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1 Introduction

(Note: Strong points for EAP use)

Dielectric elastomers (DEs) are polymers that are nonconductive but polarize and
deform under electrostatic excitation. These lightweight and flexible polymers are readily
available and may potentially be used as actuators in a wide variety of applications such
as artificial muscles, energy-harvesting devices, micropumps, and soft robotics [?].

(Note: The microstructure and macrostructure of the EAP (polymer networks from chains
and chains from monomers -> a polymer strip sandwiched between two electrodes))

At the microscopic level, DEs have a hierarchical structure of polymer-chain networks.
A polymer chain is a long string of repeating dipolar monomers. At the macroscopic level,
the essential part of a DE-based device is a thin, soft DE membrane sandwiched between
two eompliantflexible electrodes. WhernUpon applying an electric potential is—apphed
betweenacross the electrodes, the monomers react to the electric exitationsexcitations

ssbecomes thinner as a result of the attrac-

while the DE membrane
tion between the two oppositely charged electrodes. Simultaneously, the membrane area
expands due to the Poisson’s effect. This process converts electrical energy into mechan-
ical energy. AThe attractive features of dielectric elastomers include large strain, fast
response, silent operation, low cost, and high efficiency [?].

(Note: The ratio between elastic moduli and dielectric moduli and its importance)

The electromechanical coupling in DEs is characterized by a quadratic dependence of
the force between the electrodes on the applied electric potential [?]. In turn, the deforma-
tion depends on the force via the elastic moduli. Thus, the coupling depends on the ratio
between the dielectric and the elastic moduli. Gemmenly—Flexible polymers typically
have low dielectric moduli, swhilewhereas polymers with high dielectric moduli pelymers

are generally usuallystiff. AeecordinelysineeGiven that this ratio is relatively small, large
electric potentials are needed for-a—meaninefilto obtain non-negligible actuation.

(Note: electric breakdown and other failure mechanisms)

The requirement for high electric potentials implies that the feasibility of these materi-
als is limited by their dielectric strength, which is the Hmitelectric potential beyond which
electric current flows through the dielectric material [?]. Fhis-faitare-mechanismExceeding
this electric potential results in what is known as electric breakdown or dielectric break-
down,- iIn some cases thisrestlts—in—a transformation-ofing the insulator into an electric
conductor. In general, dielectrical breakdown may be a singular, a-cyclic, or-& continuous
event [?]. Predieting Aaccurately predicting the occurrence of an-edielectricat breakdown
and its; timing ander position; is not yet possible, essentially mestlybecause it does not
depend on a single cause; but—it is a statistical product of several factors. The most
notable factors are the local defects; such as—& voids or an-inclusions that wewld-ereatea



locally decrease in-the-thiekness-ofthe DE thickness, leadinete-hicherincreasing the local
electric fields and /or higher mechanical stresses [?]. In practice, the dielectric strength is
measured experimentally [??] and-is-measured-for a membrane withat a given thickness
and with a—giventhe requisite testing equipment [?]. fatheir=work 77 examined the fail-
ure mechanisms and the performance boundaries of DEs and- Fheiranalysis-showed that
the performance of DEs—made—with—of highly viscoelastic polymer meambranes as DEs
is governed by four key mechanisms—whieh—are: dielectric breakdown, current leakage,
pull-in failure, and viscoelasticity.—

(Note: The ratio between elastic moduli and dielectric moduli - low but can be improved)

AOne possible way to overcome the—dielectric breakdown—failure—mechanism is by
reducing the electric potentials—that-are- currently neededrequired for a—meaninefulnon-
negligible actuation, thiswhich can be done by improving the DE polarizability-efthe-DE.
Several previous works suggest that the low ratio betweenof the dielectric andmodulus to
the elastic modulust may be improved, which would and-thustheirenhance the electrome-
chanical response-may-be-enhanced. A common gerneral approach ferto improving this ra-
tio involves inserting additional materials into the elastomer. This approach can result in
a homogeneous or & composite elastomer. One aspect of theis approach refers-te-involves
embedding materials into soft polymer components with a higher dielectric constant;
which (i.e., that-can be classified as insulating or conducting)—in-a-seft-pebymer [777]. 7
presented such a method ferto enhance the electromechanical response enhaneement—of
silicone elastomer networks:—based-en—the by grafting ef-molecules with high permanent
dipoles to the crosslinkinger molecules. Through adjusting the crosslinking density, their
method also allewsfer-aprovides direct control of the mechanical properties of the elas-
s ; : 58 sity. Another aspect of the approach refers
teinvolves improving the actuation in DEs with-anby appropriately adjustment-ofing their

microstructure as periodic laminates [??777].

(Note: improving the response without changing the ratio between elastic moduli and
dielectric moduli)

As-a-eontrary-toln contrast with the approach of improving the ratio between-theof di-
electric modulus andto elastic modulusi, several works, which mainly target soft robotics,

have been-denechosen to improve the responsweness of DEs by adjusting the macroscoplc

structure of the actuatorss- ;
Hmitedto-it [7777]. Recent works; such as ? and ? have discussed soft electrohydraulic
transducers, termedwhich are called “Peano-HASEL {hydraulieally—amplified-sel-healing
eleetrostatie}-actuators:” (hydraulically amplified self-healing electrostatic actuators).
Such actuators combine the sﬂﬂeﬂgbhsadvantages of both fluidic actuators and electro-

static actuators- s and are comprised of
pouches—which—are made of flexible dielectric polymer films, filled with a liquid dielec-




tric and covered with compliant electrodes. WhenUpon applying a voltage is—apphed
teacross the electrodes, they “zip” together duebecause of to-the Maxwell stress, which
eansesdisplaces the liquid inside the pouch—+te-be-displaced; and thus—eauses—thethereby
contractien-ofs the actuator [?].

(Note: Previous investigations of the polymer properties:)

(Note: Mechanical response)

The aspiration-to-affeetdesire to adjust the DE ratio between+theof dielectric modulus
andto elastic modulust efBEs motivates a multiscale inquiry of theirthe mechanical,
dielectric, and coupled properties of these materials. The response of polymers to purely
mechanical loading across all scales washas been extensively investigated-extensively. For
example, 74 investigated in detailed investigation—ef-the macroscopic behavior of soft
materials undergoing large deformation-is-presented-ins 2. 7 used statistical mechanics
to make a#: pioneering analysis at the microscopic level-was-performed-through-the-tse-of
statistieal-meehaniesby—2, which resulted in a Langevin-—-based constitutive relation. This
work led to a variety of multiscale models, such as the three-chain model [?] and the eight-
chain model [?]. Sueh-anA similar analysis of mechanical systems was also presented by ?,
?,and ? for polymer networks with rubberlike elasticity-ef-pelymernetworks. A7 review
of the development of statistical--mechanics treatments of rubber elasticity, and was
eiven—in—2- 7 and 7 presented-an use statistical mechanics to analyzesis efthe mechanical
systems threueh-the-use-of statistieal-meehaniesforof liquid--crystal elastomers.

(Note: Electrostatic response)

? and 7, among others, extensively examined tFhe response of polymers to electro-

static excitation was-examined-extensively aton the macroscopic and microscopic scales.
by Tand-Z-ameng-others: PThey discussinged and analyzinged the constitutive relations

for the macroscopic electric parameters, such as the polarization and the displacement,
and for the microscopic electric parameters, such as the dipoles moments and the bound
and free charge densities. In other work, ? presented an electrostatic theory for rigid
bodies as ideal theoretical ideal constructs while-exeeutinghisto analyze analysisfrom
asingle charges to a continuum of charge.

(Note: Coupled response)

? was the first toThe analysisze of-the coupled electromechanical response of DEs at
the macroscopic level-began—with-the-work-of. 2= Years later, ? introduced an invariant-
based representation to study the constitutive behavior of electro-sensitive elastomers
/ > ft , and- tFhis work was expanded to the—elass—of
anisotropic materials by ?. Among others, 7 and ?7 investigated the-influence-of-thehow
deformation and the rate of deformation enaffected the electromechanical coupling. At

the macroscopic level, 7 performed-an analyzedsis at—the-maeroseopietevel-for the elec-

tromechanical response of membranes under a uniaxial force, under equal-biaxial forces,




and for the-ease-of-a membrane constrained in one direction and subject to a force in the
otheropposite direction. AdditionalyAdditionally, they examined the response of a fiber-
constrained membrane.- 7 presented a#: principle of virtual work for problems efinvolving
combined electrostatic and mechanical loading;—whiek and that includes the interactions
between the resulting strain and polarization;—was-presented-by2. Physically motivated
multiscale analyses of the-electromechanical coupling were previeustyperformeddone by 7,
?,and 7, and ?- introduced mMultiscale analysis that-was-based on statistical mechanics

(Note: Experimental work)

In addition to the-diseussedse theoretical works, everthe-past—20-years the dielectric
properties of DEs have been extensively investigated experimentally over the past two
decades. Although seme-havedetermined-the variation in the relative permittivity of
DEs; such as VHB 4910/4905; has been determined under conditions of negligible biax-
ial extension-te—be-negligible;-as-ecanbe-seen—inthe-works-of (see, e.g., 7 and 7-ameng
others), several other works have contradicted theese conclusions. Several investigations
on—the-variation-othave revealed a decrease in the relative permittivity as-a—+result-ofwith

. For example, ? measured an

increasing area-< > > :
initial relative permittivity €, = 4.4 andversus ¢, = 2.25 underfor a ninefold area stretch
of 9, and- 7 measured €, = 4.68 andversus €, = 2.62 as e i Hee

and-underfor a 25-fold area stretch-ef25+espeetively. In addition, 7 measured a-deerease
as—wel—while-performing—a—planarstreteh-of 16;—asan initial permittivity €, = 4.36 was
the initial permittivity andversus €, = 2.44 was the measurement under stretehfor a
16-fold planar stretch. ? found frem—their experimentally—werk-en from the electrome-
chanical response of thea polyurethane elastomer that thechain motions-ef-chains can be

divided into thesemotion related to the mechanical response and thesemotion related to
the polarization response, swhileand that the overlap between themthese motions yields
the electromechanical response. SemeOther experimental works, such as 7, 7, and 7, ex-
amined biaxially and uniaxially prestrained silicone and acrylic elastomers to study how
the—influenee—of prestraining the DEs membranes enaffects theactuator performance-ef

stlieone—and—aerylie—elastomers: Furthermere;—semeFinally, work haves been done into
developing models that-assist-infor estimating the variation in relative permittivity as a

result-of-differentfunction of various stretch combinations [??]. An example of such work
is the-one—presented—was done byin 7, wherewho compared the results of a statistical-
mechanics—-based model is-compared-towith experimental findings.

(Note: This work)

(Note: A brief description of the displayed content)

We begin this work with-aby discussing the theoretical background; within the frame-



work of a continuum approach and considering:—eoneerning the mechanical, electrostatic,
and coupled cases. Following-are-aNext, we review ef-the analysis of the microstructure of
an isotropic polymer chain network by using statistical mechanics thretehwith entrophy
considerations and amake reference efto a phenomenological model for the electromechan-
ical coupling of DEs that will be eempared-totested against eurexperimental results. I
sSection 3-an analyzessis-of the DEs electro-elasticity in several hierarchical cases, ranging
from a single electric charge to a network;—is-presented. MereeverIn addition, we discuss
the means of assessing the structure and properties of a general polymer-will-be-diseussed.
Section 4 deals—withpresents a numerical application of the electrostatically biased poly-

mer network—"Fhis to demonstrates the-influence—of-performing—thehow polymerization
proeess—ofing a polymer under an electric field;—en affects the structure of the polymer

network and it’s properties;—allswwhile—comparing. This work is done by comparing the
electric-field-polymerized polymer i-to an 1sotr0p1c polymer network and to the results

of the phenomenological model. sSection b

presents our experimental work, Wthh is-meant-to gives an additional perspective thanon
our theoretical work. The experimental work includes an evaluation of the-influenee-ofhow
uniaxial and biaxial stretching of DEs enaffects their dielectric constant. Moreover, we
introduce a new experimental system swhichthat allows us to evaluate the-variationsinhow
the dielectric constant of DEs at-different-magnitudes-ofon the electric~field magnitudes.

GFinally, the conclusions are gathered in sSection 6.



2 Theoretical background

(Note: Multiscale entropy based analysis)

AThe mechanical and electrostatic energy balance is formulated in terms of the electric
enthalpy. The analyses willbe-earried-out-by takinege into account the entropy of the chains
network within the framework of statistical mechanics with the appropriate kinematic and

energetic constraints.

2.1 Continuum electro-elasticity

(Note: basic continuum mechanics - mechanics aspect)

Consider an electro-elastic solid continuum in a stress-free configuration in the absence
of electric field and mechanical load. Let material particles be labeled by their position
vector X in this referential configuration. In the deformed configuration, the point X
occupies the position x = y (X, t), where the vector field x describes the deformation of the
material. We require y to be a one-to-one, orientation-preserving, and twice continuously
differentiable mapping [?].

(Note: continuum mechanics - mechanics)

The deformation gradient tensor is
F = VXX(Xat)a (1)

where Vx is the gradient operator and the subscript X implies that the derivatives isare

taken with respect to the referential coordinate system. The Cartesian components of F'

0%,
0X;?

x, respectively. J = det(F') is the ratio between volume elements in the current and

are F;; = where X; and x; (i = 1,2,3); are the Cartesian components of X and

reference configurations, with the convention of being strictly positive. Moreover, the
velocity of the material points is v (x)-and-aceordingly, the spatial velocity gradient is

L=V,w=FF" (2)

where Vy is the gradient operator taken with respect to the current coordinate system.
(Note: continuum mechanics - electrostatic)
The body is subjected to an electric field E(x), which satisfies the relation Vi x E(x) =
0 in the entire space. The electric potential ¢ is a scalar quantity defined such that

E = —V,¢. The electric induction, also known as the electric displacement, is

D(x) = e E(x) + P(x), (3)



where the constant €y is the vacuum permittivity—of—vaewum and P(x) is the electric-
~dipole -density, also known as the polarization—tn—~vaeuum— (P = 0 in vacuum). The
electric displacement in ideal dielectrics or in a continuum with no free charges is governed

by the-equation
V- -D(x) =0. (4)

(Note: continuum mechanics - the electromechanical coupling)

The electrical boundary conditions for the electromechanical problem are given in
terms of the electric potential or the charge per unit area—en—the-boundary p, on the
boundary, which is the charge on the electrodes such that D -n = —p,, where n is
the outer—pointing unit vector normal to the boundary in the current configuration. The
mechanical boundary conditions are stated in terms of the displacement or the mechanical

traction t. The electric field in the surrounding space induces a Maxwell’s stress
M 1
o :eO(E®E—2(E-E)I). (5)

Accordingly, the traction boundary condition is (a‘ — oM ) n = t. Assuming no body
forces, the stress that develops in a dielectric o due to the electromechanical loading
satisfy the equilibrium equation

Vx-o=0. (6)

(Note: The first law of thermodynamics - energy balance)
AThe balance of energy is formulated threuwehby applying the first law of thermody-

namics:

du  dW d

S ™)
where U represents the internal energy stored in the material, W is the work efdone on the
system by any external sources, mechanical andor electrical, and @) denetesis the-erantity
of energy supplied to the system as heat. Following ?? and ?, a Legendre transform efis
applied to the internal energy-is-used-in-order to formulate the energy balance in terms of
the electric--enthalpy -density: H = U — JP-E. In-erder+To formulate the energy balance
in terms of entropy, which relates to the-systems number of microscopic configurations
of the system, we refer to a polymer as a reversible or conservative material [?]; (i.e., a
material that does not absorb the work done by external agents but stores it as dielectric
polarization or elastic deformation). HeneeThus, following the Clausius theorem in—the
ease—offor a reversible material or system, the entropy change is—defined—as dS = %,
where S is the entropy-density funetion per unit referential volume and 7' is the absolute
temperature. Thus, shile taking into account the analysis presented in appendix A [?],

we consider a general representation in which the first law of thermodynamics istakes the



form

H - = 3 %OE EdV = W7 + 7587, (8)

where we consider an electro-elastic system 1” C R3.
T-the-work-of 7 gives; athe following specific representation of Eq. (8) was-presented
for-theto analysisze ef-the energy balance in a single polymer chain:

d aw d
H F,E)dV, — —E EdV = — +T— F.E
T (F,E)dV . dV=--+T S( ,E) dVs, (9)

where, in the current configuration, we consider a dielectric body that occupies the region
Vo C R?® with a boundary 0V, before the deformation and the region V C R? with a

boundary 9V after the deformation—at-the-enrrent-contfiguration.
The rate of change in the-electric enthalpy is [?]

d | 0H (F,E) . /18H(F,E) .
n(F B LOBE ) pr. g LORE) gy 1
@ ), TEE V= /VJ OF V| 7 oE v, o)

and the rate of change in entropy is

d 195 (F,E) /1aS(F,E) .
F - F": _. } 11
5 St B av = /VJ = Lav + [ SR B ()

If we assume no free charges in the material and neglect body forces, the power extracted

by the external mechanical and electrical agents on the system is [?77]

aw d¢
—_— = t-vdA — dA, 12
a  Jo Y / “at (12)

which can also be formulated as [7]

d d .

aw (0 -o¥ ~E@P): LV “g. EdV—/ P-EdV+/ (0 — o) : Lav.
dt V dt RS 2 V R3/V

(13)

By takin-into-aeceountusing Eqs. (10), Ee- (11), and E¢- (13) in Eq. (9), we obtain

/V (}I (Tas (81; B)_ 8Hé§,E)> — P) -EdV + /RB/V (0 —o™):LdV+  (14)

OH (F,E) _.0S(F,E)
M 1 T\ . _
/v<o' c" —ExQP J( OF - T oF F'|:LdV =0.

As-it-isBecause we have assumed that Eq. (14) fits every acceptable process, bywe can
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Figure 1: A schematic description of the coordinate system {E,XA’, Z} and the applied
spherical coordinates.

following ?7 it-isto obtained-that

oc=0"+E®P+a", (15)
where
oM }7 (8[—]51;, E) 85;1; E)) FT, (16)
is the mechanical stress [?], and E ® P is the polarizeation stress=where-, with
p_ ; (T(?S (aFE, E) 8Hég,E)> ' (17)
Furthermore, when dealing with incompressible materials,
c=0"+E®P +ocM 4,1, (18)

where p, is an arbitrary Lagrange multiplier corresponding to the indeterminate hydro-
static pressure that results from the incompressibility constraint and I is the identity

matrix. The corresponding deviatoric stress, which is related to shape change, is

tr (o)
3

(19)

ODev = O —

2.2 Entropy-driven electro-elasticity of an isotropic polymer network

(Note: defining the construct and directions in the polymer)

Aeceordingto-tThe work of 75 inerdertindicates thate evaluateanalyzing the properties
and structure of different polymers the-analysis-starts with a single polymer chain with n
dipolar monomers. Fhelet [ be the length between the two contact points of a monomer
with its neighbors-is+ We-and define a coordinate system {E, Y, Z} (Fig. 1) asfor thea
chain is-subjected to an electric field E = FE. In this system,

é = cosOE + sin 6 <cos oY + sin (]52) (20)



is a unit vector where 0 < # < = is the angle between E and the electric field and
0 < ¢ < 27 is the angle of its projection onto the plane perpendlcular to B withand Y.
We define dI" = sinf df d¢ as the differential solid angle—We—als
and allow I' to variesy intheranee-from 0 to [5.

(Note: a chain’s number of possible configurations and constraints (+Stirling’s approxima-

tion))

The number of possible configurations of a single polymer chain is

(21)

where n; representis the number of dipolar monomers aligned along é in the range 0; <
0 < 0;,+df and ¢; < ¢ < ¢; + d¢. For convenience, we define that 8, and ¢; correspond
to the unit vector éz The entropy of the chain is

S’C:kln(ﬂc):k<nln —n—anln (n; —|—Zn> (22)

where we have used Stirling’s approximation is-implemented-and k is Boltzmann’s con-

stant. The chain is subjected to three constraints:

> ni=n, (23)

%

where the end-to-end vector of the monomers chain is r = r#, with # = cosOE +
sin © (cos dY + sin <I>Z), and
> nih; = HE, (25)

where h; is the eleetrieal-enthalpyelectric enthalpy of a monomer directed along él and
H¢ is the enthalpy of the chain.

(Note: maximizing the entropy according to the constraints)

We assume that the polymer chain occupies the most probable configuration under

the given constraints, and-thereforeso we are interested in maximizing the entropys

S¢ = [ln (QO> + (an — n) +T- (anﬁ ) + v (an ; ﬂ . (26)
where «, T, and ~ are Lagrange multipliers. The derivative of S with respect to n; is

08¢
3712-

:k;{—ln(ni)+a+7-éi+vhi}:0, (27)

10



from which
n; = exp (a +7-& + yhi> . (28)

Upon substitution of the latter into Eq. (26), the maximum entropy that can be achieved

by the chain is [?];
S¢ =k [n ln(n)—ozn—‘lﬂ%—yHC

. (29)

(Note: Lagrange multiplier - inverse temperature)

We assume that the polymer chains do not interact with one another. Consequently,
in a volume element dVj, the total entropy -density and the total electrical-—enthalpy
-density funetion are S = ﬁ%&? and H = d—%/bZk:H C respectively. Applyingeeounting
for the first law of thermodynamics with respect to the enthalpy of the k-th chain, we

obtain oH 95
=T 30
ore ~ Tome: (30)
from which we ean derive the relation
1
= 1
V=TT (31)

wherewith the help of Eq. (29)-is-used.
(Note: PDF of a monomer according to the constraints and with maximum entropy (+cal-

culating the rest of the Lagrange multipliers and Hc))
From the constraints £¢—(23) and £&—(27), we obtain

I'o

Y n; = exp (a) / exp (7‘ € — khT> dr = n, (32)

i

where Eq. (29) is used and the summation is replaced by an integral over all the monomer
orientations-ef-the-meonomers. Therefore,

exp (a) = %, (33)

where
Iy

A h
Z:/exp<7'-§—kT)dF, (34)
0

is the partition function. Subsequently, frem Eq. (28) we have that
A 1 2 h
p(&h)=exp (r-&—kT) (35)
is the probability density function (PDF) that a monomer is aligned in the direction é and

11



has an electrical -enthalpy h. An implicit equation frem—whichthat gives the Lagrange
multiplier 7 is-eomputed-follows from constraint Ee—(24):;

I
. r
dl'= —. 36
[&par=2 (36)
0
From Eq. (25) the enthalpy of the chain is
Iy
/hde:HC. (37)

0

(Note: monomer enthalpy and different dipole types)
Following 77?7 and ?, the eleetrieal-enthalpyelectric enthalpy of a dipole oriented along

éis
h=m-E, (38)

where the dipole vector m is determined according to a relevant model that represents
the local relation. FWe account for three specific models-were-aceountedfor—F, the first
of which corresponds to a spontaneous dipole or a rigid dipole with a-constant magnitude
)

mg = rp€. (39)

The second model is of a uniaxial dipole whose magnitude depends on the electric field

[7]: o
my =ry&EREE, (40)

where kg is commonly referred to as the polarizability of the dipole. The third type is

the transversely isotropic (TI) model [?]:

1 PN
M7 = oK1 (I —€® 5) E, (41)
where inthis-ease-the dipole is perpendicular to é . Note that sinee-we do not account for
the local electrostatic interactions between the dipolar monomers, so thea uniform electric
field is induced over the monomers in the chain-is-uniform.
We-note-that—in-order—to-havethatFor three dielectrics composed of a random and
uniform distribution of spontaneous, uniaxial, and transversely isotropic dipoles admitto
behave the same behavior—in the limit of infinitesimal deformations and small electric
2
fields, the—relationswe impose ky = kpp = Z—’; = k-areset. The polarizability is—+taken
as Kk = n% €0 Xo [?], where xo = €. — 1 is the initial susceptibility and €, is the relative

permittivity. ng = N n is the number of monomers in a unit referential volume where N

12



is the number of chains in the unit referential volume.

(Note: PDF in the amorphous case)

Tn-the-ease-ofFor an amorphous polymer, the chain’s constraints, presentedgiven inby
Eqgs. (23), E4—(24), and E&—(25), are irrelevant as-therebecause areno such limitations
exist enfor a single monomer. Therefore, 7 = 0 and the adjusted form of the PDF in

Eq. (35) is 1 ,
p (é) = 7 eXp <_kT> ) (42)

7= / exp <—k}ff) ar, (43)

and the enthalpy of the monomer is calculated by using Eq. (38) aceording—to-with the
correct dipole type.

where

(Note: analytical calculation - PDF in the amorphous case - U and TT)
In addition to the numerical calculations for the PDF in the amorphous case, the amor-

phous monomer distribution can also be calculated by applying the analytical analysis
presented-byof 7, asgiving

_ w L 2wn2(p.
U= ®) exp [ w”sin (92)} (44)
ais the PDF of the uniaxial dipole, where w = /7% E = “E£ and D (w) = exp (—w?) [, exp (¢?) dt
is the Dawson function. The PDF for the TI dipole is

w

(27r)3/2 Erf (%

prr =

) exp [—“;2 cos? (ei)] , (45)

where Erf (z) is the error function.

2.3 Phenomenological approach to electro-elasticity

(Note: A reference for the results in the application section)

We compare the results of the theory developed above with those of a/ relatively

simple phenomenological predictive material model;—a-—+relativelysimple-meodel that allow
foruses reasonable assumptions; and is based on settings-of-continuum mechanics-is-sed

In the current work, a constitutive law for the material is+required—+temust be expressed

through an energy--density function that depends on both the deformation and the electric

displacement or the electric field. Thus, as a reference, we recall the extended neo-Hookean

13



energy-density function for an ideal elastic dielectric (IED) [?]:

W%PUE):égﬁW(FTF——IH%—

€0€r

E-E 4
B E, (46)

where p is the shear modulus of the material. From Eq. (46) and en—the—basis—of
thermodynamie-arsuments; assuming a-conservation of energy and a reversible or conser-
vative material, the constitutive equations for an incompressible IED can be expressed

as

oW
a:FEE+@I:MUﬂ+E®D+@L (47)

and
D = ¢y, E, (48)

in accordance with Eq. (3) as with the relative permittivity is-considered to be constant.
WenNote that, in general, this model does not accurately retrievesreproduce experimental

results for coupled electromechanical loading.
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pics for experimental work 16.1.2020/general descript:

Figure 2: Schematic description of an arbitrary one dimensional system subjected to
electromechanical exitation at its boundary.

3 Electro-elasticity of solutions and anisotropic net-

works of polymer molecules

AnWe now present an in-depth multiscale analysis of the electromechanical coupling in
DEs;—whieh-is based on their inherentedfremtheir microstructure—is—earried-out. This e
analysis allows us to examine the interplay between the macroscopic deformation of the
DEs and the rearrangement of the monomers in a network of polymer chains as a result
of external electrical and mechanical loading—will-be-examined.

3.1 First law of thermodynamics

The first law of thermodynamics, presentedexpressed in Eq. (8), is formulated as a general
representation ferof the electromechanical situation. Sueh-This representation accounts
for the conservation of energy ofin a body that—is subjected to an electric field while
allowing us to formulate the energy balance in terms of the electric enthalpy and the
entropy of the system.

ForTo systematically analyzesis of the electromechanical coupling in polymers; from
the microscopic to the macroscopic levels, we speeializetailor Eq. (8) to five different
systems. The simplest enessystems are based on the systemthat presented in Fig. 2,
which is essentially a one--dimensional system. Subsequently, we examine a network that

is treated as a 3-Bthree-dimensional body.

3.2 One-dimensionall-b systems of charges, dipoles, and molec-

ular chains in an electric field

In a +Done-dimensional system (see Fig. 2), we define the vector connecting the two
ends (i.e., the end-to-end vector of the system) as r = r_ — ry. The quantities £+/~,
V+/=, and Q1/~ are the forces, velocities, and charges, respectively, enat the system’s
boundaries;—+espeetively. The rate of change in enthalpy and the—rate-efin entropy are
H” = H (r,Ey) and ST = S (r,Ey), respectively. The power extracted by the external
agents [see {Eq. (12)]}is W7 =2 f -V + 3 Qé.
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pics for experimental work 16.1.2020/0NE CHARGE EXPLE

Figure 3: Schematic description of a single charge subjected to an electric field.

3.2.1 A single electric charge

We begin with-anby analyzingsis ef-the second term inof Eq. (8), thatwhich concerns the

variation in the energy of the system due to variations in the electric field generated by a

single charge. To be precise, the present case describes a zero-dimensional8-b system.
The electric field due to a particle with a constant electric charge @) is derived from

Coulomb’s law as

B () = o0, (49

where in the current case g = g¢gg is the vector from a specific point in space to the

charge’s location. Thus, asbecause electric fields satisfy the superposition principle, the
total electric field at the mentionedgiven location is

Qg

E(g) = B0+ E¥(g) = Bo+ =,

(50)

where Ey = Ey E is the electric field subjeetedimposed on the entire space. Accordingly,
the second term in Eq. (8) is

€ d QEo-g (8 Qg
Ey-Ey+2 . dVv
2.dt ( 0o+ 4d7egg? + dmegg?  4Amegg?
€0 d Q 08 Q*
=—— E; - E, dv. o1
2 dt Jgs ( 0 27r60g + 16723 g* (51)

We-sNote that the first and third terms in Eq. (51) are constants. Moreover, for any
spherical region about thea charge with inner radius R; and outer radius R,, the variation

in the energy depends on

27 7w Ro R
=]
4

0 0 R;

where aecordingto-Ee¢—(20)-E) - & = Fycos© [Eq. (20) ]. Since this integral vanishes

identically, so does its time derivative. Thus, for any motion of a single charge in a uniform

QEOd/d /cos@sin@d@EO, (52)
0

R;

electric field, the second term in Eq. (8) vanishes.
Taking into account Eq. (52) and neglecting the enthalpy and entropy;—as since we
assume no material, Eq. (8) is reduced to W = 0. Thus, based onyebserving Fig. 3 and
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pics for experimental work 16.1.2020/dipole EXPLENATI(

Figure 4: Schematic description of a single dipole consisting of two charges, Q™ and Q~,
connected by a stiff rod in an electric field.

from Eq. (12), we obtain for a single charge

o gl

dt dt ’ (53)

where c deneotegives the location of the charge. The velocity of the charge is V = <¢
where de = 0E + dep represents the change in the-loeationposition of the charge during
the time interval dt, d¢p = —Eq -dc = —0Fp, and f = fEE + fr. Moreover, der and fr
are the components of dc and f, respectively, that are perpendicular to the direction E.

Thus,

. d
W—&(

Therefore, sinee—in—an—equilibrivmstate because Eq. (54) equals zero in an equilibrium
state and dcr is arbitrary, we conclude that fr = 0 and fr = —QFE,. This is precisely

d
f-dc+ QéEo) = & (fE§ + fT : dCT + QéEo) = 0. (54)

Coulomb’s force on a charge of magnitude () in an electric field E.

3.2.2 Dipoles

Consider now a charged nonpolarized rigid dipole and, as in the previous case, swe assume
no material and neglect the enthalpy and entropy. As ean-beseenindicated in Fig. 4, the
dipole is—dese consists of two charges; QT and ()~ connected by a stiff rod ofwith
length [ andoriented in the direction of the unit vector €. We assume that Q* = —Q~ = Q.

Again, we begin with-anby analyzingsis-ef the second term in Eq. (8), which gives the
variation in thesystem energy ef-thesystem-due to variations in the electric field generated
by beth the charges. HeneeThus, in accordance with the superposition principle,

- (- Q8" Qg~
E=E,+E? (g") —E? (g7)=E;+ -
( ) ( ) 4meq (gJ“)2 dmeq (g—)2
—E,+E*+E", (55)
where g™ = ¢gtg™ and g~ = g~ g are the vectors from a specific point in space to the

leeationspositions of the charges QT and @, respectively. Accordingly, the second term
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in Eq. (8) is

Eod

e (Eo-Eo+2(Ey-Ef +E,-E"+ET-E7) +E*.E*+E~-E7)dV, (56)
R3

where, according to Eq. (52), the integrals efover Eg- ET and Eq- E~ vanishes identically

and the rest-of thremaininge terms are constants. HeneeThus, Eq. (56) equals zero.
ThusAs a result, Eq. (8) is again reducesd to W = 0. From the definition of the

electric potential, d¢p = —Eq - de—TFhus, so ¢/~ = —Ey - V1/~ and the rate of work of

the external sources is
W= VEf™ VT 4+ By (QTVF+Q7V7) =0, (57)

Since ¢t = ¢~ + 1€ from the geometryie relation of the situation, then V© = V=~ + 1€ and

the corresponding rate of work is

A

W= (£ +£7) -V +1(f +QE) - €=0. (58)

SineeBecause the dipole is rigid, thereit is & constrainedt along the direction of the dipole.
Thus, the forces and the electric field aremay be splitted into components in acecordanee
with the orthogonal system {é,ﬁ,é}, where § = é’ x E is perpendicular to the plane
spanned by the electric field and the dipole. &1 = § X £ is perpendicular to the dipole and is
on the deseribedgiven plane. Henee letUsing T = at€+bTa+ct8, £~ = a €+b G+c 8,
and Ey = € + gli—Consequently, BEq. (58) yields

W= [(oﬁr - a_) £+ (b+ + b‘) 0+ (c+ + c‘) é] V™ +I [a+§ +bTa+ "8+ Q (eé + gﬁ)] £=0.
| (59)

Since at-equitibrivm Eq. (59) equals zero at equilibrium and V~ and € are arbitrary,
it-ean—be-inferredfrom the first term implies that a™ = —a™, b" = —b~, and ¢ = —¢~.
FhoughHowever, swhen consideration ofing the second term;—we—ean-deduee shows that
¢t = 0. Moreover, since % 1 é, the dot product of the component whieh—isoriented
along the dipole with the temporal derivative of the dipole vanishes identically. Thus, the
second term of Eq. (59) does not eontribute-a constraintfer the components of the forces
in the dipole direction and bt = —g(@. These results are analogous to the requirement
that the sum of the dipole moments-en—the-dipele vanishes.

T-the-ease-ofFor & spontaneous and polarizable dipolar monomers (Fig. 5), the elec-
trical enthalpy must be taken into account. According to 7, the eleetrieal-enthalpyelectric
enthalpy of a dipole is

h=—-—m-E, (60)
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pics for experimental work 16.1.2020/dipole EXPLENATI(

Figure 5: Schematic description of a dipole in an electric field.

where m is the dipole vector.tn—the—ease—ofFor a spontaneous dipole with a—constant
magnitude kK, m = Iié . HeneeThus, the eleetrieal-enthalpyelectric enthalpy is h = —/@é -Eg
and the rate of thechange of eleetrieal-enthalpyelectric enthalpy is

[ (61)
In this, case Eq. (8) is reducesd to
h=W. (62)

Substituting Eqgs. (58) and Ee- (61) into Eq. (62) yields
K€ By = £ VYA Vo= (£ ) Vg, (63)

which yieldsthatleads to

(FF+£7) -V + (If +KEo) -& = 0. (64)

Again, the forces and the electric field are splitted into components in aceordanee-with

the orthogonal system {é, , s} where f* = a*€ + bt +ct8, f~ =a €+b 0+ 8, and
Eo = e€ + gii. Accordingly, Eq. (58) yields

A

Kcﬁ 1 a_) £+ (b+ + b‘) i+ (c+ + c_) s} -V‘+{l (a*é +bta+ c+§) + K (eé + gﬁ)} £ =0.

(65)
Thus—asGiven that V— and % are arbitrary, the first term leads #s to the constraints
at = —a~, b" = —b~, and ¢ = —c¢~. The second term leads to ¢ = 0 and,since

given that E 1 é, the second term dees—not contributes anno additional constraint on
the components of the forces in the dipole direction and b* = —g%. In-the-easewherelf
bt = 0 then Eq - & = 0 for equilibrium-Sinee and, because & 1 &, it-inferes thatfor-this
speeifieeasewe have é || Eq for this specific case,- wWhich means that the electric field
will not indueecauses no rotation ofn the dipole, and-so the dipole ean—-beremains at rest

witheut-applieationin the absence of external forces.
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3.2.3 Polymer molecule (chain)

As was established above, whilewhen % fR3 E- EdV vanishes identically and whenever

W =0, Eq. (8) is reducesd to
H=TS. (66)

Thus, sineebecause T'S¢ — HE = 0 describes an equilibrium state for a polymer chain, it
means-that the preferred state of a chain eanmay be described by determining max {TS ¢ - H C}.
By Then, taking Eq. (29) into account, the most probable state is the one that satisfies

max{Tk [n ln(n)—an—‘rﬂ —(Tk:v—l—l)HC}, (67)

where from Eq. (25) gives HC (r, Eo) :i hi (éi,Eo). Farthermore—we-emphasizeNote
that the analysis is-exeetted—-with-—the aSZS:&IHeSpHOH that r, the end-to-end length of the
chain with maximum permutations (i.e., the most probable length), is the only end-to-end
length of chains in the direction of t.

(Note: The "length" of a polymer chain - general)

Tn-erder+To determine the most probable length r for a specific chain, the number
of possible permutations is calculated for all possible end-to-end lengths in the range
0 < r < nl. This assessment is perfermeddone for chains in all possible orientations
relative to the direction of the electric field, 0 < © < w. Thus, we can assess the most
probable chain configuration, depending on the magnitude of the electric field in the
polymerization process and the chain’s inclination with respect to the electric field.

(Note: The "length" of a polymer chain in the case of E=0 - purely mechanical case)

When examining the vector r of a single polymer chain inthe-ease-ofwhen Eg = 0, then
H¢ (r,0) = 0 and the entropy of the chain is-governsing its behavior. By using the implicit
equation from which the Lagrange multiplier 7 is computed and the prebability—density
funetionPDF that a monomer is in the direction é’ , Egs. (36) and Ee= (35), respectively,

we obtain

{éexp(7-£) dr .
Iy ol (68)

Let 7 = af + brh, where h = ™ and m = 7 — (7 - ) £ in an orthogonal system {f, 1, 8}
where § = t x m. In this system-take, define é = cos OF + sin 6 (cos pm + sin ¢§), and
stbseettentlywhich leads to 7 - é’ = acosf + bsinf cos p.-
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Multiplying Eq. (68) by m se-ebtaingives

Iy
7 [ (Em)exn(r-g)ar—o
0

or expheitly
1 27 s
Z/ / exp (a cosf) exp (b sinf cos ¢) sinf cos ¢ (sinfdfdep) = 0.
o Jo
WenNote that the choice b = 0 leads to
1 s 2m
/ exp (a cos @) sin 0 do / cospdo =0,
Z Jo 0

and-henee-to-the-fulfilment-ofwhich fulfills Eq. (69).
Next—by-mMultiplying the left-—hand side of Eq. (68) by T sve-ebtaingives

Iy

1/ R R 1 27 ™ )
—= E-T)exp(T-& dF:/ /exp a cosf) cosf sin 6 df de.
[ @)t gyar = [ [ oo

A change of variables to x = cos @ leads to the-expression

f_ll exp(az) xdxr

f_ll exp(ax)dw  nl

which can be integrated to obtain

exp (a) +exp(—a) 1 r
exp (a) —exp(—a) a nl

where £ is the Langevin function. Accordingly,

r

e (3).
nl

where £7! is the inverse Langevin function. Note that if - < 1 then a = %

in the limit r — n [-thena—»o6.
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Substituting the expression for S¢ following Eqs. (22) and Ee- (26) gives

In (Qc) =nln(n) — an In (n;) (76)

n{ln(n); }>

where, from Eq. (72),

I

Iy
In <Z> /exp (a cos @) dF+a/eXp (a cos @) cosOdI’
0

0

Io Iy

/exp (a cosf)cosfdl’ = % / exp (a cosf) dI, (77)

arrckthis.so
In (QC) =n {ln (n) — 7 (ln (Z) + 272) / exp (a cosf) dI’ }

:nln(Z)—a% (78)

WenNote that 5
Z =" [exp (a) — exp (~a)]. (79)

and-heneeso 5

In (QC> =nIn {;r [exp (a) — exp (—a)]} - a; (80)

Note also that, in the limit » — 0, In (QS> = n In (47) and-heneeso 2° = (4m)"; and,
in the limit »r — nl, In (Q”l) =nln [2% exp (a)} —an =nln (%’T) andhenceso 20 =
(%’T)n — 0 since a — 0o. Given that Eq = 0, Fthe total number of permutations of chains
with end-to-end length r-asEy=-+0; is

29 (r) = 4nr*0° (r) = 4mn2PPn0°, (81)
where 7 = 5. Sinee-atIn the limit r — 0, 2° is finite thenand 29 (0) — 0, and sinee
atin the limit r — nl, 29 — 0 and r? is finite, so 29 (nl) — 0. This suggests that, in

the range 0 < r < nl, 29 has a maximum.
Determination-of tThe maximum of 2© is performed-asobtained by using

dIn 02°¢ ~ 0ln QO% d1n ¢

dn da d77+ on (82)

whenwhere we treating a and 1 as independent variables. H-ean-beseenfromEe-Equations (74)
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and Ee¢- (80) show that

d1n ¢ (exp

. (a) (—a)
da exp (a) — exp (—a)
. exp(a)—i-eXP(_a)_l —nn =
a (exp (a) — exp (—a) a) =0 )
thussos c
dlgnﬂ ~ un (84)

From the distribution infor the case-of Eq = 0 [{seen-in Eq. (81)]}; and using as 4wn?l? = k,

we obtain

190°
k On

Tthereforeom a = nln orn=L (%ﬁ) = Coth( 2 ) — 1. HFor large nﬁb—d—lﬁkg&ﬂﬂfﬂbef,
coth (n%) = 5+ % + 0( ) HeneeThus, up to a second order in -, n = %ﬁ ~
—O;%G. This result differs from the assessment givernobtained from random walk statistics
presented and used by 77?7 and 7 but eeineideis consistent with the assessed end-to-end

chain length determined inby ? , 7, and ?.

P L In 29) 2 — =
=207 +n n —nexp(n )[ nan] = 0. (85)

(Note: force in a single chain with no electric field)

Furthermore, assuming zero electric field, we examine the most probable end-to-end
length of a chain subjected to a force f || r and shesewith one end is at the origin and
the other end-is located within a small volume dV = rzdrdgbdQWengefr«fe%e—PH—P

to-the-ease—offor a Slngle chain witheut-an no electric field, W&feeeweEq (8) takes the

form

W4 TS° (r) =0. (86)

For this case, we define that r = pR, where p is the stretch magnitude; R is the end-to-
end vector in the referential state of the chain, and it-iswe assumed that r | R. Thus, in

accordance with Eqgs. (22) and ¢ (81), the rate of change of entropy is

. dse 2 7-RY .
50 (ry = 1~ :k(p—l)p, (57)

and the rate of work efdone by the external sources is
W=f-v=Ff -Rp, (88)

where v = 1, f is the external force eperatingexerted on the chain, and body forces are
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neglected. Substituting Eqs. (87) and (88) into Eq. (86) yields

2 R ‘R
lf.RJer(p = )]p— [f Rp+Tk<2—T ; p)}p
=f-r+Tk(2—n7mn)p=0, (89)
thus,
_ Tki2—Z L7 (L) n
f:_Tk(Q 27]7—”’)1,:_ { nl (nl) }f.’ (90)
r r
where Eq (75) is taken into account. HeneeThus, in accordance with Eq. (85), when
= f then f = 0.

3.3 Polymer molecules (chains) in electric field

We now examine a method for controlling the electro-elastic moduli of a network. Specif-
ically, we examine the consequence of exeenting—the polymerization preeess underin an
external electric field. Toward this end, we assume that the polymer chains are in—&

s and that the monomers

solution during the polymerization- ; : >
are already bonded into chains; but beferethethat the chains are not cureding and the
toughenineed or hardeninged into a networkef-the-network by cross-linking-ef-the-chains.

»n

In this case, we ean refer to the chains as “*floating”™ in the solution such that no external
work is applied at their ends. Furthermore, we assume no interactions between the chains
and determine their most probable permutations sepseparatelyeretly.
In—aceordanece—with—the—mentionedGiven these assumptions, each chain will-beis ex-
amined individually-as—. The end-to-end length of a chain is r; = 7(0;,Eq) and the
end-to-end direction of thea chain is t; = £(0,, ;). Aeceordingtoln the coordinate sys-
tem shown in Fig. 1, ©; is the inclination of the chains’ end-to-end vector relative to the
direction of the electric field. HeneeThus, as described in section 3.2.3, the suitable r; for
each ©; is the one that satisfies Eq. (67). Iaxthe-ease-whereWhen E = 0, it-is-sufficient-to
analyzeonly a single chain need be analyzed (as detailed in seetienSec. 3.2.3) sineebecause

in-this-ease the polymer has no preferred direction in this case and the network is isotropic.

3.3.1 Moenomers-orientational-dDistribution of monomer orientation

(Note: calculating monomer orientations)
After calculating the polymers end-to-end chain length in each group, we evaluate the

orientation of the chains building blocks; (i.e., the monomers—ean—be-evaluated). The
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monomer orientations are investigated as a part of a chain while taking into account the
suitable constraints, as indicated by seen-in Eqs. (23); Be¢—(24)-and-Eq—(25).

Once the end-to-end chains lengths withare determined for the maximum possible
permutations—are-determined; (i.e., the most probable end-to-end chain length for each
group-is—found), the monomers distribution ean-beis calculated for each chain by using
Eq. (35). The probabilities for all possible monomer orientations ef-the-monemers are
then calculated in-erder to determine the monomers distribution efin the most probable
chains, which was obtained feund in the previous section. These mentioned orientations
include all combinations efin the ranges 0 < 6§ < 7 and 0 < ¢ < 2.

After obtaining the monomers orientations for each ef-the chain groups, awe com-
parisen—ean-be-madetoe it with the monomer distribution in the amorphous easephase-
Sueh-distribution, which can be calculated aceordingtoby using Eq. (42) whileand taking
into account the correct type of dipole. Analytical approximations of the PDF in the
amorphous phase are presentedgiven by in-Eqs. (44) and £6—(45) for uniaxial dipoles and

transversely isotropic dipoles, respectively [?].

3.4 An anisotropic network of polymer molecules

According to 7, the total number of internal configurations of a polymer with N polymer
chains is N
o' = N] (“"q)) (91)
q Nt )
where w, and N, are the number of configurations and the number of chains associated
with a specific end-to-end vector, respectively. As an example, assume—in—sa—way—of-an
example; that we can a -priori split the chains population into two populations such that,
for all the end-to-end vectors in the two groups, the numbers of possible configurations
are w; and wy; and the numbers of chains in each group are N; and Nj, respectively.
There-are total end-to-end vectors ¥ and 1), end-te-end—veetors-in the two groups steh
thatsatisfy 11 Ny 4+ 199Ny = N. Accordingly,

o= (ﬁ <c«;V>N) (ﬁ %)N) (=) () e

q1=1

Similarly, #there-aregiven J groups with a similar number of configurations and number

of chains in each group,

2" = N! ]JI (%)w (93)

J=1

25



where 1; is the number of end-to-end vectors in thegroup j-th group and
> ¢;N; = N. (94)
J

The number of possible configurations of a polymer chain is-ealerlated-as

(95)

where n; is the number of dipolar monomers in a chain—-which-is in groupthe j-th-group
of-ehains and n;; is the number of monomers aligned alongwith él in a chain whieh-is-in
thegroup j-thereup. Consequently, by using the Stirling approximation, the total entropy
of the polymer is-

St = klIn (Qt)

:k(Nln(N)—N+Z¢j {Nj lnjln n;) anln nij) —i—anl N;In ( N<)+Nj})
J

:k{Nln(N)—i—%:ijj lnjln n;) anln nij) 1n(N)]}.

by-employingthe-Stirling-approximation- The polymer network is subjected to the con-
straint mentioned in Eq. (94). As was previously specified, each chain is subjected to

three constraints:

iy =n;, (97)
Z lnijéi =Ty, (98)
and the end-to-end vector of the monomers chain is r; = r; T;, andso

where H ]C is the electric al-enthalpy of the chain and h; is the enthalpy of a monomer
aligned along El
We assume that the most probable configuration is the ereconfiguration thatcurrently

occupied by the polymer-eeeupies, and-thusso we are interested in maximizing the entropy
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under the given constraints:;
N r;
St =klIn (\Qt) + k ijNJ [aj (an - nj) + T <anjﬁz — ;) + Vi (Zn”hz — Hf)]
J 1 7 i
Tk (z 9, - N) , (100)
J

where «;, T, 75, and 7 are Lagrange multipliers.

In-erder+To account for the maximal number of configurations, we impose-that

05 _}, =N In (nig) + ;N (0 + 75 - & + k)| = 0, (101)

3nij
from which we obtain

(%Nj (o + 75 & +hs)
nij = exXp

= exp oz~+‘r~-éi+ hi ). 102
¢jN] ) (] J ’YJ ) ( )

By substituting Eq. (101) into Eq. (100), the maximum entropy of the polymer is

Ly

S' = kN In (N) + b 3 o5 (N Iny In (7)) = Nyln ()} = S 5Ny (agmy + 75+ 2+ ;)
J J

+kn (Z ;N — N) . (103)

Following the works of 7 and 7, we teealso assume no interaction between the polymer
chains-denetinteract-with-one-another. Therefore, the total enthalpy is H; = >-; ¢ N;H ]C :
Differentiating the first law of thermodynamics; [Eq. (8)]; with respect to the enthalpy of

the jth we have that
OH* oS!
=T 104
0H¢ OHJC’ (104)

J

and by using Eq. (103), we derive-therelationobtain

1

- (105)

Vi =
By taking into consideration the constraint imposed bys Eq. (97) and the relations
we-reeeived-ingiven by Egs. (102) and (105), we obtain that

Iy

.k
Zni]’ :/ exp (CYJ‘ + 'Tj . 51 — kT) dF = TL]'. (106)

0

From here we can determine the PDF, which indicates that a monomer in chainthe j-th
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chain is inthe-direetion—oforiented along él and has an electric al-enthalpy h;. This is

(€ h) = —2 = — - —, 1
po (&) =0 =7 exp(n 3 kT) (107)
where
Iy b
2= [ o (7 ) ar (108)

is the partition function and the Lagrange multipliers 7, are computed from the implicit

equations that follow from the constraints ingiven by Eq. (98),

Iy
/éipij dr=—L. (109)
’le l
0
The enthalpy of the chain,
Iy
/ hipy A’ = HY (110)

0
is computed from constraint given by Eq. (99).
Tn-erdertTo consider the network with the largest number of chain configurations, we

impose that

05"

aN wj |}1j ln nj an hl n” —1In (NJ)‘| + ijéj (Zn” - le) + ijj . (anéz - r;)
+ 1/1173 <an] ) + 77%

=1, [n] In (n;) an In (n;;) — In (V) +n] 0,

(111)

from which we obtain

N; =exp [nj In (n;) an In (n;;) ] = % (112)
I1; ny;
Next, from the constraint given by Eq. (94), we obtained that
eXp ) ny’
Z%N Zw] nm = N. (113)

zzg
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This enables us to determine the Lagrange multiplier

p=tn|—2 | (114)

wjny.lj
2 (H- )

Furthermore, the PDF that a chain is in the j-th inclination is

o= N Mng™ L) (115)
TN S e ling Sk o I (napar) TP

and the fraction of all the chains with a specific inclination to the electric field can be

estimated as
v; = Y;pj, (116)

such that =, v; = 1.
Next, we make use of Eq. (115) in Eq. (103) to determine the entropy of the entire

network:

St=k {Nln(N) + ) ;N

njln (n;) — ;nw In (n;;) —In (N s ¢;71iﬁ nz_knk)] }

= kNI +k S0, [nj (1) = Sy I () ~ (N)]
+k zj:@Dij [Z; ni;In (ni;) +In (; U 1:[%”” (117)
iy {; Ui, [nj In (n;) + In (; @Dknnk)] } |

Assuming that—thea fixed number of dipolar monomers in each chain-isfixed, we neglect
the first term in the last line of Eq. (117) to conclude that

S o N In (Z Yy, an,f”“) . (118)
k i

By following the same steps for the case of the entropy of a chain presented in Eq. (22),
it-ean—bewe concluded that

S o In (H n‘]") : (119)

We-ean-observe-thesSimilarities appear between both assessments of the maximum en-
tropy. In Eq. (119), the entropy of a chain is a function of the end-to-end length; r;; and

does not depend on the inclinations .
We-Nnote that, inthe-ease-offor excitation by an electric field, the number of end-
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to-end vectors in thegroup j-th—ereup are dependsent on the group’s inclinations with
respect to the direction of the electric field, and so

¥; = 2777 sin (O);) . (120)

3.4.1 Deriving the properties of the polymer

Tn—erder+To assess our methodology, we—wish—te evaluate the properties of thea new
anisotropic polymer and to compare them tewith those of thean isotropic polymer. Besides
the electro-mechanical coupling, which is our main interest, the response of the polymer to
purely mechanical loading and electrostatic excitation sheuldis also be examined-tee. The
mechanical properties of the polymer relate to the mechanical stress in the polymer under
purely mechanical loading described by the deformation gradient tensor F'. The electrical
properties of the polymer, such as the electric displacement and the susceptibility, relate
to the polarization inof the polymer under electrostatic excitation.
(Note: referenced mechanical stress)

The general mechanical stress presented by 7, which results from Eq. (16), is

Iy
1 oh kT T; Or;
mo o dr POt | pr
=g [\ aFP T oF

0 i

(121)

The mechanical stress takes into account the change in the electrical energy of-a the
monomers due to the mechanical deformation and fer the mechanical loadings that de-
forms the ehains end-to-end vectors of the chains. Censidering—the-assumption—maede
byAs per 7, we assume that the monomer is rigid compared tewith the polymer chain,
so the eleetri

mation gradient. Furthermore, by assuming an incompressible material, Eq. (121) eanbe

electric enthalpy of the monomer does not depend on the defor-

simplifiesd to

MLy arl) FT. (122)

7= d\/ozi: ( | OF

(Note: simplified mechanical stress, suitable for an anisotropic case)

In-order+To evaluatedetermine the mechanical stress in the polymer, we first calculate
the average stress of each chain group-isealettated-first. As already mentioned, inthe-ease
offor excitation by an electric field, the chains groups are determined by their inclinations
with respect to the direetion—-of-the electric field. Thus, the stresses of chains with the
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same inclination; ©; are averaged over 0 < ®, < 27 to obtain

l oF

Q Y

%(j: (kTqu Brkq) T

o =

(123)

where Ty, = cos O,E + sin 0, (cos qu? + sin @qZ), asand ¢ = 1,2, ...,Q. The calculation
of aar =0 is detailed in Aappendix B.

Next, we consider the relative influence of each ef-the chains groups—is—eensidered-
This-is-performed- by taking into account the fraction of the-chains in a specific group,
as shown in Eq. (116). Thus, Eq. (122) can be rewritten as

o™ = N> vl (124)
k

where the averaged stress of a chain is multiplied by the number N of chains in-aper unit
volume;—AV-.
(Note: referenced polarization)

The polarization

I
1 oh kT‘riﬁri
P=— — pd[l’
Jdvozi: ") Y T |

0 i

(125)

was presentedderived by 7—Thisrelations and stems from Eq. (17). The polarization
equation s Fe—(125); considers the variation efthein electricat enthalpyies of the monomers
as a result of the excitation efby the electric field and the reorientation of the chains as a
response to the electrical excitation. From the assumption that the chains undergo affine
deformations-it follows that the electric field does not directly affect the chain distribution
of-theehains. Thus, by assuming an incompressible material, Eq. (125) eanbe simplifiese
to

P=—— —pdl'| . (126)
. : i
(Note: simplified polarization, suitable for an anisotropic case + susceptibility)

The polarization of the polymer is calculated

deseribedin the same way as for the mechanical stress. AsBecause g—g = —m, the polar-

izations of chains with-thesameof a given inclination; ©y; are averaged over 0 < &, < 27

to obtain
Q (Io
ny. (f mde)
q 0
P, — — (127)
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where ¢ = 1,2, ..., Q.
Thus, asbecause the relative influence of each ef-+the—chains groups is considered

through the fraction of the-chains in a specific group, we obtain
P =N> vPy, (128)
3

where the averaged polarization of a chain is multiplied by the number N of chains ##
aper unit volume;—A. After the calculatieng ef-the polarization, the electric displace-
ment mayean be calculated aecordine—toby using Eq. (3), and the susceptibility can be
calculated by usingas

P-E

= ) 129
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4 Application to electrostatically biased network

(Note: Opening sentence + Isotropic example - first step of the numerical analysis - evaluating
the Lagrange multiplier tau)

As—we-aspire+To modify theDE properties of DEs—in-order to affeetbmodify theirthe
electromechanical coupling of polymers, we propose to perferm—the polymerizeization
proeess-of-a—polymer monomers while in the presence of an external electric field. Such a
process wilresult—inproduces a relative order of the polymer-chain networks-ef-pelymer
chains as the chains and the dipolar monomers ean-react to the electric field while the
chains are forming and “*floating™ in-the solution-state. The mentioned electric field will
beis removed at—the-end-ofafter the polymer-chain network hardens ing—of-thenetwork
which-isas a result of the cross-linking betweenef-the chains. N-We-note that the chain
and monomer responsess-of-the-chains-and-monomers-are are restricted by the constraints
inBe—(94) and; Be—(97)Ee—98)-and-Eq—(99), as is detailed in seetionSec. 3.4.

For-thesake-of To examineine the influence of exrthe proposed polymerization process
(i.e., creating a “biased” polymer), we follow the analytical analysis detailed in seetionSec.
3. This examination will-be—exeeutedis done while comparing theeur results for the
biased polymer withte those of an unbiased polymer (i.e., an isotropic polymer) and
withte the IED model (presented in seetionSec. 2.3), all in-order to evaluate the-influenee
ofperferminghow the suggested process affectsen the structure and properties of the

polymer.

4.1 Chains distribution

The initial step of the analysis is to evaluatedetermine the most probable configurations
of the polymer chains #of the isotropic and biased polymers. Atfirst-wWe first apply our
calculations to the case of no electric field; and for a network ofs isotropic chain-netwerks.
The initial step of the calculation is to evaluatedetermine the walwe—of-the Lagrange
multiplier 7 swith-theby applieation-ofying the Newton—Raphson method ento Eq. (36).
The first guess, T, is obtained by analytically estimating the Lagrange multiplier as a

function of r in a case where the electric field approaches zero,
To=— — (130)

which is accurate in this specific case, as is detailed in Aappendix C.
(Note: chains length - isotropic distribution)
As-a-resutt-ofGiven the maximum-entropy assumption and the fact that, in this case,

there is no electric actuation or any other external influence, we ean assume that—there
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is an isotropic distribution of chains, which means that and-se we can assess the end-
to-end length of a chain in a single direction and relate it to all directions. Thus, in
order—to determineevaluate the most probable end-to-end chain length, the number of
configurations of a chain with a specific r is calculated and then multiplied by the surface
area of a sphere with the same r, which represents the chains groups in the isotropic case,
as is discussed in seetionSec. 3.2.3 and shown inby Eq. (81). The entropy effor each
case is calculated by using the results fromof Eq. (81) in Eq. (22). AnSeveral examples
areis presented in Fig. 6, which presentsshows the entropy as a function of the normalized
radius; -5 for n = 50 and n = 100 withas [ = 100 um. The initial susceptibility used
in these presented exampelsexamples is xg = 37, which is about ten times the electric
susceptibility of the commercially available polymer VHB 4910, and- tFhe analyses are
performeddone for the case of uniaxial dipoles. The difference between the curves in
Fig. 6 eanbeis attributed to Egs. (21), Ee¢—(22), and £¢—(81). Accordingly, the entropy
of the chain increases with as-the number of monomers in thea chain—inereases-so—does
(Note: defining calculation parameters - material properties and calculations boundaries)
We assume that-thea shear modulus p = 10° Pa offor the polymer in its initial unloaded
configuration.-is +—=10>Pa- Thevalie-of N-the number N of chains perin-a unit volume;

wais deduced from therelation = N kT [??]. The normalized radii that correspond to

the maximum points of the two curves in Fig. 6 are (m) 0 = 0.1 and (%) 00 =0.075

whichand are eempatibleconsistent tewith the analytical predictions (ﬁ) I 0.115

and (m) 0 0.082, respectively, given in seetionSec. 3.2.3;

%T&%%, and presentedshown by the dashed columns in Fig. 6. The differences

between the numerical and analytical results for the most probable end-to-end chain
length isean—be associated with the density of discretization of 0.025 for 0 < & < 1.

nl
Furthermore, it-ean-be-seenthat the results of the current approach-are different from the
results (L) = 0.141 and <L> = 0.1, obtained fromef the random walk statistics
nl/) =50 nl ) n=100

— . B +; and presented by the dot-dashed columns in
Fig. 6 %e—vzﬂﬂeref%heNegamve entropy that—aresmaller—then—~zere—areis irrational
and isare truncated becauseas the¥yit represents numbers-of configurations that are innet
compatible with the previeusly—made assumption required for Stirling’s approximation
betweenthat is applied to go from Eq. (21) andto Eq. (22).

(Note: the main idea - parameters value and initial calculations)

Next,

excitation affectsen the polymer structure during a-polymerization-precess, different pa-

to determine how £ electrical

rameters were investigated as the electric-—field magnitude ranged from 0 % to 150 %
The presented results are based on a numerical calculation where the number of monomers

in a single chain, the length between the two contact points of a monomer with its neigh-
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pics for experimental work 16.1.2020/ent vs r_nl for

Figure 6: The entropy of a polymer chain with uniaxial dipoles as a function of the
normalized radius as 0 < -5 < 1 and [ = 100 um. The red continuous curve with circular
markers corresponds to n = 50 and the brown curve with squares to n = 100. The
dashed columns corresponds to the normalized radii in accordance with the results in

section 3.2.3, f’ and the dot-dashed columns to the results from random walk

statistics, 1; = %

pics for experimeptal work 16.1.2020/LnOmega vs ElecFielc

Figure 7: The natural logarithm for the maximum number of configurations as a function
of the electric field magnitude for chains with uniaxial dipoles at different inclinations.
The blue curve with circular markers corresponds to © = the red curve with squares
to © = 7 and the yellow curve with diamonds to © =

1000’

bors, and the number of chains perin—+ unit volume are the same as thosee-ones assumed
for the case of no electric field.

Tn-erder—+To demonstrate the-influenee—ethow electric fields with—differentof various
magnitudes enaffect chains at various inclinations with respect to the direetion—of-the
electric field, Flgs 7, 8, and 9 show results for chains with © = &, © = 7 and © = 7.
ie—9: Figure 7Fshows the natural logarlthm of the

y LIS
maximum number of configurations for each chain as a function of-the electric field-eanbe
seen—in—+ig—7, and Fig. 8 shows tFthe end-to-end length withfor the maximum number
of configurations of each chain as a function of the electric field—ean—-be-seen—inFie—8.
The Lagrange multiplier 7, which ean—-be-pertrayedmay be understood as the chain’s
mechanical constraint and whichs—that is relateds to the end-to-end length of the chain
with the maximum number of configurations, wasis examined as a function of the electric-
field magnitude, as ean—be-seen in Fig. 9.

NWe-note from Figs. 7, Fig—8, and Fig—9; that the magnitude results differ little for

pics for experimeptal work 16.1.2020/rad vs ElecField 29.

Figure 8: The most probable end-to-end length as a function of the electric field magnitude
for chains with uniaxial dipoles at different inclinations. The blue curve with circular

markers corresponds to © = the red curve with squares to ® = T and the yellow
curve with diamonds to © =

_m_
1000
s
-

4
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pics for experimental work 16.1.2020/AbsTau vs ElecField

Figure 9: The size of the Lagrange multiplier 7, associated with the most probable radius
as a function of the electric field magnitude for chains with uniaxial dipoles at different
inclinations. The blue curve with circular markers corresponds to @ = 1000, the red curve
with squares to © = 7 and the yellow curve with diamonds to © =

faﬂgeﬂéan electric field that—is—smalerless than 50 MV%@WR—V@W&%M@T@H@%

St l\fnv. This is particularly evident in Fig. 8, where the
change in the end-to-end length of the different chains is hardly visible below 50 == MV I
Figure- 7 shows; we—ean—ebserve the similarities in the curves for the natural logarlthm
of the maximum number of configurations for chains at different inclinations, which all
decrease as-the-magnitude-of-thewith increasing electric field-is-enhaneed. The differences
between the curves ean—be asseeiatedattributed to the number of end-to-end vectors in
each inclination with respect to the-direetion-of-the electric field, as seenexpected infrom

Eq. (120). By-ebserving Figure- 8; it-eanbeseenshows that, with increasing electric field,

the end-to-end length of chains at all inclinations increases-as-the-magnitude-ofthe-eleetrie
field-is-enhanced. ThoughHowever, as the magnitude-is—enhaneedelectric field increases,

the differences in the end-to-end length become more prominent; asbecause chains inat

greater inclinaetions are longer. We-find-that-+tThis result is counterintuitive asbecause we
would expect chains with greater inclinations with respect to the-direetion—-ofthe electric
field to be shorter-as because the monomers aspiretend to reorient in the direction of the
electric field. From Figure: 9 we-ean-observeshows the differences in mechanical constraint
of the chains-mechanieal-constraint. As-the-magnitude-oftheWith increasing electric field,
is—enhaneed-its—valte the constraint decreases for chains parallel to the-direction—of-the
the electric field and relativelyincreases somewhat for chains withat greater inclinations.
This ean-beresult is attributed to the faet-that-as+the polymer beingis in a solution state
during the polymerization, and; -t is—harder—to-holdmore energy is required to maintain
chains at larger inclinations as the monomers react to the electric excitation-and-aspire

4.2 Monomers orientation

(Note: monomer distribution - chains)
Onee—theAfter calculatingens ef-the end-to-end lengths for chains at—each—of-the
mentionedas a function of inclination with respect to the direetion—of-the electric field;

i.e., determining r? = r%(0;,E)#(0;)], the monomers orientation can be calculated as
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(a) (b) ()

Figure 10: The monomer distribution for a polymer chain of uniaxial dipoles. The mag-
nitude of the electric field during the polymerization process is £ = 150 % (a) Corre-
sponds to the chain with the inclination © = ;75 and end-to-end length r = 0.89 \/n 1. (b)
Corresponds to © = 7 and r = 0.91/nl. (c) Corresponds to © = 5 and r = 0.93\/n!.

pics for experimeptal work 16.1.2020/Amorphous Dipole Dis

Figure 11: The amorphous monomer distribution of a uniaxial dipole as £ = 150 %
According to the numerical analysis as 7 = 0 and identical to the results of the analytical
analysis that was presented by 7.

detailed in seetionSec. 3.3.1. Figures: 10a(a);b-and—10a(c) presentshow the monomers
distribution effor chains with different inclinations © = &, © = 7, and © = 7, re-

spectively, while-the-magnitude-oftheand for an electric field is £ = 150 % In these

three-dimensional plots, the length of the radius vector to each point represents the num-
ber of monomers aligned with thisthe given vector. As-ean-salse-beseenln addition, the
monomers distributions-are is eompatibleconsistent when comparing-between-the different
inclinations—¥his, which means that the monomers in the different chains aspiretend to
orient similarly. This eempatibilityconsistency is very interesting:—as because the chains
have different inclinations and different end-to-end lengths.

(Note: amorphous monomer distribution)

AsGiven that the monomers orientation for each efthe-mentionedgiven chains swasis
obtained and their likenesssimilarity is—was recognized, the-menemers we now examine
the monomer distribution in anthe amorphous case-is—examined. Figure: 11 presents
the results of the numerical calculations ferof the distribution of amorphous monomers
distribution in—the—ease—offor a uniaxial dipole aceordingbased on—te Eq. (42). Unlike
Figs. 10a;bh-aned—10c, Fig. 11 presents a symmetric distribution of the monomers, as in
this case thewhere monomers are free to reorient separately and are not be constrained
as a-part of a chain. The result of the analytical analysis ferof the PDF in the amorphous
case [?], presented in Eq. (44), ean-also beseenappears in Fig. 11 astheyand are identical

to the numerical results.
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pics for experimental work 16.1.2020/Number of chain :

Figure 12: The number of chains along each inclination as a function of the inclination
relative to the direction of the electric field, N (©,® = 0). The blue curve with circular
markers corresponds to the isotropic polymer and the yellow curve with squares corre-
sponds to the biased polymer.

pics for experimental work 16.1.2020/weights compariso:

Figure 13: The fractions of chains along each inclination as a function of the inclination to
the direction of the electric field, v (©). The blue curve with circular markers corresponds
to the isotropic polymer and the yellow curve with squares corresponds to the biased
polymer.

4.3 The free state

(Note: finding the natural state - chains distribution, weights and lambda0 deformation)

After analyzing the micro-scale and understanding the monomer distribution as a
result of the mentionedgiven polymerization process, we now examine the macro-scale
is—examined. Henee—as—we—wish—+tTheo analysisze of the macroscopic response of the
polymers to different excitations, as is detailed in seetionSec. 3.4, requires an assessment
of the relative influence of each ef-the chains groups in the-differentvarious inclinations
needs—to—-be—assessed. For—thesake-of-sueh—evaluatioThis assessment is done by using
Egs. (116) and Ee—(120) are-used to calculate the fraction of chains with theinclination
j-th-inelination with respect to the electric field. A-eFigure 12 comparesisen-of the number
of chains inof various the-different inclinations with respect to the-direetion-ef-the electric
field between-thefor isotropic polymers and electric-fieldthe--biased polymers-is-presented
inFie—2- and Fig. 13 A comparesison between-the fractions of chains in each inclination
offor betheach cases-ispresented-inFie—13. The relations between the results shown in
Figs. 12 and Fig—13 are credited to v, which is the number of end-to-end vectors in
thegroup j-th-greup, presented—nas given by Eq. (120).

As-ean-be-observedHrom-Figure: 12 shows that; the preseneeapplication of an external
electric field induring the polymerization preeess affects the chain distribution—ef-the
chains, as the chains aspire to align in the direction of the electric field. FheunghHowever,
Fig. 13 shows that, as-a—+resultbecause of Eq. (120)%&%%%%&%% the

most influential inclination of the polymer 5is © = 7.

The-density-of diseretization{for-To calculate the inclinations with respect to the direc-

tion of the electric field, the density of discretization iswas taken as A® = {z5-as because

denser discretizations diddo not-prediee-any-meaningful-differeneesin significantly change
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the results. As=wWe refer to-the-different each individual groups of chains disereetly in
accordance with their inclinations with respect to the direetion—of-the electric field, and
we attribute each ereup chains in each group sith-one end at the origin and the other
end leeated-within a small volume dV = r2drd¢df. Furthermore, wenote-that-asbecause
the DE coupling inDEs is characterized-by—a quadratic dependence—on—+thein applied
electric potential [?], the different DE responses-of-BEs can be deduced fromby analyzing
0 <© < 7. Accordingly, the groups that relates to inclinations © = 0 and © = 7, which
are the boundarles of the analyzed range, are attributed to small volumes with A@ 35
This is perfermeddone se-asnot to avoid exceeding the limits set for the tested angular
range being tested.

Figure: 14 presents the analysis of the deformation )y of a polymer inthe-direction
ofwith respect to the electric field; g, efa—polymer that-was induced durlng polymerlza—
tion swith-the—chosenby the electric-—field magnitud i f €55
asgiven that the electric field is removed at the end of %he—pfeees%polymerlzatlon The
chains are unable to ehangetune their lengths to thedeneththat of the chains in the

isotropic polymer asbecause they are cross-linked and cannot rearrange separately. Thus,

each chain is affected by the same deformation gradient. The corresponding deformation

gradient, while assuming incompressibility, is

A O 0
L N 1 N N
F')=ME®E+——(I-E®E)=| 0 yvx 0 |. (131)
VAo
0 0 Yvm

Tn-erder+tTo assess the stress—free configuration of an incompressible body such as the
biased polymer, we examine various different deformation gradients-were-examined. TheA
suitable one is depieted-byobtained from the state where opg = oyy = o7z = %
asbecause the deviatoric stress is zero, in accordance with Eq. (19). As seen in Fig. 14,
Ao is achieved fremby calculating ogg — oyy = opig and determining the correct value
from opig (A\g) = 0. In this case, it—is—+reeeivedthe correct value is <or A\g=0.795, which
means that the deformation gradient tensor-+that-is compatible with the deformation after

the removal of the electric field is

0795 0 0
FOooooo= 0o 1121 o |[. (132)
E=150 =3+
0 0 1121

This result is counterintuitive when considering that, in this case, chains inat greater incli-
nations will-getbecome longer. FheuwehHowever, when considering the monomer orienta-
tion-ef-the-monomers, it is reasonable to assume that some will rearrange-in-graterbecome

more inclinatiened with respect to the electric field as it is removed. Thus, the polymer
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Figure 14: opig = o0gg — oyy as a function of \g after the removal of the electric field
with the magnitude of £ = 150 %
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Figure 15: The deviatoric mechanical stress as a function of the deformation ratio, A.
Dashed curves corresponds to the isotropic polymer, continuous curves to the biased
polymer and the dot-dashed curves to a polymer described by the IED model. The blue
curves corresponds to the normal stress in the direction of the electric field, o, and the
red curves to the transverse stress, oy = o7;,.

will perfermundergo a planar expansion. The ehains end-to-end lengths and inclination
of the chainss in the relaxed state, which from now on will be the starting point for each
ofthe-chain examined ehains in thea biased polymer, can be deduced from r; = For?.
We-alse-nNote also that the same calculations for the isotropic case yielded A\5° = 1, as

was expected.

4.4 MThe materials properties

(Note: mechanical and electrostatic properties - new polymer + comparison)

AsGiven the chains orientations were-established for the example mentioned-example,
the properties of the biased polymer can be examined and compared tewith the case of
an isotropic polymer, aswhich is detailed in seetionSec. 3.4.1. The polymer’s mechanical
properties can be assessed by evaluating the mechanical stresses as a function of the
deformation ratio; A, according to Eq. (124). The calculationes of the mechanical stresses
werewas perfermeddone by taking into account and averaging the stresses at 0 < & < 27
with a discretization of A® = ¢ for each inclination © with respect to the electric field;
©; and evaluating the stresses infor each deformation ratio while taking into account the
fractions of each inclination [{Eq. (116)]} infor each case of deformation. Figure 15 presents
tFhe mechanical stresses in the direction of the electric field and in the transverse plane
¢ Fie—15 for the isotropic polymer,

as a function of the deformation ratio
the biased polymer, and the IED model. -

The electrostatic properties can be assessed by first evaluating the polarization of
the polymer as a function of the magnitude of the electric field. These calculations are
performed aeeordine—tofollowing the same steps that—were—mentionedas for the stresses
calculations. FFigure 16shows the susceptibilities of the biased polymer, isotropic poly-

mer, and the IED model as a function of the electric field, are-presented-in Fie—16 as they
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Figure 16: The susceptibilities of the polymers as a function of the electric field. The
black dashed curve corresponds to the isotropic polymer, the black continuous curve to
the biased polymer and the black dot-dashed line to a polymer described by the IED
model. (the dashed and the continuous curves overlap).

are calculated aceording—teby using Eq. (129).

Figure 15A shows that applylng an electric field during polymerization changes the
stress.—e : ‘ Fig—15-asaresult-of the presenee-of-an-—eleetrie
field—in—the—polymerization—preeess: More precisely, there—is—an—inerease—in the stresses

of the biased polymer increases; relatively to that of the isotropic polymer, both in the

direction of the electric field and perpendicular to it. The stresses in the IED model are
higher-thanexceeds that in both the of the other examined polymers examined.

Figure: 16 shows that the biased polymer and the isotropic polymer have similar
susceptibilities-.for-the-biased-polymerand-the-isotropie-one: The susceptibilities of both
the polymers are as-the-given initially similar suseeptibility—while under the excitation a

weakef electric fields-with-small-magnitudes (underless than £ = 5 %) and they increase
in-valiesat almost identiealyidentical rates as the magnitude-ofthe electric field increases.

We suspect that the resemblaneesimilarity between the susceptibilities of the biased and
isotropic polymers stems from the fact that, as the electric field is removeds; at the end of
our-propesed-proees spolymerization, the monomers aspiretend to rearangerearrange &s in
the isotropic easepolymer swhilewhereas the biased polymer defermedeforms. NWe-note
that the numerical-results—of—+thely determined susceptibility ferof the biased polymer
shows—a slightly increases relatively to the isotropic polymer, although not enough fer
ato visiblye separation—betweene the curves. The susceptibility of the IED model is net
&ﬁeebeérb’yzmdependent of the magnitude of the electric field-and-is-econstant—in—valie-as
he-initialstsee thity. HeneeThese results indicateit-eanbe-dedueed that applying an
electric field during polymerlzatlon#ﬂe Changes in the mechanical propertles Cas a result

of indweine the polymer
prominent than these-of the electrostatic properties.

more

4.5 The coupled response

(Note: coupled properties - new polymer + comparison)

After examining and comparing the mechanical and electrostatic properties, we also
examine the coupled properties of the twebiased and isotropic mentioned polymers—ean
also-be-examined. For thatthis purpose, the main criterion to be examined is the defor-
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Figure 17: The deformation in the direction of the electric field, A, as a function of
the magnitude of the electric field. The black dashed curve corresponds to the isotropic
polymer, the black continuous curve to the biased polymer and the black dot-dashed
curves to a polymer described by the IED model.

mation; A; as a function of the magnitude of the indueedapplied electric field—presented
in- (see Fig. 17). As ean-be-seenshown in Fig. 17, the deformations efin the biased poly-
mer are smaller than those efin the isotropic polymer. These results agreesare consistent
with the previous enesresults. s—estabh Figure: 16 establishes that
the electrostatic response of the biased polymer showsno-meaninefildoes not differenee
significantly from that of the isotropic polymer, fremand Fig. 15 it ean—be-interpreted
shows that the biased polymer is stiffer than the isotropic polymer. Furthermore, as the
susceptibility of the IED model is constant and generally smaller in—valie than for both
the other polymers within the examined-magnituede range of electric fields examined, so
the stresses in the IED model are-higherthanexceeds that in both the other polymers.
Thus, it is logical that the deformations efin the IED model are the-smallerst-ofthe-three

than those in the biased and isotropic polymers.

1
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5 Experimental work

AdditionaltlyA deeper understanding of the electromechanical properties of polymers is
required beyond what is provided by—te our analytlcal and numerical work.—as-deeper
i There-
fore, we now present eEXperlmentsa} stueies aimed-—towardthat examineing the coupled
response of differentvarious DEs such as VHB and PDMS are-alse-being—performed and

compare their resultsd to analytical calculations. The dielectric constant of the DEs is
first determined byfirstlydetermininegby calculating the relative permittivity from the ca-
pacitance of capacitors withcontaining these DEs as their medium;+from-which-therelative

permittivity-ean-be-ealendated. A common method used to earryoutmake such measure-
ments is based on the analy81s of the capacitance component in an LCR {L-induetanee;

, Sit -} circuit by means of an LCR meter or a simpler—versions—of
this-instrument—the capacitance meter.

The presented experimental work presented below is divided to two main parts:= The
first part includes an expansienextension of the work presented in ? and examines the
inflnenee-ofhow the uniaxial and biaxial stretching enaffects the dielectric constant. The
second part ineludesthefirst presentsation—of a new experimental system which-is-aimed
towards for measuring the dielectric constant of polymers under an electric field are re-
ports the results for- Fhe two polymers:—that—were—€hosen—to—be—examined—are VHB
4910 (a commercially available acrylic elastomer byfrom 3M) and pPolydimethylsiloxane
(PDMS, that svas made in our lab fremby using the Dow Corning Sylgard 182 Silicone
Elastomer Encapsulation Kit). These materials are of interest due—tefor their flexibility

and accessibility.

5.1 The-ilnfluence of uniaxial and biaxial stretching

The first experimental system we present allows us to evaluate the-influence-othow uni-
axial and biaxial stretching of DEs enaffects their dielectric constant and to deepen the
examination of the dependence of the dielectric constant on the deformation. The exper-
imental system iswas built from a self-—constructed stretching device with four movable
grippers, as ean-be-seenshown in Fig. 18a.Jn-erder+To measure the relative permittivity
of the deformed samples, a C-shaped clamp is-usedserving as a plate capacitor (Fig. 18b)
and iswas connected to an—eapacitance—meter; Agilent U1701A capacitance meter. The

experimental relative permittivity of each sample is calculated siaby using

Csd

ErExp = A 60 )

(133)
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Figure 18: (a) The self constructed stretching device. (b) The C-clamp used as a parallel
plate capacitor.
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Figure 19: The relative permittivity measurements as functions of the percentage of
surface area expansion. The dashed and dotted curves correspond to the analytical results
[?], as n are estimated from the stretch at failure (ny) and from fitting the analytical
equations to the experimental results (n.), respectively. (a) PDMS under uniaxial stretch.
(b) VHB under uniaxial stretch. (¢) VHB under biaxial stretch.

where (s is the measured capacitance, d and A are the thickness and surface area of
the capacitor, respectively, and ¢, is the vacuum permittivity. The analytical relative

permittivity for uniaxial stretching of the dielectric elastomers is calculated s#aby using ?

B 1/, 1

The ealenlation{forthe-analytical relative permittivity was-extraeted-is calculated in—the
eurrent—workherein based on—frem the results of 7 tefor the case of biaxial stretchinges.

The final expression is
2 2
s =140 [1_571 (A _)\4”’ (15)

where n is the number of monomers in a single chain, yq is the initial susceptibility, and
A is the magnitude of the uniaxial or biaxial stretchinges.

FFigure 19he presents the results of the experiments and the analytical calculations
forof the relative permittivity as a function of the percentage of surface area expansion
are-presented-in Fig—9 for uniaxial stretching of PDMS (Fig. 19a), uniaxial stretching of
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Table 1: The number of monomers in a single chain for the case presented in Fig. 19.

| | PDMS - Uniaxial | VHB - Uniaxial | VHB - Biaxial |
ny 4.35 80 80
ne 5.844 21.807 5.156

VHB 4910 (Fig. 19b), and fer biaxial stretching of VHB 4910 (Fig. 19¢). The analytical
results for uniaxial and biaxial stretchesing are also presented for the different examined
cases examined. The number of monomers in a single chain is estimated from the stretch
at failure, which is presumed to be the lock-up stretch; and is labeled as ny, and fromby
fitting the analytical equations to the experimental results as n,, as-is shown in Table 1.

As—eanbe-observed; The results show that swhilestretching the samples are stretehed
anddecreases their thickness decreases their relative permittivity-deereases. The incom-
pressibility assumption was also examined and, in-the-ease-of-thefor PDMS, the results of
both the measured and the calculated thickness ean-be-observedare shown. The incom-
patibility of the curves based on the number of monomers in a polymer chain from the
stretch at failure eanmay stem from the fact that the stretch at failure is not necessarily
the lock-up stretch of the chain.

5.2 IThe-influence of-an electric field

The goal of this is experimental work is aimedwas teward to examineing the-effeet-ofhow
electric fields with—of varyingdifferent magnitudes enaffect the dielectric properties of
various polymers. Forthat-purpeseToward that end, we will present a new experimental

system whiehthat allows us to evaluate the variations ef-thein dielectric constant as ana

function of applied electric field-is-applied-on—+them. Furthermore, we will continue the

work-performed-inof 7 and deepen the examination of the-dependenee-efthow the dielectric
constant depends on the deformation by perfermine-our-examinationexamining-en pre-

stretched samples.

5.2.1 Experimental set-up

(Note: Samples description)

(Note: Presenting the experimental system)

Ten rectangular samples of each of the two chosen polymers were cut for each examined
easeation. For the-ease-ef-the pre-stretched VHB, the samples were then stretched by using
a self--constructed stretching apparatus eemprisedconsisting of two movable grippers, as
ean—be-seenshown in Fig. 18a.
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Figure 20: A schematic description of the experimental system.
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Figure 21: The parts of the plate capacitore.

Ournew'This experimental system iswas built from non-conductive materials;—aH-but
except for the two 30-mm-diameter electrodes with—a—diameter—of 30-mm-that arewere
made fromof copper and actsed as one of two capacitors connected in -a—rewseries, as ean
be-seenshown in Fig. 20. The two electrodes arewere each held in a 60-mm-diameter Teflon
housing-with-a—60-mm-diameter, as eanbeseenshown in Fig 21. As+The-medinm—in-the
mentioned plate capacitor iscontained the examined elastomer sample under examination,
and the second capacitor is i i i i
asconsisted of a fixed TDK UHV-241A C&p&CltOf—F@%t—h&GHff@ﬂt—*N@ﬂﬁ%@@%&fﬂi@%&p&&%@f
suitable for high voltage-is-usedFDK s UHV-241A.
For—the—ease—ofTo examineing pre-stretched samples, we first used a bi-directional
stretching apparatus in-erder to generate the required tension. After the-stretching, the

sample iswas held in the stretched state by using a two-—parts self-—constructed Perspex
gripper with a 60-mm-diameters opening ef-60-mm—diameter-in the middle and an O-ring
notch to maintain the tension in the sample, as ean-be-seenshown in Fig. 21.

In-erder+To measure the referential permittivity of the different samples, we make
used of the plate capacitor from eurthe experimental system. This measurement is
perfermedwas made by connecting itthe plate capacitor to a capacitance meter before con-
necting the experimental system is-eonneeted-to the power source. Furthermore, the dis-
tance between the electrodes iswas measured in each experiment. After obtaining the ref-
erential values-are-ebtained, the power source iswas connected to the deseribedexperimental
system. As the supplied potential difference is changed in the power source. tThe poten-
tial difference enacross the plate capacitor iswas measured as a function of the potential
difference applied by the power source by using a non-contact—veltmeter; USSVM2 volt-
meter byfrom Alphal.ab.

(Note: Presenting the work method or protocol)

For-the-purpese-of To evaluateing the relative permittivity of the polymer swhile-under
an under electrostatic excitation, the conservation of charge eenservation is taken into

account as follows:;

Q = OV = GV, (136)
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Figure 22: The permittivity measurements a functions of the electric field on the sample.
The Blue dots corresponds to a relaxed sample and the red circles corresponds to the area

pre-stretch of A = 225%. (a) PDMS, (b) VHB.

where @ is the charge on beth-eftheeach capacitors, V; and (s are the potential difference
across and the capacitance of the examined polymer, and V, and Cj are the potential

difference across and the capacitance of the fixed capacitor. Thus,

1 1
Vi=Vi+ W= —+ =, 137
r=VatVo=0 (cs * co> (137)
where V4 is the total potential difference as-it-is supplied fremby the power source. While
taking-—into-aceount Equations (137) we-ean-obtaintherelation;gives
Vi
Co= (- 1) Co 138
r-1)a (138)

from which the current capacitance of the polymer can be calculated, while the constant
vatune-of () is takendetermined by the frem-its data shift and confirmed at the beginning
of theeach experiment withby measurements made with the capacitance meter.

The relative permittivity, which is the electrostatic property that-we-aim-to-examineunder
investigation, is calculated from the results of the calculated capacitance ealewtations by
using the-relationespresented-in Eq. (133).

5.2.2 Results and discussion

In all tests, the sample thickness oef-the-samples—werewas measured forin order to the
calculateion-of the relative permittivity;—presented-in by using Eq. (133) and thereby;-and
the correctly assess ‘determine-of the electric field that—is induced enin the sample,
which is calculated as F, = %. Measurements ofine the pre-stretched VHB 4910 have led
to-theunderstandingthatconfirmed the incompressibility assumption-is—reasonable-and
eanbe-employed in this case.

F-+The solid blue dots (red open circles) in the two plots of Fig. 22 show; the measured
relative permittivity measurements as a functions of the electric field en-thesamplesforin
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the un-stretched samples-are-marked-by-bluefilled-dots-and-forthe-(2.25 area pre-stretched
samples-by-red-empty—eireles). The error bars show the standard deviations-are-marked

by—error-bars. Aﬂﬂgfeefﬂeﬂt—be%weeﬁThe results shown in seetionSec. 5.1 are consistent
with and-the current results ean-be-ide > -ASes > as By — 0. Inthe-ease-ofFor
the VHB 4910 samples (Fig. 22b), the relatively small standard deviations of the different
measurements provides confidence in the accuracy of the measurements for this material.
The relatively larger standard deviations of the PDMS samples eanbe-as-aresult-ofmay
be attributed to the fact that the samples were made manually in our lab, although there
is a clear trend appears in the results. We-find-that-tThe relative permittivity of the two
examined polymers examined increases with the magnitude of the electric field.

The variations in the responses of the two examined polymers examined hints that
thesey are governed by the polymer microstructure-efthe-polymers. Furthermore, the re-
sults of the pre-stretched VHB 4910 aﬂaﬁhefprowdes more evidence teof the governingrole
. AsGiven

that the initial values of the relative permittivity corresponds to the results inshown in

of the microstructur

Fig. 19, the maximum relative permittivity measured in the pre-stretched case is much
lower—thenless than the-enethat measured in the relaxed case, despite the fact that we
achivedlarger—magnituds—ofa stronger electric field was achieved asin the thiekness—of
thethinner samples—was—deereased. It—ean—-be-seen—in—+The results for both the poly-
mers (Fig. 22) show that; the rate of change in relative permittivity deviation is much
steepergreater inat relatively low electric fields (< 1%) Thus, additional experimental
analyses of the relationship between the microscopic structure and the macroscopic re-
sponse are needed fortheto understanding-of the coupled electromechanical behaviors of

different polymers.
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6 Conclusions

(Note: Opening - Motivation)

Altheneh-+This thesis presents another pessible step towards the realizationuse of the
DEs potentialfor-beingwsed in a wide range of applications ands—+ comes at a time when
our—etlture—iswe are seemingly ready for such advances in different fields, such as clean
energy, medicine, and robotics. HeneeThus, asgiven that a substantial improvement in
the electromechanical response of DEs is neededrequired, we present a possible method
for influencing and analyzsing the response of these materials and their; structure and
properties-ofthe-pelymer, all without adding any foreign materials.

(Note: 3. Electroelasticity of solutions and anisotropic networks of polymer molecules)

(Note: 3.1 general - multiscale analysis)

TnitialyTo begin, we carried out a multiscale analysis of the electromechanical cou-
pling in DEs atfor several hierarchical cases, from a single electric charge to a network.
The analysis aceounts—for-theapplies the conservation of energy through the first law of
thermodynamics; in terms of the electric enthalpy and the entropy of a system-that-is sub-
jected to an electric field. ©OwrThe analysis of the polymer microstructure efthe-polymer
is based on statistical mechanics, asand we assume that the-eenfieuration-of each chain is
in the

(Note: 3.2 an analysis of the isotropic chain end-to-end length, tau and force)

We earry-out-anthen analyzesis-ef the polymer chain; in the case of no electric field.
This analysis yieldsed the relationship between the Lagrange multiplier 7, which can be
portrayedunderstood as the chain’s mechanical constraint, and the normalized end-to-end
length of the chain through the Langevin function. Ou+The calculations also yielded-an
assessmentdetermine-for the end-to-end length of a chain in such a case, which is similar to
the-eneat obtained by 7?7 and ? but differsent from than-the commonly used assessment
sivenresult based on+frem random walk statistics [??7]. Aln addition, we deduce a relation
between the end-to-end length of a chain and the external force eperatingexerted on it
was-alse-dedueedthe chain.

(Note: 3.3 polymer chains in an electric field and monomers distribution)

s most probable configuration.

As—ourTo examine the proposed method for controlling the electro-elastic modulust
of a polymer network by-exeeuting—the polymerizatien—proeessing under an electric field
is-examined, we-deseribe-a—mannerfor-the-assessment develop an approach to determine
of the most probable configurations for each efthegroup of polymer chains greups-and
for the orientational distribution of-fer the monomers-erientational-distribution in such a
case.

(Note: 3.4 an anisotropic network analysis - general analysis with a reference for polymer-

ization under an electric field + material properties)
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Next, we derive an expression is-derived-for the total entropy of the polymer swhiehthat
allows us to evaluate the distribution and the fractions of the chains in the different chains

groups. Next—oneeGiven these-the fractions—ef-the—<€hains—inthe-different—groups—were

determined, expressions for the mechanical stress and the polarization wereare derived in
order to determine the polymer response-of-the-polymer.

(Note: 4. Application to electrostatically biased network - remined our main idea for the
polymerization)

To examine the outcome of our proposed process—of-polymerization under an elec-

tric field, thatwhich leads to a “biased” polymer, we applied a numerical analysis—was

based on our analytical work, and itsthe
predictions of this analysm are is-compared with the experimental results for an isotropic
polymer and for the TED model.

(Note: 4.1 chain end-to-end length - isotropic case (our analysis is more accurate) and
anisotropic (mention the examined parameters))

The initial step of the numerical analysis involveds an examination-ofourassessmenting
the results for the end-to-end length of a chain in the-ease-of an isotropic polymer.
regards—to—the—configuration—of the—chains—in-For the biased polymer, a—comparisonthe
chain configuration was-performedis compared for three parameters: the maximum num-
ber of chain configurations-ef-+the-chain, the most probable end-to-end length, and the
Lagrange multiplier 7 that relates to the end-to-end length withto the maximum num-
ber of configurations. Frem—whiechThe results indicate—we—determined that magnitude
ranges—ofthe electric fields lewerless than 50 M have-shewnhardly—any-produce negligi-
ble differences in—+results from—with respect to the isotropic case. TheuwghHowever, when

irupon increasing the electric field, the end-to-end length

of chains inincreases for all inclinations-inereases, which is counterintuitive asbecause the
uniaxial dipolar monomers aspiretend to rotatetewards in the direction of the electric
exitationfield.

(Note: 4.2 monomer orientation - aspire to be as in the amorphous case)

The findines—from—the-examinationsresults of the investigation of the monomers ori-
entation for chains in—the-differentat various inclinations with respect to the electric field
and the comparison tewith the monomer distribution ef+enemers in the amorphous case
led—to—therealizationshows that, despite their constraints, the monomers in the chains
aspiretend to orient as though they arewere unattached.

(Note: 4.3 assessing the free state and discussing the chains distribution/weights)

Next, the free state of the biased polymer was assessed. This state occursis-achieved
when the deviatoric stress vanishes and the body is atin a stress—free configuration. H-was
foundThe results show that the biased polymer contracts in the direction of the applied
electric field, which—Fhis strengthensimproves our understanding of the importance to
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polymer properties of the microscopic structur
because, when the electric field is turned off, the monomers rotate away from its direction
and-henee-the, which leads to contraction in thatthe given direction. The spatial expansion
in the transverse direction is due to incompressibility.

(Note: 4.4 the material properties and coupled response)

The resulting material properties shows—a difference—between from the mechanical
enesproperties, as manifested by the biased polymer is-feund-to-be being stiffer than the
isotropic erepolymer. Regardine-the-eleetrostatieproperties;nlNo significant differences in
the electrostatic properties arewere found between the two polymers. FhouehHowever, in
both cases the susceptibility-deesnot appears to be-fixedvary under-different-magnitudes
ofas a function of electric—field magnitudes.- The analysis of the coupled response estab-
lishes that the electromechanical response of the biased polymer is less than that of the
isotropic polymer, which is consistent fa—aeceordanece-with the assessed mechanical and

electrostatic properties of both polymers.; r—the SiS d-response;

(Note: 5. Experimental work)

The findinesresults of eurthe present experimental work imply that the dependence of
the pelymers-dielectric properties of the polymers on the deformation and the electric-field
magnitude-of-the-eleetriefield cannot be neglected. Moreover, they suggest that common
models that assume constant relative permittivity, such as the models of 7 and ?, are
not applicable if the polymer is subjected to different mechanical loads or execitations
fremexposed to an electric fields at different magnitudes. Additionally, we-ebserved-that
our extension to the model of 7 for the case of biaxial stretchinges is—able—to-—predicts
the relationship between the relative permittivity, which representsreflects the dielectric
behavior, and thepolymer deformation-ef-the-pelymer. TheueshHowever, the assessment
of the number of monomers in a single chain from the stretch at failure dees—not—ield
a—esood-enotghis insufficient to predictien—of these-mentioned relationships, which- Fhis
eanmay stem from the fact that the stretch at failure is not necessarily the lock-up stretch
of the chain. Furthermore, from our examination of the-effeet—othow electric fields with
differentof varying magnitudes affecton the dielectric properties; reveals the differences in
the responses of the relaxed and pre-stretched VHB 4910,~ thereby demonstratinge the
prominent influence of the microscopic structure on the macroscopic electromechanical
behavior. Accordingly, it—ean-be-seen—that pre-stretching the sample is found to hinders
the evolution of the relative permittivity as the magnitude of the electric field increases.

(Note: ** Future work)

We have spent considerable time pondering the future directions of this research.
WhileAlthough this thesis presentsed a method of influeneinetuning polymerthe proper-
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ties-of polymers, so—far it hwas so far been applied only to the case of uniaxial dipoles.
Thus, an-analysis-sheuld-be-performedfor spontaneous and transversely isotropic dipoles
should also be analyzedas—well. In aAdditionaly, the creation of a biased polymer should
be examined from different directions and with electric fields of greater magnitudes—ef
eleetriefields—in—order to assessdetermine the threshold field fremabove which there-are
siegnificeant differences appear in the electrostatic properties in—eomparison—with—thevis
a vis the isotropic polymer. Moreover, from—the-experimental-perspeetive—the—infuenee

othow an electric field affectsen the dielectric properties should be experimentally ex-
amined for additional materials, with more pre-stretching conditions and under higher-

magnitudes-ef electric fields.
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Appendix

A Presentation of tThe first law of thermodynamics
in terms of eleetriecal-enthalpyelectric enthalpy
The first law of thermodynamics is U = Wy + Q [(Eq. (7)]} [??], where
. d d €0
= = F.P)dVy+— | 2E-Ed 1
U=q ), v Pdvot g |5 BV, (139)

and where the system is assumed to not to interactions-between-thesystemandwith other
bodies and thatfaraway the electric fields is assumed to vanish are-assumedfar from the

system. The rate of work done by the mechanical loads due-tothrough deformation and
by the electric field dwe-tothrough variations in the charge is [?7?]

dWy d d
—— = [ byv;d tiv;dA — (qd — (padA). 14
i [ peav [ wwaas (oG @+ [ 0T a0
We-reealtUsing the definition of the electric enthalpy density [?],
h(F.E)=u(F,P)— JP-E, (141)
Aeeordinglygives
d d d
= h(FE)AV, + P -EJdV,+ — [ LE-EdV
—at )y, at Jy, dt Jus 2
4 hEEa+ / P.EAV+ S [ OB R4V (142)
at J\, dt Jys 2

Sinee-iln the body D = P + ¢yE and outside the body D = ¢yE, so

| d d €0
U=— [ h(F,.EYdVo+— | (D-¢E)-EdV +— [ 2E-EdV. 143
dt Jy, (F.E)dVo+ 5 Rg( “F) Tq ) 2 (143)

Thus, we have that

. d d [ d
U=—= [ h(F.E)dVi—— | 2E-EdV+— [ D-EdV. 144
dt Jy, (F, E)dVs dt/Rs,Q Ty . (144)

Define H = T f % (F,E)dVj as the stored electric enthalpy in the body. Aeeording
to-tThe first law of thermodynamics then gives

. d 60 . . d
H—— | 2E-EdV =W, —~— | D -EdV. 145
dt Jgs 2 AT - (145)
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Consider the last term

d d d d
D EdV = — D -VodV = — D¢)dV — — -DopdV. (14
St V= dt Jgrs VedV = dt V (Do) dV dt Jgs V- DedV. (146)
Assuming no free charges outside the body, then V- D = ¢ in the body and zero outside,

SO
d

St
where we make use of the dlvergence theorem and exploit the assumption that far-enoueh

D EdV = / ¢D - ndA—/ bqdV, (147)
ov

the electric field vanishes at distance. Thus,

d d d
i L DBV =g a-< . 14
: W5 [ opan-g /V pgdV. (148)

The last term can be simplified to
d
i eV =g [ onravi=— [ darav- [ o @ran)
Vo

/gquV /(bdt qdV). (149)

The first term of Eq. (148) is;

d
e (150)

Tt dt Jov

where p? is the referential surface charge such that p°dAy = p,dA. Thus,

d .
dV = — 0d A, — d4y) = — JdA — L dA).
-5 [ sty / og (dar) == [ o [ o (15>1)

Substituting tethis relation into Eq. (148) we-havegives

d - - d

5 [ == [ Gpaa [ ol pat)- [ daav - [ 05 @av), (52)
dt Jgs av ov  dt v yodt
Substitutingand using this relation inte the first law of thermodynamics; [Eq. (145)]; with
the-use-ofand the expression for the external work Wy [Eq. (140)]; swe-havegives

d

H-— — —E EdV = /¢ (gdV) + O— (padA)+Q+/biv,-dV+/ tiv; dA
de av dt v ov

: d
LdA — (padA) — dv — — (qdV
op av¢d (padA) /V¢q /Vcbdt(q )

ov

= Q - ¢padA - / (ﬁQdV + / bﬂ)i dV + / tﬂ)i dA (153)
oV |4 14 oV
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In terms of the external work due to the variations in the electric potential [?7],

dWw . .
— = bﬂ)z‘ dv + / tﬂ)z‘ dA — ¢padA — / qqu‘/, (154)
dt v ov ov v

we endfinally obtain—with the expression for the first law of thermodynamics in terms of

the electric enthalpy:

-S| QERwV =W+ 0. (155)
dt Jes 2

26



B Chain stress and deriving the chain end-to-end

vector byfrom the deformation gradient

T-erder—+To evaluate the stress;—depieted(see discussion in seetionSec. 3.4.1), we first
deriveation—of the term %H@G&@d This is earried-eutdone inusing index notation.

The end-to-end vector of the chain in the current configuration is

r = Fiprp, (156)

where r? is the end-to-end vector of the chain in the reference configuration and Fj; is the

deformation gradient. Accordingly,

87“1' . 0 (
OF,  OFy

Fip) 1y = Gitdipry = O - (157)

From Eq. (124), the mechanical stress in thechain j-th-ehain is

wiy kT [ or? kT . kT N kT Gy
Uks(]) -~ (Ti(]) OFy Fg = TTi(])5ik5lpT2(])Fsz = TT,SJ)FSPT;](]) - TTIEJ)T@-
(158)
Since 77 || v (established in seetionSec. 3.2.3), it follows that
0 sz FD 000 5G). (159)
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C The initial guess for T

The Lagrange multiplier 7 is extracted from the implicit equation that follows from the

constraint ingiven by Eq. (98),

where L
A 1 A
p(ﬁ,h) = exp <T~£—M>.

Taking the first two terms of the Taylor-series expansion seriesfor 7 gives
T :T0+Ar—|—0(7’2) = Ar,

where according to Eq. (75) 7o =7 (r =0) = 0.

Thus,
~ h ~ ~
exp [‘r (r)-&— kT] 20 exp (E : Ar) =1+ Apir,
and
— / (1 + Aikéﬁk) sin (0) d9d¢ = 47 + Ay, / &dlry = 4m.
0,¢
HeneeThus,

p(é,h):;e><p<7'-é—khT>:417T <1+(Ar)~é),

and by taking-inte-aceount using Eq. (165) in Eq. (160) we obtain

417T/£(1+(Ar)'£)d]“2417r/ : =3
-t Aty

(Ar)-E@édl = (47TI>~(A1")

andFinally, using 7 (E — 0) givesis
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