Scientific Background 	Comment by Moravec: For this stage, I mainly just reviewed the content and made a few formatting changes. Overall, the content is good, and you have done really well at connecting the parts into a coherent whole. I was able to follow the proposal well. 

I do have a few suggestions regarding the organization (details are in the comments).
You mention in the text that simple, high-performance models are the goal, and this is clearly conveyed. Please also consider whether additional details that address 
* Who will be impacted (research and society as a whole)
* How you might measure impact
* new market opportunities (if any)
* how you will disseminate research (e.g., work with partners)
I also recommend adding a few details about available resources, and finally, the feasibility of the research. This can be added to the end.

After you have considered my overall suggestions and have finalized the first draft, I can do a full edit.
As far as paper length, you are right, it needs to be shortened by 16%, although you still have some content to add. I pointed out some parts that could be shorter in the comments. I am happy to do a word count reduction, where I reduce the word count without removing content in the first round of editing. We could then re-asses the length if needed.

Deep learning has experienced remarkable progress over recent years, resulting in its extensive integration across diverse domains. However, amidst these significant advancements, the field faces fundamental challenges that demand our immediate attention. Once these aspects are successfully addressed, we can anticipate a significant enhancement in the performance of deep learning. 	Comment by Moravec: I suggest mentioning one or two examples.	Comment by Moravec: I think you could delete this sentence. Then it will go straight to the challenges and keep the flow tight. However, if you prefer to keep it, that is fine.
The first challenge is eExplainability: . Despite deep learning's exceptional practical achievements, the reasons for its amazing success remain shrouded in mystery. A pressing concern revolves around comprehending the underlying principles that drive their effectiveness., and tThe quest for explainability aims to shed light on why deep learning yields such remarkable results.	Comment by Moravec: I agree that explainability should be mentioned, but because it is first in the list, it is strongly highlighted above it's importance here. I  suggest changing the format a bit to more strongly emphasize generalization. I suggest removing the itemized list, shortening the first explanation, and moving the last sentence up to the first mention of the generalization. It's a bit difficult to visualize, so I went ahead and made the suggested changes with Tracked Changes on. If you prefer the original or another solution, you can reject the changes.
The second challenge, which is the focus of this research proposal, is gGeneralization: . Generalization, a cornerstone of deep learning, embodies a model's capacity to seamlessly extend its performance beyond the boundaries of its training data. It signifies the model's agility in swiftly and accurately adapting to new, unseen data points. Generalization is highly dependent on the deep model complexity. For example, it is a significant issue especially when dealing with over-parametrized learning architectures, where the number of parameters is significantly larger than the amount of training data [20, 30 – “Exploring Generalization in Deep Learning”]. In such an over-parametrized setting, the objective has multiple global minima, all minimize the training error, but many of them do not generalize well. Hence, just minimizing the training error is not sufficient for learning: picking the wrong global minima can lead to overfitting to the training data and to poor generalization behavior. In such scenarios, generalization behavior depends implicitly on the algorithm used to minimize the training error. 

In this research grant, we will focus on the second challenge – improving the generalization of deep learning. 

Deep Learning Generalization
Deep learning generalization aims to learn generic feature representations agnostic to domains (or datasets) and make trained models perform well in completely new domains. To achieve this challenging goal, one needs to train models that can capture useful information observed commonly in multiple domains and recognize semantically related but visually inconsistent examples effectively. Many real-world problems have similar objectives so this task can be widely used in various practical applications.	Comment by Moravec: Again, one or two examples would be great!
Generalization techniques are classified into several groups depending on their approaches. Some algorithms define novel loss functions to learn domain-agnostic representations [7,15,20,21] while others are more interested in designing deep neural network architectures to achieve similar goals [6,13,17]. The proposed research belongs to the second category, i.e. network architecture design methods. In particular, we will explore and introduce novel adaptive models for the three following key-components of deep learning such as: data normalization, regularization and optimization (“Learning to Optimize Domain Specific Normalization for Domain Generalization”). These adaptive models enhance both performance and stability, striking a delicate balance between model simplicity and complexity. 	Comment by Moravec: My suggestion is to reword this to emphasize the components better. Then, when the reader sees each heading below, they will be oriented. To make it really clear, you could also draw a block diagram of a deep learning model and show where each of these approaches is implemented. This would show how you plan to optimize the whole architecture to improve generalization.	Comment by Moravec: This is really nice and sells the overall goal of the research well.
In other words, our adaptive models, as proposed, empower us to achieve the same task accuracy for simple models as is obtained by complex models while mitigating its risk of overfitting that is common for complex models but not for the simple ones.
Data Normalization	Comment by Moravec: Overall, this section flows well. I have a few small comments below, but the main point and the connection to generalization is clear.
Data normalization and deep model generalization are closely related in the context of training deep neural networks. Data normalization is a preprocessing technique used to scale and center the input data, while deep model generalization refers to a model's ability to perform well on unseen data. Normalization affects model generalization due to the following:
1. Stabilizes Training: Deep learning models, particularly neural networks with many layers, are sensitive to the scale and distribution of input features. When the input features have vastly different scales, some weights in the network may update much more slowly than others during training. This can lead to convergence issues and longer training times. Data normalization scales all input features to a similar range, which helps in stabilizing the training process.
2. Faster Convergence: Normalizing the data often results in faster convergence during training. This is because the optimization algorithm can more effectively navigate the loss landscape when the features are on a similar scale. Faster convergence can lead to better generalization since the model doesn't spend as much time fitting the training data noise.
3. Mitigates Overfitting: Data normalization can also help in preventing overfitting. Overfitting occurs when a model becomes too complex and starts fitting the noise in the training data rather than capturing the underlying patterns. When input features are normalized, it becomes less likely for the model to overfit because it focuses on the relevant patterns rather than the noise.
4. Improved Gradient Flow: Normalizing the data can lead to improved gradient flow during backpropagation. This means that the gradients used to update the model's weights are less likely to explode or vanish. Improved gradient flow can help the model generalize better because it can learn more effectively from the training data.
5. Transferability: When you train a deep model on normalized data, it's more likely to transfer well to new and unseen datasets. Since the model has learned patterns that are invariant to the scale and distribution of the input features, it's better equipped to handle a broader range of data, improving its generalization capabilities.

In summary, data normalization plays a crucial role in enhancing the generalization capabilities of deep learning models. It helps stabilize training, prevent overfitting, and ensures that the model can effectively learn and generalize patterns from the data. A variety of established normalization techniques have been devised to address these challenges. For instance, Batch Normalization [16] conducts global normalization across the batch dimension. However, its sensitivity to batch size and the impracticality of batch-wise normalization during inference necessitate the use of pre-computed mean and variance values derived from the training set via running averages [16]. Nevertheless, these pre-computed statistics may become unreliable when the distribution of the target data shifts, creating disparities between the training and testing phases. To mitigate issues related to the batch dimension, alternative normalization methods [17-19] have surfaced. Layer Normalization (LN) [17] operates over all channels along the layers dimension, while Instance Normalization (IN) [18] conducts calculations akin to BN on individual samples. Weight Normalization (WN) [19] introduces filter weight normalization as an approach. Despite their merits, these techniques sometimes fall short of achieving the accuracy levels demonstrated by Batch Normalization (BN) in various visual recognition tasks. A more recent technique, Group-Normalization (GN), addresses the batch dimension challenge by segmenting channels into groups and normalizing features within each group [20]. GN initializes channel groups based on sequential order in the first epoch and maintains the same groups throughout the whole training. However, this assumption relies on the premise that the deep network will progressively learn optimal channel weights, which is not universally valid. The effectiveness of this method exhibits variability. Despite all these normalization techniques, the intricate challenges posed by medical images persist as an ongoing pursuit. The impact of normalization on learning generalization is clear and well-known. Proper normalization techniques can contribute to improved generalization by making the training process more stable, reducing overfitting, and enhancing the model's ability to handle variations in the data distribution. 	Comment by Moravec: This is not well connected to the previous text because it is concerning medical images. Is it needed?	Comment by Moravec: You could cut this because you already state this above.
In this research grant, our aim is to delve deeper into the normalization-generalization relationship, studying the impact of hybrid normalization on the generalization of deep network. To do that, we will introduce an innovative adaptive strategy that overcomes the constraints of existing normalization methods. 	Comment by Moravec: This paragraph is good and clearly states the research gap to be addressed. 

Exponential Moving Average (EMA) Optimization	Comment by Moravec: This threw me because it is not the same order as the list of key components above. It would be better to switch the order above or the order of these sections so that the two match. I also recommend changing the name so it matches the item in the list above. This just reduces the burden on the reader.

As far as the content of this section, the content is good, but I have some comments on the order. Please see my comments below for details.

You say there are two main goals and a third one, but I'm unsure which is which. We can clarify that at the meeting. 
Deep learning architectures heavily rely on adaptive and non-adaptive optimization algorithms. These methods improve convergence towards global minimum through techniques such as momentum, individual learning rates, and exponential moving averages. Example optimizers are SGD, RMSprop, Adam, AdaGrad, AdamW, AdaHessian and MAS that combines SGD and Adam for better convergence and generalization. Deep EMA-based (Exponential Moving Average) optimizers play a crucial role in enhancing the generalization capabilities of deep neural network models. The relationship between model generalization and Deep EMA-based optimizers can be explained as follows:	Comment by Moravec: This is where I recommend moving the detailed material on EMA-based optimizers. (Please see my comments below for more details.)
1. Stabilizing Training: Deep EMA-based optimizers introduce stability into the training process. They maintain a smoothed version of the model's weights over time, which can help the model avoid rapid fluctuations during training. This stabilization can prevent the model from fitting the noise in the training data (and identifying the real data patterns, as should be), thus lead to better generalization.
2. Noise Reduction: During the training of deep neural networks, the optimization process can sometimes encounter noisy updates, especially when using small batch sizes or when the loss landscape is complex. Deep EMA-based optimizers, by averaging parameter values over time, reduce the impact of such noise. This leads to more consistent weight updates and can help the model generalize better by focusing on the underlying patterns in the data.
3. Regularization: Deep EMA-based optimizers effectively act as a form of regularization. By maintaining an exponential moving average of the model's weights, they encourage the model to explore more stable regions of the parameter space, which often correspond to better generalization. This regularization effect can help prevent overfitting, where the model becomes too specialized to the training data.
4. Memory of Past Information: Deep EMA-based optimizers retain a memory of past parameter values. This memory is beneficial for generalization because it allows the model to remember useful information from earlier stages of training, even as it continues to adapt to the current data. This can be especially valuable when the dataset is large or noisy.
5. Improved Exploration-Exploitation Balance: Deep EMA-based optimizers help strike a better balance between exploration (trying out new weight configurations) and exploitation (refining the current best-known configuration). This balance can contribute to improved generalization by ensuring that the model explores a wider range of solutions before settling on a final one.
These benefits make Deep EMA-based optimizers a valuable tool for improving the ability of deep neural networks to generalize well to unseen data.
Identifying trends (Refs should be taken from our paper)	Comment by Moravec: I had a hard time understanding the purpose of this section. But now I see it is discussing the research gap in detail. I suggest getting rid of the heading, which is not immediately clear. I also recommend a bold-text paragraph summarizing the research gap and how you will address it (like you did for the Data Normalization section above). 
As far as shortening the paper, I think you could make this much more concise.
Despite the extensive efforts made to bridge the generalization gap between stochastic gradient descent (SGD) variants and adaptive methods, the disparity persists \cite{gupta2021adam}. A key limitation of existing adaptive methods arises from their limited ability to adapt effectively and quickly to data trends during the optimization process. Maiya et al. introduced the Tom optimizer (Trend over Momentum) for Computer Vision tasks, which employs Holt's Linear Trend Model as a time series model to predict gradient trends \cite{Tom}. By leveraging the gradient rate of change between successive time steps, Tom introduces a trend component to enhance convergence. However, a drawback of Tom lies in its assumption of persistent seasonal gradient trends, which may not hold true in real-world scenarios. Notably, in the domain of finance, Kolkova et al. demonstrated that technical indicators typically outperform Holt's smoothing in identifying trends in seasonality-free financial data \cite{kolkova2018indicators}. To address this limitation, our proposed approach aims to enhance adaptive methods by integrating a powerful technical indicator into the optimization process. By doing so, adaptive methods become more responsive to trend changes during the optimization process, leading to improved performance and better adaptation to real-world data dynamics. 	Comment by Moravec: This sentence is not clear. Do you mean that SGD variants yield models with better generalization than adaptive methods?

Exponential Moving Average (EMA) 	Comment by Moravec: This circles back to EMA. To keep the text linear, I suggest considering moving this up so that it is closer to the first mention of EMA.
This could also be shortened to reduce the paper length.
EMA is a widely used technical indicator that applies exponentially decreasing weighting factors to past data, smoothing out short-term fluctuations, thus it is utilized to denoise the data during the optimization process. Denoting  a data sequence up to time , EMA combines recursively the current and previous data values by

 is a tuning parameter in EMA that determines its responsiveness to data changes, where lower values provide faster response but less effective denoising. Double Exponential Moving Average (DEMA) and Triple Exponential Moving Average (TEMA) are extensions of EMA used in finance for trend assessment (\cite{Mulloy}). They incorporate lag correcting terms to enhance noise reduction and trend identification. TEMA demonstrates superior responsiveness to rapid data changes compared to EMA. The inclusion of lag correcting terms in TEMA reduces lag while maintaining smoothness. It is well known that the choice of deep optimizer can affect the network performance. 
Learning Regularization 	Comment by Moravec: This section also flows quite well.  
The dependence between regularization and deep model generalization is a fundamental concept in machine learning and deep learning. Regularization techniques are employed to improve a model's generalization performance, which refers to its ability to make accurate predictions or classifications on unseen data. It is done thanks to the following:
1. Prevention of Overfitting: Regularization techniques, such as L1 and L2 regularization (also known as weight decay), dropout, and early stopping, are designed to prevent overfitting. Overfitting occurs when a model becomes too complex and starts fitting the noise in the training data rather than capturing the underlying patterns. Regularization introduces constraints or penalties on the model's parameters, discouraging it from becoming overly complex. By doing so, regularization helps the model generalize better because it focuses on the relevant patterns rather than the noise.
2. Smoother Decision Boundaries: Regularization methods encourage the model to learn smoother decision boundaries. Instead of fitting the training data points exactly, the model learns to make predictions based on broader patterns and trends in the data. This results in more stable and generalizable predictions when applied to new, unseen data.
3. Weight Pruning: Techniques like L1 regularization encourage sparsity in model parameters by driving some weights to become exactly zero. This process effectively prunes unnecessary connections in the model, reducing its capacity to memorize training data and making it more likely to generalize well.
4. Dropout as a Form of Noise Injection: Dropout is a regularization technique that randomly deactivates a fraction of neurons during training. This introduces noise and variability into the training process, making the model more robust and less prone to overfitting. Dropout has been shown to improve generalization by preventing the model from relying too heavily on any single neuron or feature.

By striking a balance between fitting the training data and capturing the underlying patterns, regularization helps deep models perform well on new, unseen data, making them more robust and reliable in practical applications. To improve dropout performance, researchers have explored two main avenues:
· Sampling from Different Distributions: Some approaches involve sampling dropout masks from distributions other than Binomial (Ref).
· Adaptive Dropout Probabilities: Others focus on adapting the dropout probability based on prior knowledge of the network. For instance, Keshari, Singh, and Vatsa (2019) use stochastic gradient descent (SGD) to learn a strength parameter for guiding dropout regularization of each node. Meanwhile, Wang, Zhou, and Bilmes (2019) normalize the dropout probability at each layer and training batch to maintain a consistent effective dropping rate.
Most existing dropout regularization methods remove individual activations within each unit independently, either with a fixed or adaptive probability. To apply adaptive dropout it should be clear that visual structures in input images activate corresponding regions in convolution feature maps (He et al. 2015). This suggests that feature maps with similar activation patterns should be stochastically dropped to reduce co-adaptations. Nevertheless, these feature maps also encode information about intra-class variation in latent semantic features (Kim et al. 2017). This intriguing insight leads to explore the adaptive dropout approaches. The authors in [Group-Wise Dynamic Dropout Based on Latent Semantic Variations] propose 'group-wise dropout', a method that adapts to latent semantic variations while simulating dynamic sparseness in the network, ultimately improving object recognition performance. The authors in (Tompson et al. 2015) proposed spatial dropout, a random subset of activations in feature maps are dropped independently to reduce spatial correlations. Poernomo and Kang (2018) introduced 'cross-map dropout', which simultaneously drops or retains elements at the same coordinate on different feature maps. Additionally, Zhang, Yang, and Feng (2018) developed 'region dropout' by considering salient regions with fixed size and relative positions for training. However, the availability of these salient regions may not always be guaranteed for general object recognition problems. In the realm of adaptive dropouts, Wang and Manning (2013) demonstrated a Gaussian approximation to dropout, while Kingma, Salimans, and Welling (2015) proposed 'variational dropout' by connecting global uncertainty with dropout rates to optimize a generalized Gaussian dropout. Wager, Wang, and Liang (2013) analyzed dropout training as a form of adaptive regularization, while Ba and Frey (2013) updated the elementwise probability for mask matrix generation based on activation output. Zhuo, Zhu, and Zhang (2015) extended the overlaid model to learn adaptive dropout rates for different neurons or groups of neurons. Keshari, Singh, and Vatsa (2019) introduced 'guided dropout' to drop network nodes with high strength to encourage low-strength nodes, while Wang, Zhou, and Bilmes (2019) proposed 'Jumpout', which samples the dropout probability from a monotone decreasing distribution. These methods drop unit activations independently, but feature visualization studies have shown that interactive information between feature nodes can be beneficial for improving object recognition performance (Kim et al. 2017; Du et al. 2018). [Group-Wise Dynamic Dropout Based on Latent Semantic Variations]. Nonetheless, the primary hurdle faced by these various methodologies stems from their substantial computational demands and the departure from randomness. The papers on adaptive knowledge-based dropout make concerted efforts to thwart the co-adaptations between neurons through various strategies. However, if these efforts fall short, there exists a significant chance of overfitting. 	Comment by Moravec: This states the research gap. I would suggest stating that the adaptive methods in this proposal will address that in bold text, like you did for the Data Normalization section above.

Research objectives & expected significance
This research is dedicated to conducting a comprehensive exploration of the generalization abilities within deep learning. Our primary objective is to gain a deeper understanding of the underlying factors that drive generalization in deep neural networks, enabling high accuracy for simple models without the risk of overfitting as is common for complex models. To achieve this goal, we will delve into the practical implications of various core elements, including normalization, optimization, and regularization. Through systematic practical analysis, we aim to unearth insights and formulate conclusions that contribute to an enhanced comprehension of deep network generalization. The expected significance of this work lies in its potential to:
· Improve Model Performance: By developing adaptive strategies for data normalization, optimization, and dropout regularization, this research can lead to improved model accuracy and reliability.	Comment by Moravec: This list is clear and specific. 
· Enhance Generalization: The insights gained from these investigations can contribute to models that generalize better to unseen data, making them more applicable across diverse domains.
· Expand Knowledge: The study of higher-order EMAs, hybrid data normalization, and multi-level dropout introduces novel concepts that expand our understanding of deep learning.
· Real-world Applications: The research outcomes have the potential to benefit a wide range of applications, from computer vision to natural language processing, audio analysis, and beyond.
The specific research goals that will enable us to obtain this significance are:	Comment by Moravec: The following list is also clear and well organized.
· AIM 1: Investigating Adaptive Strategy for Hybrid Data Normalization
Our first objective revolves around exploring the potential of hybrid adaptive data normalization techniques, incorporating knowledge-based and data-driven approaches. 
Diverging from the common fixed-grouping Group Normalization approach, our methodology harnesses the concept of channel similarity to dynamically re-order the data, thereby elevating both adaptability and the generalizability of the normalization process. Moreover, our framework empowers flexible adjustments in group sizes, enabling tailoring of normalization to specific data characteristics. Through this investigation, we aim to evaluate the impact, strengths, and potential limitations of this hybrid model on data normalization procedures. Additionally, we will assess the influence of our adaptive normalization on the generalization capacity of the learning model.	Comment by Moravec: Do you have key research aims for this one?

· AIM 2: Exploring High-Order Exponential Moving Average (EMA) Optimizers
Building on the success of our recent work introducing the Triple Exponential Moving Average (TEMA) optimizer, we strive to push the boundaries further by exploring higher-order EMA-based optimization techniques to enhance performance and stability of deep optimization. This research endeavor entails a thorough examination of higher-order Exponential Moving Averages (EMAs) and their potential influence on the overall performance of deep learning models, with a particular emphasis on their effects on generalizability and accuracy. Our study encompasses an evaluation of the stability of these higher-order frameworks across a diverse spectrum of datasets, architectural configurations, and training scenarios. Key research questions to be explored include whether higher-order EMAs exhibit improved generalization due to their enhanced ability to accurately identify and track gradient trends with minimal lagging, whether there exists an optimal order beyond which generalization diminishes, and whether adaptation of the optimizer order to network characteristics (such as depth) preserves generalizability.

· AIM 3: Studying Multi-level Dropout Regularization for Enhanced Adaptation
Conventional dropout techniques, alongside their adaptations, are routinely employed to deal with features co-adaptation within individual hidden units. Inspired by innovative concepts like group dropout, we propose a novel approach for dropout regularization. This technique aggregates neurons into distinct groups, guided by spatial and semantic correlations among neighboring neurons. This is a knowledge-based level. Then, we introduce a randomness-based level by randomly selecting a specific neuron from each group. That way we enjoy both worlds - we improve the dropout concept by incorporating knowledge into the procedure but at the same time by randomly selecting specific neurons from each group for mitigating overfitting, thus augmenting the overall resilience and robustness of the model. Key research questions to be explored include whether knowledge-based regularization yields superior performance in comparison to traditional complete random dropout, and whether it enhances model generalizability or do the opposite, by introducing a novel regularization approach that is partially based on inferred knowledge, in addition to the random procedure. 

By addressing these objectives, we aim to contribute significantly to the advancement of deep learning, ultimately empowering the development of more reliable and adaptable deep learning models with broad applicability across various domains.

Detailed Research Plan	Comment by Moravec: The content of this section is good. I also suggest stating here or above the facilities and infrastructure are available (if appropriate). 
In addition, I appreciate this can be difficult for topics such as computer science, but I also suggest considering if some of the aims in this section can be reworded as specific deliverables and milestones. 
· AIM 1: Investigating Adaptive Strategy for Hybrid Data Normalization	Comment by Moravec: This section flows well. I have one comment below.
Our research introduces a novel hybrid normalization strategy that integrates domain knowledge into data-driven learning. This pioneering approach marks a significant leap in deep learning normalization techniques. Our model is the first to represent a unique integration of data-driven and knowledge-based techniques for data normalization. Unlike conventional Group Normalization that relies on fixed channel-grouping, our approach leverages the concept of channel similarity to dynamically organize the channel data. This dynamic organization not only augments the efficiency of the normalization process but also enhances its adaptability to diverse datasets and as a result will increase generalizability. An intriguing aspect of our framework is its ability to facilitate flexible adjustments in group sizes, enabling tailored normalization that aligns precisely with the unique characteristics of the data. In addition to these core objectives, our research endeavor raises intriguing questions:	Comment by Moravec: As I read through the section, it was difficult to tell what has already been implemented and what has yet to be implemented.  I recommend paying attention to the language so it is always clear what has been implemented and what remains to explore.
· How does the incorporation of domain knowledge into normalization impact the efficiency and adaptability of the process, and what implications does it hold for real-world applications?
· Can adaptive normalization, with its dynamic data organization and adjustable group sizes, mitigate common challenges associated with data imbalance and heterogeneous datasets, potentially revolutionizing the way we preprocess data for deep learning?
· What are the trade-offs involved in adopting normalization, and are there scenarios where traditional normalization techniques still outperform our hybrid approach?
· Does the adaptability introduced by our normalization strategy result in enhanced generalization capabilities of deep learning models, and if so, to what extent can we measure this improvement across various tasks and domains?
To do that, in our innovative Similarity-based Grouping (SGN) technique, the learning process is periodically paused every few epochs to engage in channel re-clustering, as illustrated in Figure 1.



Figure 1: The proposed similarity-based group normalization approach
The whole grouping procedure is done offline. It follows the steps below: 
· K-means Clustering and outliers' exclusion: Isolation Forest algorithm is used to exclude channels that are outliers (i.e considering the mean and variance of their features), followed by K-means clustering that is calculated according to the inlier channels only. See Figure 2 for visualization of the importance of the channels clustering that is carried out in SGN.
· Integration of the re-ordered channels in the learning process: Having established the offline channel clusters, all channels are now grouped into individual clusters and are then re-integrated to the network. From that time point, the learning continues until the next re-clustering procedure.

Two different grouping strategies are explored –
· SGN-V1 – single mini-batch re-clustering - clustering is applied considering all channels in a whole mini-batch. As a result, channels from different images can be grouped together. This allows higher flexibility, normalizing channels with similar statistics. However, this approach also introduces a constraint during inference. Given that the grouping procedure during inference should mirror the one that is applied during training, both phases require identical batch sizes. While certain applications that are based on temporal information (like voice recognition \cite{mcgehee1944experimental}, video processing \cite{liu2020deep}, and NLP \cite{nadkarni2011natural}) can manage inferences on a cluster of frames (i.e., mini-batch size greater than 1), others may face operational challenges under this restriction.
· SGN-V2 – single image re-clustering - re-clustering allows channels grouping within a specific image only. As a result, this SGN version allows testing/inference across any batch size (as it anyway normalizes each image separately), making it a preferred choice for applications with a single-image testing. On the other side, our exploration shows that this approach diminishes the potential for optimal alignment among channel group statistics. Our experimental findings indicate that SGN-V2 marginally underperforms when compared to SGN-V1.
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(a)                                                   (b)                                              (c)
Figure 2: Each point illustrates the mean (x-axis) and the variance (y-axis) for individual channels. (a) Original GN - without clustering, channels groups are highly mixed. (b) SGN-V1. (c) SGN-V2

We perform re-clustering periodically every 10th epoch because of the following reasons:
· As training progresses, the weights gradually change their values, enhancing specific image features while diminishing others. Consequently, every few iterations, re-clustering becomes necessary due to shifts in the channel group statistics.
· Maintaining the same groupings based on initial training statistics can lead to overfitting. Regularly altering the group sequences during the restraints provides added regularization to the network, helping prevent overfitting.
Additionally, we will study two additional criteria for our analysis:
· Unequal Groups: traditionally, group normalization relies on fixed and equal group sizes. However, the fact that in our approach we use K-means clustering can help to generate groups of channels with varying sizes. This will help to study the accuracy and the significance of channel separation, resulting in more precise clusters.
· STD re-calculating: Prior to each re-clustering step, we will calculate the standard deviation (std) of channels within each group. Groups with low standard deviations will be excluded from the subsequent channels re-clustering step. In such cases, the re-clustering process will be reserved exclusively for groups exhibiting high standard deviation, surpassing a predefined threshold. This strategy ensures that resources are allocated efficiently, optimizing the re-clustering process for maximum impact.
Preliminary results	Comment by Moravec: This is good and will add value to the proposal.
To evaluate the strength of our technique, we first validate it on CIFAR-100 benchmark. We employed the widely-used ResNet50 architecture, which incorporates convolutional layers and pooling layers to mitigate overfitting. The training involved 100 epochs for all models and a learning rate of 0.001 and mini-batches of 8/16 images per batch were used.  Figure 3 demonstrates a comprehensive experimental analysis involving three distinct versions: SGN-V1, SGN-V2, and GN. SGN-V1 demonstrates a commendable enhancement in performance, registering a 3.15\% improvement over the original GN. Furthermore, nuanced observation reveals an additional uplift of 1.32\% in the performance of SGN-V2 compared to GN. These findings underscore the progressive refinements and superiorities of the SGN versions over the conventional GN.
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Figure 3: Comparative analysis of accuracy curves for the CIFAR-100 dataset when implemented on the ResNet50 architecture. The graph illustrates the test accuracy in relation to the number of training epochs. This comparison encompasses two normalization methods: SGN V1, SGN V2, and GN. The intent is to provide a clear perspective on the performance dynamics of each method across the training process.
Pitfalls and Alternative Approach	Comment by Moravec: This is also good and will add value to the proposal.
We minimized the risks for pitfalls by presenting very promising preliminary results. Obviously, testing our proposed method on a larger and more diverse cohort may present some new challenges that we will have to deal with. In the event that the similarity-based method will not deliver satisfactory results, we will explore a random-based re-grouping approach, which we have already begun to explore. It is similar to our similarity-based approach that we presented above, with one main difference – here the channels will be re-grouped randomly. The motivation to do that is our assumption that generating a "mess" every nth epoch will enforce the learning architecture to be more robust and with stronger abilities.  

· AIM2 – Exploring High-Order Exponential Moving Average (EMA) Optimizers
We strongly believe that by introducing a higher-order EMA optimizer that is able to track gradient changes and trends much better with minimal lagging, we will be able to reduce the dependence on different algorithmic choices for optimization such as the initialization, update rules, learning rate, and stopping condition. In our recent paper [Peleg, Weiss, Hoogi], we introduced a novel TEMA-based optimizer that is based on a 3rd-order Exponential Moving Average. It is designed to accurately estimate the gradients' first and second moments to obtain less biased estimation of the true gradient at each time step, as compared to adaptive methods that use the standard EMA, such as Adam. This is achieved by TEMA 's ability to reduce lag in the estimation of the gradient moments while still performing effective denoising. The main contributions of this paper are:
· High-order EMAs: As far as we know, our previous paper and this extended proposal are the first to exploit the great potential of high-order Exponential Moving Averages (EMAs) for improved optimization, overcoming the limitations of first-order Exponential Moving Averages (EMA) such as inherent lag and insufficient adaptation to data trends. Our previous paper explored the third order only and here we want to investigate a series of high order EMAs
· Active Guidance in Optimization: In finance, Triple Exponential Moving Average (TEMA) has been used as a passive indicator, merely compared to market changes without directly affecting them. However, here we will explore how higher-order EMAs actively guide the optimization process and affect network weights, extending its applicability and usefulness in high-dimensional optimization problems.
We have compelling evidence that the higher-order Exponential Moving Average (EMA) outperforms the commonly used EMA optimizers in terms of stability, robustness, and accuracy. This finding represents a significant validation of the concepts underpinning the current grant. The initiative of this grant proposal involves a thorough investigation of higher-order EMAs and their potential impact on the overall performance of deep learning models, with a specific emphasis on their influence on accuracy and model generalization. Our study encompasses a comprehensive assessment of the stability of these higher-order frameworks across a diverse spectrum of datasets, architectural configurations, and training scenarios. We are particularly interested in exploring several intriguing research questions:
· Do higher-order EMAs exhibit improved generalization abilities owing to their enhanced capacity to accurately identify and track gradient trends?
· Is there a specific order beyond which the generalization performance starts to diminish, providing insights into the optimal order for practical use?
· Should the selection of the order be tailored to the characteristics of the network, such as its depth, to maintain consistent generalizability across various neural network architectures?
Through this research, we aim to not only expand the EMA-based optimization but also provide valuable insights into the intricacies of selecting the appropriate higher-order EMAs for deep learning models, ultimately advancing the field's understanding of optimization techniques and their impact on model generalization.

Our Proposed Method	Comment by Moravec: This section could probably be made more concise.
While the simple  in (1) denoises the data effectively, it also introduces lag in the estimation, which may result in inadequate gradient updates, and consequently in suboptimal performance. 
For a sequence , recall that  denotes the sequence obtained after applying exponential moving average on  To reduce the lag, the Double Exponential Moving Average  adds to  the lag correcting term

                                                          (2)
The lag correcting term in (2) can be seen as a smooth estimation of the true (but noisy) lag between the true data x and the naive smooth estimator , as measured by their difference . Adding the correction term in (2) to  we obtain  

One can go further and consider a lag correction to the first lag correction, namely
                                    
Adding the term in (4) to  in (3) gives ,



When  one can obtain the common-used formula for ,


In any other case, where , the equation takes on a slightly different form while retaining a similar underlying concept. Straight forward calculation shows that in this case, 

where
 

In this research, we will introduce and explore the generalization of EMA to general  order EMA, call it  as follows.  denote the recursive application of EMA on  for  times. We will also define 
                                                       (9)
and for k=1,2,3 …
                                      (10)
Let  and for k=1,2,3… 
                                     (11)

 can be seen as -order lag correction operator. The calculation below shows that


                                 
Higher-order KEMAs sacrifice more smoothness in exchange to more aggressive lag reduction. Thus, in practice the order should be selected to appropriately balance between reducing the lag on the one hand and denoising the noisy gradients on the other hand. The appropriate order highly depends on the problem at hand. Note that in general, additional EMAs at each level introduce additional hyper-parameters to be tuned. Evidently, a larger k entails larger coefficients in the expansion for , making the high-order  less stable to hyper-parameters tuning. This affects too the choice of order one should use. From the linearity of the EMA operator we may w.l.g. expand  and  as the sums




By definition
                                          (12)



Defining for convenience  and plugging in the last sum into (8) gives
 


Matching the coefficients of  in (13) to that in (10) gives the recursive equation,



Recalling that by definition  and , the solution to (14) is as in (10), since 



To show the expansion of  in (9), we have 

Matching the coefficients of  to that in (11), we obtain the recursive equation,
 


Since  and by definition , we obtain that the solution is as in (9) since 



According to the developed equations, we will study the performance of high-order optimizers, while carefully explore their stability that is affected by . In a first sight, we expect that higher-order might be a bit unstable because of  scale which is bigger than the one obtained for TEMA 

Preliminary results (these results are the results from our TEMA-based paper, we didn’t start to work on the higher-order KEMAs, is there a way to include them as well?)	Comment by Moravec: I'm not sure what you mean here? Are you asking if you can include some results if they have not been published or if you should mention that the KEMA research has not yet started? I think it is best to state the current status of the research here. You could mention here that TEMA results have inspired the investigation of the higher-order KEMAs as the next step. 
By now, we have conducted an extensive validation of our preliminary TEMA-based optimizer, subjecting it to rigorous testing across a wide range of domains. Our evaluation spanned five diverse datasets (CIFAR-10, CIFAR-100, PASCAL-VOC, MS-COCO, and Cityscapes), encompassing 14 distinct architectural configurations, and addressing various computer vision tasks, including object detection, image classification, and semantic understanding. TEMA-BASED OPTIMIZER underwent thorough comparison with six different optimization methods, namely SGD with momentum, Adam, AdamW, AdaHessian, AdaBound, and AdaGrad. To ensure the reliability of our findings, we averaged the results over two different weight initializations.
CIFAR-10 and CIFAR-100
Our TEMA-based optimizer exhibited significant superiority over both Adam and SGD in 83.3% of the tested architectural setups on the CIFAR-10 and CIFAR-100 benchmarks. Furthermore, it outperformed other optimizers such as AdaBound, AdamW, AdaGrad, and AdaHessian, consistently achieving the highest accuracy. Across all architectures analyzed for CIFAR-10/100, our TEMA-based enhanced the average classification accuracy by 1.16% (AdamW), 1.57% (AdaBound), 3.52% (AdaHessian), and a remarkable 16.33% (AdaGrad). Additionally, our optimizer showcased smoother test-accuracy curves, reducing the impact of random gradient estimation fluctuations compared to standard Exponential Moving Average (EMA), thanks to TEMA's less biased estimation of the true gradient.
Pascal-VOC 
Our study demonstrated that our TEMA-based optimizer surpassed all the compared optimizers (SGD, Adam, and AdamW) in optimizing the YOLOv5-s and YOLOv5-m architectures, as evidenced by higher values for mean Average Precision (mAP) at an Intersection over Union (IoU) threshold of 0.5. We also improved mAP@0.5 by 6.56% in YOLOv5-s and by 7.76% in YOLOv5-m, highlighting its exceptional performance in optimizing models for object detection.
MS-COCO 
Our optimizer significantly outperformed SGD, Adam, and AdamW in optimizing the YOLOv5-n architecture across all key statistical parameters (mAP@0.5, Precision, Recall, and F1-score). It achieved an average improvement of 16.9% for mAP@0.5, 16.1% for Precision, 15.7% for Recall, and 15.16% for F1-score. These results underscore the remarkable effectiveness of our optimizer in enhancing the performance of object detection models.

Cityscapes benchmark
Results show that our optimizer improves the mean IoU results of SGD, Adam and AdamW by 5.3%, 1.4% and 1.9% respectively.

In conclusion, our extensive experimentation and comparisons across a wide array of datasets, architectures, and computer vision tasks unequivocally establish the consistent superiority of our optimizer in delivering state-of-the-art results. This positions it as a valuable tool for optimizing neural network models across diverse domains. Furthermore, our comprehensive experimental setup underscores our optimizer's robustness and showcases its ability to provide less noisy gradient predictions. Importantly, it demonstrates that the accuracy achieved with our simple network is on par with, if not superior to, the accuracy attained by other optimizers using more complex models from the same family (e.g., ResNet or DenseNet).	Comment by Moravec: I recommend adding an expected pitfalls and alternative approach section for Aim 2 here as well. 

· AIM3 - Studying Multi-level Dropout Regularization for Enhanced Adaptation
Expanding upon the notion of adaptive dropout, our research introduces an innovative adaptive model that leverages both knowledge and randomness to accommodate varying data scales. This research aims to shed light on the nuanced interplay between regularization techniques and model generalization, delving into the inherent strengths of randomness in contrast to incorporating knowledge or to the advantage of their combination. 
Our approach consists of three main steps:
· We employ a hybrid framework that combines Convolutional Neural Networks (CNNs) with Neural Additive Model (NAM) [REF] to enhance our model's performance. Specifically, our current architecture utilizes ResNet-34 as the foundational CNN structure. Within the middle layer of the ResNet, we seamlessly integrate the NAM model. This integration of NAM serves a dual purpose: 
1. Fine-Grained Neuron Analysis: NAM provides a valuable mechanism for discerning the individual contributions of neurons within the network. This level of granularity enables us to gain deeper insights into how specific neurons influence the model's predictions, enhancing our understanding of the network's inner workings.
2. Parameter Efficiency: An added advantage of incorporating NAMs lies in their ability to substantially reduce the number of network parameters. This reduction in model complexity results in more efficient computations, facilitating faster training and inference times.
· We will employ a similarity-based clustering according to the significance of individual neurons for the given task and their prominence within a particular feature map. 
· We will then apply a random selection of a predetermined percentage of neurons from each cluster to undergo dropout in each training epoch. 
Our first hybrid random-knowledge dropout approach ensures that the dropout procedure will not be fully random, but it will have a rationale behind it.
We will explore the following aspects:
· Knowledge-Enhanced Generalization: To what extent does the knowledge-driven grouping and dropout strategy enrich the learning model's performance by preserving crucial feature representations? Does this approach lead to more consistent and superior generalization compared to conventional random dropout, and if so, in what scenarios or network architectures is this effect most pronounced?
· Stability and Overfitting Mitigation: Does the carefully introduced randomness within the adaptive group dropout framework effectively mitigate overfitting to the training set? How does this approach strike a balance between model stability and the risk of increasing overfitting? Can it enhance the model's resistance to noise and perturbations in real-world data?
· Optimal Grouping Strategies for Robust Generalization: What are the key factors influencing the success of different neuron grouping strategies? Are there specific spatial or semantic relationships among neurons that are particularly conducive to robust generalization? How do these strategies adapt to varying dataset characteristics and network complexities?
· Transferability Across Domains and Tasks: To what degree can the benefits of adaptive group dropout be transferred across different domains, datasets, and tasks? Does this technique offer a transferable improvement in the generalization ability of deep learning models, and are there limitations to its applicability in specific contexts?

By addressing these refined research questions, our study aims not only to advance the understanding of adaptive group dropout but also to provide actionable insights into its role as a potent regularization tool for enhancing model generalization. We aspire to unravel the intricate interplay between knowledge-driven dropout strategies, model stability, overfitting mitigation, and the broader context of deep learning, contributing to the ongoing evolution of techniques that empower deep neural networks to generalize effectively across diverse datasets and real-world scenarios.
Preliminary results
Preliminary results show a significant improvement of 1.5% in the classification accuracy for CIFAR-100 when applying a ResNet34 network. Results also show a significant 70% decrease in the number of parameters and computational load of the learning architecture. 
Should be extended	Comment by Moravec: Okay! Thank you for the note.

Pitfalls and alternative approaches
Still have to be filled
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