Scientific Background 	Comment by Moravec: For this stage, I mainly just reviewed the content and made a few formatting changes. Overall, the content is good, and you have done really well at connecting the parts into a coherent whole. I was able to follow the proposal well. 

I do have a few suggestions regarding the organization (details are in the comments).
You mention in the text that simple, high-performance models are the goal, and this is clearly conveyed. Please also consider whether additional details that address 
* Who will be impacted (research and society as a whole)
* How you might measure impact
* new market opportunities (if any)
* how you will disseminate research (e.g., work with partners)
I also recommend adding a few details about available resources, and finally, the feasibility of the research. This can be added to the end.

After you have considered my overall suggestions and have finalized the first draft, I can do a full edit.
As far as paper length, you are right, it needs to be shortened by 16%, although you still have some content to add. I pointed out some parts that could be shorter in the comments. I am happy to do a word count reduction, where I reduce the word count without removing content in the first round of editing. We could then re-asses the length if needed.
Deep learning has witnessed unprecedented advancements in recent years, propelling artificial intelligence (AI) to new heights and enabling a wide range of applications, from computer vision and natural language processing to autonomous vehicles and healthcare diagnostics. Understanding deep learning calls for addressing the following questions ofto be addressed: (i) optimization — the effectiveness of gradient-based algorithms in solving neural- network training programs that are non-convex and thus seemingly difficult; —and (ii) generalization — the phenomenon of deep learning models that do not overfit the data,ting despite havingeven when they have many more parameters than examples to learn from. Existing analyses of generalization typically adopt the language of classical learning theory, abstracting away many details on from the considered setting at hand. Despite the the remarkable strides made in the field of deep learning, a striking gap exists in our understanding of how to consistently achieve robust and effective deep model generalization. This gap in the current literature underscores the critical need for further research, development, and innovation in this area. In this grant, I will study model generalization with and its relationship to the key blocks of normalization, optimization, and regularization key blocks. This endeavor promises not only to enhance our understanding of deep learning generalization but also to empower the deployment of more resilient, adaptable, and capable deep learning systems across diverse domains.	Comment by Moravec: There are two options here, the en-dash with spaces around it – and the em-dash with no spaces around it—either is fine as long as only one style is used. 
Deep Learning Generalization
[bookmark: _Hlk147666683]Deep model generalization refers to the ability of trained neural networks to make accurate predictions on data they have never not encountered during the training phase. The aim is to learn generic feature representations agnostic to domains (or datasets) and make enable trained models to perform well in completely new domains. Achieving this goal demands the development of models that can capture valuable information shared across multiple domains and demonstrate the ability to recognize semantically related but visually distinct examples. In essence, it is the litmus test for a deep learning model's practical utility, as real-world applications necessitate not only just memorizing the training data memorization but also understanding of the underlying patterns and relationships in a way thatto facilitates confident decision-making in new situations. Existing challenges include the need for strategies for data-efficient generalization in scenarios with limited data, the enhancement ofd model robustness, and techniques for efficient domain adaptation. Moreover, as deep models grow in complexity, the imperative for model generalizability and resource efficiency becomes more pronouncedgrows, as the concern is that higher model complexity results in higherincreases overfitting to the training data.	Comment by Moravec: I think just one term will do here. If not, please add it back in.
Generalization techniques in deep learning can be broadly categorized into various groups based on their approaches. Some algorithms revolve around the creation of innovative loss functions that facilitate the learning of domain-agnostic representations [1-–4]. These loss functions are designed to minimize the influence of domain-specific characteristics during training. On the other hand, aAnother set of techniques focuses on  the design of deep neural network architectures that are inherently robust to domain shifts, thereby promoting generalization [5-–7]. The research proposed in this grant falls into the latter category, specifically emphasizing the enhancement of network architectures to improve generalization capabilities. In particular, our research delves into and introduces novel adaptive models for three key deep-learning components of deep learning: data normalization, deep optimization and network regularization. These components play pivotal roles in the training process and the overall performance of deep neural networks. These adaptive models enhance both performance and generalizability, striking a delicate balance between model simplicity and complexity. In other words, our adaptive models, as proposed, empower us to achieve the same task accuracy for simple models as is that obtained by complex models while mitigating its the risk of overfitting, that which is common for in complex models but not for thein simple ones.	Comment by Moravec: The original can be used, but it is not strictly needed.	Comment by Moravec: This is really nice and sells the overall goal of the research well.
Data Normalization	Comment by Moravec: Overall, this section flows well. I have a few small comments below, but the main point and the connection to generalization is clear.
Data normalization and deep model generalization are closely related in the context of training deep neural- network straining. Data normalization is a technique used to scales and centers the input data to the network or to a specific hidden layer, while whereas deep model generalization refers to a model's ability to perform well on unseen data. Normalization affects model generalization due tofor the following reasons:
1. Stabilizes Training Stabilization: Deep learning models, particularly neural networks with many layers, are sensitive to the scale and distribution of input features. When the inputse features have vastly different scales, some network weights in the network may update much more slowly than others during training. This can, leading to convergence issues and longer training times. Data normalization scales all input features to a similar range, which helps in stabilizinge the training process.	Comment by Moravec: The original can be used, but this is slightly shorter.
2. Faster Convergence: Normalizing the data often results in faster convergence during training. This is because the optimization algorithm can more effectively navigate the loss landscape when the features are on a similar scale. Faster convergence can leads to better generalization since the model does n't not spend as much time fitting the training data noise.
3. Mitigates Overfitting Mitigation: Data normalization can also helps in preventing overfitting. Overfitting occurs when a model becomes too complex and starts fitting the noise in the training data rather than capturing the underlying patterns. When input features are normalized, it overfitting becomes less likely for the model to overfit because it the model focuses on the relevant patterns rather than the noise.	Comment by Moravec: Main definition of overfitting.
4. Improved Gradient Flow: Normalizing the data can lead to improved gradient flow during backpropagation. This means that; that is, the gradients used to update the model's weights are less likely to explode or vanish. Improved gradient flow can help the model generalize better because it can learn more effectively from the training data.
5. Transferability: When you train a deep model is trained on normalized data, it's it is more likely to transfer well to new and unseen datasets. Since the model has learneds patterns that are invariant to the scale and distribution of the input features, it's it is better equipped to handle a broader range of data, improving its generalization capabilities.
6. 
A variety ofSeveral existing established normalization techniques have been devised to address these challenges. For instance, Batch Normalization (BN) [8] conducts global normalization across the batch dimension. However, its sensitivity to batch size and the impracticality of batch-wise normalization during inference necessitate the use of pre-computed mean and variance values derived from the training set via running averages [8]. Nevertheless, Tthese pre-computed statistics may become unreliable when the distribution of the target data shifts, creating disparities between the training and testing phases. To mitigate such issues related to the batch dimension, alternative normalization methods [9-11] have surfaced. Layer Normalization (LN) [9] operates over all channels along the layers dimension, while Instance Normalization (IN) [10] conducts calculations akin to BN on individual samples. , and Weight Normalization (WN) [11] introduces filter weight normalization as an approach. Despite their merits, these techniques sometimes fall short of achieving theare not as accuracy levels demonstrated byte as Batch Normalization (BN) in various visual recognition tasks. A more recent technique, Group- Normalization (GN), addresses the batch dimension challenge by segmenting segments channels into groups and normalizing normalizes features within each groupthem [12]. GN initializes channel groups based onin sequential order in the first epoch and maintains the samese groups throughout the whole training. However, this assumption method relies on the premise that the a deep network will progressively learn optimal channel weights, which is not universally valid. The effectiveness of this method exhibits is variabilityvariable. 	Comment by Moravec: If an abbreviation isn't used in the text, it does not need to be defined.

In this research grant, our aim is to delve deeper into the normalization-–generalization relationship, studying the impact of hybrid normalization on the generalization of deep networks. To do that, we will introduce an innovative adaptive strategy that overcomes the constraints of existing normalization methods. 	Comment by Moravec: This paragraph is good and clearly states the research gap to be addressed. 

Deep Optimization	Comment by Moravec: This threw me because it is not the same order as the list of key components above. It would be better to switch the order above or the order of these sections so that the two match. I also recommend changing the name so it matches the item in the list above. This just reduces the burden on the reader.

As far as the content of this section, the content is good, but I have some comments on the order. Please see my comments below for details.

You say there are two main goals and a third one, but I'm unsure which is which. We can clarify that at the meeting. 
Deep learning architectures heavily rely heavily on adaptive and non-adaptive optimization algorithms. These methods, which improve convergence towards the global minimum through techniques such as momentum, individual learning rates, and Eexponential Mmoving Aaverages (EMAs). Example optimizers are Stochastic Gradient Descent (SGD), RMSprop, Adam, AdaGrad, AdamW, AdaHessian, and other optimizers that that combinee SGD and Adam for better convergence and generalization [13-–14]. These optimizers are mostly depended on Exponential Moving Averages (EMAs), that canwhich improve generalization according tofor the following reasons:
1. Stabilizing Training Stabilization: EMA-based optimizers introduce stability into the training process.  by They maintaining a smoothed version of the model's weights over time, which can help the model avoidreducing rapid fluctuations during training. This stabilization can prevent the model from overfitting to the noise in the training data (and help identifying the real data patterns, as it should be), thus lead to betterimproving generalization.
2. Noise Reduction: Dduring the training of deep neural networksnetwork training, the optimization process can sometimes encounter noisy updates, especially when using small batch sizes are small or when the loss landscape is complex. Deep EMA-based optimizers, by averaging parameter values over time, reduce the impact of such noise. This leads to more consistent weight updates and can helps the model generalize better by focusing on the underlying patterns in the data.
3. Regularization: EMA-based optimizers effectively act as a form of regularization. By maintaining an exponential moving average of the model's weights, they encourage the model to explore more stable regions of the parameter space, which often correspond to better generalization. This regularization effect can help prevent overfitting, where the model becomes too specialized to the training data.	Comment by Moravec: I cut this because overfitting has been defined above. Please check that this is okay.
4. Memory of Past Information: EMA-based optimizers retain a memory ofremember past parameter values. This memory is beneficial forts generalization, especially on large, noisy datasets, because it allows the model to can remember employ useful information from earlier stages of training, even as it continues to adapts to the current data. This can be especially valuable when the dataset is large or noisy.
5. Improved Exploration-Exploitation Balance: EMA-based optimizers help strike a better balance between exploration (trying out new weight configurations) and exploitation (refining the current best-known configuration). This balance can icontribute to improved generalization by ensuring that the model explores a wider range of solutions before settling on a final one.
These benefits make EMA-based optimizers a valuable tool for improving the ability of deep neural networks to generalize well to unseen data. However, although their strengths, EMA-based optimizers also have also several limitations. Existing adaptive optimization methods often struggle to quickly adapt to changing data trends during optimization. To overcome this, our financial-inspired approach integrates a robust technical indicator into adaptive methods. Our method is used as an active indicator, affecting the optimized weights of the network directly, contrary in contrast to the passive role that a technical indicator has performs in finance. 
Network Regularization 	Comment by Moravec: This section also flows quite well.  
The dependence between regularization and deep model generalization is a fundamental concept in deep learning. Regularization techniques are employed to improve a model's generalization performance, which refers to its ability to make accurate predictions or classifications without being dependenting on specific neurons. It is done thanks toThis improvement is thanks to the following:
1. Prevention of Overfitting Prevention: Rregularization techniques, such as L1 and L2 regularization, dropout, and early stopping, are designed to prevent overfitting. Overfitting occurs when a model becomes too complex and starts fitting the noise in the training data rather than capturing the underlying patterns. Regularization introduces constraints or penalties on the model's parameters, discouraging it from becoming overly complex. By doing soHence, regularization helps the model generalize better because it the model focuses on the relevant patterns rather than the noise.
2. Smoother Decision Boundaries: Rregularization methods encourage the model to learn smoother decision boundaries. Instead of fitting the training data points exactly, the model learns to make predictions based on broader patterns and trends in the data. This results in more stable and generalizable predictions when applied toon new, unseen data.
3. Weight Pruning: Ttechniques like L1 regularization encourage sparsity in model parameters by driving some weights to become exactly zero. This process effectively prunes unnecessary connections in the model, reducing its the model’s capacity to memorize training data and making it more likely toimproving generalize wellation.
4. Dropout as a Form of Noise Injection: Dropout is a regularization technique that randomly deactivates a fraction of the neurons during training. This introduces noise and variability into the training process, making the a model more robust and less prone to overfitting. Dropout has been shown to improves generalization by preventing the a model from relying too heavily on any single neuron or feature.

By striking the a balance between fitting the training data and capturing the underlying patterns, regularization helps deep models perform well on new, unseen data, making them moreimproving robustness and reliabreliabilityle in practical applicationse. To improve dropout performance, researchers have mainly explored adaptive approaches based on prior network knowledge of the network. For instance, the authors in [15] uses stochastic gradient descent (SGD) to learn a strength parameter for to guiding guide the dropout regularization of each node. Meanwhile, the authors in , and [16] normalizes the dropout probability at each layer and training batch to maintain a consistently effective dropping rate.
Most existing dropout regularization methods remove individual activations within each unit independently, either with a fixed or adaptive probability.  To apply adaptive dropout, it should be clear thatClearly, visual structures in input images activate the corresponding regions in convolution feature maps. This suggests that in adaptive dropout, feature maps with similar activation patterns should be stochastically dropped to reduce co-adaptations between neurons. Nevertheless, these feature maps also encode information about intra-class variation in latent semantic features. This intriguing insight leads us to explore the adaptive dropout approaches. The authors in [17] proposed 'group-wise dropout', a method that adapts to latent semantic variations while simulating dynamic sparseness in the network, ultimately improving object recognition performance. The authors iIn [18], proposed spatial dropout was proposed, in which a random subset of activations in feature- maps activations are dropped independently to reduce spatial correlations. Poernomo and Kang introduced 'cross-map dropout', which simultaneously drops or retains elements at the same coordinates on different feature maps [19]. Zhang et al. developed 'region dropout' by considering salient regions with fixed size and relative positions for training [20]. However, the availability of these salient regions may are not always be guaranteedalways available for in general object- recognition problems. Wang and Manning demonstrated a Gaussian approximation to adaptive dropout [21], while whereas Kingma et al. proposed 'variational dropout,' by which connecting connects global uncertainty with dropout rates to optimize a generalized Gaussian dropout [22]. In [23], dropout training was introduced as a form of adaptive regularization, while whereas the work in [24] updated the elementwise probability for mask matrix generation based on activation output. The authors inReference [25] extended extends the overlaid model to learn adaptive dropout rates for different neurons or groups of neurons. Nonetheless, the primary hurdle faced by these various methodologies stems from their departure from randomness. The works on adaptive knowledge-based dropout make concerted effortsstrives to thwart the co-adaptations between neurons through various strategies. However, if these efforts fall short, there exists a significant chance of overfitting exists because of the absence of randomness. 	Comment by Moravec: I think this shorter phrase still lets the paragraph flow well. Please check to ensure you agree.	Comment by Moravec: This states the research gap. I would suggest stating that the adaptive methods in this proposal will address that in bold text, like you did for the Data Normalization section above.	Comment by אסף חוגי/Assaf Hoogi: done
Research Objectives & and Expected Significance
[bookmark: klm_001]This research is dedicated to conducting a aims to comprehensively study of the generalization abilities of deep learning architectures. Its primary objective is to gain a thoroughly understanding of the underlying factors that drivinge generalization in deep neural networks, enabling high accuracy in high accuracy for simple models  (similarly comparable to that of complex models) but without the risk of overfitting as is common for in complex models. To achieve this goal, we will delve into the practical implications of three various core elements, including: data normalization, optimization, and regularization. Through systematic analysis, we aim to unearth insights and draw conclusions that contribute to an enhanced our comprehension of deep network generalization. 
[bookmark: klm]The expected significance of this work is multifaceted and extends across various domains, with its the potential to bring about transformative advancements in the field of machine learning and artificial intelligenceAI. Here's aAn expanded perspective on the key points is as follows:
1. Improved Model Performance:
· Enhanced Accuracy: Bby pioneering adaptive strategies for data normalization, optimization, and regularization, this research is poisedaims to elevate the performance of deep learning models. Through more generalizable methods, models can achieve higherincrease accuracy, reducing errors and misclassifications.
· Enhanced Reliability: Ithe improved model performance isn't is not just about accuracy but also about reliability. Models will become more consistent in their predictions, leading to greater trust and usability in real-world applications.
2. Enhanced Generalization:
· Better Adaptation to Unseen Data: Tthe insights derived from this research have the potential to revolutionize the way models generalize to data they haven't have not encountered during training. Models will be more adaptable, making them highly proficient in handling diverse datasets and real-world scenarios.	Comment by Moravec: The rule for capitalization after a colon is that if the text that is referred to is only one sentence, the word is not capitalized. If there is more than one sentence, it should be capitalized.  In this case, most list items are more than one sentence long, so this word should be capitalized for all list items.
· Cross-Domain Applicability: Ggeneralization improvements will render models versatile, capable of seamless adaptation to various domains, ensuring their applicability in a wide array of industries and problem spaces.
3. Expansion of Knowledge about Generalization:
· Novel Concepts: Tthis study introduces groundbreaking concepts that expand the understanding of deep model generalization. It delves into the intricacies of how models learn and generalize, shedding light on previously unexplored facets.
· Implications and Significance: Bby unraveling the implications and significance of our models, thise research will helps demystify the 'black box' nature of deep learning, enabling us to make more informed decisions.
· Underlying Factors: Uunderstanding the underlying factors that contribute to generalization provides valuable insights into model behavior. This knowledge can lead to the development of more robust, interpretable, and controllable models.
4. Real-world Applications:
· The potential for real-world applications is vast, spanning various fields. In computer vision, models could excel in recognizinge objects and patterns with unmatched accuracy. In natural language processing, they could become better at understanding context and generating human-like text. In audio analysis, models could distinguish sounds and speech with remarkable precision, benefiting industries like such as security and entertainment. The Many further applications extend even further, touching fields  are yet to be fully explored, making this research a pioneering force in the advancement of artificial intelligenceAI.	Comment by Moravec: The original was correct, but I reduced this down to reduce word count. If you prefer the original that is fine.
In summary, the expected significance of this work is profound, with the potential to push the boundaries of machine learning, impacting everything from model performance and generalization to the expansion of our knowledge in this field and its widespread real-world applications. This research has the power to reshape how we approach and utilize AI, unlocking new possibilities for innovation and problem-solving.
The specific research goals are as follows: 	Comment by Moravec: The following list is also clear and well organized.
· AIM 1: Investigating Adaptive Strategy for Hybrid Data Normalization
Our first objective revolves around exploring the potential of hybrid adaptive data normalization techniques,  integrating knowledge-based and data-driven approaches. 
Diverging from the common fixed-grouping Group NormalizationGN approach, our methodology harnesses the concept of channel similarity to dynamically re-order the data, thereby elevating both the adaptability and the generalizability of the normalization process. Moreover, our framework empowers flexibility of in group sizes (contrary in contrast to the original GN), enabling better tailoring of normalization to specific data characteristics. Through this research, we aim to study the impact, strengths, and potential limitations of this hybrid model on data normalization procedures. Additionally, we will explore the influence of our adaptive normalization on the generalization capabilities of the learning model.	Comment by Moravec: Do you have key research aims for this one?	Comment by אסף חוגי/Assaf Hoogi: What do you mean ? We will discuss in the zoom	Comment by אסף חוגי/Assaf Hoogi: Add research questions ?

· AIM 2: Exploring High-Order Exponential Moving Average (EMA) Optimizers
[bookmark: klm_002]Building on the success of our recent work introducing the Triple Exponential Moving AverageEMA (TEMA) optimizer [26], we strive to push the boundaries further by exploring higher-order EMA-based optimization techniques to enhance the performance and stability of deep optimization. This research endeavor entails a thorough examination of higher-order Exponential Moving Averages (EMAs) and their potential effect on the overall performance of deep learning models, with a particular emphasis on their effects on model generalizability and accuracy. Our study encompasses an evaluation of the stability of these higher-order frameworks across a diverse spectrum of datasets, architectural configurations, and training scenarios. Key research questions to be explored include whether higher-order EMAs exhibit improved generalization due tobecause of their enhanced ability to accurately identify and track gradient trends with minimal lagging, whether there exists an optimal order beyond which generalization diminishes, and whether adaptation of the optimizer order to network characteristics (such as depth) increase and affect generalizability.	Comment by Moravec: If it increases it, it affects it. Hence, I suggest using just one term here.

· AIM 3: Studying Multi-level Dropout for Enhanced Regularization
Conventional dropout regularization techniques, alongside and their adaptations, are routinely employed to deal withhandle features co-adaptation within individual hidden units. Inspired by concepts like group dropout, we propose a novel approach for multi-level dropout regularization. This technique aggregates neurons into distinct groups, guided by spatial and semantic correlations among neighboring neurons. This is, which is at knowledge-based level. Then, wWe then introduce a randomness-based level by selecting a random neuron from each group. That In this way, we enjoy both worlds - —we improve the dropout concept by incorporating knowledge into the procedure but at the same time wewhile mitigatinge overfitting by randomly selecting neurons from each group. Key research questions to be explored include whether our multi-level regularization yields superior performance in comparison tooutperforms traditional complete random dropout, and whether it enhances model generalizability. 
By addressing these aimsissues, we aim to contribute significantly to the advancement of deep learning, ultimately empowering the development of more reliable, generalizable, and adaptable deep learning models with broad applicability across various domains. To en our proposed models, most tested deep architectures have a number of parameters that is much higher than the number of training examples.	Comment by Moravec: There's a typo here I couldn't understand. This looks like it might be a bit of stray text? I think you could delete it without affecting flow.

Detailed Research Plan
· AIM 1: Investigating Adaptive Strategy for Hybrid Data Normalization	Comment by Moravec: This section flows well. I have one comment below.
Our research introduces a novel hybrid normalization strategy that integrates domain knowledge into data-driven learning. It is important toH note that hybrid models are already prevalent and extensively employed across various domains. NonethelessHowever, our innovation lies in introducing a hybrid model for data normalization. Furthermore, our model stands out for itsemploys a distinctive approach, featuring a non-trivial blend of both online and offline phases. Therefore, our approach marks a significant leap in deep deep-learning normalization techniques. Our method is based on the conventional Group normalizationGN, but unlike the original one that reliesinstead of relying on fixed channel-grouping, our approachwe leverages the concept of channel similarity to dynamically re-organize the channel data. This dynamic organization not onlyboth augments the efficiency of the normalization process but alsoand enhances its adaptability to diverse datasets, and as a result increases increasing generalizability. 	Comment by Moravec: I suggest considering deleting this sentence if you need to shorten the paper further.
Preliminary work
Our innovative proposed Similarity-based Grouping NormalizationGN (SGN) applies employs online and offline phases. The whole channels re-clustering is done occurs offline, while the core of the learning procedure is done performed online. 
· Offline K-means cClustering and outliers' exclusion: Wwe calculate the mean and standard deviation for each deep channel. Then, the iIsolation fForest algorithm is used to exclude channels that are outliers (i.e., consideringusing the feature means and variances of their features), followed by K-means clustering that is applied according toon the inlier channels only. See Figure 2 1 for visualization ofillustrates the importance of the channels clustering that is carried out in SGN, and Figure 2 presents its effects.	Comment by Moravec: I think this is right. Please confirm.
· Online iIntegration of the re-ordered channels into the learning process: Having After established establishing the offline channel clusters, all channels are now grouped into individual clusters and are then re-integrated back into the deep network. From that time point, the learningTraining then continues until the next re-clustering procedure.



Figure 1: PThe proposed similarity-based group normalization approach
Two different grouping strategies are explored; : SGN-V1 employs a single mini-batch re-clustering, means that in which the channels of different images across in the whole minibatch can beare clustered together. This offers flexibility by clustering channels from different images, but requiring requires identical batch sizes for in training and inference. In contrast, SGN-V2 uses a single-image re-clustering, means in which that K-means is applied separately forperformed on each image - , enabling testing across with various batch sizes and without dependence on the batch size, making and making it suitable for single-image applications, albeit at the potential cost of optimal channel group statisticals alignment. Our experiments suggest that SGN-V2 slightly underperforms compared to SGN-V1 for in downstream tasks.	Comment by Moravec: I think these two phrases mean almost the same thing, so only one is needed.
We re-cluster every 10th epoch due tobecause of evolving weights, which affect image features differently as training progresses. This adaptation prevents overfitting, which can occur if we maintain the static groupings based on initial training statistics.
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(a)                                                   (b)                                              (c)
Figure 2: Each point illustrates indicates the mean (x-axis) and the variance (y-axis) for of individual channels. (a) Original GN:  - without clustering, channels groups are highly mixed. (b) SGN-V1. (c) SGN-V2.	Comment by Moravec: This still needs to be referenced in the text. I am not sure if the reference above should be Fig. 2? I edited the text to include it, but I am not sure that is the right interpretation.

Preliminary results	Comment by Moravec: This is good and will add value to the proposal.
To evaluate the strength of our technique, we first validate tested it on the CIFAR-100 benchmark. We employed the widely-usedcommon ResNet50 architecture, which incorporates convolutional layers and pooling layers to mitigate overfitting. The training involved used 100 epochs for all models and a learning rate of 0.001 and. Mmini-batches of 8/–16 images per batch were used.  Figure 3 demonstrates a comprehensivepresents the experimental analysis results involving for three distinct versionsnormalization methods: GN, SGN-V1, and SGN-V2, and GN. SGN-V1 demonstrates achieves a commendable substantial enhancement increase in performanceaccuracy, registering a (3.15\%) improvement overwith respect to the original GN. Furthermore, nuanced observation revealsSGN-V2 obtains an additional further uplift improvement of 1.32\% in the performance ofover SGN-V2 V1compared to GN. These findings underscore the progressive refinements and superiorities ofadvantages of the SGN versions over the conventional GN.	Comment by Moravec: These are shorter words.	Comment by Moravec: Is this right? Did you mean the AUC here instead?	Comment by Moravec: Please also check this shorter phrasing.
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Maybe to replace that with a graph without V2
Figure 3: Comparative analysisison of test accuracy curveswith respect to number of training epochs obtained using SGN-V1, SGN-V2, and GN for on the CIFAR-100 dataset when implemented onusing the the ResNet50 architecture. The graph illustrates the test accuracy in relation to the number of training epochs. This comparison encompasses two normalization methods: SGN V1, SGN V2, and GN. The intent is tois figure provides a clear perspective indication of on the performance dynamics of each method across during the training process.
Ongoing and Future Work
In our ongoing SGN analysis research, we plan to're further introducing introduce two key innovations to bolster SGN performance:
1. [bookmark: klm_003]Variable Grouping: Uunlike traditional methods with fixed group sizes, we leverage K-means clustering to create diverse group sizes for data channels. This approach allows forenables a more comprehensive exploration of channel grouping's impact and significance, offering valuable insights into our data dynamics through by accommodating varying group sizes.
2. Dynamic Standard Deviation STD Recalculation: Pprior to each re-clustering iteration, we calculate the standard deviation (STD) of the mean values within each group of channels. Groups with low standard deviations (below a predefined threshold) are automatically excluded from subsequent channel re-clustering, which focusing focuses our efforts solely on groups with high standard deviations higher than the threshold exceeding a predefined threshold. This strategic approach optimizes computational resource allocations, enhancing the efficiency of the re-clustering process efficiency and reducing computational overhead.	Comment by Moravec: Please check. Do you just mean "the standard deviation of the values" here? If not, please ignore this comment.

These enhancements will bolster the generalizability and efficiency of our SGN analysis, enabling to extract more meaningful patterns and insights to be extracted from our data. To assess the strengths and limitations of our approach, we will conduct comprehensive evaluations by integrating it into various deep neural networks. We will rigorously analyze its performance across a range of publicly available benchmarks spanning both computer vision and natural language processing domains. Evaluation metrics will be tailored to the specific downstream tasks at hand, which may include but are not limited to tasks such as object detection, image classification, sentiment analysis, and language translation, among others.
Following the methodology evaluations, our research endeavor raises intriguing questions:
1) Domain Knowledge and Normalization: Oone of the core elements we are exploring is the infusion of domain knowledge into the normalization process. We're We are driven to understand how this infusion impacts the efficiency and adaptability of the process. Does the contextual wisdom brought by domain knowledge lead to more effective and context-aware normalization, potentially improving model generalization?
2) Adaptive Normalization and Data Imbalance: Oour venture into adaptive normalization, marked by dynamic data re-organization and adjustable group sizes, opens the door to addressing common challenges tied to data imbalance and heterogeneous datasets. Can this approach mitigate address these challenges effectively, thus leveling the playing field for machine learning algorithms?
3) Trade-offs in Normalization Strategies: Aas we tread into this uncharted territory, we must also consider the trade-offs involved. Are there scenarios where traditional normalization techniques, such as group normalization, still outperform our hybrid approach? In understanding these nuances, we aim to refine our strategy for the most optimal results.
4) Measuring Improved Generalization: Tthe ultimate goal of our research is to enhance the generalization capabilities of deep learning models. The question then arises: Does the adaptability introduced by our novel normalization strategy indeed lead to better generalization, and if so, to what extent? We are keen on to quantifying and measuring measure this improvement across a wide spectrum of tasks and domains, illuminating revealing the path towards more robust and versatile AI solutions.

Pitfalls and Alternative Approaches	Comment by Moravec: This is also good and will add value to the proposal.
We minimize the risks for pitfalls by presenting very promising preliminary results. Obviously, testing our proposed method on a larger and more diverse cohort may present some new challenges that we will have to deal with. In the event that the similarity-based method will not deliver satisfactory results, we will explore a random-based re-grouping approach, which we have already begun to explore. Contrary In contrast to our similarity-based approach that we presented above – , here the channels will be re-grouped randomly. The motivation to do thatfor this is our assumption that generating a "mess" in the channels order every nth epoch will enforce the learning architecture to be more robust and with strongerstrengthen its abilities.  

· AIM2 – Exploring High-Order Exponential Moving Average (EMA) Optimizers
We hold a strong conviction that the implementation of a higher-order Exponential Moving Average (EMA) optimization, capable of swiftly adapting to gradient variations and trends while minimizing lag, will substantially enhance model generalization. This, in turn, will diminish our reliance on diverse learning architectures and downstream tasks.	Comment by Moravec: Would "downstream processing" work better here? If not, please ignore this comment.
Preliminary work
Exponential Moving Average (EMA) is widely-used in deep learning optimization. It applies exponentially decreasing weighting factors to past data, smoothing out short-term fluctuations, ; thus, it is utilized used to denoise the data during the optimization process. Denoting Let  be a data sequence up to time , ; EMA recursively combines recursively the current and previous data values by

Here,  is a tuning parameter in EMA that determines its responsiveness to data changes, where lower values provide faster response but less effective denoising. 
Double Exponential Moving AverageEMA (DEMA) and Triple Exponential Moving AverageEMA (TEMA) are extensions of EMA used in finance for trend assessment [27]. They incorporate lag- correcting terms to enhance noise reduction and trend identification while maintaining smoothness. 
In our recent paper [26], we introduced a novel TEMA-based optimizer that is based on a 3rd-order TExponential Moving AverageEMA. It is designed to accurately estimate the gradients' first and second moments of the gradient to obtain less biased estimation ofe the true gradient at each time step, as compared to with less bias than adaptive EMA-based methods like ADAM Adamthat use the standard EMA. This is achieved by TEMA 's ability to reduce lag in the gradient-moment estimation of the gradient moments while still performing effective denoising (Figure 4). The main contributions of this paper are as follows::	Comment by Moravec: Does "triple" mean the same thing as "third order?" If so, you can remove the redundant information "TEMA-based" here. Please check I understood this correctly.
· High-order EMAs: To ouras far as we knowbest knowledge, our previous paper iswe were the first to exploit the great strong potential of high-order Exponential Moving Averages (EMAs) for to improved optimization, overcominge the limitations of first-order Exponential Moving Averages (EMA) such as inherent lag and insufficient adaptation to data trends. In [26], Our previous paper explored theonly third- order only and hereEMAs were explored.  we want to Our current aim is to investigate a series of high- order EMAs
· Active Guidance in Optimization Guidance: Oour TEMA optimizer is a finance-inspired technical indicator. However, in finance, technical such indicators have beenare used as passive indicators, merely compared toanalyzing market changes without directly affecting them. ContraryBy contrast, our proposed TEMA optimizer actively guides the optimization process and affects network weights, extending its applicability and usefulness in high-dimensional optimization problems.	Comment by Moravec: These terms mean almost the same thing, so I suggest using just one.
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Figure 4: Simulated demonstration of gGradient tTrend eEstimation and lLagging. Ground -tTruth (GT, purple), TEMA-based estimation (blue), and EMA-based estimation (red).
Preliminary results 
We have compelling evidence that the the higher-order TEMA-based optimizer outperforms the commonly usedconventional EMA-based optimizers in terms of stability, robustness, generalizability, and accuracy. This finding represents a significant validation of the concepts underpinning the current grant. Our rigorous evaluation of the TEMA-based optimizer has covered extensive ground, encompassing encompasses a diverse set of domains and tasks. We conducted tests on six datasets (CIFAR-10, CIFAR-100, PASCAL-VOC, MS-COCO, Cityscapes and ImageNet) using 15 unique architectural configurations, and addressing various computer vision tasks such as object detection, image classification, and semantic understanding. In these evaluations,We compared our TEMA-based optimizer was compared against six different optimization methods:with SGD with momentum, Adam, AdamW, AdaHessian, AdaBound, and AdaGrad, with and the results were averaged over two different weight initializations. The outcomes results of our comprehensive experiments leave no room for doubtare clear—our optimizer consistently outperforms the competitors, delivering state-of-the-art results. This firmly establishes establishing it as a valuable state-of-the-art tool for optimizinger for neural network models across a wide range of domains and applications.
On CIFAR-10 and CIFAR-100, our TEMA-based optimizer consistently outperformed Adam and SGD in 83.3% of most architectural setupses. It also surpassed AdaBound, AdamW, AdaGrad, and AdaHessian, achievinged a the highest higher accuracy than the remaining methods. Across the CIFAR-10/100 architecturesexperiments, our optimizer enhanced increased average classification accuracy by up to 16.33%. Additionally, it  and demonstrated yielded smoother test-accuracy curves compared tothan standard EMA (Figure 5), thanks to TEMA's its less lower biased gradient estimation. For On ImageNet, our FAME optimizer showed anobtained average improvements of 1.9% over Adam, SGD, and AdamW. For On Pascal-VOC, our TEMA-based optimizer excelled in YOLOv5-s and YOLOv5-m, improving mAP@0.5 by 6.56% and 7.76%, respectively. In On MS-COCO, our optimizer significantly outperformed SGD, Adam, and AdamW, with an average improvements of 16.9% for mAP@0.5, 16.1% for Precision, 15.7% for Recall, and 15.16% for F1-score. In On the Cityscapes benchmark, our optimizer enhanced the mean IoU results by 5.3%, 1.4%, and 1.9% compared to with SGD, Adam, and AdamW, respectively.	Comment by Moravec: I edited this to reduce word count, but my recommendation is to delete this whole paragraph. Interested reviewers can get these details directly from [26].	Comment by Moravec: I think you mean the TEMA optimizer here?
The comprehensive experimental setup evaluation underscores our optimizer's generalizability and showcases its ability to provide less noisy gradient predictions. Importantly, it demonstrates that the accuracy achieved with by our simple network is on par with, if not superior to, the accuracy attained by other optimizers using more complex models from the same family (e.g., ResNet or DenseNet).	Comment by Moravec: I recommend adding an expected pitfalls and alternative approach section for Aim 2 here as well. 
(a) [image: ][image: ]                                                                        (b)
Figure 5: (a) Demonstration of Performance stability of (a) FAMEour optimizer, Adam, and SGD on CIFAR-100 using a RevReversible Vit ViT and transformer architecture (b) oOur FAME optimizer vs. other optimizers on CIFAR-100 by using an EfficientNet-b3 architecture (trained from scratch).

Ongoing and Future Wwork
The initiative work of this grant proposal involves a thorough investigation of higher-order EMAs (higher thanabove the 3rdthird order that we already introduced) and their potential impact on the overall performance of deep learning models, with a specific emphasis on their influence on model generalization and accuracy. Our study encompasses a comprehensive assessment of the stability of these higher-order frameworks across a diverse spectrum of datasets, architectural configurations, and training scenarios. We are particularly interested in exploring several intriguing research questions:
· Do higher-order EMAs exhibit improved generalization abilities owing to their enhanced capacity to accurately identify and track gradient trends?
· Is there a specific order beyond which the generalization performance starts to diminish, providing insights into the optimal order for practical use?
· Should the selection of the order be tailored to the characteristics of the network, such as its depth, to maintain consistent generalizability across various neural network architectures?
Through this research, we aim to not only expand the EMA-based optimization but also provide valuable insights into the intricacies of selectingion the appropriate higher-order of the EMAs for deep learning models, ultimately advancing the field'sour understanding of optimization techniques and their impact on model generalization.

While the simple  in (1) denoises the data effectively, it also introduces lag in the estimation, which may result in inadequate gradient updates, and consequently in suboptimal performance. For a data sequence , recall that  denotes the application of the applied exponential moving averageEMA on data sequence . To reduce the lag, the Double Exponential Moving Average  and the Triple Exponential Moving Average  add lag correcting terms to   (more details can be shown in our previous papersee [26] for details).	Comment by Moravec: This isn't mentioned above, so the phrase can be shortened.
In this research, we will introduce and explore the generalization of EMA to general  order EMA, call ited  as follows. Here,  denotes   the recursive applications of EMA on  for  times. We will also define 
                                                     (2)
                                       (3)

Let , and for k=1,2,3… 
                                     (4)

 can be seen as a -order lag correction operator. The calculation below shows that

(5)
                                 
Higher-order KEMAs sacrifice more smoothness in exchange to for more aggressive lag reduction. Thus, in practice, the order should be selected to appropriately balance between reducing the lag on the one hand and denoising the noisy gradients on the other hand. The appropriate order highly depends on the problem at hand. Evidently, a larger k entails larger coefficients in the expansion for , which may cause the high-order  to be moreincrease sensitivitye to hyper-parameters tuning. This affects the choice of order one should use. From the linearity ofBecause the EMA operator is linear, we may w.l.g. expand  and  as the sums	Comment by Moravec: Please check, do you mean the coefficient values are larger here, or do you mean there are more coefficients. If you mean there are more, this should be changed to "more coefficients."	Comment by Moravec: Are you going to submit this as a Word file or do you plan to use LaTeX to typeset it? There were some new paragraphs that could be removed to shorten the paper and I recommend using a slightly different formatting for the equation numbering. However, if you plan on putting this into LaTeX, then these gains would not be realized.




By definition
                                          (9)



Defining for convenience  and plugging in the last sum into (3) gives
 


Matching the coefficients of  in (11) to that in (7) gives the recursive equation,



Recalling that by definition  and , the solution to (12) is as in (5), since 



To show the expansion of  in (6), we have 

Matching the coefficients of  to that in (10), we obtain the recursive equation,
 


Since  and by definition , we obtain that the solution is as in (6) since 	Comment by Moravec: Please check that this shorter phrase doesn't destroy the nuance of your meaning.


According toUsing the developed equations, we will study the performance of high-order optimizers, while carefully explore considering their stability that is affected by . In a first sight, wWe expect that higher-order  mightEMAs to be a bit unstable because of the scale of  scale which is bigger than the one obtained for TEMAincreases as the order increases. We will study the generalization of high-order EMAs compared withand other EMA-based versions methods in terms of architecture selection and downstream tasks.	Comment by Moravec: I think this is your meaning, but please review it to ensure this is the correct interpretation. If it is not and you would like to clarify, I will be happy to re-edit it.

[bookmark: klm_00end]Pitfalls and Alternative Approach	Comment by Moravec: This is also good and will add value to the proposal.
We have introduced promising preliminary results. However, while sScaling up to a larger and more diverse dataset may introduce new complexities, ; however, we stand well-prepared to tackle them head-on directly. In the event thatShould our proposed method falls short of expectations, we have contingency plans ready. These include the possibility of introducing a new family of advanced high-order equations (we've outlined a specific family in this proposal) tailored to better match the specific data we're under analyzinganalysis. Moreover, it is worth mentioning -we note that our proposal aims to study the effects of higher-order optimizers, with while our findings already demonstrating demonstrate that TEMA outperforms the original EMA. If additional higher-orders optimizers do not further enhance TEMA's performance, it this would be a legitimate conclusion, addressing a key research question regarding the choice of the bestoptimal order to that can be applied.

· AIM3 - Studying Multi-level Dropout for Enhanced Regularization
Expanding upon the notion of adaptive dropout, our research introduces an innovative adaptive model that leverages both knowledge and randomness to accommodate varying data characteristics. This research aims to shed light on the nuanced interplay between regularization techniques and model generalization, exploring the inherent strengths of knowledge in contrast to full randomness or the advantage of their combination. 
We employ a hybrid framework that combines Convolutional Neural Networks (CNNs) with the Neural Additive Model (NAM) [28] to better distill the contribution of each individual neuron from others. Our current architecture utilizes ResNet-34 as the foundational CNN structure. Within the middle layer of the ResNet, we seamlessly integrate the NAM model in the middle layer of ResNet. This integration of NAM, which serves a dual purpose: 
1. Individual Neuron Analysis: NAM helps dissect individual neuron contributions, offering deeper insights into model behavior.
2. Parameter Efficiency: NAMs also cut down networkreduce the number of network parameters, making computations more efficient for quicker training and inference.

After applying the CNN-NAM approach, we will employ a multi-level analysis –: 1) a similarity-based clustering according to the significance of individual neurons for the given task and their prominence within a particular feature map, and 2) a random selection of a predetermined percentage of neurons from each cluster to undergo dropout in each training epoch. These chosen neurons (from each group) will be shut down.
Our first hybrid knowledge-random dropout approach ensures that the dropout procedure will is not be fully random, but it will be is also based on some knowledge about of the data. We will explore the following aspects:
· Knowledge-Enhanced Generalization: Tto what extent does the knowledge-driven grouping and dropout strategy enrich the learning model's performance by preserving crucial feature representations? Does this approach lead to more consistent and superior generalization compared tothan conventional random dropout, and if so, in what scenarios or network architectures is this effect most pronounced?
· Stability and Overfitting Mitigation: Ddoes the carefully introduced randomness carefully introduced within the adaptive group dropout framework effectively mitigate overfitting to the training set? How does this approach strike a balance between model stability and the risk of increasing increased overfitting? Can it enhance the model's resistance to noise and perturbations in real-world data?
· Optimal Grouping Strategies for higher Generalization: Wwhat are the key factors influencing the success of different neuron grouping strategies? Are there specific spatial or semantic relationships among neurons that are particularly conducive to robust generalization? How do these strategies adapt to varying dataset characteristics and network complexities?
· Transferability across domains and tasks: Tto what degree can the benefits of adaptive group dropout be transferred across different domains, datasets, and tasks? Does this technique offer a transferable improvement in the generalization ability of deep learning models, and are there limitations to its applicability in specific contexts?

By addressing these research questions, our studywe aims not only to both advance the understanding of adaptive group dropout but alsoand to provide actionable insights into its role as a potent regularization tool for enhancing model generalization. We aspire to unravel the intricate interplay between knowledge-driven dropout strategies, model stability, overfitting mitigation, and the broader context of deep learning, contributing to the ongoing evolution of techniques that empower deep neural networks to generalize effectively across diverse datasets and real-world scenarios.

Preliminary results
Preliminary findings demonstrate reveal a noteworthy 1.5% enhancement in classification accuracy for on CIFAR-100 upon implementing ausing ResNet34 network. Additionally, tThese results also indicate a substantial 92% reduction in both the number of parameters and computational load within the learning architecture. To put this into perspective, while a standalone ResNet-34 configuration typically requires 21.8 millionM parameters, but integrating ResNet-34it with NAM technology results in a leaner 1.8 millionM parameter architecture. It is important to nTote that these preliminary findings pertain to the application of the combined CNN-NAM network. These outcomes and were achieved without employing the multi-level approach yet, which involves grouping and random choice. Based on the robust performance of our similarity-based normalization techniques and findings in the referenced paper [17], which unequivocally demonstrate the positive impact of similarity-based knowledge, we hold a the strong conviction that our proposed suggestions have the potential to further enhance performance. These aspects will be explored in this grant.

Pitfalls and alternative approaches
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