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}
and the applied

spherical coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Schematic description of an arbitrary one dimensional system subjected to

electromechanical exitation at its boundary. . . . . . . . . . . . . . . . . . 15
3 Schematic description of a single charge subjected to an electric field. . . . 16
4 Schematic description of a single dipole consisting of two charges, Q+ and

Q−, connected by a stiff rod in an electric field. . . . . . . . . . . . . . . . 17
5 Schematic description of a dipole in an electric field. . . . . . . . . . . . . 19
6 The entropy of a polymer chain with uniaxial dipoles as a function of the

normalized radius as 0 ≤ r
n l
≤ 1 and l = 100µm. The red continuous curve

with circular markers corresponds to n = 50 and the brown curve with
squares to n = 100. The dashed columns corresponds to the normalized
radii in accordance with the results in section 3.2.3, r

n l
=
√

2
3

1√
n
, and the

dot-dashed columns to the results from random walk statistics, r
n l

= 1√
n
. . 35

7 The natural logarithm for the maximum number of configurations as a
function of the electric field magnitude for chains with uniaxial dipoles at
different inclinations. The blue curve with circular markers corresponds to
Θ = π

1000 , the red curve with squares to Θ = π
4 and the yellow curve with

diamonds to Θ = π
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 The most probable end-to-end length as a function of the electric field
magnitude for chains with uniaxial dipoles at different inclinations. The
blue curve with circular markers corresponds to Θ = π

1000 , the red curve
with squares to Θ = π

4 and the yellow curve with diamonds to Θ = π
2 . . . . 35

9 The size of the Lagrange multiplier τ , associated with the most probable
radius as a function of the electric field magnitude for chains with uniaxial
dipoles at different inclinations. The blue curve with circular markers cor-
responds to Θ = π

1000 , the red curve with squares to Θ = π
4 and the yellow

curve with diamonds to Θ = π
2 . . . . . . . . . . . . . . . . . . . . . . . . . 36

10 The monomer distribution for a polymer chain of uniaxial dipoles. The
magnitude of the electric field during the polymerization process is E =
150 MV

m . (a) Corresponds to the chain with the inclination Θ = π
1000 and

end-to-end length r = 0.89
√
n l. (b) Corresponds to Θ = π

4 and r =
0.91
√
n l. (c) Corresponds to Θ = π

2 and r = 0.93
√
n l. . . . . . . . . . . . 37

11 The amorphous monomer distribution of a uniaxial dipole as E = 150 MV
m .

According to the numerical analysis as τ = 0 and identical to the results
of the analytical analysis that was presented by ?. . . . . . . . . . . . . . 37



12 The number of chains along each inclination as a function of the inclination
relative to the direction of the electric field, N (Θ,Φ = 0). The blue curve
with circular markers corresponds to the isotropic polymer and the yellow
curve with squares corresponds to the biased polymer. . . . . . . . . . . . 38

13 The fractions of chains along each inclination as a function of the inclination
to the direction of the electric field, ν (Θ). The blue curve with circular
markers corresponds to the isotropic polymer and the yellow curve with
squares corresponds to the biased polymer. . . . . . . . . . . . . . . . . . 38

14 σDiff = σEE−σYY as a function of λ0 after the removal of the electric field
with the magnitude of E = 150 MV

m
. . . . . . . . . . . . . . . . . . . . . . 40

15 The deviatoric mechanical stress as a function of the deformation ratio, λ.
Dashed curves corresponds to the isotropic polymer, continuous curves to
the biased polymer and the dot-dashed curves to a polymer described by
the IED model. The blue curves corresponds to the normal stress in the
direction of the electric field, σm

EE, and the red curves to the transverse
stress, σm

YY = σm
ZZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

16 The susceptibilities of the polymers as a function of the electric field. The
black dashed curve corresponds to the isotropic polymer, the black continu-
ous curve to the biased polymer and the black dot-dashed line to a polymer
described by the IED model. (the dashed and the continuous curves overlap). 41

17 The deformation in the direction of the electric field, λ, as a function of the
magnitude of the electric field. The black dashed curve corresponds to the
isotropic polymer, the black continuous curve to the biased polymer and
the black dot-dashed curves to a polymer described by the IED model. . . 42

18 (a) The self constructed stretching device. (b) The C-clamp used as a
parallel plate capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

19 The relative permittivity measurements as functions of the percentage of
surface area expansion. The dashed and dotted curves correspond to the
analytical results [?], as n are estimated from the stretch at failure (nf )
and from fitting the analytical equations to the experimental results (ne),
respectively. (a) PDMS under uniaxial stretch. (b) VHB under uniaxial
stretch. (c) VHB under biaxial stretch. . . . . . . . . . . . . . . . . . . . . 44

20 A schematic description of the experimental system. . . . . . . . . . . . . 46
21 The parts of the plate capacitore. . . . . . . . . . . . . . . . . . . . . . . 46
22 The permittivity measurements a functions of the electric field on the sam-

ple. The Blue dots corresponds to a relaxed sample and the red circles
corresponds to the area pre-stretch of A = 225%. (a) PDMS, (b) VHB. . . 47



List of Tables

1 The number of monomers in a single chain for the case presented in Fig. 19. 45



1 Introduction

(Note: Strong points for EAP use)
Dielectric elastomers (DEs) are polymers that are nonconductive but polarize and

deform under electrostatic excitation. These lightweight and flexible polymers are readily
available and may potentially be used as actuators in a wide variety of applications such
as artificial muscles, energy-harvesting devices, micropumps, and soft robotics [?].

(Note: The microstructure and macrostructure of the EAP (polymer networks from chains
and chains from monomers -> a polymer strip sandwiched between two electrodes))

At the microscopic level, DEs have a hierarchical structure of polymer-chain networks.
A polymer chain is a long string of repeating dipolar monomers. At the macroscopic level,
the essential part of a DE-based device is a thin, soft DE membrane sandwiched between
two compliantflexible electrodes. WhenUpon applying an electric potential is applied
betweenacross the electrodes, the monomers react to the electric exitationsexcitations
while the DE membrane reduces its thicknessbecomes thinner as a result of the attrac-
tion between the two oppositely charged electrodes. Simultaneously, the membrane area
expands due to the Poisson’s effect. This process converts electrical energy into mechan-
ical energy. AThe attractive features of dielectric elastomers include large strain, fast
response, silent operation, low cost, and high efficiency [?].

(Note: The ratio between elastic moduli and dielectric moduli and its importance)
The electromechanical coupling in DEs is characterized by a quadratic dependence of

the force between the electrodes on the applied electric potential [?]. In turn, the deforma-
tion depends on the force via the elastic moduli. Thus, the coupling depends on the ratio
between the dielectric and the elastic moduli. Commonly, fFlexible polymers typically
have low dielectric moduli, whilewhereas polymers with high dielectric moduli polymers
are generally usually stiff. Accordingly, sinceGiven that this ratio is relatively small, large
electric potentials are needed for a meaningfulto obtain non-negligible actuation.

(Note: electric breakdown and other failure mechanisms)
The requirement for high electric potentials implies that the feasibility of these materi-

als is limited by their dielectric strength, which is the limitelectric potential beyond which
electric current flows through the dielectric material [?]. This failure mechanismExceeding
this electric potential results in what is known as electric breakdown or dielectric break-
down,. iIn some cases this results in a transformation ofing the insulator into an electric
conductor. In general, dielectrical breakdown may be a singular, a cyclic, or a continuous
event [?]. Predicting Aaccurately predicting the occurrence of an edielectrical breakdown
and its, timing andor position, is not yet possible, essentially mostly because it does not
depend on a single cause, but it is a statistical product of several factors. The most
notable factors are the local defects, such as a voids or an inclusions that would create a
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locally decrease in the thickness of the DE thickness, leading to higherincreasing the local
electric fields and/or higher mechanical stresses [?]. In practice, the dielectric strength is
measured experimentally [??] and is measured for a membrane withat a given thickness
and with a giventhe requisite testing equipment [?]. In their work ?? examined the fail-
ure mechanisms and the performance boundaries of DEs and. Their analysis showed that
the performance of DEs made with of highly viscoelastic polymer meambranes as DEs
is governed by four key mechanisms which are: dielectric breakdown, current leakage,
pull-in failure, and viscoelasticity.

(Note: The ratio between elastic moduli and dielectric moduli - low but can be improved)
AOne possible way to overcome the dielectric breakdown failure mechanism is by

reducing the electric potentials that are currently neededrequired for a meaningfulnon-
negligible actuation, thiswhich can be done by improving the DE polarizability of the DE.
Several previous works suggest that the low ratio betweenof the dielectric andmodulus to
the elastic modulusi may be improved, which would and thus theirenhance the electrome-
chanical response may be enhanced. A common general approach forto improving this ra-
tio involves inserting additional materials into the elastomer. This approach can result in
a homogeneous or a composite elastomer. One aspect of theis approach refers to involves
embedding materials into soft polymer components with a higher dielectric constant,
which (i.e., that can be classified as insulating or conducting), in a soft polymer [???]. ?
presented such a method forto enhance the electromechanical response enhancement of
silicone elastomer networks, based on the by grafting of molecules with high permanent
dipoles to the crosslinkinger molecules. Through adjusting the crosslinking density, their
method also allows for aprovides direct control of the mechanical properties of the elas-
tomer by adjustments of the crosslinking density. Another aspect of the approach refers
toinvolves improving the actuation in DEs with anby appropriately adjustment ofing their
microstructure as periodic laminates [?????].

(Note: improving the response without changing the ratio between elastic moduli and
dielectric moduli)

As a contrary toIn contrast with the approach of improving the ratio between theof di-
electric modulus andto elastic modulusi, several works, which mainly target soft robotics,
have been donechosen to improve the responsiveness of DEs by adjusting the macroscopic
structure of the actuatorss. These works are mainly in regards to soft robotics, but not
limited to it [????]. Recent works, such as ? and ? have discussed soft electrohydraulic
transducers, termedwhich are called “Peano-HASEL (hydraulically amplified self-healing
electrostatic) actuators.” (hydraulically amplified self-healing electrostatic actuators).
Such actuators combine the strengthsadvantages of both fluidic actuators and electro-
static actuators. This combination is performed as the actuators and are comprised of
pouches, which are made of flexible dielectric polymer films, filled with a liquid dielec-
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tric and covered with compliant electrodes. WhenUpon applying a voltage is applied
toacross the electrodes, they “zip” together duebecause of to the Maxwell stress, which
causesdisplaces the liquid inside the pouch to be displaced, and thus causes thethereby
contraction ofs the actuator [?].

(Note: Previous investigations of the polymer properties:)
(Note: Mechanical response)
The aspiration to affectdesire to adjust the DE ratio between theof dielectric modulus

andto elastic modulusi of DEs motivates a multiscale inquiry of theirthe mechanical,
dielectric, and coupled properties of these materials. The response of polymers to purely
mechanical loading across all scales washas been extensively investigated extensively. For
example, ?A investigated in detailed investigation of the macroscopic behavior of soft
materials undergoing large deformation is presented ins ?. ? used statistical mechanics
to make aA pioneering analysis at the microscopic level was performed through the use of
statistical mechanics by ?, which resulted in a Langevin- based constitutive relation. This
work led to a variety of multiscale models, such as the three-chain model [?] and the eight-
chain model [?]. Such anA similar analysis of mechanical systems was also presented by ?,
?, and ? for polymer networks with rubberlike elasticity of polymer networks. A? review
of the development of statistical- mechanics treatments of rubber elasticity, and was
given in ?. ? and ? presented an use statistical mechanics to analyzesis ofthe mechanical
systems through the use of statistical mechanics forof liquid- crystal elastomers.

(Note: Electrostatic response)
? and ?, among others, extensively examined tThe response of polymers to electro-

static excitation was examined extensively aton the macroscopic and microscopic scales.
by ? and ? among others. DThey discussinged and analyzinged the constitutive relations
for the macroscopic electric parameters, such as the polarization and the displacement,
and for the microscopic electric parameters, such as the dipoles moments and the bound
and free charge densities. In other work, ? presented an electrostatic theory for rigid
bodies as ideal theoretical ideal constructs while executing histo analyze analysis from
asingle charges to a continuum of charge.

(Note: Coupled response)
? was the first toThe analysisze of the coupled electromechanical response of DEs at

the macroscopic level began with the work of. ?. Years later, ? introduced an invariant-
based representation to study the constitutive behavior of electro-sensitive elastomers
via an invariant-based representation, and. tThis work was expanded to the class of
anisotropic materials by ?. Among others, ? and ? investigated the influence of thehow
deformation and the rate of deformation onaffected the electromechanical coupling. At
the macroscopic level, ? performed an analyzedsis at the macroscopic level for the elec-
tromechanical response of membranes under a uniaxial force, under equal-biaxial forces,
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and for the case of a membrane constrained in one direction and subject to a force in the
otheropposite direction. AdditionalyAdditionally, they examined the response of a fiber-
constrained membrane. ? presented aA principle of virtual work for problems ofinvolving
combined electrostatic and mechanical loading, which and that includes the interactions
between the resulting strain and polarization, was presented by ?. Physically motivated
multiscale analyses of the electromechanical coupling were previously performeddone by ?,
?, and ?, and ?. introduced mMultiscale analysis that was based on statistical mechanics
was introduced by ?.

(Note: Experimental work)
In addition to the discussedse theoretical works, over the past 20 years the dielectric

properties of DEs have been extensively investigated experimentally over the past two
decades. Although some have determined the variation in the relative permittivity of
DEs, such as VHB 4910/4905, has been determined under conditions of negligible biax-
ial extension to be negligible, as can be seen in the works of (see, e.g., ? and ? among
others), several other works have contradicted thoese conclusions. Several investigations
on the variation ofhave revealed a decrease in the relative permittivity as a result ofwith
increasing area stretch have revealed a decrease in its value. For example, ? measured an
initial relative permittivity εr = 4.4 andversus εr = 2.25 underfor a ninefold area stretch
of 9, and. ? measured εr = 4.68 andversus εr = 2.62 as the initial relative permittivity
and underfor a 25-fold area stretch of 25, respectively. In addition, ? measured a decrease
as well while performing a planar stretch of 16, asan initial permittivity εr = 4.36 was
the initial permittivity andversus εr = 2.44 was the measurement under stretchfor a
16-fold planar stretch. ? found from their experimentally work on from the electrome-
chanical response of thea polyurethane elastomer that thechain motions of chains can be
divided into thosemotion related to the mechanical response and thosemotion related to
the polarization response, whileand that the overlap between themthese motions yields
the electromechanical response. SomeOther experimental works, such as ?, ?, and ?, ex-
amined biaxially and uniaxially prestrained silicone and acrylic elastomers to study how
the influence of prestraining the DEs membranes onaffects theactuator performance of
actuators. These examinations were performed for biaxially and uniaxially prestraining
silicone and acrylic elastomers. Furthermore, someFinally, work haves been done into
developing models that assist infor estimating the variation in relative permittivity as a
result of differentfunction of various stretch combinations [??]. An example of such work
is the one presented was done byin ?, wherewho compared the results of a statistical-
mechanics- based model is compared towith experimental findings.

(Note: This work)
(Note: A brief description of the displayed content)
We begin this work with aby discussing the theoretical background, within the frame-
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work of a continuum approach and considering, concerning the mechanical, electrostatic,
and coupled cases. Following are aNext, we review of the analysis of the microstructure of
an isotropic polymer chain network by using statistical mechanics throughwith entrophy
considerations and amake reference ofto a phenomenological model for the electromechan-
ical coupling of DEs that will be compared totested against ourexperimental results. In
sSection 3 an analyzessis of the DEs electro-elasticity in several hierarchical cases, ranging
from a single electric charge to a network, is presented. MoreoverIn addition, we discuss
the means of assessing the structure and properties of a general polymer will be discussed.
Section 4 deals withpresents a numerical application of the electrostatically biased poly-
mer network. This to demonstrates the influence of performing thehow polymerization
process ofing a polymer under an electric field, on affects the structure of the polymer
network and it’s properties, all while comparing. This work is done by comparing the
electric-field-polymerized polymer it to an isotropic polymer network and to the results
of the phenomenological model. Next, our experimental work is presented in sSection 5
presents our experimental work, which is meant to gives an additional perspective thanon
our theoretical work. The experimental work includes an evaluation of the influence ofhow
uniaxial and biaxial stretching of DEs onaffects their dielectric constant. Moreover, we
introduce a new experimental system whichthat allows us to evaluate the variations inhow
the dielectric constant of DEs at different magnitudes ofon the electric -field magnitudes.
CFinally, the conclusions are gathered in sSection 6.
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2 Theoretical background

(Note: Multiscale entropy based analysis)
AThe mechanical and electrostatic energy balance is formulated in terms of the electric

enthalpy. The analyses will be carried out by takinge into account the entropy of the chains
network within the framework of statistical mechanics with the appropriate kinematic and
energetic constraints.

2.1 Continuum electro-elasticity

(Note: basic continuum mechanics - mechanics aspect)
Consider an electro-elastic solid continuum in a stress-free configuration in the absence

of electric field and mechanical load. Let material particles be labelled by their position
vector X in this referential configuration. In the deformed configuration, the point X
occupies the position x = χ(X, t), where the vector field χ describes the deformation of the
material. We require χ to be a one-to-one, orientation-preserving, and twice continuously
differentiable mapping [?].

(Note: continuum mechanics - mechanics)
The deformation gradient tensor is

F = ∇Xχ(X, t), (1)

where ∇X is the gradient operator and the subscript X implies that the derivatives isare
taken with respect to the referential coordinate system. The Cartesian components of F
are F ij = ∂xi

∂Xj
, where Xi and xi (i = 1, 2, 3), are the Cartesian components of X and

x, respectively. J ≡ det(F ) is the ratio between volume elements in the current and
reference configurations, with the convention of being strictly positive. Moreover, the
velocity of the material points is v (x) and accordingly, the spatial velocity gradient is

L = ∇xv = Ḟ F−1, (2)

where ∇x is the gradient operator taken with respect to the current coordinate system.
(Note: continuum mechanics - electrostatic)
The body is subjected to an electric field E(x), which satisfies the relation∇x×E(x) =

0 in the entire space. The electric potential φ is a scalar quantity defined such that
E = −∇xφ. The electric induction, also known as the electric displacement, is

D(x) = ε0 E(x) + P(x), (3)
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where the constant ε0 is the vacuum permittivity of vacuum and P(x) is the electric-
dipole -density, also known as the polarization. In vacuum (P = 0 in vacuum). The
electric displacement in ideal dielectrics or in a continuum with no free charges is governed
by the equation

∇x ·D(x) = 0. (4)

(Note: continuum mechanics - the electromechanical coupling)
The electrical boundary conditions for the electromechanical problem are given in

terms of the electric potential or the charge per unit area on the boundary ρa on the
boundary, which is the charge on the electrodes such that D · n̂ = −ρa, where n̂ is
the outer -pointing unit vector normal to the boundary in the current configuration. The
mechanical boundary conditions are stated in terms of the displacement or the mechanical
traction t. The electric field in the surrounding space induces a Maxwell’s stress

σM = ε0

(
E⊗ E− 1

2(E · E)I
)
. (5)

Accordingly, the traction boundary condition is
(
σ − σM

)
n̂ = t. Assuming no body

forces, the stress that develops in a dielectric σ due to the electromechanical loading
satisfy the equilibrium equation

∇x · σ = 0. (6)

(Note: The first law of thermodynamics - energy balance)
AThe balance of energy is formulated throughby applying the first law of thermody-

namics:
dU
dt = dW

dt + dQ
dt , (7)

where U represents the internal energy stored in the material,W is the work ofdone on the
system by any external sources, mechanical andor electrical, and Q denotesis the quantity
of energy supplied to the system as heat. Following ?? and ?, a Legendre transform ofis
applied to the internal energy is used in order to formulate the energy balance in terms of
the electric- enthalpy -density: H = U−JP·E. In order tTo formulate the energy balance
in terms of entropy, which relates to the systems number of microscopic configurations
of the system, we refer to a polymer as a reversible or conservative material [?], (i.e., a
material that does not absorb the work done by external agents but stores it as dielectric
polarization or elastic deformation). HenceThus, following the Clausius theorem in the
case offor a reversible material or system, the entropy change is defined as dS = dQ

T
,

where S is the entropy-density function per unit referential volume and T is the absolute
temperature. Thus, while taking into account the analysis presented in appendix A [?],
we consider a general representation in which the first law of thermodynamics istakes the
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form
ḢΥ − d

dt

�
R3

ε0
2 E·EdV = Ẇ Υ + T ṠΥ , (8)

where we consider an electro-elastic system Υ ⊂ R3.
In the work of ? gives, athe following specific representation of Eq. (8) was presented

for theto analysisze of the energy balance in a single polymer chain:

d
dt

�
V0

H (F ,E) dV0 −
d
dt

�
R3

ε0
2 E·EdV = dW

dt + T
d
dt

�
V0

S (F ,E) dV0, (9)

where, in the current configuration, we consider a dielectric body that occupies the region
V0 ⊂ R3 with a boundary ∂V0 before the deformation and the region V ⊂ R3 with a
boundary ∂V after the deformation, at the current configuration.

The rate of change in the electric enthalpy is [?]

d
dt

�
V0

H (F ,E) dV0 =
�
V

1
J

∂H (F ,E)
∂F

F T : LdV +
�
V

1
J

∂H (F ,E)
∂E

· ĖdV, (10)

and the rate of change in entropy is

d
dt

�
V0

S (F ,E) dV0 =
�
V

1
J

∂S (F ,E)
∂F

F T : LdV +
�
V

1
J

∂S (F ,E)
∂E

· ĖdV. (11)

If we assume no free charges in the material and neglect body forces, the power extracted
by the external mechanical and electrical agents on the system is [???]

dW
dt =

�
∂V

t · v dA−
�
∂V

ρa
dφ
dt dA, (12)

which can also be formulated as [?]

dW
dt =

�
V

(
σ − σM − E⊗P

)
: LdV− d

dt

�
R3

ε0
2 E·EdV−

�
V

P·ĖdV+
�
R3/V

(
σ − σM

)
: LdV.

(13)
By takin into accountusing Eqs. (10), Eq. (11), and Eq. (13) in Eq. (9), we obtain

�
V

(
1
J

(
T
∂S (F ,E)

∂E
− ∂H (F ,E)

∂E

)
−P

)
· ĖdV +

�
R3/V

(
σ − σM

)
: LdV+ (14)

�
V

(
σ − σM − E⊗P− 1

J

(
∂H (F ,E)

∂F
− T ∂S (F ,E)

∂F

)
F T

)
: LdV = 0.

As it isBecause we have assumed that Eq. (14) fits every acceptable process, bywe can
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Figure 1: A schematic description of the coordinate system
{
Ê, Ŷ, Ẑ

}
and the applied

spherical coordinates.

following ? it isto obtained that

σ = σm + E⊗P + σM , (15)

where
σm = 1

J

(
∂H (F ,E)

∂F
− T ∂S (F ,E)

∂F

)
F T, (16)

is the mechanical stress [?], and E⊗P is the polarizeation stress where , with

P = 1
J

(
T
∂S (F ,E)

∂E
− ∂H (F ,E)

∂E

)
. (17)

Furthermore, when dealing with incompressible materials,

σ = σm + E⊗P + σM + p?I, (18)

where p? is an arbitrary Lagrange multiplier corresponding to the indeterminate hydro-
static pressure that results from the incompressibility constraint and I is the identity
matrix. The corresponding deviatoric stress, which is related to shape change, is

σDev = σ − tr (σ)
3 . (19)

2.2 Entropy-driven electro-elasticity of an isotropic polymer network

(Note: defining the construct and directions in the polymer)
According to tThe work of ?, in order tindicates thato evaluateanalyzing the properties

and structure of different polymers the analysis starts with a single polymer chain with n
dipolar monomers. TheLet l be the length between the two contact points of a monomer
with its neighbors is l. We and define a coordinate system

{
Ê, Ŷ, Ẑ

}
(Fig. 1) asfor thea

chain is subjected to an electric field E = EÊ. In this system,

ξ̂ = cos θÊ + sin θ
(
cosφŶ + sinφẐ

)
(20)
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is a unit vector where 0 ≤ θ < π is the angle between ξ̂ and the electric field and
0 ≤ φ < 2π is the angle of its projection onto the plane perpendicular to Ê withand Ŷ.
We define dΓ = sin θ dθ dφ as the differential solid angle. We also formally define that
and allow Γ to variesy in the range from 0 to Γ0.

(Note: a chain’s number of possible configurations and constraints (+Stirling’s approxima-
tion))

The number of possible configurations of a single polymer chain is

ΩC = n!
Πi (ni!)

, (21)

where ni representis the number of dipolar monomers aligned along ξ̂ in the range θi ≤
θ < θi + dθ and φi ≤ φ < φi + dφ. For convenience, we define that θi and φi correspond
to the unit vector ξ̂i. The entropy of the chain is

SC = k ln
(
ΩC

)
= k

(
n ln (n)− n−

∑
i

ni ln (ni) +
∑
i

ni

)
, (22)

where we have used Stirling’s approximation is implemented and k is Boltzmann’s con-
stant. The chain is subjected to three constraints:

∑
i

ni = n, (23)

∑
i

l niξ̂i = r, (24)

where the end-to-end vector of the monomers chain is r = r r̂, with r̂ = cos ΘÊ +
sin Θ

(
cos ΦŶ + sin ΦẐ

)
, and ∑

i

nihi = HC , (25)

where hi is the electrical enthalpyelectric enthalpy of a monomer directed along ξ̂i and
HC is the enthalpy of the chain.

(Note: maximizing the entropy according to the constraints)
We assume that the polymer chain occupies the most probable configuration under

the given constraints, and thereforeso we are interested in maximizing the entropy,

SC = k

[
ln
(
ΩC

)
+ α

(∑
i

ni − n
)

+ τ ·
(∑

i

niξ̂i −
r
l

)
+ γ

(∑
i

nihi −HC

)]
, (26)

where α, τ , and γ are Lagrange multipliers. The derivative of SC with respect to ni is

∂SC

∂ni
= k

[
− ln (ni) + α + τ · ξ̂i + γhi

]
= 0, (27)

10



from which
ni = exp

(
α + τ · ξ̂i + γhi

)
. (28)

Upon substitution of the latter into Eq. (26), the maximum entropy that can be achieved
by the chain is [?],

SC = k
[
n ln (n)− αn− τ · rl − γH

C
]
. (29)

(Note: Lagrange multiplier - inverse temperature)
We assume that the polymer chains do not interact with one another. Consequently,

in a volume element dV0, the total entropy -density and the total electrical- enthalpy
-density function are S = 1

dV0

∑
k
SCk and H = 1

dV0

∑
k
HC
k , respectively. Applyingccounting

for the first law of thermodynamics with respect to the enthalpy of the k-th chain, we
obtain

∂H

∂HC
k

= T
∂S

∂HC
k

, (30)

from which we can derive the relation

γ = − 1
k T

(31)

wherewith the help of Eq. (29) is used.
(Note: PDF of a monomer according to the constraints and with maximum entropy (+cal-

culating the rest of the Lagrange multipliers and Hc))
From the constraints Eq. (23) and Eq. (27), we obtain

∑
i

ni = exp (α)
Γ0�

0

exp
(
τ · ξ̂ − h

k T

)
dΓ = n, (32)

where Eq. (29) is used and the summation is replaced by an integral over all the monomer
orientations of the monomers. Therefore,

exp (α) = n

Z
, (33)

where

Z =
Γ0�

0

exp
(
τ · ξ̂ − h

k T

)
dΓ , (34)

is the partition function. Subsequently, from Eq. (28) we have that

p
(
ξ̂, h

)
= 1
Z

exp
(
τ · ξ̂ − h

k T

)
(35)

is the probability density function (PDF) that a monomer is aligned in the direction ξ̂ and

11



has an electrical -enthalpy h. An implicit equation from whichthat gives the Lagrange
multiplier τ is computed follows from constraint Eq. (24):,

Γ0�

0

ξ̂ p dΓ = r
n l
. (36)

From Eq. (25) the enthalpy of the chain is

Γ0�

0

h p dΓ = HC . (37)

(Note: monomer enthalpy and different dipole types)
Following ??? and ?, the electrical enthalpyelectric enthalpy of a dipole oriented along

ξ̂ is
h = m · E, (38)

where the dipole vector m is determined according to a relevant model that represents
the local relation. TWe account for three specific models were accounted for. T, the first
of which corresponds to a spontaneous dipole or a rigid dipole with a constant magnitude
[?]

mS = κP ξ̂. (39)

The second model is of a uniaxial dipole whose magnitude depends on the electric field
[?]:

mU = κU ξ̂ ⊗ ξ̂E, (40)

where κU is commonly referred to as the polarizability of the dipole. The third type is
the transversely isotropic (TI) model [?]:

mTI = 1
2κTI

(
I − ξ̂ ⊗ ξ̂

)
E, (41)

where in this case the dipole is perpendicular to ξ̂. Note that since we do not account for
the local electrostatic interactions between the dipolar monomers, so thea uniform electric
field is induced over the monomers in the chain is uniform.

We note that in order to have thatFor three dielectrics composed of a random and
uniform distribution of spontaneous, uniaxial, and transversely isotropic dipoles admitto
behave the same behavior in the limit of infinitesimal deformations and small electric
fields, the relationswe impose κU = κTI = κ2

P

k T
= κ are set. The polarizability is taken

as κ = 3
n0
ε0 χ0 [?], where χ0 = εr − 1 is the initial susceptibility and εr is the relative

permittivity. n0 = N n is the number of monomers in a unit referential volume where N

12



is the number of chains in the unit referential volume.
(Note: PDF in the amorphous case)
In the case ofFor an amorphous polymer, the chain’s constraints, presentedgiven inby

Eqs. (23), Eq. (24), and Eq. (25), are irrelevant as therebecause are no such limitations
exist onfor a single monomer. Therefore, τ = 0 and the adjusted form of the PDF in
Eq. (35) is

p
(
ξ̂
)

= 1
Z

exp
(
− h

k T

)
, (42)

where
Z =

�
exp

(
− h

k T

)
dΓ , (43)

and the enthalpy of the monomer is calculated by using Eq. (38) according to with the
correct dipole type.

(Note: analytical calculation - PDF in the amorphous case - U and TI)
In addition to the numerical calculations for the PDF in the amorphous case, the amor-

phous monomer distribution can also be calculated by applying the analytical analysis
presented byof ?, asgiving

pU = ω

4πD (ω) exp
[
−ω2 sin2 (θi)

]
(44)

ais the PDF of the uniaxial dipole, where ω =
√

κ
k T
E = κP E

k T
andD (ω) = exp (−ω2)

� ω
0 exp (t2) dt

is the Dawson function. The PDF for the TI dipole is

pTI = ω

(2π)3/2 Erf
(
ω√
2

) exp
[
−ω

2

2 cos2 (θi)
]
, (45)

where Erf (x) is the error function.

2.3 Phenomenological approach to electro-elasticity

(Note: A reference for the results in the application section)
We compare the results of the theory developed above with those of aA relatively

simple phenomenological predictive material model, a relatively simple model that allow
foruses reasonable assumptions, and is based on settings of continuum mechanics is used
from the phenomenological viewpoint as a comparison to the results of our examinations.
In the current work, a constitutive law for the material is required tomust be expressed
through an energy- density function that depends on both the deformation and the electric
displacement or the electric field. Thus, as a reference, we recall the extended neo-Hookean
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energy-density function for an ideal elastic dielectric (IED) [?]:

W (F ,E) = µ

2
[
Tr

(
F TF − I

)]
+ ε0εr

2 E · E, (46)

where µ is the shear modulus of the material. From Eq. (46) and on the basis of
thermodynamic arguments, assuming a conservation of energy and a reversible or conser-
vative material, the constitutive equations for an incompressible IED can be expressed
as

σ = F
∂W

∂F
+ p?I = µFF T + E⊗D + p?I, (47)

and
D = ε0εrE, (48)

in accordance with Eq. (3) as with the relative permittivity is considered to be constant.
We nNote that, in general, this model does not accurately retrievesreproduce experimental
results for coupled electromechanical loading.
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pics for experimental work 16.1.2020/general description of body.pdf

Figure 2: Schematic description of an arbitrary one dimensional system subjected to
electromechanical exitation at its boundary.

3 Electro-elasticity of solutions and anisotropic net-
works of polymer molecules

AnWe now present an in-depth multiscale analysis of the electromechanical coupling in
DEs, which is based on their inherented from their microstructure, is carried out. This e
analysis allows us to examine the interplay between the macroscopic deformation of the
DEs and the rearrangement of the monomers in a network of polymer chains as a result
of external electrical and mechanical loading will be examined.

3.1 First law of thermodynamics

The first law of thermodynamics, presentedexpressed in Eq. (8), is formulated as a general
representation forof the electromechanical situation. Such This representation accounts
for the conservation of energy ofin a body that is subjected to an electric field while
allowing us to formulate the energy balance in terms of the electric enthalpy and the
entropy of the system.

ForTo systematically analyzesis of the electromechanical coupling in polymers, from
the microscopic to the macroscopic levels, we specializetailor Eq. (8) to five different
systems. The simplest onessystems are based on the systemthat presented in Fig. 2,
which is essentially a one- dimensional system. Subsequently, we examine a network that
is treated as a 3 Dthree-dimensional body.

3.2 One-dimensional1 D systems of charges, dipoles, and molec-
ular chains in an electric field

In a 1 Done-dimensional system (see Fig. 2), we define the vector connecting the two
ends (i.e., the end-to-end vector of the system) as r = r− − r+. The quantities f+/−,
V+/−, and Q+/− are the forces, velocities, and charges, respectively, onat the system’s
boundaries, respectively. The rate of change in enthalpy and the rate ofin entropy are
ḢΥ = Ḣ (r,E0) and ṠΥ = Ṡ (r,E0), respectively. The power extracted by the external
agents [see (Eq. (12)]) is Ẇ Υ = ∑ f ·V +∑

Qφ̇.
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pics for experimental work 16.1.2020/ONE CHARGE EXPLENATION_dc.pdf

Figure 3: Schematic description of a single charge subjected to an electric field.

3.2.1 A single electric charge

We begin with anby analyzingsis of the second term inof Eq. (8), thatwhich concerns the
variation in the energy of the system due to variations in the electric field generated by a
single charge. To be precise, the present case describes a zero-dimensional0 D system.

The electric field due to a particle with a constant electric charge Q is derived from
Coulomb’s law as

EQ (g) = Qĝ
4πε0g2 , (49)

where in the current case g = gĝ is the vector from a specific point in space to the
charge’s location. Thus, asbecause electric fields satisfy the superposition principle, the
total electric field at the mentionedgiven location is

E (g) = E0 + EQ (g) = E0 + Qĝ
4πε0g2 , (50)

where E0 = E0 Ê is the electric field subjectedimposed on the entire space. Accordingly,
the second term in Eq. (8) is

ε0
2

d
dt

�
R3

(
E0 · E0 + 2QE0 · ĝ

4πε0g2 + Qĝ
4πε0g2 ·

Qĝ
4πε0g2

)
dV

=ε02
d
dt

�
R3

(
E0 · E0 + QE0 · ĝ

2πε0g2 + Q2

16π2ε20g4

)
dV. (51)

We nNote that the first and third terms in Eq. (51) are constants. Moreover, for any
spherical region about thea charge with inner radius Ri and outer radius Ro, the variation
in the energy depends on

Q

4π

2π�

0

π�

0

Ro�

Ri

E0 · ĝ
g2 g2 sin ΘdgdΘdΦ = QE0

2
d
dt

Ro�

Ri

dg
π�

0

cos Θ sin ΘdΘ ≡ 0, (52)

where according to Eq. (20) E0 · ĝ = E0 cos Θ [Eq. (20) ]. Since this integral vanishes
identically, so does its time derivative. Thus, for any motion of a single charge in a uniform
electric field, the second term in Eq. (8) vanishes.

Taking into account Eq. (52) and neglecting the enthalpy and entropy, as since we
assume no material, Eq. (8) is reduced to Ẇ = 0. Thus, based ony observing Fig. 3 and
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pics for experimental work 16.1.2020/dipole EXPLENATION_dc.pdf

Figure 4: Schematic description of a single dipole consisting of two charges, Q+ and Q−,
connected by a stiff rod in an electric field.

from Eq. (12), we obtain for a single charge

Ẇ = f · dc
dt −Q

dφ
dt = 0, (53)

where c denotegives the location of the charge. The velocity of the charge is V = dc
dt

where dc = δÊ + dcT represents the change in the locationposition of the charge during
the time interval dt, dφ = −E0 · dc = −δE0, and f = fEÊ + fT . Moreover, dcT and fT
are the components of dc and f , respectively, that are perpendicular to the direction Ê.
Thus,

Ẇ = d
dt (f · dc +QδE0) = d

dt (fEδ + fT · dcT +QδE0) = 0. (54)

Therefore, since in an equilibrium state because Eq. (54) equals zero in an equilibrium
state and dcT is arbitrary, we conclude that fT ≡ 0 and fE = −QE0. This is precisely
Coulomb’s force on a charge of magnitude Q in an electric field E0.

3.2.2 Dipoles

Consider now a charged nonpolarized rigid dipole and, as in the previous case, we assume
no material and neglect the enthalpy and entropy. As can be seenindicated in Fig. 4, the
dipole is described aconsists of two charges, Q+ and Q−, connected by a stiff rod ofwith
length l andoriented in the direction of the unit vector ξ̂. We assume thatQ+ = −Q− = Q.

Again, we begin with anby analyzingsis of the second term in Eq. (8), which gives the
variation in thesystem energy of the system due to variations in the electric field generated
by both the charges. HenceThus, in accordance with the superposition principle,

E = E0 + EQ+ (g+
)
− EQ− (g−) = E0 + Qĝ+

4πε0 (g+)2 −
Qĝ−

4πε0 (g−)2

= E0 + E+ + E−, (55)

where g+ = g+ĝ+ and g− = g−ĝ− are the vectors from a specific point in space to the
locationspositions of the charges Q+ and Q−, respectively. Accordingly, the second term
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in Eq. (8) is

ε0
2

d
dt

�
R3

(
E0 · E0 + 2

(
E0 · E+ + E0 · E− + E+ · E−

)
+ E+ · E+ + E− · E−

)
dV, (56)

where, according to Eq. (52), the integrals ofover E0 ·E+ and E0 ·E− vanishes identically
and the rest of thremaininge terms are constants. HenceThus, Eq. (56) equals zero.

ThusAs a result, Eq. (8) is again reducesd to Ẇ = 0. From the definition of the
electric potential, dφ = −E0 · dc. Thus, so φ̇+/− = −E0 ·V+/− and the rate of work of
the external sources is

Ẇ = f+ ·V+ + f− ·V− + E0 ·
(
Q+V+ +Q−V−

)
= 0. (57)

Since c+ = c−+ lξ̂ from the geometryic relation of the situation, then V+ = V−+ l
˙̂
ξ and

the corresponding rate of work is

Ẇ =
(
f+ + f−

)
·V− + l

(
f+ +QE0

)
· ˙̂
ξ = 0. (58)

SinceBecause the dipole is rigid, thereit is a constrainedt along the direction of the dipole.
Thus, the forces and the electric field aremay be splitted into components in accordance
with the orthogonal system

{
ξ̂, û, ŝ

}
, where ŝ = ξ̂ × Ê is perpendicular to the plane

spanned by the electric field and the dipole. û = ŝ× ξ̂ is perpendicular to the dipole and is
on the describedgiven plane. Hence, letUsing f+ = a+ξ̂+b+û+c+ŝ, f− = a−ξ̂+b−û+c−ŝ,
and E0 = eξ̂ + gû. Consequently, Eq. (58) yields

Ẇ =
[(
a+ + a−

)
ξ̂ +

(
b+ + b−

)
û +

(
c+ + c−

)
ŝ
]
·V−+l

[
a+ξ̂ + b+û + c+ŝ +Q

(
eξ̂ + gû

)]
· ˙̂ξ = 0.

(59)
Since at equilibrium Eq. (59) equals zero at equilibrium and V− and ˙̂

ξ are arbitrary,
it can be inferred from the first term implies that a+ = −a−, b+ = −b−, and c+ = −c−.
ThoughHowever, when consideration ofing the second term, we can deduce shows that
c+ = 0. Moreover, since ˙̂

ξ ⊥ ξ̂, the dot product of the component which isoriented
along the dipole with the temporal derivative of the dipole vanishes identically. Thus, the
second term of Eq. (59) does not contribute a constraint for the components of the forces
in the dipole direction and b+ = −gQ. These results are analogous to the requirement
that the sum of the dipole moments on the dipole vanishes.

In the case ofFor a spontaneous and polarizable dipolar monomers (Fig. 5), the elec-
trical enthalpy must be taken into account. According to ?, the electrical enthalpyelectric
enthalpy of a dipole is

h = −m · E0, (60)
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pics for experimental work 16.1.2020/dipole EXPLENATION_with material.pdf

Figure 5: Schematic description of a dipole in an electric field.

where m is the dipole vector. In the case ofFor a spontaneous dipole with a constant
magnitude κ, m = κξ̂. HenceThus, the electrical enthalpyelectric enthalpy is h = −κξ̂ ·E0

and the rate of thechange of electrical enthalpyelectric enthalpy is

ḣ = −κ ˙̂
ξ · E0. (61)

In this, case Eq. (8) is reducesd to
ḣ = Ẇ . (62)

Substituting Eqs. (58) and Eq. (61) into Eq. (62) yields

− κ ˙̂
ξ · E0 = f+ ·V+ + f− ·V− =

(
f+ + f−

)
·V− + lf+ · ˙̂

ξ, (63)

which yields thatleads to

(
f+ + f−

)
·V− +

(
lf+ + κE0

)
· ˙̂
ξ = 0. (64)

Again, the forces and the electric field are splitted into components in accordance with
the orthogonal system

{
ξ̂, û, ŝ

}
, where f+ = a+ξ̂+ b+û + c+ŝ, f− = a−ξ̂+ b−û + c−ŝ, and

E0 = eξ̂ + gû. Accordingly, Eq. (58) yields

[(
a+ + a−

)
ξ̂ +

(
b+ + b−

)
û +

(
c+ + c−

)
ŝ
]
·V−+

[
l
(
a+ξ̂ + b+û + c+ŝ

)
+ κ

(
eξ̂ + gû

)]
· ˙̂ξ = 0.
(65)

Thus, asGiven that V− and ˙̂
ξ are arbitrary, the first term leads us to the constraints

a+ = −a−, b+ = −b−, and c+ = −c−. The second term leads to c+ = 0 and, since
given that ˙̂

ξ ⊥ ξ̂, the second term does not contributes anno additional constraint on
the components of the forces in the dipole direction and b+ = −g κ

l
. In the case whereIf

b+ = 0 then E0 · ˙̂
ξ = 0 for equilibrium. Since and, because ˙̂

ξ ⊥ ξ̂, it inferes that for this
specific casewe have ξ̂ ‖ E0 for this specific case,. wWhich means that the electric field
will not inducecauses no rotation ofn the dipole, and so the dipole can beremains at rest
without applicationin the absence of external forces.
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3.2.3 Polymer molecule (chain)

As was established above, whilewhen d
dt

�
R3 E·EdV vanishes identically and whenever

Ẇ = 0, Eq. (8) is reducesd to
Ḣ = T Ṡ. (66)

Thus, sincebecause T ṠC − ḢC = 0 describes an equilibrium state for a polymer chain, it
means that the preferred state of a chain canmay be described by determining max

{
TSC −HC

}
.

ByThen, taking Eq. (29) into account, the most probable state is the one that satisfies

max
{
Tk

[
n ln (n)− αn− τ · r

l

]
− (Tkγ + 1)HC

}
, (67)

where from Eq. (25) gives HC (r,E0) =
n∑
i=1

hi
(
ξ̂i,E0

)
. Furthermore, we emphasizeNote

that the analysis is executed with the assumesption that r, the end-to-end length of the
chain with maximum permutations (i.e., the most probable length), is the only end-to-end
length of chains in the direction of r̂.

(Note: The "length" of a polymer chain - general)
In order tTo determine the most probable length r for a specific chain, the number

of possible permutations is calculated for all possible end-to-end lengths in the range
0 ≤ r ≤ n l. This assessment is performeddone for chains in all possible orientations
relative to the direction of the electric field, 0 ≤ Θ < π. Thus, we can assess the most
probable chain configuration, depending on the magnitude of the electric field in the
polymerization process and the chain’s inclination with respect to the electric field.

(Note: The "length" of a polymer chain in the case of E=0 - purely mechanical case)
When examining the vector r of a single polymer chain in the case ofwhen E0 = 0, then

HC (r, 0) = 0 and the entropy of the chain is governsing its behavior. By using the implicit
equation from which the Lagrange multiplier τ is computed and the probability density
functionPDF that a monomer is in the direction ξ̂, Eqs. (36) and Eq. (35), respectively,
we obtain

Γ0�
0
ξ̂ exp

(
τ · ξ̂

)
dΓ

Γ0�
0

exp
(
τ · ξ̂

)
dΓ

= r
n l
. (68)

Let τ = ar̂ + bm̂, where m̂ = m
m

and m = τ − (τ · r̂) r̂ in an orthogonal system {r̂, m̂, ŝ}
where ŝ = r̂ × m̂. In this system take, define ξ̂ = cos θr̂ + sin θ (cosφm̂ + sinφŝ), and
subsequentlywhich leads to τ · ξ̂ = a cos θ + b sin θ cosφ.
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Multiplying Eq. (68) by m̂ we obtaingives

1
Z

Γ0�

0

(
ξ̂ · m̂

)
exp

(
τ · ξ̂

)
dΓ = 0, (69)

or explicitly

1
Z

� 2π

0

� π

0
exp (a cos θ) exp (b sin θ cosφ) sin θ cosφ (sin θ dθ dφ) = 0. (70)

We nNote that the choice b = 0 leads to

1
Z

� π

0
exp (a cos θ) sin2 θ dθ

� 2π

0
cosφ dφ = 0, (71)

and hence to the fulfilment ofwhich fulfills Eq. (69).
Next, by mMultiplying the left- hand side of Eq. (68) by r̂ we obtaingives

1
Z

Γ0�

0

(
ξ̂ · r̂

)
exp

(
τ · ξ̂

)
dΓ = 1

Z

� 2π

0

� π

0
exp (a cos θ) cos θ sin θ dθ dφ. (72)

A change of variables to x = cos θ leads to the expression
� 1
−1 exp (a x) x dx� 1
−1 exp (a x) dx

= r

n l
, (73)

which can be integrated to obtain

exp (a) + exp (−a)
exp (a)− exp (−a) −

1
a
≡ L (a) = r

n l
, (74)

where L is the Langevin function. Accordingly,

a = L−1
(
r

n l

)
, (75)

where L−1 is the inverse Langevin function. Note that if r
n l

≪ 1 then a ∼= 3r
n l

and a→∞
in the limit r → n l then a→∞.
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Substituting the expression for SC following Eqs. (22) and Eq. (26) gives

ln
(
ΩC

)
= n ln (n)−

∑
i

ni ln (ni) (76)

= n

ln (n)− 1
Z

ln
(
n

Z

) Γ0�

0

exp (a cos θ) dΓ + a

Γ0�

0

exp (a cos θ) cos θ dΓ


 ,

where, from Eq. (72),

Γ0�

0

exp (a cos θ) cos θ dΓ = r

n l

Γ0�

0

exp (a cos θ) dΓ , (77)

and thus,so

ln
(
ΩC

)
= n

ln (n)− 1
Z

(ln
(
n

Z

)
+ a r

n l

) Γ0�

0

exp (a cos θ) dΓ




= n ln (Z)− ar
l
. (78)

We nNote that
Z = 2π

a
[exp (a)− exp (−a)] , (79)

and henceso
ln
(
ΩC

)
= n ln

{2π
a

[exp (a)− exp (−a)]
}
− ar

l
. (80)

Note also that, in the limit r → 0, ln
(
ΩS
)

= n ln (4π) and henceso ΩS = (4π)n, and,
in the limit r → n l, ln

(
Ωn l

)
= n ln

[
2π
a

exp (a)
]
− a n = n ln

(
2π
a

)
and henceso Ωn l =(

2π
a

)n
→ 0 since a→∞. Given that E0 = 0, Tthe total number of permutations of chains

with end-to-end length r, as E0 = 0, is

ΩO (r) = 4πr2ΩC (r) = 4πn2l2η2ΩC , (81)

where η ≡ r
n l
. Since atIn the limit r → 0, ΩS is finite thenand ΩO (0) → 0, and since

atin the limit r → n l, ΩS → 0 and r2 is finite, so ΩO (n l) → 0. This suggests that, in
the range 0 < r < n l, ΩO has a maximum.

Determination of tThe maximum of ΩO is performed asobtained by using

d ln ΩC

dη = ∂ ln ΩC

∂a

da
dη + ∂ ln ΩC

∂η
, (82)

whenwhere we treating a and η as independent variables. It can be seen from Eq.Equations (74)
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and Eq. (80) show that

∂ ln ΩC

∂a
= n

(
exp (a) + exp (−a)
exp (a)− exp (−a) −

1
a

)
− r

l

= n

(
exp (a) + exp (−a)
exp (a)− exp (−a) −

1
a

)
− nη = 0, (83)

thusso,
d ln ΩC

dη = −a n. (84)

From the distribution infor the case of E0 = 0 [(seen in Eq. (81)]), and using as 4πn2l2 = k,
we obtain

1
k

∂ΩO

∂η
= 2ηΩC + η2 dΩC

dη = η exp
(
ln ΩC

)
[2− η a n] = 0. (85)

Tthereforeom a = 2
n η

or η = L
(

2
n η

)
= coth

(
2
n η

)
− n η

2 . IfFor large n is a large number,

coth
(

2
n η

)
= n η

2 + 2
3n η + o

(
2
n η

)3
. HenceThus, up to a second order in 1

n
, η =

√
2
3

1√
n
∼

0.816√
n
. This result differs from the assessment givenobtained from random walk statistics

presented and used by ??? and ? but coincideis consistent with the assessed end-to-end
chain length determined inby ? , ?, and ?.

(Note: force in a single chain with no electric field)
Furthermore, assuming zero electric field, we examine the most probable end-to-end

length of a chain subjected to a force f ‖ r and whosewith one end is at the origin and
the other end is located within a small volume dV = r2drdφdθ when a given force f ‖ r
is acting upon it is also examined in the case of no electric field. By specializing Eq. (8)
to the case ofFor a single chain without an no electric field, we receiveEq. (8) takes the
form

Ẇ + T ṠO (r) = 0. (86)

For this case, we define that r = ρR, where ρ is the stretch magnitude, R is the end-to-
end vector in the referential state of the chain, and it iswe assumed that r ‖ R. Thus, in
accordance with Eqs. (22) and Eq. (81), the rate of change of entropy is

ṠO (r) = dSO
dρ ρ̇ = k

(
2
ρ
− τ ·R

l

)
ρ̇, (87)

and the rate of work ofdone by the external sources is

Ẇ = f · v = f ·Rρ̇, (88)

where v = ṙ, f is the external force operatingexerted on the chain, and body forces are
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neglected. Substituting Eqs. (87) and (88) into Eq. (86) yields
[
f ·R + T k

(
2
ρ
− τ ·R

l

)]
ρ̇ =

[
f ·Rρ+ T k

(
2− τ ·Rρ

l

)]
ρ̇

= [f · r + T k (2− η τ n)] ρ̇ = 0, (89)

thus,

f = −T k (2− η τ n)
r2 r = −

T k
[
2− r

n l
L−1

(
r
n l

)
n
]

r
r̂, (90)

where Eq. (75) is taken into account. HenceThus, in accordance with Eq. (85), when
r
n l

=
√

2
3

1√
n
then f = 0.

3.3 Polymer molecules (chains) in electric field

We now examine a method for controlling the electro-elastic moduli of a network. Specif-
ically, we examine the consequence of executing the polymerization process underin an
external electric field. Toward this end, we assume that the polymer chains are in a
solution during the polymerization. The current step assumes and that the monomers
are already bonded into chains, but before thethat the chains are not cureding and the
tougheninged or hardeninged into a networkof the network by cross-linking of the chains.
In this case, we can refer to the chains as “"floating”" in the solution such that no external
work is applied at their ends. Furthermore, we assume no interactions between the chains
and determine their most probable permutations sepseparatelyeretly.

In accordance with the mentionedGiven these assumptions, each chain will beis ex-
amined individually as t. The end-to-end length of a chain is rj = r(Θj,E0) and the
end-to-end direction of thea chain is r̂j = r̂(Θj,Φj). According toIn the coordinate sys-
tem shown in Fig. 1, Θj is the inclination of the chains’ end-to-end vector relative to the
direction of the electric field. HenceThus, as described in section 3.2.3, the suitable rj for
each Θj is the one that satisfies Eq. (67). In the case whereWhen E = 0, it is sufficient to
analyzeonly a single chain need be analyzed (as detailed in sectionSec. 3.2.3) sincebecause
in this case the polymer has no preferred direction in this case and the network is isotropic.

3.3.1 Monomers orientational dDistribution of monomer orientation

(Note: calculating monomer orientations)
After calculating the polymers end-to-end chain length in each group, we evaluate the

orientation of the chains building blocks, (i.e., the monomers, can be evaluated). The
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monomer orientations are investigated as a part of a chain while taking into account the
suitable constraints, as indicated by seen in Eqs. (23), Eq. (24) and Eq. –(25).

Once the end-to-end chains lengths withare determined for the maximum possible
permutations are determined, (i.e., the most probable end-to-end chain length for each
group is found), the monomers distribution can beis calculated for each chain by using
Eq. (35). The probabilities for all possible monomer orientations of the monomers are
then calculated in order to determine the monomers distribution ofin the most probable
chains, which was obtained found in the previous section. These mentioned orientations
include all combinations ofin the ranges 0 ≤ θ < π and 0 ≤ φ < 2π.

After obtaining the monomers orientations for each of the chain groups, awe com-
parison can be made toe it with the monomer distribution in the amorphous casephase.
Such distribution, which can be calculated according toby using Eq. (42) whileand taking
into account the correct type of dipole. Analytical approximations of the PDF in the
amorphous phase are presentedgiven by in Eqs. (44) and Eq. (45) for uniaxial dipoles and
transversely isotropic dipoles, respectively [?].

3.4 An anisotropic network of polymer molecules

According to ?, the total number of internal configurations of a polymer with N polymer
chains is

Ωt = N !
∏
q

(
(ωq)Nq

Nq!

)
, (91)

where ωq and Nq are the number of configurations and the number of chains associated
with a specific end-to-end vector, respectively. As an example, assume, in a way of an
example, that we can a -priori split the chains population into two populations such that,
for all the end-to-end vectors in the two groups, the numbers of possible configurations
are ω1 and ω2, and the numbers of chains in each group are N1 and N2, respectively.
There are total end-to-end vectors ψ1 and ψ2 end-to-end vectors in the two groups such
thatsatisfy ψ1N1 + ψ2N2 = N . Accordingly,

Ωt = N !
 ψ1∏
q1=1

(ω1)N1

N1!

 ψ2∏
q2=1

(ω2)N2

N2!

 = N !
(

(ω1)N1

N1!

)ψ1 ((ω2)N2

N2!

)ψ2

. (92)

Similarly, if there aregiven J groups with a similar number of configurations and number
of chains in each group,

Ωt = N !
J∏
j=1

(
(ωj)Nj

Nj!

)ψj

, (93)
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where ψj is the number of end-to-end vectors in thegroup j-th group and

∑
j

ψjNj = N. (94)

The number of possible configurations of a polymer chain is calculated as

ωj = nj!
Πi (nij!)

, (95)

where nj is the number of dipolar monomers in a chain which is in groupthe j-th group
of chains and nij is the number of monomers aligned alongwith ξ̂i in a chain which is in
thegroup j-th group. Consequently, by using the Stirling approximation, the total entropy
of the polymer is

St = k ln
(
Ωt
)

= k

N ln (N)−N +
∑
j

ψj

{
Nj

[
nj ln (nj)− nj −

∑
i

nij ln (nij) +
∑
i

nij

]
−Nj ln (Nj) +Nj

}
= k

N ln (N) +
∑
j

ψjNj

[
nj ln (nj)−

∑
i

nij ln (nij)− ln (Nj)
] .

(96)

by employing the Stirling approximation. The polymer network is subjected to the con-
straint mentioned in Eq. (94). As was previously specified, each chain is subjected to
three constraints: ∑

i

nij = nj, (97)

∑
i

lnij ξ̂i = rj, (98)

and the end-to-end vector of the monomers chain is rj = rj r̂j, andso

∑
i

nijhi = HC
j , (99)

where HC
j is the electric al-enthalpy of the chain and hi is the enthalpy of a monomer

aligned along ξ̂i.
We assume that the most probable configuration is the oneconfiguration thatcurrently

occupied by the polymer occupies, and thusso we are interested in maximizing the entropy
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under the given constraints:,

St = k ln (Ωt) + k
∑
j

ψjNj

[
αj

(∑
i

nij − nj
)

+ τ j ·
(∑

i

nij ξ̂i −
rj

l

)
+ γj

(∑
i

nijhi −HC
j

)]

+ k η

∑
j

ψjNj −N

 , (100)

where αj, τ j, γj, and η are Lagrange multipliers.
In order tTo account for the maximal number of configurations, we impose that

∂St

∂nij
= k

[
−ψjNj ln (nij) + ψjNj

(
αj + τ j · ξ̂i + γjhi

)]
= 0, (101)

from which we obtain

nij = exp
ψjNj

(
αj + τ j · ξ̂i + γjhi

)
ψjNj

 = exp
(
αj + τ j · ξ̂i + γjhi

)
. (102)

By substituting Eq. (101) into Eq. (100), the maximum entropy of the polymer is

St = k N ln (N) + k
∑
j

ψj {Nj [nj ln (nj)]−Nj ln (Nj)} −
∑
j

ψjNj

(
αjnj + τ j ·

rj

l + γjH
C
j

)

+ k η

∑
j

ψjNj −N

 . (103)

Following the works of ? and ?, we tooalso assume no interaction between the polymer
chains do not interact with one another. Therefore, the total enthalpy isHt = ∑

j ψjNjH
C
j .

Differentiating the first law of thermodynamics, [Eq. (8)], with respect to the enthalpy of
the jth we have that

∂H t

∂HC
j

= T
∂St

∂HC
j

, (104)

and by using Eq. (103), we derive the relationobtain

γj = − 1
k T

. (105)

By taking into consideration the constraint imposed byn Eq. (97) and the relations
we received ingiven by Eqs. (102) and (105), we obtain that

∑
i

nij =
Γ0�

0

exp
(
αj + τ j · ξ̂i −

hi
k T

)
dΓ = nj. (106)

From here we can determine the PDF, which indicates that a monomer in chainthe j-th
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chain is in the direction oforiented along ξ̂i and has an electric al-enthalpy hi. This is

pij
(
ξ̂i, hi

)
= nij
nj

= 1
Zj

exp
(
τ j · ξ̂i −

hi
k T

)
, (107)

where

Zj =
Γ0�

0

exp
(
τ j · ξ̂i −

hi
k T

)
dΓ , (108)

is the partition function and the Lagrange multipliers τ j are computed from the implicit
equations that follow from the constraints ingiven by Eq. (98),

Γ0�

0

ξ̂i pij dΓ = rj
nj l

. (109)

The enthalpy of the chain,
Γ0�

0

hi pij dΓ = HC
j , (110)

is computed from constraint given by Eq. (99).
In order tTo consider the network with the largest number of chain configurations, we

impose that

∂St

∂Nj

= ψj

[
nj ln (nj)−

∑
i

nij ln (nij)− ln (Nj)
]

+ ψjαj

(∑
i

nij − nj
)

+ ψjτ j ·
(∑

i

nij ξ̂i −
rj

l

)

+ ψjγj

(∑
i

nijhi −HC
j

)
+ ηψj

= ψj

[
nj ln (nj)−

∑
i

nij ln (nij)− ln (Nj) + η

]
= 0,

(111)

from which we obtain

Nj = exp
[
nj ln (nj)−

∑
i

nij ln (nij) + η

]
=

exp (η) nnj

j∏
i n

nij

ij

. (112)

Next, from the constraint given by Eq. (94), we obtained that

∑
j

ψjNj =
∑
j

ψj
exp (η) nnj

j∏
i n

nij

ij

= N. (113)
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This enables us to determine the Lagrange multiplier

η = ln

 N∑
j

(
ψjn

nj
j∏

i
n

nij
ij

)
 . (114)

Furthermore, the PDF that a chain is in the j-th inclination is

pj = Nj

N
=

∏
i n
−nij

ij∑
k ψk

∏
i n
−nik
ik

=
∏
i (njpij)−njpij∑

k ψk
∏
i (nkpik)−nkpik

, (115)

and the fraction of all the chains with a specific inclination to the electric field can be
estimated as

υj = ψjpj, (116)

such that ∑j υj = 1.
Next, we make use of Eq. (115) in Eq. (103) to determine the entropy of the entire

network:

St = k

N ln (N) +
∑
j

ψjNj

nj ln (nj)−
∑
i

nij ln (nij)− ln
N ∏

i n
−nij

ij∑
k ψk

∏
i n
−nik
ik


= k N ln (N) + k

∑
j

ψjNj

[
nj ln (nj)−

∑
i

nij ln (nij)− ln (N)
]

+ k
∑
j

ψjNj

[∑
i

nij ln (nij) + ln
(∑

k

ψk
∏
i

n−nik
ik

)]

= k

∑
j

ψjNj

[
nj ln (nj) + ln

(∑
k

ψk
∏
i

n−nik
ik

)] .
(117)

Assuming that thea fixed number of dipolar monomers in each chain is fixed, we neglect
the first term in the last line of Eq. (117) to conclude that

St ∝ N ln
(∑

k

ψk
∏
i

n−nik
ik

)
. (118)

By following the same steps for the case of the entropy of a chain presented in Eq. (22),
it can bewe concluded that

SCj ∝ ln
(∏

i

n
−nij

ij

)
. (119)

We can observe the sSimilarities appear between both assessments of the maximum en-
tropy. In Eq. (119), the entropy of a chain is a function of the end-to-end length, rj, and
does not depend on the inclination, r̂.

We Nnote that, in the case offor excitation by an electric field, the number of end-
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to-end vectors in thegroup j-th group are dependsent on the group’s inclinations with
respect to the direction of the electric field, and so

ψj = 2πr2
j sin (Θj) . (120)

3.4.1 Deriving the properties of the polymer

In order tTo assess our methodology, we wish to evaluate the properties of thea new
anisotropic polymer and to compare them towith those of thean isotropic polymer. Besides
the electro-mechanical coupling, which is our main interest, the response of the polymer to
purely mechanical loading and electrostatic excitation shouldis also be examined too. The
mechanical properties of the polymer relate to the mechanical stress in the polymer under
purely mechanical loading described by the deformation gradient tensor F . The electrical
properties of the polymer, such as the electric displacement and the susceptibility, relate
to the polarization inof the polymer under electrostatic excitation.

(Note: referenced mechanical stress)
The general mechanical stress presented by ?, which results from Eq. (16), is

σm = 1
J dV0

∑
i

n


Γ0�

0

∂h

∂F
p dΓ


i

+ k T τ i
l

∂ri
∂F

F T. (121)

The mechanical stress takes into account the change in the electrical energy of a the
monomers due to the mechanical deformation and for the mechanical loadings that de-
forms the chains end-to-end vectors of the chains. Considering the assumption made
byAs per ?, we assume that the monomer is rigid compared towith the polymer chain,
so the electrical enthalpyelectric enthalpy of the monomer does not depend on the defor-
mation gradient. Furthermore, by assuming an incompressible material, Eq. (121) can be
simplifiesd to

σm = 1
dV0

∑
i

(
k T τ i
l

∂ri
∂F

)
F T. (122)

(Note: simplified mechanical stress, suitable for an anisotropic case)
In order tTo evaluatedetermine the mechanical stress in the polymer, we first calculate

the average stress of each chain group is calculated first. As already mentioned, in the case
offor excitation by an electric field, the chains groups are determined by their inclinations
with respect to the direction of the electric field. Thus, the stresses of chains with the
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same inclination, Θk, are averaged over 0 ≤ Φq < 2π to obtain

σmk =

Q∑
q

(
k T τkq

l

∂rkq

∂F

)
F T

Q
, (123)

where r̂kq = cos ΘkÊ + sin Θk

(
cos ΦqŶ + sin ΦqẐ

)
, asand q = 1, 2, ..., Q. The calculation

of ∂rkq

∂F
is detailed in Aappendix B.

Next, we consider the relative influence of each of the chains groups is considered.
This is performed by taking into account the fraction of the chains in a specific group,
as shown in Eq. (116). Thus, Eq. (122) can be rewritten as

σm = N
∑
k

υkσ
m
k , (124)

where the averaged stress of a chain is multiplied by the number N of chains in aper unit
volume, N .

(Note: referenced polarization)
The polarization

P = − 1
J dV0

∑
i

n


Γ0�

0

∂h

∂E
p dΓ


i

+ k T τ i
l

∂ri
∂E

 , (125)

was presentedderived by ?. This relations and stems from Eq. (17). The polarization
equation , Eq. (125), considers the variation of thein electrical enthalpyies of the monomers
as a result of the excitation ofby the electric field and the reorientation of the chains as a
response to the electrical excitation. From the assumption that the chains undergo affine
deformation, it follows that the electric field does not directly affect the chain distribution
of the chains. Thus, by assuming an incompressible material, Eq. (125) can be simplifiesd
to

P = − n

dV0

∑
i


Γ0�

0

∂h

∂E
p dΓ


i

. (126)

(Note: simplified polarization, suitable for an anisotropic case + susceptibility)
The polarization of the polymer is calculated by executing the same steps that were

describedin the same way as for the mechanical stress. AsBecause ∂h
∂E = −m, the polar-

izations of chains with the sameof a given inclination, Θk, are averaged over 0 ≤ Φq < 2π
to obtain

Pk =
n

Q∑
q

(
Γ0�
0

m p dΓ
)
kq

Q
, (127)
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where q = 1, 2, ..., Q.
Thus, asbecause the relative influence of each of the chains groups is considered

through the fraction of the chains in a specific group, we obtain

P = N
∑

υk
k

Pk, (128)

where the averaged polarization of a chain is multiplied by the number N of chains in
aper unit volume, N . After the calculationg of the polarization, the electric displace-
ment maycan be calculated according toby using Eq. (3), and the susceptibility can be
calculated by usingas

χ = P · E
ε0E2 . (129)
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4 Application to electrostatically biased network

(Note: Opening sentence + Isotropic example - first step of the numerical analysis - evaluating
the Lagrange multiplier tau)

As we aspire tTo modify theDE properties of DEs in order to affectmodify theirthe
electromechanical coupling of polymers, we propose to perform the polymerizeization
process of a polymer monomers while in the presence of an external electric field. Such a
process will result inproduces a relative order of the polymer-chain networks of polymer
chains as the chains and the dipolar monomers can react to the electric field while the
chains are forming and “"floating”" in the solution state. The mentioned electric field will
beis removed at the end ofafter the polymer-chain network hardens ing of the network
which isas a result of the cross-linking betweenof the chains. N We note that the chain
and monomer responsess of the chains and monomers are are restricted by the constraints
in Eq. (94) and, Eq. (97), Eq. (98) and Eq. –(99), as is detailed in sectionSec. 3.4.

For the sake ofTo examineing the influence of ourthe proposed polymerization process
(i.e., creating a “biased” polymer), we follow the analytical analysis detailed in sectionSec.
3. This examination will be executedis done while comparing theour results for the
biased polymer withto those of an unbiased polymer (i.e., an isotropic polymer) and
withto the IED model (presented in sectionSec. 2.3), all in order to evaluate the influence
of performinghow the suggested process affectson the structure and properties of the
polymer.

4.1 Chains distribution

The initial step of the analysis is to evaluatedetermine the most probable configurations
of the polymer chains inof the isotropic and biased polymers. At first wWe first apply our
calculations to the case of no electric field, and for a network ofn isotropic chain networks.
The initial step of the calculation is to evaluatedetermine the value of the Lagrange
multiplier τ with theby application ofying the Newton—-Raphson method onto Eq. (36).
The first guess, τ 0, is obtained by analytically estimating the Lagrange multiplier as a
function of r in a case where the electric field approaches zero,

τ 0 = 3r
n l
, (130)

which is accurate in this specific case, as is detailed in Aappendix C.
(Note: chains length - isotropic distribution)
As a result ofGiven the maximum-entropy assumption and the fact that, in this case,

there is no electric actuation or any other external influence, we can assume that there
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is an isotropic distribution of chains, which means that and so we can assess the end-
to-end length of a chain in a single direction and relate it to all directions. Thus, in
order to determineevaluate the most probable end-to-end chain length, the number of
configurations of a chain with a specific r is calculated and then multiplied by the surface
area of a sphere with the same r, which represents the chains groups in the isotropic case,
as is discussed in sectionSec. 3.2.3 and shown inby Eq. (81). The entropy offor each
case is calculated by using the results fromof Eq. (81) in Eq. (22). AnSeveral examples
areis presented in Fig. 6, which presentsshows the entropy as a function of the normalized
radius, r

n l
, for n = 50 and n = 100 withas l = 100µm. The initial susceptibility used

in these presented exampelsexamples is χ0 = 37, which is about ten times the electric
susceptibility of the commercially available polymer VHB 4910, and. tThe analyses are
performeddone for the case of uniaxial dipoles. The difference between the curves in
Fig. 6 can beis attributed to Eqs. (21), Eq. (22), and Eq. (81). Accordingly, the entropy
of the chain increases with as the number of monomers in thea chain increases so does
the entropy of the chain.

(Note: defining calculation parameters - material properties and calculations boundaries)
We assume that thea shear modulus µ = 105 Pa offor the polymer in its initial unloaded

configuration. is µ = 105 Pa. The value of N , the number N of chains perin a unit volume,
wais deduced from the relation µ = N k T [??]. The normalized radii that correspond to
the maximum points of the two curves in Fig. 6 are

(
r
n l

)
n=50

∼= 0.1 and
(
r
n l

)
n=100

∼= 0.075
whichand are compatibleconsistent towith the analytical predictions

(
r
n l

)
n=50

= 0.115
and

(
r
n l

)
n=100

= 0.082, respectively, given in sectionSec. 3.2.3, of
(
r
n l

)
n=50

= 0.115 and(
r
n l

)
n=100

= 0.082, and presentedshown by the dashed columns in Fig. 6. The differences
between the numerical and analytical results for the most probable end-to-end chain
length iscan be associated with the density of discretization of 0.025 for 0 ≤ r

n l
≤ 1.

Furthermore, it can be seen that the results of the current approach are different from the
results

(
r
n l

)
n=50

= 0.141 and
(
r
n l

)
n=100

= 0.1, obtained fromof the random walk statistics
of
(
r
n l

)
n=50

= 0.141 and
(
r
n l

)
n=100

= 0.1, and presented by the dot-dashed columns in
Fig. 6. The values of theNegative entropy that are smaller then zero areis irrational
and isare truncated becauseas theyit represents numbers of configurations that are innot
compatible with the previously made assumption required for Stirling’s approximation
betweenthat is applied to go from Eq. (21) andto Eq. (22).

(Note: the main idea - parameters value and initial calculations)
Next, for the purpose of evaluating the influences o to determine how f electrical

excitation affectson the polymer structure during a polymerization process, different pa-
rameters were investigated as the electric- field magnitude ranged from 0 MV

m to 150 MV
m .

The presented results are based on a numerical calculation where the number of monomers
in a single chain, the length between the two contact points of a monomer with its neigh-
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Figure 6: The entropy of a polymer chain with uniaxial dipoles as a function of the
normalized radius as 0 ≤ r

n l
≤ 1 and l = 100µm. The red continuous curve with circular

markers corresponds to n = 50 and the brown curve with squares to n = 100. The
dashed columns corresponds to the normalized radii in accordance with the results in
section 3.2.3, r

n l
=
√

2
3

1√
n
, and the dot-dashed columns to the results from random walk

statistics, r
n l

= 1√
n
.

pics for experimental work 16.1.2020/LnOmega vs ElecField 29.02.2020.pdf

Figure 7: The natural logarithm for the maximum number of configurations as a function
of the electric field magnitude for chains with uniaxial dipoles at different inclinations.
The blue curve with circular markers corresponds to Θ = π

1000 , the red curve with squares
to Θ = π

4 and the yellow curve with diamonds to Θ = π
2 .

bors, and the number of chains perin a unit volume are the same as thosee ones assumed
for the case of no electric field.

In order tTo demonstrate the influence ofhow electric fields with differentof various
magnitudes onaffect chains at various inclinations with respect to the direction of the
electric field, Figs. 7, 8, and 9 show results for chains with Θ = π

1000 , Θ = π
4 and Θ = π

2 .
are presented in Fig. 7, Fig. 8 and Fig. 9. Figure 7Tshows the natural logarithm of the
maximum number of configurations for each chain as a function of the electric field can be
seen in Fig. 7, and Fig. 8. shows tThe end-to-end length withfor the maximum number
of configurations of each chain as a function of the electric field can be seen in Fig. 8.
The Lagrange multiplier τ , which can be portrayedmay be understood as the chain’s
mechanical constraint and which, that is relateds to the end-to-end length of the chain
with the maximum number of configurations, wasis examined as a function of the electric-
field magnitude, as can be seen in Fig. 9.

NWe note from Figs. 7, Fig. 8, and Fig. 9, that the magnitude results differ little for

pics for experimental work 16.1.2020/rad vs ElecField 29.02.2020.pdf

Figure 8: The most probable end-to-end length as a function of the electric field magnitude
for chains with uniaxial dipoles at different inclinations. The blue curve with circular
markers corresponds to Θ = π

1000 , the red curve with squares to Θ = π
4 and the yellow

curve with diamonds to Θ = π
2 .
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pics for experimental work 16.1.2020/AbsTau vs ElecField 29.02.2020.pdf

Figure 9: The size of the Lagrange multiplier τ , associated with the most probable radius
as a function of the electric field magnitude for chains with uniaxial dipoles at different
inclinations. The blue curve with circular markers corresponds to Θ = π

1000 , the red curve
with squares to Θ = π

4 and the yellow curve with diamonds to Θ = π
2 .

range ofan electric field that is smallerless than 50 MV
m has shown very small differences

in results from the case of E = 0 MV
m . This is particularly evident in Fig. 8, where the

change in the end-to-end length of the different chains is hardly visible below 50 MV
m . In

Figure. 7 shows, we can observe the similarities in the curves for the natural logarithm
of the maximum number of configurations for chains at different inclinations, which all
decrease as the magnitude of thewith increasing electric field is enhanced. The differences
between the curves can be associatedattributed to the number of end-to-end vectors in
each inclination with respect to the direction of the electric field, as seenexpected infrom
Eq. (120). By observing Figure. 8, it can be seenshows that, with increasing electric field,
the end-to-end length of chains at all inclinations increases as the magnitude of the electric
field is enhanced. ThoughHowever, as the magnitude is enhancedelectric field increases,
the differences in the end-to-end length become more prominent, asbecause chains inat
greater inclinaetions are longer. We find that tThis result is counterintuitive asbecause we
would expect chains with greater inclinations with respect to the direction of the electric
field to be shorter as because the monomers aspiretend to reorient in the direction of the
electric field. From Figure. 9 we can observeshows the differences in mechanical constraint
of the chains mechanical constraint. As the magnitude of theWith increasing electric field,
is enhanced its value the constraint decreases for chains parallel to the direction of the
the electric field and relatively increases somewhat for chains withat greater inclinations.
This can beresult is attributed to the fact that as the polymer beingis in a solution state
during the polymerization, and, it is "harder" to holdmore energy is required to maintain
chains at larger inclinations as the monomers react to the electric excitation and aspire
to rotate towards its direction.

4.2 Monomers orientation

(Note: monomer distribution - chains)
Once theAfter calculatingons of the end-to-end lengths for chains at each of the

mentionedas a function of inclination with respect to the direction of the electric field,
[i.e., determining r0

j = r0(Θj,E)r̂(Θj)], the monomers orientation can be calculated as
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(c)

Figure 10: The monomer distribution for a polymer chain of uniaxial dipoles. The mag-
nitude of the electric field during the polymerization process is E = 150 MV

m . (a) Corre-
sponds to the chain with the inclination Θ = π

1000 and end-to-end length r = 0.89
√
n l. (b)

Corresponds to Θ = π
4 and r = 0.91

√
n l. (c) Corresponds to Θ = π

2 and r = 0.93
√
n l.
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Figure 11: The amorphous monomer distribution of a uniaxial dipole as E = 150 MV
m .

According to the numerical analysis as τ = 0 and identical to the results of the analytical
analysis that was presented by ?.

detailed in sectionSec. 3.3.1. Figures. 10a(a), b and –10a(c) presentshow the monomers
distribution offor chains with different inclinations Θ = π

1000 , Θ = π
4 , and Θ = π

2 , re-
spectively, while the magnitude of theand for an electric field is E = 150 MV

m . In these
three -dimensional plots, the length of the radius vector to each point represents the num-
ber of monomers aligned with thisthe given vector. As can also be seenIn addition, the
monomers distributions are is compatibleconsistent when comparing between the different
inclinations. This, which means that the monomers in the different chains aspiretend to
orient similarly. This compatibilityconsistency is very interesting, as because the chains
have different inclinations and different end-to-end lengths.

(Note: amorphous monomer distribution)
AsGiven that the monomers orientation for each of the mentionedgiven chains wasis

obtained and their likenesssimilarity is was recognized, the monomers we now examine
the monomer distribution in anthe amorphous case is examined. Figure. 11 presents
the results of the numerical calculations forof the distribution of amorphous monomers
distribution in the case offor a uniaxial dipole accordingbased on to Eq. (42). Unlike
Figs. 10a, b and –10c, Fig. 11 presents a symmetric distribution of the monomers, as in
this case thewhere monomers are free to reorient separately and are not be constrained
as a part of a chain. The result of the analytical analysis forof the PDF in the amorphous
case [?], presented in Eq. (44), can also be seenappears in Fig. 11 as theyand are identical
to the numerical results.
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pics for experimental work 16.1.2020/Number of chain in each inclination _ Comparison 29.4.2020 with lines.pdf

Figure 12: The number of chains along each inclination as a function of the inclination
relative to the direction of the electric field, N (Θ,Φ = 0). The blue curve with circular
markers corresponds to the isotropic polymer and the yellow curve with squares corre-
sponds to the biased polymer.
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Figure 13: The fractions of chains along each inclination as a function of the inclination to
the direction of the electric field, ν (Θ). The blue curve with circular markers corresponds
to the isotropic polymer and the yellow curve with squares corresponds to the biased
polymer.

4.3 The free state

(Note: finding the natural state - chains distribution, weights and lambda0 deformation)
After analyzing the micro-scale and understanding the monomer distribution as a

result of the mentionedgiven polymerization process, we now examine the macro-scale
is examined. Hence, as we wish tTheo analysisze of the macroscopic response of the
polymers to different excitations, as is detailed in sectionSec. 3.4, requires an assessment
of the relative influence of each of the chains groups in the differentvarious inclinations
needs to be assessed. For the sake of such evaluatioThis assessment is done by using
Eqs. (116) and Eq. (120) are used to calculate the fraction of chains with theinclination
j-th inclination with respect to the electric field. A cFigure 12 comparesison of the number
of chains inof various the different inclinations with respect to the direction of the electric
field between thefor isotropic polymers and electric-fieldthe- biased polymers is presented
in Fig. 12., and Fig. 13 A comparesison between the fractions of chains in each inclination
offor botheach cases is presented in Fig. 13. The relations between the results shown in
Figs. 12 and Fig. 13 are credited to ψj, which is the number of end-to-end vectors in
thegroup j-th group, presented inas given by Eq. (120).

As can be observed from Figure. 12 shows that, the presenceapplication of an external
electric field induring the polymerization process affects the chain distribution of the
chains, as the chains aspire to align in the direction of the electric field. ThoughHowever,
Fig. 13 shows that, as a resultbecause of Eq. (120) and as can be observed in Fig. 13, the
most influential inclination of the polymer as a result of the proposed process is Θ ∼= π

4 .
The density of discretization for To calculate the inclinations with respect to the direc-

tion of the electric field, the density of discretization iswas taken as ∆Θ = π
16 , as because

denser discretizations diddo not produce any meaningful differences in significantly change
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the results. As wWe refer to the different each individual groups of chains discreetly in
accordance with their inclinations with respect to the direction of the electric field, and
we attribute each group chains in each group with one end at the origin and the other
end located within a small volume dV = r2drdφdθ. Furthermore, we note that asbecause
the DE coupling in DEs is characterized by a quadratic dependence on thein applied
electric potential [?], the different DE responses of DEs can be deduced fromby analyzing
0 ≤ Θ ≤ π

2 . Accordingly, the groups that relates to inclinations Θ = 0 and Θ = π
2 , which

are the boundaries of the analyzed range, are attributed to small volumes with ∆Θ = π
32 .

This is performeddone so as not to avoid exceeding the limits set for the tested angular
range being tested.

Figure. 14 presents the analysis of the deformation λ0 of a polymer in the direction
ofwith respect to the electric field, λ0, of a polymer that was induced during polymeriza-
tion with the chosenby the electric- field magnitude during the polymerization process,
asgiven that the electric field is removed at the end of the processpolymerization. The
chains are unable to changetune their lengths to the lengththat of the chains in the
isotropic polymer asbecause they are cross-linked and cannot rearrange separately. Thus,
each chain is affected by the same deformation gradient. The corresponding deformation
gradient, while assuming incompressibility, is

F 0 (λ0) = λ0Ê⊗ Ê + 1√
λ0

(
I − Ê⊗ Ê

)
=


λ0 0 0
0 1/

√
λ0 0

0 0 1/
√
λ0

 . (131)

In order tTo assess the stress -free configuration of an incompressible body such as the
biased polymer, we examine various different deformation gradients were examined. TheA
suitable one is depicted byobtained from the state where σEE = σYY = σZZ = Tr(σ)

3

asbecause the deviatoric stress is zero, in accordance with Eq. (19). As seen in Fig. 14,
λ0 is achieved fromby calculating σEE − σYY = σDiff and determining the correct value
from σDiff (λ0) = 0. In this case, it is receivedthe correct value is for λ0=0.795, which
means that the deformation gradient tensor that is compatible with the deformation after
the removal of the electric field is

F 0
E=150 MV

m
=


0.795 0 0

0 1.121 0
0 0 1.121

 . (132)

This result is counterintuitive when considering that, in this case, chains inat greater incli-
nations will getbecome longer. ThoughHowever, when considering the monomer orienta-
tion of the monomers, it is reasonable to assume that some will rearrange in graterbecome
more inclinationed with respect to the electric field as it is removed. Thus, the polymer
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pics for experimental work 16.1.2020/lambda 0 deformation_anisotropic polymer from 150MVm_13.04.2020 adjusted with markers 29.04.2020.pdf

Figure 14: σDiff = σEE − σYY as a function of λ0 after the removal of the electric field
with the magnitude of E = 150 MV

m
.
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Figure 15: The deviatoric mechanical stress as a function of the deformation ratio, λ.
Dashed curves corresponds to the isotropic polymer, continuous curves to the biased
polymer and the dot-dashed curves to a polymer described by the IED model. The blue
curves corresponds to the normal stress in the direction of the electric field, σm

EE, and the
red curves to the transverse stress, σm

YY = σm
ZZ.

will performundergo a planar expansion. The chains end-to-end lengths and inclination
of the chainss in the relaxed state, which from now on will be the starting point for each
of the chain examined chains in thea biased polymer, can be deduced from rj = F 0r0

j .

We also nNote also that the same calculations for the isotropic case yielded λIso
0 = 1, as

was expected.

4.4 MThe materials properties

(Note: mechanical and electrostatic properties - new polymer + comparison)
AsGiven the chains orientations were established for the example mentioned example,

the properties of the biased polymer can be examined and compared towith the case of
an isotropic polymer, aswhich is detailed in sectionSec. 3.4.1. The polymer’s mechanical
properties can be assessed by evaluating the mechanical stresses as a function of the
deformation ratio, λ, according to Eq. (124). The calculationes of the mechanical stresses
werewas performeddone by taking into account and averaging the stresses at 0 ≤ Φ < 2π
with a discretization of ∆Φ = π

16 for each inclination Θ with respect to the electric field,
Θ, and evaluating the stresses infor each deformation ratio while taking into account the
fractions of each inclination [(Eq. (116)]) infor each case of deformation. Figure 15 presents
tThe mechanical stresses in the direction of the electric field and in the transverse plane
as a function of the deformation ratio are presented in Fig. 15 for the isotropic polymer,
the biased polymer, and the IED model.

The electrostatic properties can be assessed by first evaluating the polarization of
the polymer as a function of the magnitude of the electric field. These calculations are
performed according tofollowing the same steps that were mentionedas for the stresses
calculations. TFigure 16shows the susceptibilities of the biased polymer, isotropic poly-
mer, and the IED model as a function of the electric field, are presented in Fig. 16 as they
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Figure 16: The susceptibilities of the polymers as a function of the electric field. The
black dashed curve corresponds to the isotropic polymer, the black continuous curve to
the biased polymer and the black dot-dashed line to a polymer described by the IED
model. (the dashed and the continuous curves overlap).

are calculated according toby using Eq. (129).
Figure 15A shows that applying an electric field during polymerization changes the

stress. change in the stresses is visible in Fig. 15 as a result of the presence of an electric
field in the polymerization process. More precisely, there is an increase in the stresses
of the biased polymer increases, relatively to that of the isotropic polymer, both in the
direction of the electric field and perpendicular to it. The stresses in the IED model are
higher thanexceeds that in both the of the other examined polymers examined.

Figure. 16 shows that the biased polymer and the isotropic polymer have similar
susceptibilities .for the biased polymer and the isotropic one. The susceptibilities of both
the polymers are as the given initially similar susceptibility while under the excitation a
weakof electric fields with small magnitudes (underless than E ∼= 5 MV

m ) and they increase
in valuesat almost identicalyidentical rates as the magnitude of the electric field increases.
We suspect that the resemblancesimilarity between the susceptibilities of the biased and
isotropic polymers stems from the fact that, as the electric field is removed, at the end of
our proposed proces spolymerization, the monomers aspiretend to rearangerearrange as in
the isotropic casepolymer whilewhereas the biased polymer deformedeforms. NWe note
that the numerical results of thely determined susceptibility forof the biased polymer
shows a slightly increases relatively to the isotropic polymer, although not enough for
ato visiblye separation betweene the curves. The susceptibility of the IED model is not
affected byindependent of the magnitude of the electric field and is constant in value as
the initial susceptibility. HenceThese results indicate, it can be deduced that applying an
electric field during polymerization the changes in the mechanical properties as a result
of inducing the polymer with an electric field during the polymerization process are more
prominent than those of the electrostatic properties.

4.5 The coupled response

(Note: coupled properties - new polymer + comparison)
After examining and comparing the mechanical and electrostatic properties, we also

examine the coupled properties of the twobiased and isotropic mentioned polymers can
also be examined. For thatthis purpose, the main criterion to be examined is the defor-
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Figure 17: The deformation in the direction of the electric field, λ, as a function of
the magnitude of the electric field. The black dashed curve corresponds to the isotropic
polymer, the black continuous curve to the biased polymer and the black dot-dashed
curves to a polymer described by the IED model.

mation, λ, as a function of the magnitude of the inducedapplied electric field, presented
in (see Fig. 17). As can be seenshown in Fig. 17, the deformations ofin the biased poly-
mer are smaller than those ofin the isotropic polymer. These results agreesare consistent
with the previous onesresults. As it was established from Figure. 16 establishes that
the electrostatic response of the biased polymer shows no meaningfuldoes not difference
significantly from that of the isotropic polymer, fromand Fig. 15 it can be interpreted
shows that the biased polymer is stiffer than the isotropic polymer. Furthermore, as the
susceptibility of the IED model is constant and generally smaller in value than for both
the other polymers within the examined magnitude range of electric fields examined, so
the stresses in the IED model are higher thanexceeds that in both the other polymers.
Thus, it is logical that the deformations ofin the IED model are the smallerst of the three
than those in the biased and isotropic polymers.
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5 Experimental work

AdditionallyA deeper understanding of the electromechanical properties of polymers is
required beyond what is provided by to our analytical and numerical work., as deeper
understanding of the polymers coupled electromechanical behavior is required. There-
fore, we now present eExperimentsal studies aimed towardthat examineing the coupled
response of differentvarious DEs such as VHB and PDMS are also being performed and
compare their resultsd to analytical calculations. The dielectric constant of the DEs is
first determined by firstly determiningby calculating the relative permittivity from the ca-
pacitance of capacitors withcontaining these DEs as their medium, from which the relative
permittivity can be calculated. A common method used to carry outmake such measure-
ments is based on the analysis of the capacitance component in an LCR (L-inductance,
C-capacitance, R-resistance) circuit by means of an LCR meter or a simpler versions of
this instrument, the capacitance meter.

The presented experimental work presented below is divided to two main parts:. The
first part includes an expansionextension of the work presented in ? and examines the
influence ofhow the uniaxial and biaxial stretching onaffects the dielectric constant. The
second part includes the first presentsation of a new experimental system which is aimed
towards for measuring the dielectric constant of polymers under an electric field are re-
ports the results for. The two polymers: that were chosen to be examined are VHB
4910 (a commercially available acrylic elastomer byfrom 3M) and pPolydimethylsiloxane
(PDMS, that was made in our lab fromby using the Dow Corning Sylgard 182 Silicone
Elastomer Encapsulation Kit). These materials are of interest due tofor their flexibility
and accessibility.

5.1 The iInfluence of uniaxial and biaxial stretching

The first experimental system we present allows us to evaluate the influence ofhow uni-
axial and biaxial stretching of DEs onaffects their dielectric constant and to deepen the
examination of the dependence of the dielectric constant on the deformation. The exper-
imental system iswas built from a self- constructed stretching device with four movable
grippers, as can be seenshown in Fig. 18a. In order tTo measure the relative permittivity
of the deformed samples, a C-shaped clamp is usedserving as a plate capacitor (Fig. 18b)
and iswas connected to an capacitance meter, Agilent U1701A capacitance meter. The
experimental relative permittivity of each sample is calculated viaby using

εrExp
= Cs d

A ε0
, (133)

43



pics for experimental work 16.1.2020/stretching apparatus.png

(a)

pics for experimental work 16.1.2020/Picture1.png

(b)

Figure 18: (a) The self constructed stretching device. (b) The C-clamp used as a parallel
plate capacitor.
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Figure 19: The relative permittivity measurements as functions of the percentage of
surface area expansion. The dashed and dotted curves correspond to the analytical results
[?], as n are estimated from the stretch at failure (nf ) and from fitting the analytical
equations to the experimental results (ne), respectively. (a) PDMS under uniaxial stretch.
(b) VHB under uniaxial stretch. (c) VHB under biaxial stretch.

where Cs is the measured capacitance, d and A are the thickness and surface area of
the capacitor, respectively, and ε0 is the vacuum permittivity. The analytical relative
permittivity for uniaxial stretching of the dielectric elastomers is calculated viaby using ?

εrU
= 1 + χ0

[
1− 1

5n

(
λ2 − 1

λ

)]
. (134)

The calculation for the analytical relative permittivity was extracted is calculated in the
current workherein based on from the results of ? tofor the case of biaxial stretchinges.
The final expression is

εrB
= 1 + χ0

[
1− 2

5n

(
λ2 − 1

λ4

)]
, (135)

where n is the number of monomers in a single chain, χ0 is the initial susceptibility, and
λ is the magnitude of the uniaxial or biaxial stretchinges.

TFigure 19he presents the results of the experiments and the analytical calculations
forof the relative permittivity as a function of the percentage of surface area expansion
are presented in Fig. 19 for uniaxial stretching of PDMS (Fig. 19a), uniaxial stretching of
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Table 1: The number of monomers in a single chain for the case presented in Fig. 19.

PDMS - Uniaxial VHB - Uniaxial VHB - Biaxial
nf 4.35 80 80
ne 5.844 21.807 5.156

VHB 4910 (Fig. 19b), and for biaxial stretching of VHB 4910 (Fig. 19c). The analytical
results for uniaxial and biaxial stretchesing are also presented for the different examined
cases examined. The number of monomers in a single chain is estimated from the stretch
at failure, which is presumed to be the lock-up stretch, and is labeled as nf , and fromby
fitting the analytical equations to the experimental results as ne, as is shown in Table 1.

As can be observed,The results show that whilestretching the samples are stretched
anddecreases their thickness decreases their relative permittivity decreases. The incom-
pressibility assumption was also examined and, in the case of thefor PDMS, the results of
both the measured and the calculated thickness can be observedare shown. The incom-
patibility of the curves based on the number of monomers in a polymer chain from the
stretch at failure canmay stem from the fact that the stretch at failure is not necessarily
the lock-up stretch of the chain.

5.2 IThe influence of an electric field

The goal of this is experimental work is aimedwas toward to examineing the effect ofhow
electric fields with of varyingdifferent magnitudes onaffect the dielectric properties of
various polymers. For that purposeToward that end, we will present a new experimental
system whichthat allows us to evaluate the variations of thein dielectric constant as ana
function of applied electric field is applied on them. Furthermore, we will continue the
work performed inof ? and deepen the examination of the dependence ofhow the dielectric
constant depends on the deformation by performing our examinationexamining on pre-
stretched samples.

5.2.1 Experimental set-up

(Note: Samples description)
(Note: Presenting the experimental system)
Ten rectangular samples of each of the two chosen polymers were cut for each examined

caseation. For the case of the pre-stretched VHB, the samples were then stretched by using
a self- constructed stretching apparatus comprisedconsisting of two movable grippers, as
can be seenshown in Fig. 18a.

45



pics for experimental work 16.1.2020/drowing of the system_1.pdf

Figure 20: A schematic description of the experimental system.
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Figure 21: The parts of the plate capacitore.

Our newThis experimental system iswas built from non-conductive materials, all but
except for the two 30-mm-diameter electrodes with a diameter of 30 mm that arewere
made fromof copper and actsed as one of two capacitors connected in a rowseries, as can
be seenshown in Fig. 20. The two electrodes arewere each held in a 60-mm-diameter Teflon
housing with a 60 mm diameter, as can be seenshown in Fig 21. As tThe medium in the
mentioned plate capacitor iscontained the examined elastomer sample under examination,
and the second capacitor is a capacitor with a fixed capacitance, which can be regarded
asconsisted of a fixed TDK UHV-241A capacitor. For the current work a ceramic capacitor
suitable for high voltage is used, TDK’s UHV-241A.

For the case ofTo examineing pre-stretched samples, we first used a bi-directional
stretching apparatus in order to generate the required tension. After the stretching, the
sample iswas held in the stretched state by using a two- parts self- constructed Perspex
gripper with a 60-mm-diametern opening of 60 mm diameter in the middle and an O-ring
notch to maintain the tension in the sample, as can be seenshown in Fig. 21.

In order tTo measure the referential permittivity of the different samples, we make
used of the plate capacitor from ourthe experimental system. This measurement is
performedwas made by connecting itthe plate capacitor to a capacitance meter before con-
necting the experimental system is connected to the power source. Furthermore, the dis-
tance between the electrodes iswas measured in each experiment. After obtaining the ref-
erential values are obtained, the power source iswas connected to the describedexperimental
system. As the supplied potential difference is changed in the power source. tThe poten-
tial difference onacross the plate capacitor iswas measured as a function of the potential
difference applied by the power source by using a non-contact voltmeter, USSVM2 volt-
meter byfrom AlphaLab.

(Note: Presenting the work method or protocol)
For the purpose ofTo evaluateing the relative permittivity of the polymer while under

an under electrostatic excitation, the conservation of charge conservation is taken into
account as follows:,

Q = CsVs = C0V0, (136)
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Figure 22: The permittivity measurements a functions of the electric field on the sample.
The Blue dots corresponds to a relaxed sample and the red circles corresponds to the area
pre-stretch of A = 225%. (a) PDMS, (b) VHB.

where Q is the charge on both of theeach capacitors, Vs and Cs are the potential difference
across and the capacitance of the examined polymer, and V0 and C0 are the potential
difference across and the capacitance of the fixed capacitor. Thus,

Vt = Vs + V0 = Q
( 1
Cs

+ 1
C0

)
, (137)

where Vt is the total potential difference as it is supplied fromby the power source. While
taking into account Equation. (137) we can obtain the relation,gives

Cs =
(
Vt
Vs
− 1

)
C0, (138)

from which the current capacitance of the polymer can be calculated, while the constant
value of C0 is takendetermined by the from its data shift and confirmed at the beginning
of theeach experiment withby measurements made with the capacitance meter.

The relative permittivity, which is the electrostatic property that we aim to examineunder
investigation, is calculated from the results of the calculated capacitance calculations by
using the relationes presented in Eq. (133).

5.2.2 Results and discussion

In all tests, the sample thickness of the samples werewas measured forin order to the
calculateion of the relative permittivity, presented in by using Eq. (133) and thereby, and
the correctly assessmentdetermine of the electric field that is induced onin the sample,
which is calculated as Es = Vs

d
. Measurements ofing the pre-stretched VHB 4910 have led

to the understanding thatconfirmed the incompressibility assumption is reasonable and
can be employed in this case.

In tThe solid blue dots (red open circles) in the two plots of Fig. 22 show, the measured
relative permittivity measurements as a functions of the electric field on the samples forin
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the un-stretched samples are marked by blue filled dots and for the (2.25 area pre-stretched
samples by red empty circles). The error bars show the standard deviations are marked
by error bars. An agreement between tThe results shown in sectionSec. 5.1 are consistent
with and the current results can be identified in cases where as Es → 0. In the case ofFor
the VHB 4910 samples (Fig. 22b), the relatively small standard deviations of the different
measurements provides confidence in the accuracy of the measurements for this material.
The relatively larger standard deviations of the PDMS samples can be as a result ofmay
be attributed to the fact that the samples were made manually in our lab, although there
is a clear trend appears in the results. We find that tThe relative permittivity of the two
examined polymers examined increases with the magnitude of the electric field.

The variations in the responses of the two examined polymers examined hints that
thesey are governed by the polymer microstructure of the polymers. Furthermore, the re-
sults of the pre-stretched VHB 4910 anotherprovides more evidence toof the governingrole
of the microstructure can be seen in the results of the pre-stretched VHB 4910. AsGiven
that the initial values of the relative permittivity corresponds to the results inshown in
Fig. 19, the maximum relative permittivity measured in the pre-stretched case is much
lower thenless than the onethat measured in the relaxed case, despite the fact that we
achived larger magnituds ofa stronger electric field was achieved asin the thickness of
thethinner samples was decreased. It can be seen in tThe results for both the poly-
mers (Fig. 22) show that, the rate of change in relative permittivity deviation is much
steepergreater inat relatively low electric fields (< 1MV

m ). Thus, additional experimental
analyses of the relationship between the microscopic structure and the macroscopic re-
sponse are needed for theto understanding of the coupled electromechanical behaviors of
different polymers.
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6 Conclusions

(Note: Opening - Motivation)
Although tThis thesis presents another possible step towards the realizationuse of the

DEs potential for being used in a wide range of applications and, it comes at a time when
our culture iswe are seemingly ready for such advances in different fields, such as clean
energy, medicine, and robotics. HenceThus, asgiven that a substantial improvement in
the electromechanical response of DEs is neededrequired, we present a possible method
for influencing and analyzsing the response of these materials and their, structure and
properties of the polymer, all without adding any foreign materials.

(Note: 3. Electroelasticity of solutions and anisotropic networks of polymer molecules)
(Note: 3.1 general - multiscale analysis)
InitiallyTo begin, we carried out a multiscale analysis of the electromechanical cou-

pling in DEs atfor several hierarchical cases, from a single electric charge to a network.
The analysis accounts for theapplies the conservation of energy through the first law of
thermodynamics, in terms of the electric enthalpy and the entropy of a system that is sub-
jected to an electric field. OurThe analysis of the polymer microstructure of the polymer
is based on statistical mechanics, asand we assume that the configuration of each chain is
in the one that was calculated as most probable configuration.

(Note: 3.2 an analysis of the isotropic chain end-to-end length, tau and force)
We carry out anthen analyzesis of the polymer chain, in the case of no electric field.

This analysis yieldsed the relationship between the Lagrange multiplier τ , which can be
portrayedunderstood as the chain’s mechanical constraint, and the normalized end-to-end
length of the chain through the Langevin function. OurThe calculations also yielded an
assessmentdetermine for the end-to-end length of a chain in such a case, which is similar to
the oneat obtained by ?? and ? but differsent from than the commonly used assessment
givenresult based on from random walk statistics [???]. AIn addition, we deduce a relation
between the end-to-end length of a chain and the external force operatingexerted on it
was also deducedthe chain.

(Note: 3.3 polymer chains in an electric field and monomers distribution)
As ourTo examine the proposed method for controlling the electro-elastic modulusi

of a polymer network by executing the polymerization processing under an electric field
is examined, we describe a manner for the assessment develop an approach to determine
of the most probable configurations for each of thegroup of polymer chains groups and
for the orientational distribution of for the monomers orientational distribution in such a
case.

(Note: 3.4 an anisotropic network analysis - general analysis with a reference for polymer-
ization under an electric field + material properties)
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Next, we derive an expression is derived for the total entropy of the polymer whichthat
allows us to evaluate the distribution and the fractions of the chains in the different chains
groups. Next, onceGiven these the fractions of the chains in the different groups were
determined, expressions for the mechanical stress and the polarization wereare derived in
order to determine the polymer response of the polymer.

(Note: 4. Application to electrostatically biased network - remined our main idea for the
polymerization)

To examine the outcome of our proposed process of polymerization under an elec-
tric field, thatwhich leads to a “biased” polymer, we applied a numerical analysis was
performed. This analysis is an application of based on our analytical work, and itsthe
predictions of this analysis are is compared with the experimental results for an isotropic
polymer and for the IED model.

(Note: 4.1 chain end-to-end length - isotropic case (our analysis is more accurate) and
anisotropic (mention the examined parameters))

The initial step of the numerical analysis involveds an examination of our assessmenting
the results for the end-to-end length of a chain in the case of an isotropic polymer. In
regards to the configuration of the chains in For the biased polymer, a comparisonthe
chain configuration was performedis compared for three parameters: the maximum num-
ber of chain configurations of the chain, the most probable end-to-end length, and the
Lagrange multiplier τ that relates to the end-to-end length withto the maximum num-
ber of configurations. From whichThe results indicate we determined that magnitude
ranges ofthe electric fields lowerless than 50 MV

m have shown hardly any produce negligi-
ble differences in results from with respect to the isotropic case. ThoughHowever, when
enhancing the magnitude furthurupon increasing the electric field, the end-to-end length
of chains inincreases for all inclinations increases, which is counterintuitive asbecause the
uniaxial dipolar monomers aspiretend to rotate towards in the direction of the electric
exitationfield.

(Note: 4.2 monomer orientation - aspire to be as in the amorphous case)
The findings from the examinationsresults of the investigation of the monomers ori-

entation for chains in the differentat various inclinations with respect to the electric field
and the comparison towith the monomer distribution of monomers in the amorphous case
led to the realizationshows that, despite their constraints, the monomers in the chains
aspiretend to orient as though they arewere unattached.

(Note: 4.3 assessing the free state and discussing the chains distribution/weights)
Next, the free state of the biased polymer was assessed. This state occursis achieved

when the deviatoric stress vanishes and the body is atin a stress- free configuration. It was
foundThe results show that the biased polymer contracts in the direction of the applied
electric field, which. This strengthensimproves our understanding of the importance to
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polymer properties of the microscopic structure to the properties of the polymer, sinc
because, when the electric field is turned off, the monomers rotate away from its direction
and hence the, which leads to contraction in thatthe given direction. The spatial expansion
in the transverse direction is due to incompressibility.

(Note: 4.4 the material properties and coupled response)
The resulting material properties shows a difference between from the mechanical

onesproperties, as manifested by the biased polymer is found to be being stiffer than the
isotropic onepolymer. Regarding the electrostatic properties, nNo significant differences in
the electrostatic properties arewere found between the two polymers. ThoughHowever, in
both cases the susceptibility does not appears to be fixedvary under different magnitudes
ofas a function of electric- field magnitudes. The analysis of the coupled response estab-
lishes that the electromechanical response of the biased polymer is less than that of the
isotropic polymer, which is consistent In accordance with the assessed mechanical and
electrostatic properties of both polymers., from the analysis of the coupled response, it
was established that the electromechanical response of the biased polymer is smaller then
the isotropic polymer.

(Note: 5. Experimental work)
The findingsresults of ourthe present experimental work imply that the dependence of

the polymers dielectric properties of the polymers on the deformation and the electric-field
magnitude of the electric field cannot be neglected. Moreover, they suggest that common
models that assume constant relative permittivity, such as the models of ? and ?, are
not applicable if the polymer is subjected to different mechanical loads or excitations
fromexposed to an electric fields at different magnitudes. Additionally, we observed that
our extension to the model of ? for the case of biaxial stretchinges is able to predicts
the relationship between the relative permittivity, which representsreflects the dielectric
behavior, and thepolymer deformation of the polymer. ThoughHowever, the assessment
of the number of monomers in a single chain from the stretch at failure does not yield
a good enoughis insufficient to prediction of these mentioned relationships, which. This
canmay stem from the fact that the stretch at failure is not necessarily the lock-up stretch
of the chain. Furthermore, from our examination of the effect ofhow electric fields with
differentof varying magnitudes affecton the dielectric properties, reveals the differences in
the responses of the relaxed and pre-stretched VHB 4910, thereby demonstratinge the
prominent influence of the microscopic structure on the macroscopic electromechanical
behavior. Accordingly, it can be seen that pre-stretching the sample is found to hinders
the evolution of the relative permittivity as the magnitude of the electric field increases.

(Note: ** Future work)
We have spent considerable time pondering the future directions of this research.

WhileAlthough this thesis presentsed a method of influencingtuning polymerthe proper-
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ties of polymers, so far it hwas so far been applied only to the case of uniaxial dipoles.
Thus, an analysis should be performed for spontaneous and transversely isotropic dipoles
should also be analyzedas well. In aAdditionally, the creation of a biased polymer should
be examined from different directions and with electric fields of greater magnitudes of
electric fields in order to assessdetermine the threshold field fromabove which there are
siegnificeant differences appear in the electrostatic properties in comparison with thevis
à vis the isotropic polymer. Moreover, from the experimental perspective, the influence
ofhow an electric field affectson the dielectric properties should be experimentally ex-
amined for additional materials, with more pre-stretching conditions and under higher-
magnitudes of electric fields.
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Appendix

A Presentation of tThe first law of thermodynamics
in terms of electrical enthalpyelectric enthalpy

The first law of thermodynamics is U̇ = Ẇ0 + Q̇ [(Eq. (7)]) [??], where

U̇ = d
dt

�
V0

u (F ,P) dV0 + d
dt

�
R3

ε0
2 E·EdV, (139)

and where the system is assumed to not to interactions between the system andwith other
bodies and that far away the electric fields is assumed to vanish are assumedfar from the
system. The rate of work done by the mechanical loads due tothrough deformation and
by the electric field due tothrough variations in the charge is [??]

dW0

dt =
�
V

bivi dV +
�
∂V

tivi dA+
�
V

φ
d
dt (q dV ) +

�
∂V

φ
d
dt (ρa dA) . (140)

We recallUsing the definition of the electric enthalpy density [?],

h (F ,E) = u (F ,P)− JP · E, (141)

Accordinglygives

U̇ = d
dt

�
V0

h (F ,E) dV0 + d
dt

�
V0

P · EJdV0 + d
dt

�
R3

ε0
2 E·EdV

= d
dt

�
V0

h (F ,E) dV0 + d
dt

�
V

P · EdV + d
dt

�
R3

ε0
2 E·EdV. (142)

Since iIn the body D = P + ε0E and outside the body D = ε0E, so

U̇ = d
dt

�
V0

h (F ,E) dV0 + d
dt

�
R3

(D− ε0E) · EdV + d
dt

�
R3

ε0
2 E·EdV. (143)

Thus, we have that

U̇ = d
dt

�
V0

h (F ,E) dV0 −
d
dt

�
R3

ε0
2 E·EdV + d

dt

�
R3

D · EdV. (144)

Define Ḣ = d
dt

�
Ω0
h (F ,E) dV0 as the stored electric enthalpy in the body. According

to tThe first law of thermodynamics then gives

Ḣ − d
dt

�
R3

ε0
2 E·EdV = Ẇ0 + Q̇− d

dt

�
R3

D · EdV. (145)
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Consider the last term

− d
dt

�
R3

D · EdV = d
dt

�
R3

D · ∇φdV = d
dt

�
R3
∇ · (Dφ) dV − d

dt

�
R3
∇ ·DφdV. (146)

Assuming no free charges outside the body, then ∇ ·D = q in the body and zero outside,
so

− d
dt

�
R3

D · EdV = d
dt

�
∂V

φD · n̂dA− d
dt

�
V

φqdV, (147)

where we make use of the divergence theorem and exploit the assumption that far enough
the electric field vanishes at distance. Thus,

− d
dt

�
R3

D · EdV = − d
dt

�
∂V

φρadA−
d
dt

�
V

φqdV. (148)

The last term can be simplified to

− d
dt

�
V

φqdV = − d
dt

�
V0

φqJdV0 = −
�
V0

φ̇qJdV0 −
�
V0

φ
d
dt (qJ dV0)

= −
�
V

φ̇qdV −
�
V

φ
d
dt (q dV ) . (149)

The first term of Eq. (148) is,

− d
dt

�
∂V

φρadA = − d
dt

�
∂V0

φρ0
adA0, (150)

where ρ0
a is the referential surface charge such that ρ0

adA0 = ρadA. Thus,

− d
dt

�
V

φqdV = −
�
∂V0

φ̇ρ0
adA0 −

�
∂V0

φ
d
dt
(
ρ0
a dA0

)
= −

�
∂V

φ̇ρadA−
�
∂V

φ
d
dt (ρa dA) .

(151)
Substituting tothis relation into Eq. (148) we havegives

− d
dt

�
R3

D ·EdV = −
�
∂V

φ̇ρadA−
�
∂V

φ
d
dt (ρa dA)−

�
V

φ̇qdV −
�
V

φ
d
dt (q dV ) , (152)

Substitutingand using this relation into the first law of thermodynamics, [Eq. (145)], with
the use ofand the expression for the external work W0 [Eq. (140)], we havegives

Ḣ − d
dt

�
R3

ε0
2 E·EdV =

�
V

φ
d
dt (q dV ) +

�
∂V

φ
d
dt (ρa dA) + Q̇+

�
V

bivi dV +
�
∂V

tivi dA

−
�
∂V

φ̇ρadA−
�
∂V

φ
d
dt (ρa dA)−

�
V

φ̇qdV −
�
V

φ
d
dt (q dV )

= Q̇−
�
∂V

φ̇ρadA−
�
V

φ̇qdV +
�
V

bivi dV +
�
∂V

tivi dA. (153)
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In terms of the external work due to the variations in the electric potential [??],

dW
dt =

�
V

bivi dV +
�
∂V

tivi dA−
�
∂V

φ̇ρadA−
�
V

φ̇qdV, (154)

we endfinally obtain with the expression for the first law of thermodynamics in terms of
the electric enthalpy:

Ḣ − d
dt

�
R3

ε0
2 E·EdV = Ẇ + Q̇. (155)

56



B Chain stress and deriving the chain end-to-end
vector byfrom the deformation gradient

In order tTo evaluate the stress, depicted(see discussion in sectionSec. 3.4.1), we first
deriveation of the term ∂r

∂F
is needed. This is carried outdone inusing index notation.

The end-to-end vector of the chain in the current configuration is

ri = Fiprp, (156)

where r0
i is the end-to-end vector of the chain in the reference configuration and Fij is the

deformation gradient. Accordingly,

∂ri
∂Fkl

= ∂

∂Fkl
(Fip) r0

p = δikδlpr
0
p = δikr

0
l . (157)

From Eq. (124), the mechanical stress in thechain j-th chain is

σ
m(j)
ks = k T

l

τ (j)
i

∂r
(j)
i

∂Fkl

Fsl = k T

l
τ

(j)
i δikδlpr

0(j)
p Fsl = k T

l
τ

(j)
k Fspr

0(j)
p = k T

l
τ

(j)
k r(j)

s .

(158)
Since τ (j)

k ‖ r(j)
s (established in sectionSec. 3.2.3), it follows that

σ
m(j)
ks = k T

l
τ (j)r0(j)r̂

(j)
k r̂(j)

s . (159)
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C The initial guess for τ

The Lagrange multiplier τ is extracted from the implicit equation that follows from the
constraint ingiven by Eq. (98), �

ξ̂ p dΓ = r
n l
, (160)

where
p
(
ξ̂, h

)
= 1
Z

exp
(
τ · ξ̂ − h

k T

)
. (161)

Taking the first two terms of the Taylor-series expansion series for τ gives

τ = τ 0 +Ar + o
(
r2
) ∼= Ar, (162)

where according to Eq. (75) τ 0 = τ (r = 0) = 0.
Thus,

exp
[
τ (r) · ξ̂ − h

k T

]
E→0−→ exp

(
ξ̂ ·Ar

) ∼= 1 + Aikξ̂irk, (163)

and
Z =

�
θ,φ

(
1 + Aikξ̂irk

)
sin (θ) dθdφ = 4π + Aik

�
ξ̂idΓrk = 4π. (164)

HenceThus,

p
(
ξ̂, h

)
= 1
Z

exp
(
τ · ξ̂ − h

k T

)
= 1

4π
(
1 + (Ar) · ξ̂

)
, (165)

and by taking into account using Eq. (165) in Eq. (160) we obtain

1
4π

�
ξ̂
(
1 + (Ar) · ξ̂

)
dΓ = 1

4π

�
(Ar) · ξ̂ ⊗ ξ̂dΓ = 1

4π

(4π
3 I

)
· (Ar)

= 1
3 (Ar) · I = r

n l
=⇒ A = 3

n l
I. (166)

andFinally, using τ (E→ 0) givesis

τ = Ar = 3r
n l
. (167)
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