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1 Introduction

(Note: Strong points for EAP use)

Dielectric elastomers (DEs) are polymers that are nonconductive but polarize and
deform under electrostatic excitation. These lightweight and flexible polymers are readily
available and may potentially be used as actuators in a wide variety of applications such
as artificial muscles, energy-harvesting devices, micropumps, and soft robotics [?].

(Note: The microstructure and macrostructure of the EAP (polymer networks from chains
and chains from monomers -> a polymer strip sandwiched between two electrodes))

At the microscopic level, DEs have a hierarchical structure of polymer-chain networks.
A polymer chain is a long string of repeating dipolar monomers. At the macroscopic level,
the essential part of a DE-based device is a thin, soft DE membrane sandwiched between
two flexible electrodes. Upon applying an electric potential across the electrodes, the
monomers react to the electric excitations while the DE membrane becomes thinner as a
result of the attraction between the two oppositely charged electrodes. Simultaneously,
the membrane area expands due to the Poisson effect. This process converts electrical
energy into mechanical energy. The attractive features of dielectric elastomers include
large strain, fast response, silent operation, low cost, and high efficiency [?].

(Note: The ratio between elastic moduli and dielectric moduli and its importance)

The electromechanical coupling in DEs is characterized by a quadratic dependence
of the force between the electrodes on the applied electric potential [?]. In turn, the
deformation depends on the force via the elastic moduli. Thus, the coupling depends
on the ratio between the dielectric and elastic moduli. Flexible polymers typically have
low dielectric moduli, whereas polymers with high dielectric moduli are generally stiff.
Given that this ratio is relatively small, large electric potentials are needed to obtain
non-negligible actuation.

(Note: electric breakdown and other failure mechanisms)

The requirement for high electric potential implies that the feasibility of these mate-
rials is limited by their dielectric strength, which is the electric potential beyond which
electric current flows through the dielectric material [?]. Exceeding this electric potential
results in what is known as electric breakdown or dielectric breakdown, in some cases
transforming the insulator into an electric conductor. In general, dielectric breakdown
may be a singular, cyclic, or continuous event [?]. Accurately predicting the occurrence
of dielectric breakdown and its timing and position is not yet possible, essentially because
it does not depend on a single cause but is a statistical product of several factors. The
most notable factors are local defects such as voids or inclusions that locally decrease
the DE thickness, increasing the local electric field and/or mechanical stresses [?]. In

practice, the dielectric strength is measured experimentally [??] for a membrane with a



given thickness and with the requisite testing equipment [?]. ?? examined the failure
mechanisms and the performance boundaries of DEs and showed that the performance
of highly viscoelastic polymer membranes as DEs is governed by four key mechanisms:
dielectric breakdown, current leakage, pull-in failure, and viscoelasticity.

(Note: The ratio between elastic moduli and dielectric moduli - low but can be improved)

One possible way to overcome dielectric breakdown is by reducing the electric potential
currently required for non-negligible actuation, which can be done by improving the DE
polarizability. Several previous works suggest that the low ratio of dielectric modulus to
elastic modulus may be improved, which would enhance the electromechanical response.
A common approach to improving this ratio involves inserting additional materials into
the elastomer. This approach can result in a homogeneous or composite elastomer. One
aspect of this approach involves embedding materials into soft polymer components with
a higher dielectric constant (i.e., thatcan be classified as insulating or conducting) [?77].
? presented such a method to enhance the electromechanical response of silicone elas-
tomer networks by grafting molecules with high permanent dipoles to the crosslinking
molecules. Through adjusting the crosslinking density, their method also provides direct
control of the mechanical properties of the elastomer. Another aspect of the approach
involves improving the actuation in DEs by appropriately adjusting their microstructure
as periodic laminates [?7777].

(Note: improving the response without changing the ratio between elastic moduli and
dielectric moduli)

In contrast with the approach of improving the ratio of dielectric modulus to elastic
modulus, several works, which mainly target soft robotics, have chosen to improve the
responsiveness of DEs by adjusting the macroscopic structure of the actuators [7777?].
Recent works such as 7 and ? have discussed soft electrohydraulic transducers, which are
called “Peano-HASEL actuators” (hydraulically amplified self-healing electrostatic actu-
ators). Such actuators combine the advantages of both fluidic actuators and electrostatic
actuators and are comprised of pouches made of flexible dielectric polymer films, filled
with a liquid dielectric and covered with compliant electrodes. Upon applying a voltage
across the electrodes, they “zip” together because of the Maxwell stress, which displaces
the liquid inside the pouch and thereby contracts the actuator [?].

(Note: Previous investigations of the polymer properties:)

(Note: Mechanical response)

The desire to adjust the DE ratio of dielectric modulus to elastic modulus motivates a
multiscale inquiry of the mechanical, dielectric, and coupled properties of these materials.
The response of polymers to purely mechanical loading across all scales has been exten-
sively investigated. For example, 7 investigated in detailed the macroscopic behavior of

soft materials undergoing large deformations . ? used statistical mechanics to make a



pioneering analysis at the microscopic level, which resulted in a Langevin-based consti-
tutive relation. This work led to a variety of multiscale models, such as the three-chain
model [?] and the eight-chain model [?]. A similar analysis of mechanical systems was
also presented by 7, 7, and ? for polymer networks with rubberlike elasticity. ? review
the development of statistical-mechanics treatments of rubber elasticity, and ? and ? use
statistical mechanics to analyze the mechanical systems of liquid-crystal elastomers.

(Note: Electrostatic response)

? and 7, among others, extensively examined the response of polymers to electrostatic
excitation on the macroscopic and microscopic scales. They discussed and analyzed the
constitutive relations for the macroscopic electric parameters, such as polarization and
displacement, and for the microscopic electric parameters, such as the dipole moments and
the bound and free charge densities. In other work, ? presented an electrostatic theory
for rigid bodies as ideal theoretical constructs to analyze single charges to a continuum
of charge.

(Note: Coupled response)

? was the first to analyze the coupled electromechanical response of DEs at the
macroscopic level. Years later, ? introduced an invariant-based representation to study
the constitutive behavior of electro-sensitive elastomers, and this work was expanded to
anisotropic materials by 7. Among others, ? and ? investigated how deformation and
the rate of deformation affected electromechanical coupling. At the macroscopic level,
? analyzed the electromechanical response of membranes under a uniaxial force, under
equal-biaxial forces, and for a membrane constrained in one direction and subject to
a force in the opposite direction. Additionally, they examined the response of a fiber-
constrained membrane. ? presented a principle of virtual work for problems involving
combined electrostatic and mechanical loading and that includes the interactions between
the resulting strain and polarization. Physically motivated multiscale analyses of elec-
tromechanical coupling were done by 7, 7, and 7, and ? introduced multiscale analysis
based on statistical mechanics.

(Note: Experimental work)

In addition to these theoretical works, the dielectric properties of DEs have been ex-
tensively investigated experimentally over the past two decades. Although the variation
in the relative permittivity of DEs such as VHB 4910/4905 has been determined under
conditions of negligible biaxial extension (see, e.g., ? and 7), other works have contra-
dicted these conclusions. Several investigations have revealed a decrease in the relative
permittivity with increasing area. For example, ? measured an initial relative permit-
tivity €, = 4.4 versus €, = 2.25 for a ninefold area stretch, and ? measured ¢, = 4.68
versus €, = 2.62 for a 25-fold area stretch. In addition, ? measured an initial permit-

tivity €, = 4.36 versus €, = 2.44 for a 16-fold planar stretch. ? found experimentally



from the electromechanical response of a polyurethane elastomer that chain motion can
be divided into motion related to the mechanical response and motion related to the
polarization response, and that the overlap between these motions yields the electrome-
chanical response. Other experimental works, such as 7, 7, and ?, examined biaxially and
uniaxially prestrained silicone and acrylic elastomers to study how prestraining DE mem-
branes affects actuator performance. Finally, work has been done to developing models
for estimating the variation in relative permittivity as a function of various stretch com-
binations [?7]. An example of such work is was done by ?, who compared the results of
a statistical-mechanics-based model with experimental findings.

(Note: This work)

(Note: A brief description of the displayed content)

We begin this work by discussing the theoretical background within the framework of
a continuum approach and considering the mechanical, electrostatic, and coupled cases.
Next, we review the analysis of the microstructure of an isotropic polymer chain network
by using statistical mechanics with entropy considerations and make reference to a phe-
nomenological model for the electromechanical coupling of DEs that will be tested against
experimental results. Section 3 analyzes the DE electro-elasticity in several hierarchical
cases, ranging from a single electric charge to a network. In addition, we discuss the
means of assessing the structure and properties of a general polymer. Section 4 presents
a numerical application of the electrostatically biased polymer network to demonstrate
how polymerizing a polymer under an electric field affects the structure of the polymer
network and its properties. This work is done by comparing the electric-field-polymerized
polymer to an isotropic polymer network and to the results of the phenomenological
model. Section 5 presents our experimental work, which gives an additional perspective
on our theoretical work. The experimental work includes an evaluation of how uniaxial
and biaxial stretching of DEs affects their dielectric constant. Moreover, we introduce a
new experimental system that allows us to evaluate how the dielectric constant of DEs

on the electric-field magnitude. Finally, the conclusions are gathered in Section 6.



2 Theoretical background

(Note: Multiscale entropy based analysis)

The mechanical and electrostatic energy balance is formulated in terms of the elec-
tric enthalpy. The analyses take into account the entropy of the chain network within
the framework of statistical mechanics with the appropriate kinematic and energetic con-

straints.

2.1 Continuum electro-elasticity

(Note: basic continuum mechanics - mechanics aspect)

Consider an electro-elastic solid continuum in a stress-free configuration in the absence
of electric field and mechanical load. Let material particles be labeled by their position
vector X in this referential configuration. In the deformed configuration, the point X
occupies the position x = y (X, t), where the vector field x describes the deformation of the
material. We require y to be a one-to-one, orientation-preserving, and twice continuously
differentiable mapping [?].

(Note: continuum mechanics - mechanics)

The deformation gradient tensor is
F = VXX(Xat)a (1)

where Vx is the gradient operator and the subscript X implies that the derivatives are
taken with respect to the referential coordinate system. The Cartesian components of
F are F;; = g—)’z"j, where X; and x; (i = 1,2,3) are the Cartesian components of X and
x, respectively. J = det(F') is the ratio between volume elements in the current and
reference configurations, with the convention of being strictly positive. Moreover, the

velocity of the material points is v (x), the spatial velocity gradient is
L=V,v=FF (2)

where Vy is the gradient operator taken with respect to the current coordinate system.
(Note: continuum mechanics - electrostatic)
The body is subjected to an electric field E(x), which satisfies the relation Vx xE(x) =
0 in the entire space. The electric potential ¢ is a scalar quantity defined such that

E = —V,¢. The electric induction, also known as the electric displacement, is

D(x) = e E(x) + P(x), (3)



where the constant ¢, is the vacuum permittivity and P(x) is the electric-dipole density,
also known as the polarization (P = 0 in vacuum). The electric displacement in ideal

dielectrics or in a continuum with no free charges is governed by
Vi -D(x) =0. (4)

(Note: continuum mechanics - the electromechanical coupling)

The electrical boundary conditions for the electromechanical problem are given in
terms of the electric potential or the charge per unit area p, on the boundary, which is
the charge on the electrodes such that D - n = —p,, where 0 is the outer-pointing unit
vector normal to the boundary in the current configuration. The mechanical boundary
conditions are stated in terms of the displacement or the mechanical traction t. The

electric field in the surrounding space induces a Maxwell stress
M 1
o :q(E®E—2@me. (5)

Accordingly, the traction boundary condition is (a — oM ) n = t. Assuming no body
forces, the stress that develops in a dielectric o due to the electromechanical loading
satisfy the equilibrium equation

Vx-o=0. (6)

(Note: The first law of thermodynamics - energy balance)

The balance of energy is formulated by applying the first law of thermodynamics:

U AW dQ
W@ Ta (7)

where U represents the internal energy stored in the material, W is the work done on the
system by any external sources, mechanical or electrical, and @) is the energy supplied
to the system as heat. Following ?? and 7, a Legendre transform is applied to the
internal energy to formulate the energy balance in terms of the electric-enthalpy density:
H =U — JP - E. To formulate the energy balance in terms of entropy, which relates
to the number of microscopic configurations of the system, we refer to a polymer as a
reversible or conservative material [?] (i.e., a material that does not absorb the work done
by external agents but stores it as dielectric polarization or elastic deformation). Thus,
following the Clausius theorem for a reversible material or system, the entropy change is
ds = %, where S is the entropy-density per unit referential volume and T is the absolute

temperature. Thus, taking into account the analysis presented in appendix A [?], we



consider a general representation in which the first law of thermodynamics takes the form

d

Y _
dt

E EdV = W7 + 757, (8)
where we consider an electro-elastic system 7° C R3.
? gives the following specific representation of Eq. (8) to analyze the energy balance

in a single polymer chain:

d d aw
H FEA, -S| “ERiv="" 4178 F.E
< (F.E)dVy — BBV = / S (F,E)dV,, (9)

where, in the current configuration, we consider a dielectric body that occupies the region
Vo C R3 with a boundary 0V, before the deformation and the region V' C R3 with a
boundary 9V after the deformation.

The rate of change in electric enthalpy is [?]

d 1 0H (F.E) 1 9H (F,E) .
g L HE B = /VJ - F.LdV+/VJ kv, o)

and the rate of change in entropy is

d 10S(F,E) o 105 (F.E) .
< S(FE)dVo /VJ oF F.LdV+/VJ o5 BV (1)

If we assume no free charges in the material and neglect body forces, the power extracted

by the external mechanical and electrical agents on the system is [777]

dw dcb

which can also be formulated as [?]

v / <0' L P) Lav- L [ ©p EdV—/ P-EdV+/ (0' - aM) S LAV
dt V dt RS 2 V RS/V
(13)

By using Eqgs. (10), (11), and (13) in Eq. (9), we obtain

1 ( 9S(F,E) OH(F,E . Y
/V<J<T o )_ B )>_P>.Edv+AS/V<a—a ):LdV—I— (14)

/V<0' o — E@P—J(aﬂ(FE) TaS(F’E)>FT>:LdV:0.

OF OF

Because we have assumed that Eq. (14) fits every acceptable process, we can follow 7 to



pics for experimental work 16.1.2020/Axis system.jpg

Figure 1: Schematic description of coordinate system {E, XA’, Z} and the applied spherical
coordinates.

obtain
c=0"+E®P+ oV, (15)
where o ( ) 95 ( )
1 (0OH (F,E F E
™= T ) F" 16
7T ( OF OF ) ’ (16)
is the mechanical stress [?], and E ® P is the polarization stress, with
1 0S(F,E) OH(F,E)
P=—|T — . 17
J ( OE OE (17)
Furthermore, when dealing with incompressible materials,
c=0"+E®P+c" +p,, (18)

where p, is an arbitrary Lagrange multiplier corresponding to the indeterminate hydro-
static pressure that results from the incompressibility constraint and I is the identity

matrix. The corresponding deviatoric stress, which is related to shape change, is

tr (o)
T

ODev — O —

(19)

2.2 Entropy-driven electro-elasticity of an isotropic polymer network

(Note: defining the construct and directions in the polymer)

The work of 7 indicates that analyzing the properties and structure of different poly-
mers starts with a single polymer chain with n dipolar monomers. Let [ be the length
between the two contact points of a monomer with its neighbors and define a coordinate
system {E,Y, Z} (Fig. 1) for a chain subjected to an electric field E = EE. In this
system,

é = cosOE + sin 6 (cos Y + sin (]52) (20)

is a unit vector where 0 < 6 < 7 is the angle between é and the electric field and
0 < ¢ < 27 is the angle of its projection onto the plane perpendicular to E and Y. We
define dI' = sin # df d¢ as the differential solid angle and allow I" to vary from 0 to [%.



(Note: a chain’s number of possible configurations and constraints (4Stirling’s approxima-
tion))

The number of possible configurations of a single polymer chain is

(21)

where n; is the number of dipolar monomers aligned along é in the range 6, < 0 < 6, +d60
and ¢; < ¢ < ¢; + d¢. For convenience, we define that 6; and ¢; correspond to the unit
vector éz The entropy of the chain is

S¢ =k In (QC) =k (n In(n)—n— Zn, In (n;) + an> ) (22)

where we have used Stirling’s approximation and k is Boltzmann’s constant. The chain

is subjected to three constraints:

Zni =n, (23)

where the end-to-end vector of the monomer chain is r = r#, with ¥ = cos OF +
sin © (cos dY + sin CIDZ), and

where h; is the electric enthalpy of a monomer directed along éz and HC is the enthalpy
of the chain.

(Note: maximizing the entropy according to the constraints)

We assume that the polymer chain occupies the most probable configuration under

the given constraints, so we are interested in maximizing the entropy

;- (26)

SC =k [m (29) +a (Zn - n> +r (an - 1;) +y <Znh - HC>

where «, 7, and ~ are Lagrange multipliers. The derivative of S with respect to n; is

e
3712- N

k {—ln(ni)+oz+7'~§i+7hi} =0, (27)

from which

Upon substitution of the latter into Eq. (26), the maximum entropy that can be achieved



by the chain is [?]
c r c
SY =k nln(n)—an—‘r-j—yH . (29)
(Note: Lagrange multiplier - inverse temperature)
We assume that the polymer chains do not interact with one another. Consequently, in
a volume element dVj, the total entropy density and the total electrical-enthalpy density
are S = d—%/ozkjskc and H = ﬁ%H ¢ respectively. Applying the first law of thermody-

namics with respect to the enthalpy of the k-th chain, we obtain

oOH oS

=T 30
one ~ Tomo (30)
from which we derive the relation )
=—— 31
g o T (31)

with the help of Eq. (29).

(Note: PDF of a monomer according to the constraints and with maximum entropy (4cal-
culating the rest of the Lagrange multipliers and Hc))

From the constraints (23) and (27), we obtain

Iy

> n; = exp (a) / exp (‘r = kff) dI' = n, (32)

%

where Eq. (29) is used and the summation is replaced by an integral over all monomer
orientations. Therefore,

exp («) (33)

n
=7
where

Iy

A h
Z:/exp<7'-§—kT>dF, (34)
0

is the partition function. Subsequently, Eq. (28) we have that

p(é,h):;exp (Té—!}) (35)

is the probability density function (PDF) that a monomer is aligned in the direction é

and has an electrical enthalpy h. An implicit equation that gives the Lagrange multiplier

7 follows from constraint (24):
Iy

A

Epdln = —. (36)

nl

10



From Eq. (25) the enthalpy of the chain is

I'o
/ hpdll = HE. (37)
0

(Note: monomer enthalpy and different dipole types)

Following 7?77 and ?, the electric enthalpy of a dipole oriented along é is
h=m-E, (38)

where the dipole vector m is determined according to a relevant model that represents
the local relation. We account for three specific models, the first of which corresponds to

a spontaneous dipole or a rigid dipole with constant magnitude [?]
mg = K pé . (39)

The second model is of a uniaxial dipole whose magnitude depends on the electric field
[7]:
mU:KU€®£E7 (40)

where sy is commonly referred to as the polarizability of the dipole. The third type is
the transversely isotropic (TI) model [?]:

1 ~ ~
My = oK1 (I —€® 5) E, (41)
where the dipole is perpendicular to €. Note that we do not account for the local electro-
static interactions between the dipolar monomers, so a uniform electric field is induced
over the monomers in the chain.

For three dielectrics composed of a random and uniform distribution of spontaneous,
uniaxial, and transversely isotropic dipoles to behave the same in the limit of infinitesimal

2

deformations and small electric fields, we impose ky = k7 = Z—; = k. The polarizability
n% €0 xo [?], where xo = €, — 1 is the initial susceptibility and ¢, is the relative

permittivity. ng = N n is the number of monomers in a unit referential volume where N

Is kK =

is the number of chains in the unit referential volume.
(Note: PDF in the amorphous case)
For an amorphous polymer, the chain’s constraints, given by Eqs. (23), (24), and (25),

are irrelevant because no such limitations exist for a single monomer. Therefore, 7 = 0

11



and the adjusted form of the PDF in Eq. (35) is

p(€) = ; exp (—;}) : (42)

7z / exp <_khT> ar, (43)

and the enthalpy of the monomer is calculated by using Eq. (38) with the correct dipole

type.
(Note: analytical calculation - PDF in the amorphous case - U and TT)

where

In addition to the numerical calculations for the PDF in the amorphous case, the amor-
phous monomer distribution can also be calculated by applying the analytical analysis of
? giving

pU - ®) exp [—wQ sin? (GZ)} (44)

:47TD

as the PDF of the uniaxial dipole, where w = /7% E = "L and D (w) = exp (—w?) [ exp (t?) dt

kT
is the Dawson function. The PDF for the TI dipole is

2

w w 5

prr = 7 — €Xp [— cos ((9,)] ,
(2m)” Exf () 2

(45)

where Erf (z) is the error function.

2.3 Phenomenological approach to electro-elasticity

(Note: A reference for the results in the application section)

We compare the results of the theory developed above with those of a relatively simple
phenomenological predictive material model that uses reasonable assumptions and is based
on continuum mechanics. In the current work, a constitutive law for the material must be
expressed through an energy-density function that depends on both the deformation and
the electric displacement or the electric field. Thus, as a reference, we recall the extended

neo-Hookean energy-density function for an ideal elastic dielectric (IED) [?]:

a 6026"13 'E, (46)

W(F.E) =3 [T (F'F —I)] +

where p is the shear modulus of the material. From Eq. (46) and assuming conservation

of energy and a reversible or conservative material, the constitutive equations for an

12



incompressible IED can be expressed as

oW
J:Fa—F+p*I:;LFFT+E®D—I—p*I, (47)

and
D = ¢y¢, E, (48)

in accordance with Eq. (3) with the relative permittivity considered to be constant. Note
that, in general, this model does not accurately reproduce experimental results for coupled

electromechanical loading.
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pics for experimental work 16.1.2020/general descript:

Figure 2: Schematic description of an arbitrary one-dimensional system subjected to an
electromechanical exitation at its boundary.

3 Electro-elasticity of solutions and anisotropic net-

works of polymer molecules

We now present an in-depth multiscale analysis of the electromechanical coupling in DEs
based on their inherent microstructure. This analysis allows us to examine the interplay
between the macroscopic deformation of DEs and the rearrangement of the monomers in

a network of polymer chains as a result of external electrical and mechanical loading.

3.1 First law of thermodynamics

The first law of thermodynamics, expressed in Eq. (8), is formulated as a general repre-
sentation of the electromechanical situation. This representation accounts for the conser-
vation of energy in a body subjected to an electric field while allowing us to formulate
the energy balance in terms of the electric enthalpy and the entropy of the system.

To systematically analyze the electromechanical coupling in polymers from the micro-
scopic to the macroscopic level, we tailor Eq. (8) to five different systems. The simplest
systems are based on that presented in Fig. 2, which is essentially a one-dimensional

system. Subsequently, we examine a network that is treated as a three-dimensional body.

3.2 One-dimensional systems of charges, dipoles, and molecular

chains in an electric field

In a one-dimensional system (see Fig. 2), we define the vector connecting the two ends (i.e.,
the end-to-end vector of the system) as r = r_ —r,. The quantities f*/~, V*/= and Q*/~
are the forces, velocities, and charges, respectively, at the system boundaries. The rate of
change in enthalpy and in entropy are H' = H (r,Eq) and ST = S (r, Ey), respectively.
The power extracted by the external agents [see Eq. (12)] is W7 = S f -V + 3 Q¢.
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pics for experimental work 16.1.2020/0NE CHARGE EXPLE

Figure 3: Schematic description of a single charge subjected to an electric field.

3.2.1 A single electric charge

We begin by analyzing the second term of Eq. (8), which concerns the variation in the
energy of the system due to variations in the electric field generated by a single charge.
To be precise, the present case describes a zero-dimensional system.

The electric field due to a particle with a constant electric charge () is derived from

Coulomb’s law as

B () = o0, (49

where in the current case g = ¢g is the vector from a specific point in space to the charge’s
location. Thus, because electric fields satisfy the superposition principle, the total electric

field at the given location is

Qg

E(g) = Eo+E(g) = Bot+ =

(50)

where Ey = E, E is the electric field imposed on the entire space. Accordingly, the second

term in Eq. (8) is

€ d QEy-g Q8 Qg
Ey-Eo + 2 : dv
2.dt ( 0o+ 4d7eg g? + dmegg?  4Amegg?
€0 d Q 08 Q?
=—— E; - Eg dv. o1
2 dt Jgs ( 0 27reog + 167263 g* (51)

Note that the first and third terms in Eq. (51) are constants. Moreover, for any spherical
region about a charge with inner radius R; and outer radius R,,, the variation in the energy

depends on

2 ™ Ro

Q///E gg sin OdgdOdd = QEO/d /cos@sin@d@EQ (52)
4dr 9 d
00 R ’

0 i

where Eq - & = Eycos© [Eq. (20) ]. Since this integral vanishes identically, so does its
time derivative. Thus, for any motion of a single charge in a uniform electric field, the
second term in Eq. (8) vanishes.

Taking into account Eq. (52) and neglecting the enthalpy and entropy since we assume
no material, Eq. (8) is reduced to W = 0. Thus, based on Fig. 3 and Eq. (12), we obtain

15



pics for experimental work 16.1.2020/dipole EXPLENATI(

Figure 4: Schematic description of a single dipole consisting of two charges Q1 and Q~,
connected by a stiff rod in an electric field.

for a single charge

. dc do¢
dt dt ’ (53)
where ¢ gives the location of the charge. The velocity of the charge is V = % where

dc = 0E + dey represents the change in position of the charge during the time interval
dt, dp = —Eq-dc = —d0Ep, and f = fEE + f7. Moreover, dcr and fr are the components
of dc and f, respectively, that are perpendicular to the direction E. Thus,

4 d
W= = (£ de+ Q3By) = — (fpd + fr - der + QO Ey) = 0. (54)

Therefore, because Eq. (54) equals zero in an equilibrium state and dcr is arbitrary, we
conclude that f7 = 0 and fg = —QFEy. This is precisely Coulomb’s force on a charge of

magnitude ¢ in an electric field Eq.

3.2.2 Dipoles

Consider now a charged nonpolarized rigid dipole and, as in the previous case, assume no
material and neglect the enthalpy and entropy. As indicated in Fig. 4, the dipole consists
of two charges Q" and QQ~ connected by a stiff rod of length [ oriented in the direction of
the unit vector £&. We assume that Q* = —Q~ = Q.

Again, we begin by analyzing the second term in Eq. (8), which gives the variation in
system energy due to variations in the electric field generated by the charges. Thus, in

accordance with the superposition principle,

- (- Q8" Qg™
E=E,+E? (g") —E® =K+ —
’ (%) (67) =B dmeo (g%)"  4meo (97)°
—Ey+E"+E, (55)
where g© = ¢gtgt and g~ = ¢ g are vectors from a specific point in space to the

positions of charges QT and @, respectively. Accordingly, the second term in Eq. (8) is

Eod

th/ (E0E0+2<EOE++EOE_+E+E_)+E+E+—}-E_E_)d‘/’ (56)
R3
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pics for experimental work 16.1.2020/dipole EXPLENATI(

Figure 5: Schematic description of a dipole in an electric field.

where, according to Eq. (52), the integrals over Ey - ET and Eq - E~ vanishes identically
and the remaining terms are constant. Thus, Eq. (56) equals zero.
As a result, Eq. (8) again reduces to W = 0. From the definition of electric potential,

dé = —E - dc, so ¢/~ = —Ey - V/~ and the rate of work of the external sources is
W=V VT 4+ By (QTVF+Q V) =0 (57)

Since ¢t = ¢~ + I€ from the geometry of the situation, then V* = V= + [€ and the

corresponding rate of work is

A

W= (£ +£7) V +1(f +QE) - €=0. (58)

Because the dipole is rigid, it is constrained along the direction of the dipole. Thus,
the forces and the electric field may be split into components in the orthogonal system
{é ,a, é}, where § = é x B is perpendicular to the plane spanned by the electric field and
the dipole. 1 = 8§ x & is perpendicular to the dipole and is on the given plane. Using
fr=até+bta+cts, - =a€+b u+c 8§ and Eg = e€ + g1, Eq. (58) yields
W=[(a*+a") &+ (b7 +07 )i+ (" +c7) 8|V + [a €+ b a+ "8+ Q (e€ + gu)[-£ = 0.
| (59)

Since Eq. (59) equals zero at equilibrium and V~ and é are arbitrary, the first term
implies that a* = —a™, b™ = —b~, and ¢* = —c~. However, consideration of the second
term shows that ¢t = 0. Moreover, since % 1 é, the dot product of the component
oriented along the dipole with the temporal derivative of the dipole vanishes identically.
Thus, the second term of Eq. (59) does not constrain the components of the forces in the
dipole direction and b = —g(@. These results are analogous to the requirement that the
sum of the dipole moments vanishes.

For spontaneous and polarizable dipolar monomers (Fig. 5), the electric enthalpy must

be taken into account. According to 7, the electric enthalpy of a dipole is
h=—-—m-E, (60)

where m is the dipole vector.For a spontaneous dipole with constant magnitude x, m =

mé . Thus, the electric enthalpy is h = —mé -Eg and the rate of change of electric enthalpy
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is .
h = —k€ - Ey. (61)

In this, case Eq. (8) reduces to
h=W. (62)

Substituting Egs. (58) and (61) into Eq. (62) yields
K€ By =T VI Vo= (£ ) Vg, (63)

which leads to .
(5 +£7) -V + (If" +KEg) -£ =0. (64)
Again, the forces and the electric field are split into components in the orthogonal
system {é, q, é}, where fT = aT€+bTa+ct8, £~ =a €+b0+c 8, and Ey = ef + git.
Accordingly, Eq. (58) yields
(a" +a )&+ (0T +b7)a+ (¢ + ¢ )8V 4]l (aT&+bT0+c"8) + 1 (c& + gtt) |-£ = 0.
| (65)
Given that V™~ and E are arbitrary, the first term leads to the constraints a‘+ = —a,
bt = —b~, and ¢t = —¢~. The second term leads to ¢t = 0 and, given that & L &, the
second term t contributes no additional constraint on the components of the forces in the
dipole direction and b* = —g*. If b* = 0 then E - % = 0 for equilibrium and, because
% 1 &, we have & || Eq for this specific case, which means that the electric field causes no

rotation of the dipole, so the dipole remains at rest in the absence of external forces.

3.2.3 Polymer molecule (chain)

As established above, when % Jzs E- EAV vanishes identically and W =0, Eq. (8) reduces
to
H=TS. (66)

Thus, because T'S¢ — HE = 0 describes an equilibrium state for a polymer chain, the
preferred state of a chain may be described by determining max {T S¢ —H C}. Then,
taking Eq. (29) into account, the most probable state is the one that satisfies

max {Tk

nln(n)—an—‘rﬂ—(T/{:fy—i—l)HC}, (67)

where Eq. (25) gives HC (r, E) :i hi (éz, EO). Note that the analysis assumes that r,
i=1

the end-to-end length of the chain with maximum permutations (i.e., the most probable
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length), is the only end-to-end length of chains in the direction f.

(Note: The "length" of a polymer chain - general)

To determine the most probable length r for a specific chain, the number of possible
permutations is calculated for all possible end-to-end lengths in the range 0 < r < nl.
This assessment is done for chains in all possible orientations relative to the direction of
the electric field, 0 < © < w. Thus, we can assess the most probable chain configuration,
depending on the magnitude of the electric field in the polymerization process and the
chain’s inclination with respect to the electric field.

(Note: The "length" of a polymer chain in the case of E=0 - purely mechanical case)

When examining the vector r of a single polymer chain when Eq = 0, then H® (r,0) =
0 and the entropy of the chain governs its behavior. By using the implicit equation from
which the Lagrange multiplier 7 is computed and the PDF that a monomer is in the

direction €, Eqs. (36) and (35), respectively, we obtain

I . A
fEexp(‘rf) dr .

0

Ty ol (68)

Let T = at + b1, where h = ™ and m = 7 — (7 - £) f in an orthogonal system {t,m, 8}
where § = £ x th. In this system, define &€ = cos 0% + sin  (cos ¢rh + sin ¢8), which leads
to T &= acosf + bsin b cos ¢.

Multiplying Eq. (68) by m gives

A

— | (&-m)exp(r-&) dr =0, (69)

or

2m ™
;/ / exp (a cosf) exp (b sin 6 cos ¢) sinf cos ¢ (sinfddde) = 0. (70)
o Jo

Note that the choice b = 0 leads to
1 T .y 27
- | exp (a cos®) sin”6dé cos pdo = 0, (71)
0 0

which fulfills Eq. (69).
Multiplying the left-hand side of Eq. (68) by  gives

Iy

1 R R 1 2w s
—= E-T)exp(T-& dF:/ /exp a cosf)) cosf sin @ df de. 72
@t gar ) [ [Comiano ™
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A change of variables to x = cos# leads to

f_ll exp(ax) zdx 7

= —, 73
f_ll exp(ax)doe  nl (73)
which can be integrated to obtain
— 1
eXp(a')+eXp( a) —*E£<G)ZL, (74)
exp(a) —exp(—a) a nl

where £ is the Langevin function. Accordingly,

o= L (T> , (75)

nl

where £7! is the inverse Langevin function. Note that if 1; << 1 then a = % and a — 0o

in the limit r — nl.

Substituting the expression for S¢ following Eqs. (22) and (26) gives

In (Qc) =nln(n) — an In (n;) (76)

FO FO
1
=n {1n(n) —7 In (2) /exp (a cosf) dI' +a / exp (a cosf) cos@dI’ } )
0 0
where, from Eq. (72),
F() FO
exp (a cosf)cosOdl" = Ll / exp (a cosf) dI, (77)
n
0 0
SO
1 '
cy — = L er
ln<(2 )n{ln(n) <ln<Z>+nl)/eXp(acosH) dr }
0
,
:nln(Z)—a?. (78)
Note that
2m
2 =" fexp (a) — exp (~a)] (79
SO )
In (Qc) =nln {W lexp (a) — exp (—a)]} - a% (80)
a

Note also that, in the limit » — 0, In (QS) = n In(47) so 29 = (47)" and, in the limit

r—mnl,ln (Q”l) =nln [2“ exp (a)} —an=nln (2”) so 2l = (%’T)n — 0 since a — o0.

a a
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Given that Eq = 0, the total number of permutations of chains with end-to-end length r
is

Q9 (r) = 4nr’0° (r) = 47n’Pn?0°, (81)
where n = . In the limit » — 0, 2% is finite and 2° (0) — 0, and in the limit r — n1,
25 — 0 and 7? is finite, so 29 (nl) — 0. This suggests that, in the range 0 < r < nl,
29 has a maximum.

The maximum of £29 is obtained by using

danC_aanC%JraanC
dn  Oa dp on

(82)

where we treat a and 7 as independent variables. Equations (74) and (80) show that

o 0¢ _ (eXp (a) +exp(—a) 1) _r
Oa  \exp(a)—exp(-a) a) I
MCE s L
SO n C
dld;) = —an. (84)

100° dn¢
— = mN° + 772?77 = nexp (ln QC) [2—nan]=0. (85)

Therefore a = nln orn=2L (nln) = coth (nln) — L. For large n, coth (n%]) =5+ 2+

0 (%)3 Thus, up to a second order in %, n= \/g ﬁ ~ %. This result differs from the
assessment obtained from random walk statistics presented and used by 7?77 and ? but
is consistent with the assessed end-to-end chain length determined by ? , 7, and 7.

(Note: force in a single chain with no electric field)

Furthermore, assuming zero electric field, we examine the most probable end-to-end
length of a chain subjected to a force f || r and with one end at the origin and the other
located within a small volume dV = r2drd¢df. For a single chain with no electric field,
Eq. (8) takes the form

W +T5°(r)=0. (86)

For this case, we define r = pR, where p is the stretch magnitude R is the end-to-end

vector in the referential state of the chain, and we assume that r || R. Thus, in accordance
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with Egs. (22) and (81), the rate of change of entropy is

==k (2-TR)p (57)

and the rate of work done by the external sources is

W=f v=f R (88)

where v = r, f is the external force exerted on the chain, and body forces are neglected.
Substituting Eqgs. (87) and (88) into Eq. (86) yields

[f-RJer(i—T'Rﬂp: [f-Rp+Tk<2—T'Rp>}p

l [

=[f-r+Tk(2—-n1n)]p=0, (89)
thus,
Tk(2— Tk|2— =L (5)n
f=— ( 27]7-”)1':— [ nl (”l) }f.’ (90)
r r
where Eq. (75) is taken into account. Thus, in accordance with Eq. (85), when 5 = %%

then f = 0.

3.3 Polymer molecules (chains) in electric field

We now examine a method for controlling the electro-elastic moduli of a network. Specif-
ically, we examine the consequence of polymerization in an external electric field. Toward
this end, we assume that the polymer chains are in solution during the polymerization
and that the monomers are already bonded into chains but that the chains are not cured
and toughened or hardened into a network by cross-linking. In this case, we refer to the
chains as “floating” in the solution such that no external work is applied at their ends.
Furthermore, we assume no interactions between the chains and determine their most
probable permutations separately.

Given these assumptions, each chain is examined individually. The end-to-end length
of a chain is r; = r(0;,Ey) and the end-to-end direction of a chain is t; = £(0,, ®;).
In the coordinate system shown in Fig. 1, ©; is the inclination of the chains’ end-to-end
vector relative to the direction of the electric field. Thus, as described in section 3.2.3,
the suitable r; for each O; is the one that satisfies Eq. (67). When E = 0, only a single
chain need be analyzed (as detailed in Sec. 3.2.3) because the polymer has no preferred

direction in this case and the network is isotropic.
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3.3.1 Distribution of monomer orientation

(Note: calculating monomer orientations)

After calculating the polymer end-to-end chain length in each group, we evaluate the
orientation of the chain building blocks (i.e., the monomers). The monomer orientations
are investigated as a part of a chain while taking into account the suitable constraints, as
indicated by Egs. (23)—(25).

Once the end-to-end chain lengths are determined for the maximum possible permu-
tations (i.e., the most probable end-to-end chain length for each group), the monomer
distribution is calculated for each chain by using Eq. (35). The probabilities for all possi-
ble monomer orientations are then calculated to determine the monomer distribution in
the most probable chain, which was obtained in the previous section. These orientations
include all combinations in the ranges 0 < 6 < 7 and 0 < ¢ < 27.

After obtaining the monomer orientations for each chain group, we compare it with
the monomer distribution in the amorphous phase, which can be calculated by using
Eq. (42) and taking into account the correct type of dipole. Analytical approximations
of the PDF in the amorphous phase are given by Egs. (44) and (45) for uniaxial dipoles

and transversely isotropic dipoles, respectively [?].

3.4 An anisotropic network of polymer molecules

According to 7, the total number of internal configurations of a polymer with N polymer
chains is N
2'=N] <W> , (91)
q Ny!
where w, and N, are the number of configurations and the number of chains associated
with a specific end-to-end vector, respectively. As an example, assume that we can a
priori split the chain population into two populations such that, for all the end-to-end
vectors in the two groups, the numbers of possible configurations are w; and ws and the
numbers of chains in each group are N; and Ny, respectively. The total end-to-end vectors
11 and 1y in the two groups satisfy ¥; N1 + 13Ny = N. Accordingly,

Ui ()N va ()N SN (o))
oi55) (35 (5 (5

q1=1 =1

Similarly, given J groups with a similar number of configurations and of chains in each

group,

! = NI ﬂ <(°"j).Nj>¢j , (93)



where 1), is the number of end-to-end vectors in group j group and
> ¥iN;=N. (94)
J

The number of possible configurations of a polymer chain is

TLj!

IL; (ng;!)’ (95)

U.)j:

where n; is the number of dipolar monomers in a chain in group j and n;; is the number
of monomers aligned with éz in a chain in group j. Consequently, by using the Stirling

approximation, the total entropy of the polymer is

St =kln (Qt)

= (Nln(N)—N+Z¢j {Nj [njln n;) anln nij —i—ZnU} NjlIn ( N)—l—Nj})

:k{Nln(N)—l—ijNj [njln n;) anln (nij) — In (IV; )1}

The polymer network is subjected to the constraint mentioned in Eq. (94). As previously

specified, each chain is subject to three constraints:
Z nij = le, (97)
i

Z ln”él = I’j, (98)

and the end-to-end vector of the monomer chain is r; = r; t;, so
> nghy = HY (99)

where H ]C is the electric enthalpy of the chain and h; is the enthalpy of a monomer aligned
along él
We assume that the most probable configuration is the configuration currently oc-

cupied by the polymer, so we are interested in maximizing the entropy under the given
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constraints:
A~ | 5]
St =k ln(Qt) -+ k ijN] [ozj (an — TZj) + T <anﬁl - ;) +/7] <anjhz - H]C>‘|
J ? v '
+ k) (Z ;N - N) 7 (100)
J

where «;, T, 75, and 7 are Lagrange multipliers.

To account for the maximal number of configurations, we impose

aSt =k [—Il)ij In (nU) + @/Jij (O./j + Tj . éz + ’Y]hz>:| = 07 (101)

87%-

from which we obtain

VN (o5 + 75 - & +5hi)
Nn;; = exp
’ ¥iN;j

) =exp (o + 7 - & + ki) . (102)

By substituting Eq. (101) into Eq. (100), the maximum entropy of the polymer is

L

I +WHJ'C)

S'=kNIn(N)+k Y 0 {N;[n;In(n))] = NjIn (N;)} = >N, (Oéj”j T
J J
+kn (ijNj —N) : (103)
J
Following the works of 7 and 7, we also assume no interaction between the polymer

chains. Therefore, the total enthalpy is H; = 37, v¢;N; H jc . Differentiating the first law of
thermodynamics [Eq. (8)] with respect to the enthalpy of the jth we have that

OH' o5*
=T 104
ore = Tome (104)
and by using Eq. (103), we obtain
1
V= T (105)

By taking into consideration the constraint imposed by Eq. (97) and the relations
given by Eqgs. (102) and (105), we obtain

Iy
. R
Z?’Lij :/ exp (Oéj + T; - Ez — k‘T) dl'= n;. (106)

0

From here we can determine the PDF, which indicates that a monomer in chain j is
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oriented along éz and has an electric enthalpy h;. This is

. N 1 . h
(€ h) = —2 = — - —, 1
p.j (€Z7 ) n] Z‘7 eXp (T] £’L kT) ( 07)
where
Ty h
o6 fy)ar o
0

is the partition function and the Lagrange multipliers 7, are computed from the implicit

equations that follow from the constraints given by Eq. (98),

Iy
/éipij dr =L (109)
’le l
0
The enthalpy of the chain,
Iy
/ hipy dI' = HY (110)

0
is computed from constraint given by Eq. (99).

To consider the network with the largest number of chain configurations, we impose
that

aS"

N, = 9; [n] In (n;) an In (n;;) (Nj)] + iy (Z”zj - ”j) + T (any§ - )
+ Y575 <Zn2]hz - Hf) + n;

=1 [nj In (n;) an In (n;;) — In (N;) +n] 0,

(111)

from which we obtain

e n;’
N; = exp ln] In (n;) an In (n;;) n] = %)mj] (112)
[T 145
Next, from the constraint given by Eq. (94), we obtain
exp (1) n;’
Zw]N ij nnw = N (113)

17,]
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This enables us to determine the Lagrange multiplier

p=tn|—2 | (114)

W
% )

Furthermore, the PDF that a chain is in the j-th inclination is

;= N; I1; nz_]nij _ IT; (nypi;) """
’ N Zk Y I ngg* Zk Uk I (naepie) " ’

(115)

and the fraction of all the chains with a specific inclination to the electric field can be

estimated as
Vj = wjpj, (116)

such that >, v; =1
Next, we use Eq. (115) in Eq. (103) to determine the entropy of the entire network:

N; |n;ln (n;) Zn” In (n;;) —In (N s w;?_ﬁ nlk%)]}
=kENIn(N)+k > ;N [n]ln n;) Znuln n;;) — In (N)]
kS0 Syt o) + (zwknnm ) w7)
=k {ij ‘[njln n;) +In <Z¢kH”zk )]}

St =k {Nln(N) +Z¢j

Assuming a fixed number of dipolar monomers in each chain, we neglect the first term in
the last line of Eq. (117) to conclude that

S* o< N In <Z Yy, an_k””“) . (118)
s i

By following the same steps for the case of the entropy of a chain presented in Eq. (22),

we conclude that
5§ o In (H nwn”> : (119)

Similarities appear between both assessments of the maximum entropy. In Eq. (119), the
entropy of a chain is a function of the end-to-end length r; and does not depend on the
inclination t.

Nnote that, for excitation by an electric field, the number of end-to-end vectors in
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group j depends on the group’s inclinations with respect to the direction of the electric
field, so
;= 2mr; sin (6;). (120)

3.4.1 Deriving the properties of the polymer

To assess our methodology, we evaluate the properties of a new anisotropic polymer and to
compare them with those of an isotropic polymer. Besides the electromechanical coupling,
which is our main interest, the response of the polymer to purely mechanical loading and
electrostatic excitation is also examined. The mechanical properties of the polymer relate
to the mechanical stress in the polymer under purely mechanical loading described by
the deformation gradient tensor F'. The electrical properties of the polymer, such as the
electric displacement and susceptibility, relate to the polarization of the polymer under
electrostatic excitation.
(Note: referenced mechanical stress)

The general mechanical stress presented by ?, which results from Eq. (16), is

Iy

1 oh kT T, Or;
"= —— pdl’ ‘| FT.
o= swio " arPY |t oF

7 0 i

(121)

The mechanical stress takes into account the change in the electrical energy of the
monomers due to the mechanical deformation and the mechanical loadings that deform
the end-to-end vectors of the chains. As per ?, we assume that the monomer is rigid
compared with the polymer chain, so the electric enthalpy of the monomer does not de-
pend on the deformation gradient. Furthermore, by assuming an incompressible material,
Eq. (121) simplifies to

WL arl) FT. (122)

o =

dvozi: < [ OF

(Note: simplified mechanical stress, suitable for an anisotropic case)

To determine the mechanical stress in the polymer, we first calculate the average stress
of each chain group. As already mentioned, for excitation by an electric field, the chain
groups are determined by their inclination with respect to the electric field. Thus, the

stresses of chains with the same inclination Oy are averaged over 0 < ®, < 27 to obtain

Q Y

mo__
O, =

(123)
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where T4, = cos O,E +sin 6, (COS <I>qY + sin (IDqZ), and ¢ = 1,2,...,Q. The calculation of
8I‘kq
oF

is detailed in Appendix B.
Next, we consider the relative influence of each chain group by taking into account
the fraction of chains in a specific group, as shown in Eq. (116). Thus, Eq. (122) can be
rewritten as

o™ = N> uo}, (124)
k

where the averaged stress of a chain is multiplied by the number N of chains per unit
volume.
(Note: referenced polarization)

The polarization

1
_Jdvozi: "\/) oE

0 i

P-

(125)

was derived by ? and stems from Eq. (17). The polarization equation (125) considers the
variation in electric enthalpy of the monomers as a result of excitation by the electric field
and the reorientation of the chains as a response to the electrical excitation. From the
assumption that the chains undergo affine deformation follows that the electric field does
not directly affect the chain distribution. Thus, by assuming an incompressible material,
Eq. (125) simplifies to

_dn\/o i gg pdl’| . (126)

0 i

P

(Note: simplified polarization, suitable for an anisotropic case + susceptibility)

The polarization of the polymer is calculated in the same way as for the mechanical

stress. Because g—g = —m, the polarization of chains of a given inclination ©; are averaged

over 0 < ®, < 27 to obtain
Q (TIo
ny. (f mde)

Pk: Q ?

(127)
where ¢ = 1,2, ..., Q.

Thus, because the relative influence of each chain group is considered through the

fraction of chains in a specific group, we obtain

k
where the averaged polarization of a chain is multiplied by the number N of chains per unit
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volume. After calculating the polarization, the electric displacement may be calculated

by using Eq. (3), and the susceptibility can be calculated by using

_P-E

- 129
X= (129)
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4 Application to electrostatically biased network

(Note: Opening sentence + Isotropic example - first step of the numerical analysis - evaluating
the Lagrange multiplier tau)

To modify DE properties to modify the electromechanical coupling of polymers, we
propose to polymerize monomers in the presence of an external electric field. Such a
process produces a relative order of the polymer-chain networks as the chains and dipolar
monomers react to the electric field while the chains are forming and “floating” in solution.
The electric field is removed after the polymer-chain network hardens as a result of cross-
linking between chains. Note that the chain and monomer responses are restricted by the
constraints (94) and (97)—(99), as detailed in Sec. 3.4.

To examine the influence of the proposed polymerization process (i.e., creating a “bi-
ased” polymer), we follow the analytical analysis detailed in Sec. 3. This examination
is done while comparing the results for the biased polymer with those of an unbiased
polymer (i.e., an isotropic polymer) and with the IED model (presented in Sec. 2.3), all

to evaluate how the suggested process affects the structure and properties of the polymer.

4.1 Chain distribution

The initial step of the analysis is to determine the most probable configuration of the
polymer chains of the isotropic and biased polymers. We first apply our calculation
to the case of no electric field and for a network of isotropic chains. The initial step
of the calculation is to determine the Lagrange multiplier 7 by applying the Newton—
Raphson method to Eq. (36). The first guess, T, is obtained by analytically estimating
the Lagrange multiplier as a function of r in a case where the electric field approaches
7Zero,

_Sr

To = (130)

nl’
which is accurate in this specific case, as detailed in Appendix C.

(Note: chains length - isotropic distribution)

Given the maximum-entropy assumption and the fact that, in this case, there is no
electric actuation or any other external influence, we assume an isotropic distribution
of chains, which means that we can assess the end-to-end length of a chain in a single
direction and relate it to all directions. Thus, to determine the most probable end-to-end
chain length, the number of configurations of a chain with a specific r is calculated and
then multiplied by the surface area of a sphere with the same r, which represents the
chains groups in the isotropic case, as discussed in Sec. 3.2.3 and shown by Eq. (81). The
entropy for each case is calculated by using the result of Eq. (81) in Eq. (22). Several

examples are presented in Fig. 6, which shows the entropy as a function of the normalized
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pics for experimental work 16.1.2020/ent vs r_nl for

Figure 6: The entropy of a polymer chain with uniaxial dipoles as a function of the
normalized radius, 0 < - < 1 and [ = 100 um. The red continuous curve with circular
markers corresponds to n = 50 and the brown curve with squares to n = 100. The
dashed columns corresponds to the normalized radii in accordance with the results in

section 3.2.3, -5 = %ﬁ, and the dot-dashed columns to the results from random walk

statistics, 1; = ﬁ

radius -5 for n = 50 and n = 100 with [ = 100 um. The initial susceptibility used in
these examples is xo = 37, which is about ten times the electric susceptibility of the com-
mercially available polymer VHB 4910, and the analyses are done for the case of uniaxial
dipoles. The difference between the curves in Fig. 6 is attributed to Egs. (21), (22), and
(81). Accordingly, the entropy of the chain increases with the number of monomers in the
chain.

(Note: defining calculation parameters - material properties and calculations boundaries)

We assume a shear modulus p = 10° Pa for the polymer in its initial unloaded config-
uration. The number N of chains per unit volume is deduced from p = N kT [??]. The
normalized radii that correspond to the maximum points of the two curves in Fig. 6 are
(ﬁ)n:w = 0.1 and <ﬁ)n=100 = 0.075 and are consistent with the analytical predictions
(ﬁ)n:m = 0.115 and (ﬁ)nleO = 0.082, respectively, given in Sec. 3.2.3 and shown
by the dashed columns in Fig. 6. The difference between the numerical and analytical
results for the most probable end-to-end chain length is associated with the density of
discretization of 0.025 for 0 < -5 < 1. Furthermore, the results of the current approach
differ from the results (ﬁ)nzso = 0.141 and (#)nzloo = 0.1, obtained from the random
walk statistics and presented by the dot-dashed columns in Fig. 6. Negative entropy is
irrational and is truncated because it represents configurations that are incompatible with
the assumption required for Stirling’s approximation that is applied to go from Eq. (21)
to Eq. (22).

(Note: the main idea - parameters value and initial calculations)

Next, to determine how electrical excitation affects the polymer structure during poly-
merization, different parameters were investigated as the electric-field magnitude ranged
from 0 % to 150 % The results are based on a numerical calculation where the number
of monomers in a single chain, the length between the two contact points of a monomer
with its neighbors, and the number of chains per unit volume are the same as those
assumed for the case of no electric field.

To demonstrate how electric fields of various magnitudes affect chains at various in-
clinations with respect to the electric field, Figs. 7, 8, and 9 show results for chains with

© = 5, © = 7 and © = 7. Figure 7shows the natural logarithm of the maximum
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Figure 7: The natural logarithm for the maximum number of configurations as a function
of electric-field magnitude for chains with uniaxial dipoles at different inclinations. The
blue curve with circular markers corresponds to © = 155, the red curve with squares to
© = 7, and the yellow curve with diamonds to © = 7.

pics for experimental work 16.1.2020/rad vs ElecField 29.

Figure 8: The most probable end-to-end length as a function of electric-field magnitude
for chains with uniaxial dipoles at different inclinations. The blue curve with circular
markers corresponds to © = 1755, the red curve with squares to © = 7, and the yellow

curve with diamonds to © = g

s
49

number of configurations for each chain as a function of electric field, and Fig. 8 shows
the end-to-end length for the maximum number of configurations of each chain as a func-
tion of electric field. The Lagrange multiplier 7, which may be understood as the chain’s
mechanical constraint and which is related to the end-to-end length of the chain with the
maximum number of configurations, is examined as a function of electric-field magnitude,
as seen in Fig. 9.

Note from Figs. 7, 8, and 9 that the results differ little for an electric field less than
50 % This is particularly evident in Fig. 8, where the change in the end-to-end length
of the different chains is hardly visible below 50 % Figure 7 shows the similarities in
the curves for the natural logarithm of the maximum number of configurations for chains
at different inclinations, which all decrease with increasing electric field. The differences
between the curves attributed to the number of end-to-end vectors in each inclination
with respect to the electric field, as expected from Eq. (120). Figure 8 shows that,
with increasing electric field, the end-to-end length of chains at all inclinations increases.

However, as the electric field increases, the differences in end-to-end length become more

pics for experimental work 16.1.2020/AbsTau vs ElecField

Figure 9: The size of the Lagrange multiplier 7, associated with the most probable
radius as a function of electric-field magnitude for chains with uniaxial dipoles at different
inclinations. The blue curve with circular markers corresponds to © = 1755, the red curve
with squares to © = 7, and the yellow curve with diamonds to © = 7.
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Figure 10: Monomer distribution for a polymer chain of uniaxial dipoles. The magnitude
of the electric field during polymerization isE = 150 % . (a) Corresponds to the chain
with the inclination © = & and end-to-end length r = 0.89/nl. (b) Corresponds to
© =7 and r =0.91y/nl. (c) Corresponds to © = 7 and r = 0.93 \/n .

prominent because chains at greater inclinations are longer. This result is counterintuitive
because we would expect chains with greater inclination with respect to the electric field
to be shorter because the monomers tend to reorient in the direction of the electric field.
Figure 9 shows the difference in mechanical constraint of the chains. With increasing
electric field, the constraint decreases for chains parallel to the electric field and increases
somewhat for chains at greater inclinations. This result is attributed to the polymer being
in a solution state during polymerization, and more energy is required to maintain chains

at larger inclinations as the monomers react to the electric excitation.

4.2 Monomer orientation

(Note: monomer distribution - chains)

After calculating the end-to-end length for chains as a function of inclination with

A

respect to the electric field [i.e., determining r) = r°(6;, E)#(0;)], the monomer orienta-
tion can be calculated as detailed in Sec. 3.3.1. Figures 10a(a)-10a(c) show the monomer
o050 © = 1, and © = 7, respectively, and
for an electric field £ = 150 % In these three-dimensional plots, the length of the radius

distribution for chains with inclinations © =

vector to each point represents the number of monomers aligned with the given vector. In
addition, the monomer distribution is consistent when comparing different inclinations,
which means that the monomers in the different chains tend to orient similarly. This
consistency is very interesting because the chains have different inclinations and different
end-to-end lengths.

(Note: amorphous monomer distribution)

Given that the monomer orientation for each given chain is obtained and their sim-
ilarity is recognized, we now examine the monomer distribution in the amorphous case.
Figure 11 presents the results of numerical calculations of the distribution of amorphous
monomers distribution for a uniaxial dipole based on Eq. (42). Unlike Figs. 10a—10c,
Fig. 11 presents a symmetric distribution of monomers, as in this case where monomers

are free to reorient separately and not be constrained as part of a chain. The result of
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Figure 11: Amorphous monomer distribution of a uniaxial dipole as £ = 150 % Ac-
cording to the numerical analysis as 7 = 0 and identical to the results of the analytical
analysis that was presented by 7.

pics for experimental work 16.1.2020/Number of chain :

Figure 12: Number of chains along each inclination as a function of inclination relative
to the direction of the electric field, N (©,® = 0). The blue curve with circular markers
corresponds to the isotropic polymer and the yellow curve with squares corresponds to
the biased polymer.

the analytical analysis of the PDF in the amorphous case [?], presented in Eq. (44), also

appears in Fig. 11 and are identical to the numerical results.

4.3 The free state

(Note: finding the natural state - chains distribution, weights and lambda0 deformation)

After analyzing the micro-scale and understanding the monomer distribution as a
result of the given polymerization process, we now examine the macroscale. The analysis
of the macroscopic response of polymers to different excitations, as detailed in Sec. 3.4,
requires an assessment of the relative influence of each chain group in various inclinations.
This assessment is done by using Eqgs. (116) and (120) to calculate the fraction of chains
with inclination j with respect to the electric field. Figure 12 compares the number
of chains of various inclinations with respect to the electric field for isotropic polymers
and electric-field-biased polymers, and Fig. 13 compares the fraction of chains in each
inclination for each case. The relations between the results shown in Figs. 12 and 13
are credited to ¢;, which is the number of end-to-end vectors in group j, as given by
Eq. (120).

Figure 12 shows that the application of an external electric field during polymerization
affects the chain distribution, as the chains aspire to align in the direction of the electric
field. However, Fig. 13 shows that, because of Eq. (120), the most influential inclination
of the polymer is © = 7.

To calculate the inclinations with respect to the direction of the electric field, the
density of discretization was taken as AO = {¢ because denser discretizations do not
significantly change the results. We refer to each individual group of chains in accordance

with their inclinations with respect to the electric field, and we attribute each chain in
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Figure 13: Fraction of chains along each inclination as a function of the inclinationwith
respect to the direction of the electric field, v (©). The blue curve with circular markers
corresponds to the isotropic polymer and the yellow curve with squares corresponds to
the biased polymer.

each group one end at the origin and the other end in a small volume dV = r?drde¢dd.
Furthermore, because the DE coupling is quadratic in applied electric potential [?], the
different DE responses can be deduced by analyzing 0 < © < 7. Accordingly, the groups
that relate to inclinations © = 0 and © = 7,
range, are attributed to small volumes with A© =

which are the boundaries of the analyzed

s
32°

This is done to avoid exceeding
the limits set for the angular range being tested.

Figure 14 presents the analysis of the deformation \y of a polymer with respect to the
electric field, induced during polymerization by the electric-field magnitude, given that
the electric field is removed at the end of polymerization. The chains are unable to tune
their length to that of the chains in the isotropic polymer because they are cross-linked
and cannot rearrange separately. Thus, each chain is affected by the same deformation

gradient. The corresponding deformation gradient, while assuming incompressibility, is

N 0 0
~ A 1 A N
F'0)=MNE®E+——(I-E®E)=| 0 yvx 0 |. (131)
VAo
0 0 Yux

To assess the stress-free configuration of an incompressible body such as the biased poly-
mer, we examine various deformation gradients. A suitable one is obtained from the state
where opg = vy = Oy = % because the deviatoric stress is zero, in accordance with
Eq. (19). As seen in Fig. 14, )¢ is achieved by calculating ogg — oyy = opig and deter-
mining the correct value from opig (A\g) = 0. In this case, the correct value is A\g=0.795,
which means that the deformation gradient tensor compatible with the deformation after

removal of the electric field is

0.795 0 0
FO =1 o 1121 0o |. (132)
E:ISOT

0 0 1.121

This result is counterintuitive when considering that, in this case, chains at greater inclina-
tions become longer. However, when considering the monomer orientation, it is reasonable

to assume that some will become more inclined with respect to the electric field as it is
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Figure 14: opig = o0gg — oyy as a function of \g after removal of the electric field with
magnitude £ = 150 % .

pics for experimental work 16.1.2020/mechanical stres

Figure 15: The deviatoric mechanical stress as a function of the deformation ratio .
Dashed curves correspond to the isotropic polymer, continuous curves to the biased poly-
mer, and dot-dashed curves to a polymer described by the IED model. The blue curves
correspond to the normal stress in the direction of the electric field, oy}, and the red
curves correspond to the transverse stress, oy = o7;,.

removed. Thus, the polymer will undergo a planar expansion. The end-to-end length and
inclination of the chains in the relaxed state, which from now on will be the starting point
for each chain examined in a biased polymer, can be deduced from r; = For?. Note also

that the same calculations for the isotropic case yield A\{° = 1, as expected.

4.4 Material properties

(Note: mechanical and electrostatic properties - new polymer + comparison)

Given the chain orientations for the example mentioned, the properties of the biased
polymer can be examined and compared with the case of an isotropic polymer, which is
detailed in Sec. 3.4.1. The polymer’s mechanical properties can be assessed by evaluating
the mechanical stresses as a function of deformation ratio A, according to Eq. (124). The
calculation of the mechanical stress was done by taking into account and averaging the
stresses at 0 < ® < 27 with a discretization of A® = J for each inclination © with respect
to the electric field and evaluating the stresses for each deformation ratio while taking into
account the fraction of each inclination [Eq. (116)] for each case of deformation. Figure 15
presents the mechanical stresses in the direction of the electric field and in the transverse
plane as a function of deformation ratio for the isotropic polymer, the biased polymer,
and the IED model.

The electrostatic properties can be assessed by first evaluating the polarization of
the polymer as a function of the magnitude of the electric field. These calculations are
performed following the same steps as for the stress calculations. Figure 16shows the
susceptibilities of the biased polymer, isotropic polymer, and the IED model as a function
of electric field, as calculated by using Eq. (129).

Figure 15 shows that applying an electric field during polymerization changes the

stress. More precisely, the stress of the biased polymer increases relative to that of the
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Figure 16: The susceptibility of polymers as a function of electric field. The black dashed
curve corresponds to the isotropic polymer, the black continuous curve to the biased
polymer, and the black dot-dashed line to a polymer described by the IED model (the
dashed and the continuous curves overlap).

pics for experimental work 16.1.2020/a comparison of tl

Figure 17: Deformation in the direction of the electric field A as a function of electric-
field magnitude. The black dashed curve corresponds to the isotropic polymer, the black
continuous curve to the biased polymer, and the black dot-dashed curves to a polymer
described by the IED model.

isotropic polymer, both in the direction of the electric field and perpendicular to it. The
stress in the IED model exceeds that in both of the other polymers examined.

Figure 16 shows that the biased polymer and the isotropic polymer have similar sus-
ceptibilities. The susceptibilities of both the polymers are initially similar under the
excitation a weak electric field (less than £ = 5 %) and increase at almost identical rates
as the electric field increases. We suspect that the similarity between the susceptibilities of
the biased and isotropic polymers stems from the fact that, as the electric field is removed
at the end of polymerization, the monomers tend to rearrange in the isotropic polymer
whereas the biased polymer deforms. Note that the numerically determined susceptibility
of the biased polymer slightly increases relatively to the isotropic polymer, although not
enough to visibly separate the curves. The susceptibility of the IED model is independent
of the magnitude of the electric field. These results indicate that applying an electric field
during polymerization changes the mechanical properties of the polymer more than the

electrostatic properties.

4.5 The coupled response

(Note: coupled properties - new polymer + comparison)

After examining and comparing the mechanical and electrostatic properties, we also
examine the coupled properties of the biased and isotropic polymers. For this purpose,
the main criterion to examine is the deformation A\ as a function of the magnitude of the
applied electric field (see Fig. 17). As shown in Fig. 17, the deformations in the biased
polymer are smaller than those in the isotropic polymer. These results are consistent with

the previous results. Figure 16 establishes that the electrostatic response of the biased
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polymer does not differ significantly from that of the isotropic polymer, and Fig. 15
shows that the biased polymer is stiffer than the isotropic polymer. Furthermore, the
susceptibility of the IED model is constant and generally smaller than for both other
polymers within the range of electric fields examined, so the stress in the IED model
exceeds that in both other polymers. Thus, it is logical that the deformations in the IED

model are smaller than those in the biased and isotropic polymers.
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5 Experimental work

A deeper understanding of the electromechanical properties of polymers is required be-
yond what is provided by our analytical and numerical work.. Therefore, we now present
experiments that examine the coupled response of various DEs such as VHB and PDMS
and compare their results to analytical calculations. The dielectric constant of the DEs
is first determined by calculating the relative permittivity from the capacitance of ca-
pacitors containing these DEs as their medium. A common method used to make such
measurements is based on the analysis of the capacitance component in an LCR circuit
by means of an LCR meter or a capacitance meter.

The experimental work presented below is divided to two main parts: The first part
includes an extension of the work presented in 7 and examines how the uniaxial and biaxial
stretching affects the dielectric constant. The second part presents a new experimental
system for measuring the dielectric constant of polymers under an electric field are reports
the results for two polymers: VHB 4910 (a commercially available acrylic elastomer from
3M) and polydimethylsiloxane (PDMS, that made in our lab by using the Dow Corning
Sylgard 182 Silicone Elastomer Encapsulation Kit). These materials are of interest for

their flexibility and accessibility.

5.1 Influence of uniaxial and biaxial stretching

The first experimental system we present allows us to evaluate how uniaxial and biaxial
stretching of DEs affects their dielectric constant and to deepen the examination of the
dependence of the dielectric constant on deformation. The experimental system was built
from a self-constructed stretching device with four movable grippers, shown in Fig. 18a.To
measure the relative permittivity of the deformed samples, a C-shaped clamp serving as

a plate capacitor (Fig. 18b) was connected to an Agilent U1701A capacitance meter. The

pics for experimepied forkeiperimeROAttwerkhifgl apaARustpngl.pn

(a) (b)

Figure 18: (a) Self-constructed stretching device. (b) C-clamp used as a parallel-plate
capacitor.

experimental relative permittivity of each sample is calculated by using

Cyd
ETEzp - AEO7

(133)
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Figure 19: Relative permittivity measurements as functions of percent surface-area ex-
pansion. The dashed and dotted curves correspond to the analytical results [?], as n are
estimated from the stretch at failure (ny) and from fitting the analytical equations to the
experimental results (n.), respectively. (a) PDMS under uniaxial stretch. (b) VHB under
uniaxial stretch. (¢) VHB under biaxial stretch.

where C; is the measured capacitance, d and A are the thickness and surface area of
the capacitor, respectively, and ¢y is the vacuum permittivity. The analytical relative

permittivity for uniaxial stretching of the dielectric elastomers is calculated by using ?

1
v =1 1—— )\2—)]. 134
fro = L F X0 { 5n ( ) (134)
The analytical relative permittivity is calculated herein based on the results of 7 for the

case of biaxial stretching. The final expression is

€y =14 Yo [1—271 (AQ—)}, (135)

where n is the number of monomers in a single chain, x( is the initial susceptibility, and
A is the magnitude of the uniaxial or biaxial stretching.

Figure 19 presents the results of the experiments and the analytical calculations of
the relative permittivity as a function of the percentage of surface area expansion for
uniaxial stretching of PDMS (Fig. 19a), uniaxial stretching of VHB 4910 (Fig. 19b), and
biaxial stretching of VHB 4910 (Fig. 19¢). The analytical results for uniaxial and biaxial
stretching are also presented for the different cases examined. The number of monomers
in a single chain is estimated from the stretch at failure, which is presumed to be the lock-
up stretch and is labeled ny, and by fitting the analytical equations to the experimental
results n., as shown in Table 1.

The results show that stretching the samples decreases their thickness decreases rel-

ative permittivity. The incompressibility assumption was also examined and, for PDMS,
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Table 1: The number of monomers in a single chain for the case presented in Fig. 19.

| | PDMS - Uniaxial | VHB - Uniaxial | VHB - Biaxial |
ny 4.35 80 80
ne 5.844 21.807 5.156
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Figure 20: Schematic description of experimental system.

the results of both the measured and the calculated thickness are shown. The incompati-
bility of the curves based on the number of monomers in a polymer chain from the stretch
at failure may stem from the fact that the stretch at failure is not necessarily the lock-up
stretch of the chain.

5.2 Influence of electric field

The goal of this experimental work was to examine how electric fields of varying magni-
tude affect the dielectric properties of various polymers. Toward that end, we present a
new experimental system that allows us to evaluate variations in dielectric constant as
a function of applied electric field. Furthermore, we continue the workof ? and deepen
the examination of how the dielectric constant depends on the deformation by examining

pre-stretched samples.

5.2.1 Experimental setup

(Note: Samples description)

(Note: Presenting the experimental system)

Ten rectangular samples of each of the two chosen polymers were cut for each examina-
tion. For pre-stretched VHB, the samples were then stretched by using a self-constructed
stretching apparatus consisting of two movable grippers, as shown in Fig. 18a.

This experimental system was built from nonconductive materials except for the two
30-mm-diameter electrodes that were made of copper and acted as one of two capacitors
connected in series, as shown in Fig. 20. The two electrodes were each held in a 60-mm-
diameter Teflon housing, as shown in Fig 21. The plate capacitor contained the elastomer
sample under examination, and the second capacitor consisted of a fixed TDK UHV-241A

capacitor suitable for high voltage.
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Figure 21: Parts of the plate capacitor.

To examine pre-stretched samples, we first used a bidirectional stretching apparatus to
generate the required tension. After stretching, the sample was held in the stretched state
by using a two-part self-constructed Perspex gripper with a 60-mm-diameter opening in
the middle and an O-ring notch to maintain the tension in the sample, as shown in Fig. 21.

To measure the referential permittivity of the different samples, we used the plate
capacitor from the experimental system. This measurement was made by connecting the
plate capacitor to a capacitance meter before connecting the experimental system to the
power source. Furthermore, the distance between the electrodes was measured in each
experiment. After obtaining the referential values, the power source was connected to
the experimental system. As the supplied potential difference is changed in the power
source. The potential difference across the plate capacitor was measured as a function
of the potential difference applied by the power source by using a noncontact USSVM?2
voltmeter from AlphaLab.

(Note: Presenting the work method or protocol)

To evaluate the relative permittivity of the polymer under electrostatic excitation,

conservation of charge is taken into account as follows:

Q = CVs = GV, (136)

where () is the charge on each capacitor, V, and C, are the potential difference across
and the capacitance of the examined polymer, and V; and Cj are the potential difference

across and the capacitance of the fixed capacitor. Thus,

1 1
t +Vo=0Q C. + Ca (137)
where V; is the total potential difference supplied by the power source. Equation (137)
gives

Vi
=(—=—1 1
c, (V )Oo, (138)

from which the current capacitance of the polymer can be calculated, while the constant
Cy is determined by the data shift and confirmed at the beginning of each experiment by
measurements made with the capacitance meter.

The relative permittivity, which is the electrostatic property under investigation, is

calculated from the results of the calculated capacitance by using Eq. (133).
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Figure 22: Permittivity measurements with electric field applied to the sample. The blue
dots correspond to a relaxed sample and the red circles correspond to an area pre-stretch

of A =225%. (a) PDMS, (b) VHB.

5.2.2 Results and discussion

In all tests, the sample thickness was measured in order to calculate the relative permit-
tivity by using Eq. (133) and thereby correctly determine the electric field induced in the
sample, which is calculated as E, = %. Measurements of the pre-stretched VHB 4910
confirmed the incompressibility assumption in this case.

The solid blue dots (red open circles) in the two plots of Fig. 22 show the measured
relative permittivity as a function of the electric field in the un-stretched samples(2.25
area pre-stretched samples). The error bars show the standard deviation. The results
shown in Sec. 5.1 are consistent with the current results as £y, — 0. For the VHB 4910
samples (Fig. 22b), the relatively small standard deviation of the different measurements
provides confidence in the accuracy of the measurements for this material. The relatively
large standard deviation of the PDMS samples may be attributed to the fact that the
samples were made manually in our lab, although a clear trend appears in the results.
The relative permittivity of the two polymers examined increases with the magnitude of
the electric field.

The variations in the responses of the two polymers examined hints that they are
governed by the polymer microstructure. Furthermore, the results of the pre-stretched
VHB 4910 provides more evidence of the role of the microstructure. Given that the
initial value of the relative permittivity corresponds to the results shown in Fig. 19, the
maximum relative permittivity measured in the pre-stretched case is much less than that
measured in the relaxed case, despite the fact that a stronger electric field was achieved in
the thinner samples. The results for both polymers (Fig. 22) show that the rate of change
in relative permittivity is much greater at relatively low electric fields (< 1%) Thus,
additional experimental analyses of the relationship between the microscopic structure
and the macroscopic response are needed to understand the coupled electromechanical

behavior of different polymers.

44



6 Conclusions

(Note: Opening - Motivation)

This thesis presents another step toward the use of DEs in a wide range of applications
and comes at a time when we are seemingly ready for such advances in different fields, such
as clean energy, medicine, and robotics. Thus, given that a substantial improvement in the
electromechanical response of DEs is required, we present a possible method for influencing
and analyzing the response of these materials and their structure and properties, all
without adding any foreign material.

(Note: 3. Electroelasticity of solutions and anisotropic networks of polymer molecules)

(Note: 3.1 general - multiscale analysis)

To begin, we carried out a multiscale analysis of the electromechanical coupling in
DEs for several hierarchical cases, from a single electric charge to a network. The analysis
applies the conservation of energy through the first law of thermodynamics in terms of the
electric enthalpy and the entropy of a system subjected to an electric field. The analysis
of the polymer microstructure is based on statistical mechanics, and we assume that each
chain is in the most probable configuration.

(Note: 3.2 an analysis of the isotropic chain end-to-end length, tau and force)

We then analyze the polymer chain in the case of no electric field. This analysis
yields the relationship between the Lagrange multiplier 7, which can be understood as
the chain’s mechanical constraint, and the normalized end-to-end length of the chain
through the Langevin function. The calculations also determine the end-to-end length of
a chain in such a case, which is similar to that obtained by ?? and ? but differs from
the commonly used result based on random walk statistics [?77?]. In addition, we deduce
a relation between the end-to-end length of a chain and the external force exerted on the
chain.

(Note: 3.3 polymer chains in an electric field and monomers distribution)

To examine the proposed method for controlling the electro-elastic modulus of a poly-
mer network by polymerizing under an electric field, we develop an approach to determine
the most probable configuration for each group of polymer chains and for the orientational
distribution of the monomers in such a case.

(Note: 3.4 an anisotropic network analysis - general analysis with a reference for polymer-
ization under an electric field + material properties)

Next, we derive an expression for the total entropy of the polymer that allows us to
evaluate the distribution and the fraction of the chains in the different chain groups. Given
these fractions, expressions for the mechanical stress and the polarization are derived in
order to determine the polymer response.

(Note: 4. Application to electrostatically biased network - remined our main idea for the
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polymerization)

To examine the outcome of our proposed polymerization under an electric field, which
leads to a “biased” polymer, we applied a numerical analysis based on our analytical
work, and the predictions of this analysis are compared with the experimental results for
an isotropic polymer and for the IED model.

(Note: 4.1 chain end-to-end length - isotropic case (our analysis is more accurate) and
anisotropic (mention the examined parameters))

The initial step of the numerical analysis involves examining the results for the end-
to-end length of a chain in an isotropic polymer. For the biased polymer, the chain
configuration is compared for three parameters: the maximum number of chain configu-
rations, the most probable end-to-end length, and the Lagrange multiplier 7 that relates
to the end-to-end length to the maximum number of configurations. The results indicate
that the electric fields less than 50 % produce negligible differences with respect to the
isotropic case. However, upon increasing the electric field, the end-to-end length of chains
increases for all inclinations, which is counterintuitive because uniaxial dipolar monomers
tend to rotate in the direction of the electric field.

(Note: 4.2 monomer orientation - aspire to be as in the amorphous case)

The results of the investigation of the monomer orientation for chains at various in-
clinations with respect to the electric field and the comparison with the monomer distri-
bution in the amorphous case shows that, despite their constraints, monomers in chains
tend to orient as though they were unattached.

(Note: 4.3 assessing the free state and discussing the chains distribution/weights)

Next, the free state of the biased polymer was assessed. This state occurs when the
deviatoric stress vanishes and the body is in a stress-free configuration. The results show
that the biased polymer contracts in the direction of the applied electric field, which
improves our understanding of the importance to polymer properties of the microscopic
structure because, when the electric field is turned off, the monomers rotate away from
its direction, which leads to contraction in the given direction. The spatial expansion in
the transverse direction is due to incompressibility.

(Note: 4.4 the material properties and coupled response)

The resulting material properties differ from the mechanical properties, as manifested
by the biased polymer being stiffer than the isotropic polymer. No significant difference
in the electrostatic properties are found between the two polymers. However, in both
cases the susceptibility appears to vary as a function of electric-field magnitude. The
analysis of the coupled response establishes that the electromechanical response of the
biased polymer is less than that of the isotropic polymer, which is consistent with the
mechanical and electrostatic properties of both polymers.

(Note: 5. Experimental work)
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The results of the present experimental work imply that the dependence of the dielec-
tric properties of the polymers on the deformation and the electric-field magnitude cannot
be neglected. Moreover, they suggest that common models that assume constant relative
permittivity, such as the models of ? and ?7, are not applicable if the polymer is sub-
jected to different mechanical loads or exposed to an electric field at different magnitudes.
Additionally, our extension to the model of ? for the case of biaxial stretching predicts
the relationship between relative permittivity, which reflects the dielectric behavior, and
polymer deformation. However, the assessment of the number of monomers in a single
chain from the stretch at failure is insufficient to predict these relationships, which may
stem from the fact that the stretch at failure is not necessarily the lock-up stretch of the
chain. Furthermore, our examination of how electric fields of varying magnitude affect
the dielectric properties reveals the differences in the responses of the relaxed and pre-
stretched VHB 4910, thereby demonstrating the prominent influence of the microscopic
structure on the macroscopic electromechanical behavior. Accordingly, pre-stretching the
sample is found to hinder the evolution of the relative permittivity as the magnitude of
the electric field increases.

(Note: ** Future work)

We have spent considerable time pondering the future directions of this research.
Although this thesis presents a method of tuning polymer properties, it has so far been
applied only to the case of uniaxial dipoles. Thus, spontaneous and transversely isotropic
dipoles should also be analyzed. In addition, the creation of a biased polymer should
be examined from different directions and with electric fields of greater magnitude to
determine the threshold field above which significant differences appear in the electrostatic
properties vis a vis the isotropic polymer. Moreover, how an electric field affects the
dielectric properties should be experimentally examined for additional materials, with

more pre-stretching conditions and under higher-magnitude electric fields.
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Appendix

A The first law of thermodynamics in terms of elec-

tric enthalpy

The first law of thermodynamics is U = Wy + Q [Eq. (7)] [??], where

. d
U= / (F,P)dVy + —E EdV, (139)
dt R3
and the system is assumed to not to interactwith other bodies and the electric fields
is assumed to vanish far from the system. The rate of work done by mechanical loads

through deformation and by the electric field through variations in charge is [?7?]

dWO /vadV+/ tvld/H—/qb @)+ [ oL (pada).  (140)
1°1% oV dt

Using the definition of the electric enthalpy density [?],

h(F,E)=u(F,P)— JP-E, (141)
gives
g-L [ hEwan+d [ porsa+ L [ “Egav
At Sy, CTat fy, O At Jgs 2
4 hr By +d/P Bav+ L [ Cp pav (142)
Tt ’ "Tat )y dt Jgs 2 '

In the body D = P + ¢yE and outside the body D = ¢E, so

-d d €0
U=— | h(F,E)dVy + — D —¢E)-EdV + — —E-EdV. 143
dt Jy, (F.E)dVo+3; |, (D~ F) Tq 2 (143)
Thus, we have
. d d
U= h(F,E)dVy — —E EdV + — D - EdV. (144)
dt Vo R3 dt R3

Define H = T f o (F,E)dV, as the stored electric enthalpy in the body. The first

law of thermodynamics then gives

. d d
7 — —E EdV =W, +Q—~— | D-EdV. (145)
di dt s
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Consider the last term

d d d d
D EdV = — D -VodV = — D¢)dV — — -DopdV. (14

St V= dt Jrs VedV = dt V (Do) dV dt Jgs V- DedV. (146)
Assuming no free charges outside the body, then V- D = ¢ in the body and zero outside,

SO
d

D EdV = / oD - ndA—/ PqdV, (147)
S dt ov

where we make use of the dlvergence theorem and exploit the assumption that the electric

field vanishes at distance. Thus,

d

d d
— 5 L DRV =g A-S V.

The last term can be simplified to

d
i eV =g [ onsavi=— [ drav- [ o @ran)
Vo
/(quv /(bdt gdV). (149)
The first term of Eq. (148) is
| omda = L (150)
Tt [y, A= T ), OPeddo:

where p? is the referential surface charge such that p°dAy = p,dA. Thus,

d .
dV = — VdA, — d4y) = — JdA — L dA) .
/d)q - opadAg /av O (05 dA) o av(bd (p (15)1)

Substituting this relation into Eq. (148) gives

d

5 [ == [ dpaa [ ol pat)- [ daav - [ 05 @av), (52)
dt Jgs ov gv  dt v vode

and using this relation in the first law of thermodynamics [Eq. (145)] and the expression
for the external work Wy [Eq. (140)] gives

d

H-— — —E EdV = /¢ (gdV) + O— (padA)+Q+/bividV+/ tiv; dA
de av dt v ov

: d
LdA — (padA) — dv — — (qdV
op av¢d (padA) /Vsbq /Vsbdt(q )

ov

= Q - ¢padA - / (ﬁQdV + / bivi dV + / tﬂ]i dA (153)
oV |4 \% oV
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In terms of the external work due to the variations in the electric potential [?7],

— = / bﬂ)z‘ dv +/ tﬂ)z dA — ¢padA / gquV (154)
1% oV
we finally obtain the expression for the first law of thermodynamics in terms of the electric
enthalpy:
. d . .
-S| QE RV =W+ 0. (155)
dt Jps 2
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B Chain stress and deriving the chain end-to-end

vector from the deformation gradient

To evaluate the stress(see discussion in Sec. 3.4.1), we first derive the term g—;. This is
done using index notation.

The end-to-end vector of the chain in the current configuration is

1 = Fiprp, (156)

where r? is the end-to-end vector of the chain in the reference configuration and Fj; is the

deformation gradient. Accordingly,

87“1' . 0 (
OF,  OFy

Fip) 1y = 0itdipry = O - (157)

From Eq. (124), the mechanical stress in chain j is

()
m(-) k}T (-)a’l“i ]{?T (-) . ]{T 1 . k?T 1 .
Ops’ = e (Ti] 8Fkl> Fa = T%] 5ik5lp7”2(])Fsz = TTISJ)erg(J) - TTIEJ)T@-
(158)
Since T]Ej )l () (established in Sec. 3.2.3), it follows that
0 sz D000 56). (159)
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C The initial guess for T

The Lagrange multiplier 7 is extracted from the implicit equation that follows from the

constraint given by Eq. (98),

where L
A 1 A
p(ﬁ,h) = exp <7'-£—kT>.

Taking the first two terms of the Taylor-series expansion for 7 gives
T :T0+Ar—|—0(7’2) = Ar,

where according to Eq. (75) 7o =7 (r =0) = 0.

Thus,
~ h N A
exp [‘r (r)-&— k:T] B0 exp (E : Ar) =14+ Ap&ir,
and
Z:/‘@+m@mﬁmwmw¢:M+A%/@Mmzm.
0,¢
Thus,

p(é,h):;e><p<7'-é—khT>:417T <1+(Ar)~£),

and by taking using Eq. (165) in Eq. (160) we obtain

]_ A ~ ]_ I I 1 47T
— 1 Ar) - = — Ar) - ['=—(—I|-(A
& an-gar= - [an-gséar— - (71) - (a0
1 r 3
— (A I=" —a="1I
(Ar) nl:> nl
Finally, using 7 (E — 0) gives
3r
T =Ar = —
nl

23
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(161)

(162)
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