should be placed on the Firewalls? The location information not only determines where the rules are to be placed but also the relevant information to be placed in the description match. For example, if locations such as "campus residential network" are mentioned, network administrators may think about (1) whether they should set up rules on each switch/router on the campus residential network and (2) the IP address range that represents campus residential network since it will appear as either the source or destination address in the matching fields of the rule.
4) What is the direction of the network traffic? The 5-Tuple contains source and destination address or ports which explicitly requires the direction of the traffic to be considered. The direction can be either single-way or bi-directional based on the interpretation of the policies. For example, some policies that mention specific protocol names have directions implied by the port number (destination) used by the protocol. Other policies differ in the direction part based on the context.
5) Whether network state information is required for the match? This question, along with traffic direction, is closely related to the description of the network traffic. We give examples of the network policies in which network traffic is described using the protocol names (e.g. FTP). For this type of network traffic, the corresponding low-level details are known beforehand and can be translated into the 5-Tuple. However, if a policy talks about traffic like \port scanning traffic", it cannot be described simply by the 5-Tuple since it requires the network state information that counts the number of network connections from the same source to different ports over time. To deal with such policies, network administrators need to understand what network state information is available to them and which sophisticated tools, such as intrusion detection systems they can use to capture such traffic. Nowadays, many network devices can detect traffic on a higher layer such as the traffic generated by different applications. For example, a layer-7 switch is a switch that not only possesses the basic switching/routing capabilities as other devices but also collects the information on the application layer. As a result, rules can be set up saying \Route the traffic in this way based on the content of the HTTP requests". It is important to understand what functionalities are provided by the tools that can analyse the application layer behaviour and the format of the output.
The Selection of Tags for the NLP Model
Based on the principles discussed above, we show the tags that the NPA system uses to train the NLP model that aims to retrieve all the valuable information from a given network policy. The tags are placed in different categories with example values as shown in Table 1. As has been discussed above, the key information that are required for the successful enforcement include:
1) The description of the network traffic
2) The action to be taken on the observed traffic
3) The location of the network to focus on
4) The direction of the traffic and
5) The network state information if known.
Here we discuss them separately and further divide them into different categories. First, to illustrate the diverse patterns of the network policies that express the same intent,
consider the following group of policies:
"Port scanning is not allowed on the network"
"Students should not scan the network with port scanners"
"Applications such as port scanners are prohibited on the network"
All these policies aim at the traffic generated by the behavior of port scan but use different words/phrases to describe the intent. Considering the diversity of the policies, we list example tags and values and categorize them. We assign either "clear" or "unclear" to these terms to indicate whether they are considered ambiguous or not.
[image:]

Table 1: Tags for Named Entity Recognition in NPA

1) Traffic Description: Because network policies can be composed in various patterns, NPA utilizes different types of tags to capture the content of the target network traffic.
2) Traffic Amount: Some types of network policies focus on the trac that is represented by the amount of traffic.
3) Traffic Direction: The direction of the traffic is also important since it determines whether the collected IP address and port numbers will be used as the source or the destination.
4) Action: Network policies are written in purely human-readable natural language. This nature determines that the keywords can be replaced by synonyms to express similar meanings.
5) Action Duration: When the action of the rule is determined, the duration of the action is another option to consider. By default, if the duration is not specified, the rule is considered effective permanently until changes are made.
6) Location: Network policies can be either explicit or implicit on where the rules should be placed. The university firewall is a unique location where various rules are set up to protect the internal campus resources.
7) Exception: Some network policies are considered "flexible" since they have exceptions when certain conditions are triggered. NPA can capture conditional words such as "unless" and explicit exceptions. Network administrators can consider it as additional information for when they should deal with the mentioned network traffic differently.
System Architecture of NPA (Network Policy Analyzer)
Network Policy Analyzer (NPA) is a system that utilizes the recent advances in NLP to analyse the quality of network policies written in natural language. The main components of NPA include the large language model (LLM) extraction module, and the policy analysing module. After network administrators use network policy documents as input to NPA, the system will generate a quality report for all the policies in the input file, showing whether they are well-written or not based on the detected ambiguous (or missing) terms they have in each group. The architecture of NPA is shown in next figure:
[image:]
Figure 9: NPA System Architecture

The Large language model (LLM) Extraction Module
A large language model (LLM) is a type of computational model designed for natural language processing tasks such as language generation. As language models, LLMs acquire these abilities by learning statistical relationships from vast amounts of text during a self-supervised and semi-supervised training process. The largest and most capable LLMs are artificial neural networks built with a decoder-only transformer-based architecture, enabling efficient processing and generation of large-scale text data. Modern models can be fine-tuned for specific tasks, or be guided by prompt engineering. These models acquire predictive power regarding syntax, semantics, and ontologies inherent in human language corpora, but they also inherit inaccuracies and biases present in the data on which they are trained. In the realm of natural language processing (NLP), the advent of Large Language Models (LLMs) has revolutionised the way we approach various tasks, including automated data extraction. LLMs, such as GPT, showcase remarkable capabilities in understanding and generating human-like text. Entity or Data extraction, a crucial component of information retrieval, involves identifying and classifying entities such as names, locations, organisations, and more within a given text. Leveraging LLMs for data extraction enhances the accuracy and efficiency of this process. These models excel at contextual understanding, enabling them to discern subtle nuances and relationships between words, ultimately leading to more precise entity identification. Whether applied in the context of document analysis, social media monitoring, or data categorisation, the utilisation of LLMs for data extraction empowers NLP practitioners with a potent tool that navigates the intricacies of language with unprecedented finesse. Entity or Data Extraction can be used as a preprocessing step performed on natural language prior to other downstream tasks. In this blog post, we’re going to showcase a flow that automates the extraction of data from a loan application using the Seldon Enterprise Platform. We’ll then use a seldon-core-v2 pipeline in order feed the extracted data into a model that decides whether to accept the loan application or not. In order to do this we’re going to: Deploy an OpenAI LLM model that extracts the relevant features from the user written text for a loan application. Create and deploy a Seldon-Core-V2 pipeline that wires the automated data extraction step up to a deployed classifier model:	Comment by Moravec: This section needs to be re-written. It is about loans, which is not relevant to the proposed grant. Also, it is important not to use second person in grant reviews. The term “Seldon” has not been defined.
I recommend talking about LLMs in less detail here. It is only necessary to describe how you will use them to extract data. The precise commands are not needed.
Creating the Data-extractor Model
An amazing capacity of Large language Models (LLM) is their capacity to be programmed to do arbitrary NLP tasks using prompting. In this section we’re going to deploy an enterprise platform LLM-runtime along with a prompt that will perform automated data extraction on user submitted text. The enterprise platform OpenAI LLM Runtime is a runtime that’s been built to make it incredibly easy to use OpenAI’s large language models in the Seldon deployment ecosystem. We also provide a deepspeed runtime that allows you to easily deploy your own large language models instead of using OpenAIs models. All these runtimes are powered by our open source MLServer technology. There are only two parts to the process of setting up and deploying the openai runtime. The first is the model-settings.json file:
{
 "name": "data-extractor",
 "implementation": "mlserver_llm_api.LLMRuntime",
 "parameters": {
 "uri": "./prompt-template.txt",
 "extra": {
 "provider_id": "openai",
 "with_prompt_template": true,
 "config": {
 "model_id": "gpt-3.5-turbo",
 "model_type": "chat.completions"
 }
 }
 }
}
This specifies that we’re using the MLServer LLMRuntime as well as the the model_id and type. This file also tells the runtime that we’re using a prompt template and specifies its location using a URI. I used the following prompt:
You are a helpful data entry assistent whose responsibility is extracting data from a message sent by a user. The following is such a message. Please extract the users details and return in a json dict with keys: "ApplicantIncome", "LoanAmount","Loan_Amount_Term", "Gender", "Married", "Dependents", "Education", "Self_Employed", "Property_Area"
Please ensure that "ApplicantIncome" is an integer greater than 0
Please ensure that "LoanAmount" is an integer greater than 0
Please ensure that "Loan_Amount_Term" is an integer corresponding to number of months
Please ensure that "Gender" is either "Male" or "Female"
Please ensure that "Married" is either "No" or "Yes"
Please ensure that "Dependents" is one of "0", "1", "2" or "3+"
Please ensure that "Education" is one of "Graduate" or "Not_Graduate"
Please ensure that "Self_Employed" is one of "Yes" or "No"
Please ensure that "Property_Area" is one of "Rural", "Semiurban" or "Urban"
Please only return JSON do not add any other text! If values are missing set them to a string: "none"
Loan Application: {text}
This template specifies a fixed prompt that will be included with any request sent to this model. In particular, the {text} string will be populated with the user input.
Deploying the data-extractor Model
Assuming you have seldon-core-v2 set up on a cluster somewhere then deploying is as easy as adding a custom resource definition, specifying a storage URI and running a kubectl command. In our case I’ve placed the above model-settings.json file and prompt-template.txt file in a google bucket called data_extractor. Next we create amodels.yaml file and add the following custom resource definition to it:
apiVersion: mlops.seldon.io/v1alpha1
kind: Model
metadata:
 name: data-extractor
spec:
 storageUri: "gs://blogs/data-extraction/data_extractor"
 requirements:
 - openai

Notice here we specify the OpenAI runtime requirement. This tells Seldon Core to deploy the correct resource, in this case the Enterprise Platform LLMRuntime. We can deploy this model by running kubectl create -f models.yaml -n seldon-meshYou can then test the OpenAI model using the following:
import requests
import subprocess
def get_mesh_ip():
 cmd = "kubectl get svc seldon-mesh -n seldon-mesh -o jsonpath='{.status.loadBalancer.ingress[0].ip}'"
 return subprocess.check_output(cmd, shell=True).decode('utf-8')
loan_application = """
Hi,
I am looking for a loan to buy a new car.

I am a software engineer and I'm employed by Google. I am married and have a
wife and 2 kids. I have a house in central London and My income is 50,000.
I would like a loan amount of 100,000 and I am looking for a term of 10 years. I'm a graduate.
Mr John Doe
"""
inference_request = {
 "inputs": [
 {
 "name": "text",
 "shape": [1, 1],
 "datatype": "BYTES",
 "data": [loan_application]
 }
]
}
endpoint = f"http://{get_mesh_ip()}/v2/models/data-extraction/infer"
response = requests.post(endpoint, json=inference_request)
response.json()
Running the above gives us:
{'ApplicantIncome': 50000, 'LoanAmount': 100000, 'Loan_Amount_Term': 120, 'Gender': 'Male', 'Married': 'Yes', 'Dependents': '2', 'Education': 'Graduate', 'Self_Employed': 'No', 'Property_Area': 'Urban'}
These feature values can then be passed on to another model that will perform a prediction on them. In our case, it’ll be a random forest classifier that will predict whether or not to accept the application.
 Policy Analyzing Module
After the Large language model (LLM) extraction module has completed its task, the LLM extracted entities and their associated tags will be passed to the policy analyzing module, depicted in the lower section of figure 9. This module will then generate a quality report for the input network policy document, assessing the clarity and effectiveness of the policies. Users of NPA input network policies. Once the LLM Entity Extraction Module finishes extracting the information from the policies, the entities along with the tags will be passed to the policy analyzing module to generate the quality report for the input network policy document. The policy analyzing module deals with the entities using a set of rules and the procedure it follows is shown in the next algorithm.
[image:]
The procedure takes three inputs, namely the network policy text, the LLM extracted entities along with the tags and the pre-defined groups these tags belong to. The entities are extracted in the same order as they appear in the network policies. The procedure checks for each group whether there is any recognized entity with a tag that ends with "unclear" and appends the entity to the result of that group. Once the procedure goes through all the extracted entities, it formulates the report for each group and checks the pre-defined groups for the missing elements. Note, NPA considers the groups of direction, exception, and other as optional groups. These groups do not necessarily need to appear in the network policies but if they do appear, NPA is able to recognize them. Network traffic c can be described using the terms in the Traffic Description group or the Traffic Amount group. NPA checks the ambiguity of these groups if they exist and assumes that there is no missing value for the description of the trac. But for the action group and the location group, NPA checks both groups for both ambiguous and missing values. Based on the ambiguous terms and missing elements detected, NPA generates a policy quality report showing whether the input network policy is well-written or not. In the report, a detailed analysis for each group is also presented for the users to understand why a policy needs improvement. It provides a convenient way for the users to locate the problematic part of the policy.
3.1 Example for Ambiguity in Traffic Description	Comment by Moravec: I recommend moving this to the preliminary results.
In the traffic that network administrators need to deal with can usually be described clearly with low-level packet header information (say the 5-tuple). However, the "description" in the network policy often contains high-level terms that cause ambiguities. There are a significant number of network policies that are intended to describe network protocols but do not mention specific protocol names. This causes ambiguities since network administrators may need to guess which protocols the policy refers to and whether they are exactly the ones network policy writers are talking about. For example, consider the following two network policies:
"Superseded or insecure protocols and cipher suites should not be used unless there is an approved exception in place" [15]
We can notice that the first policy focuses on the protocols and cipher suites that are "Superseded or insecure". Network administrators may have questions about which protocols and cipher suites are considered "Superseded or insecure". Thus, the proposed system output for this policy about insecure protocols and cipher suites need to be:
[image:]Figure 10: Output for a Policy about Insecure Protocols

Develop Universal System to Discover Anomaly in Network Policies
4.1 Introduction
We suggest a new novel anomaly detection technique, which does not require any a priori information of network policies, nor the network policy violations, and yet efficiently learns the normal behavior and generates a statistical model. The technique is based on the Lempel Ziv algorithm, which is an optimal universal compression algorithm. In fact, when applied to stationary and ergodic sources over finite alphabets, its compression ratio converges to the entropy rate, and from the model it implicitly generates one can derive asymptotically optimal probability assignment. Using the induced assignment, we rigorously define the statistical model which represents normal behavior, and offer a mechanism to test new, unknown sequences, using this model.
Proposed system
The two-phase system includes these steps:
Building Data Set
Data Processing
Data Collecting
Learning Phase

Run a test for specific stream

Data Processing
Sniff stream of data
Testing Phase

[bookmark: _Hlk153553478]
4.3 Data Collecting
The output of the previous section proposed system (extract network policies using NLP model) will be the input of the current system. Thus, the aim of this stage is to collect all terms that appears (as outputs) like "telnet is clear", "ftp is clear", "P2P is clear", "policy is well written!", … etc.
4.3.1 Data Processing – Quantization
It is important to mention that the above procedure (data collecting) may result in a sequence over a large alphabet. For example, time may be given with very high precision. Such a high alphabet size may significantly increase complexity. Hence, to reduce the range of values, quantization should be performed. For k quantization levels, a set of k centroids {c1, c2, c3,…,ck} is used. The learning algorithm we use (LZ-based) requires finite alphabet input.
	Sample
	telnet is clear
	ftp is clear
	P2P is clear
	policy is well written!

	Symbol
	a
	b
	c
	d

4.3.2 Lempel – Ziv Algorithm
The LZ78 algorithm is a dictionary-based compression method. For a given sequence of data symbols, a dictionary of phrases parsed from that sequence is constructed based on the incremental parsing process as follows. At the beginning the dictionary is empty. Then, during each step of the algorithm, the smallest prefix of consecutive data symbols not yet seen, i.e., which does not exist in the dictionary, is parsed and added to the dictionary. By that, each phrase is a unique phrase in the dictionary, that may extend a previously seen phrase by one symbol. For example, the sequence aabdbbacbbda is parsed as a|ab|d|b|ba|c|bb|da|. A common representation of the dictionary is a rooted tree, where each phrase in the dictionary is represented as a path from the root to an internal node in the tree according to the set of symbols the phrase consists of. Leaf-nodes are added as suffixes for each phrase in the tree. A statistical model can then be defined for a given data sequence during the construction of a phrase-tree [16]. At the beginning, an initial tree is constructed including only a root node and k leaf-nodes as its children, where k is the size of the alphabet. Then, for each new phrase parsed from a sequence, the tree is traversed, starting from the root, following the set of symbols the phrase consists of, and ending at the appropriate leaf-node. Once a leaf-node is reached, the tree is extended at this point by adding all the symbols from the alphabet as immediate children's nodes to that leaf, making it an internal node. In order to define a statistical model, each node in the tree, except for the root node, maintains a counter, where each leaf-node’s counter is set to 1 and each internal node’s counter is equal to the sum of its immediate children’s counters. For a probability assignment, as all leaf-node's counters are set to 1, thus they are assumed uniformly distributed with a probability 1/i, where i is the total number of leaf-nodes. Each internal node’s probability is defined as the sum of its immediate children’s probabilities, which also equals the ratio between its counter and current i. The probability of an edge is defined by dividing the node's probabilities. The probability of a phrase Pi D is calculated by multiplying the probabilities of the edges along the path defined by the symbols of Pi. For example, the next figure demonstrates the resulting statistical model for the sequence “aabdbbacbbda".	Comment by Moravec: I recommend shortening this, as LZW is a well-known method.
[image:]Figure 11: A statistical Model for sequence “aabdbbacbbda”. Each node in the tree is represented by the 3-tuple (symbol, counter, probability). The probabilities of edges connected directly to the root are equal to the appropriate root-children’s counter divided by the total number of leaf-nodes, i, at each step of the algorithm.

4.3.3 Threshold based detection (Neyman-Pearson style)
In universal anomaly detection, the goal is then to identify whether a new data instance y belongs to the normal class (e.g., network policy according to instructions), or, alternatively, is anomalous (or policy violation). Since, in most applications, the anomalous instances are violations one wishes to identify, we refer to a correct identification of an anomalous y as detection (or violation), and for an incorrect identification of normal data (or network policy according to instructions) as false alarm. The optimal decision rule in terms of maximizing the detection probability given a fixed false alarm probability (in the Neyman-Pearson sense) is to compare p(y) to a threshold and decide that y is normal if p(y) is above the threshold and anomalous otherwise [17]. The threshold is determined according to the required false alarm probability.
[image:] [image:] [image:]Figure 12: Demonstration of Threshold Based Detection (Neyman-Pearson style) technique, which includes these steps: (1) Set a threshold, (2) Calculate probability for false alarm, (3) Calculate probability for miss detection, (4) Calculate a single point in the ROC Curve, and (5) Change threshold value.

[bookmark: _Hlk153626599][bookmark: _Hlk153626608]4.3. 4Demonstration of normal and anomalous
Follow the stream downwards the tree until the tested string is found (or unfound), calculate the error probability for the string: “aba” (normal) and "abbb" (anomalous).	Comment by Moravec: More detail is needed here so that the result is clear.
[image:] [image:]
Figure 13: Demonstration of normal and anomalous

Integrate Universal System to Check Ambiguity in Network Policies
The last mission is to integrate the three subsystems into one integrated system that will improve policy enforcement in a communication network and will find anomalies through natural language processing, at this way:
Output 1 - policy violation

Input (Network, Policies documents)
Universal System to Check Ambiguity in Network Policies

Output 2 - Non violations policy

Universal System to Discover Anomaly in Network Policies
Universal System to Managing Network Policies in a SDN Network
Universal System to Extract Network Policies from Documents using NLP Model

Figure 14: Demonstration of the integrated proposed Universal System

The expected results of the system will be:
Violation of network policies was found:
· Security protocol is missing.
· Location is missing.
· Insecure protocols aren't clear.
· …

No violation of network policies was found.

References
1) P. Shi, Y. Song, Z. Fei and J. Griffioen, "Checking Network Security Policy Violations via Natural Language Questions," 2021 International Conference on Computer Communications and Networks (ICCCN), Athens, Greece, 2021, pp. 1-9, doi: 10.1109/ICCCN52240.2021.9522325.
2) Rivera, Z. Fei and J. Griffioen, "POLANCO: Enforcing Natural Language Network Policies", Proceedings of the 29th International Conference on Computer Communications and Networks (ICCCN), 2020.
3) D. Farrar, J. Huffman Hayes, G. Adkins, J. Griffioen and C. Bumgardner, "NetSecOps and Policy Checking An Application of Traceability Techniques", In Proceedings of Grand Challenges of Traceability 2017, 2017.
4) Arthur Selle Jacobs, Ricardo Jos_e P_tscher, Ronaldo Alves Ferreira, and Lisandro Zambenedetti Granville. Re_ning Network Intents for Self-Driving Networks. In Proceedings of the Afternoon Workshop on Self-Driving Networks, pages 15{21), 2018.
5) Dialogow, Create Conversational Experiences Across Devices and Platforms. https://cloud.google.com/dialogflow.
6) Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with Neural Networks. In Advances in neural information processing systems, pages 3104{3112}, 2014.
7) Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang. PGA: Using Graphs to Express and Automatically Reconcile Network Policies. ACM SIGCOMM Computer Communication Review, 45(4):29{42}, 2015.
8) Anubhavnidhi Abhashkumar, Joon-Myung Kang, Sujata Banerjee, Aditya Akella, Ying Zhang, and WenfeiWu. Supporting Diverse Dynamic Intent-Based Policies using Janus. In Proceedings of the 13th International Conference on emerging Networking Experiments and Technologies, pages 296{309}, 2017.
9) ONOS Intent Framework. https://wiki.onosproject.org/display/ONOS/Intent+Framework.
10) Berezin´ski, P.; Jasiul, B.; Szpyrka, M. An entropy-based network anomaly detection method. Entropy 2015, 17, 2367–2408.
11) Santiago-Paz, J.; Torres-Roman, D.; Figueroa-Ypiña, A.; Argaez-Xool, J. Using generalized entropies and OC-SVM with Mahalanobis kernel for detection and classification of anomalies in network traffic. Entropy 2015, 17, 6239–6257.
12) Santiago-Paz, J.; Torres-Roman, D. On entropy in network traffic anomaly detection. 2nd International Electronic Conference on Entropy and its Applications, 2015.
13) Martos, G.; Hernández, N.; Muñoz, A.; Moguerza, J. Entropy measures for stochastic processes with applications in functional anomaly detection. Entropy 2018, 20, 33.
14) Garland, 577 J.; Jones, T.; Neuder, M.; Morris, V.; White, J.; Bradley, E. Anomaly detection in paleoclimate records using permutation entropy. Entropy 2018, 20, 931.
15) Cao, Y.; Xie, L.; Xie, Y.; Xu, H. Sequential change-point detection via online convex optimization. Entropy 2018, 20, 108.
16) Cisco ACL Overview and Guidelines. https://www.cisco.com/c/en/us/td/docs/iosxml/ios/sec data acl/con_guration/15-mt/sec-data-acl-15-mt-book/sec-acl-ovgdl.html.
17) OpenFlow 1.5 Specification. https://opennetworking.org/wp-content/uploads/2014/10/openow-switch-v1.5.1.pdf.
18) UNIVERSITY OF ABERDEEN CRYPTOGRAPHIC POLICY. https://www.abdn.ac.uk/sta_net/documents/policy-zone-information-policies/ Cryptographic % 20Policy .pdf.
19) Feder, M.; Merhav, N.; Gutman, M. Universal prediction of individual sequences. Information Theory, IEEE Transactions on 1992, 38, 1258–1270.
20) Neyman, J.; Pearson, E.S. On the problem of the most efficient tests of statistical hypotheses; Springer Series “Breakthroughs in Statistics", 1992.

image1.emf

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.emf

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.emf

image20.emf

image21.png

image22.png

image23.png

image24.png

image25.png

